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Abstract— The multi-tier implementation has become the
industry standard for developing scalable client-server enter-
prise applications. Since these applications are performance
sensitive, effective models for dynamic resource provisioning
and for delivering quality of service to these applications
become critical. Workloads in such environments are char-
acterized by client sessions of interdependent requests with
changing transaction mix and load over time, making model
adaptivity to the observed workload changes a critical re-
quirement for model effectiveness. In this work, we apply
a regression-based approximation of the CPU demand of
client transactions on a given hardware. Then we use this
approximation in an analytic model of a simple network
of queues, each queue representing a tier, and show the
approximation’s effectiveness for modeling diverse workloads
with a changing transaction mix over time. Using the TPC-
W benchmark and its three different transaction mixes we
investigate factors that impact the efficiency and accuracy of
the proposed performance prediction models. Experimental
results show that this regression-based approach provides a
simple and powerful solution for efficient capacity planning
and resource provisioning of multi-tier applications under
changing workload conditions.

I. INTRODUCTION

Effective models of complex enterprise systems are
central to capacity planning and resource provisioning.
As multi-tiered architectures are now established as the
industry standard that allows for integration of new, agile
web applications with legacy (e.g., database) systems, the
need for effective models of such systems becomes preva-
lent. Self-adaptive resource provisioning in such systems
requires swift responses to workload changes. The need
of fast response necessitates the use of analytic models
that can quickly supply performance numbers, which then
can drive system provisioning. In Next Generation Data
Centers (NGDC) [7], where server virtualization provides
the ability to slice larger, underutilized physical servers into
smaller, virtual ones, fast and accurate performance models
become instrumental for enabling applications to automat-
ically request necessary resources and support design of
utility services.

Our thesis is that effective analytic models can enable
powerful and simple solutions for dynamic resource pro-
visioning. The need for swift changes and timely perfor-
mance predictions argues against the use of traditional
simulation models and is in part responsible for the revival
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of classic analytic techniques for performance prediction
that are based on simplified queueing networks [16], [17],
[15]. The advantage of analytic models relates to their
ability of providing a contained abstraction of the sys-
tem by considering flows of customers (requests) in the
queueing network (tiers). The effectiveness of the modeling
ability of the queuing network relates to whether this
abstraction is done properly. If salient characteristics of the
system workload are captured well within the abstraction,
then simple queueing network models can be effective in
predicting the performance of complex systems. Naturally,
more detailed workload models that capture multi-class
behavior (i.e., the resource demands of different classes
of customers) can be more effective than single class
workloads where different user behaviors are aggregated
into a single one.

A further challenge is the sensitivity of analytic models
to their parameterization. Measurements in real systems
cannot provide accurate workload “demands” (i.e., exe-
cution times without any delays due to queuing) in each
tier/server (i.e., queue). Approximate workload demands
are extrapolated using measurements at very low utiliza-
tion levels or at nearly 100% utilization [16]. Variability
across different customer behaviors further exacerbates the
problem by requiring measurements of a large number
of flows to accurately model the workload. An additional
point relates to the fact that the workload is session-based
rather than transaction-based. Each user session consists
of an assortment of transactions, which in turn consist
of processing many smaller objects and database queries.
Consequently, detailed measurements, although necessary
to increase model accuracy, become totally impractical.

In this work, we provide a practical solution to the above
problems by laying out a theoretical framework which
illustrates how to use information at the transaction level to
effectively model session-based workloads. The effective-
ness of the proposed framework is based on a regression-
based methodology to approximate CPU demands of trans-
actions on a given hardware. This regression-based solution
can “absorb” some level of uncertainty or noise present
in real-world data by effectively “compacting” information
on workload demands within a few model parameters only.
An additional benefit is simplicity: the methodology is not
intrusive and is based on monitoring data that are typically
available in enterprise production environments.

We illustrate the effectiveness of the methodology via
a detailed set of experimentation using the TPC-W e-
commerce suite [14]. We present sensitivity analysis of the



proposed modeling approach with respect to the regression
window as well as with respect to a continuously changing
workload and transaction mix over time, that essentially
behaves like a “live” system. Our experiments show that for
the majority of cases, the model is in excellent agreement
with experimental data. Even for the more challenging
case where there is a continuous bottleneck switch, errors
remain contained within 15%, providing a close answer
to the fundamental problem of how many simultaneous
sessions can be concurrently supported by the system.

This paper is organized as follows. The experimen-
tal testbed is presented in Section II. Section IV shows
how one can compress a session-based workload with
a transaction-based one. The statistical regression-based
approach is presented in Section V. Section VI gives the
simple queueing network model that is used to model
TPC-W under changing workloads. Approach limitations
are discussed in VII and related work is given in VIII.
Conclusions and future work are outlined in Section IX.

II. EXPERIMENTAL ENVIRONMENT

We built a test-bed of a multi-tier application using
the three-tier architecture paradigm that has become the
industry standard for implementing scalable client-server
applications. This allows to conduct experiments under
different settings in a controlled environment, which then
allows to evaluate the proposed modeling approach.

In our experiments, we use a testbed of a multi-tier
e-commerce site that simulates the operation of an on-
line bookstore, according to the classic TPC-W bench-
mark [14]. A high-level overview of the experimental
set-up is illustrated in Figure 1, and specifics of the
software/hardware used are given in Table I.
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Fig. 1. E-commerce experimental environment.

TABLE I

TESTBED COMPONENTS

Processor RAM
Clients (Emulated-Browsers) Pentium III / 1 GHz 2 GB
Front Server - Apache2.0/Tomcat4.0 Pentium III / 1 GHz 3 GB
Database Server - MySQL4.0 Pentium III/ 1 GHz 3 GB

Typically, a client access to a web service occurs in the
form of a session consisting of a sequence of consecutive
individual requests. In an e-commerce site, placing an order
through the web site involves selecting a product, providing
shipping information, arranging payment agreement, and
finally receiving a confirmation. Thus, for a customer trying
to place an order, or a retailer trying to make a sale, the real
performance measure of such a web service is its ability
to process the entire sequence of individual transactions
needed to complete a higher-level business transaction.
The capacity of the system is measured by the number
of such concurrent client sessions that a multi-tier system

can support without violating pre-defined limits in average
transaction response times. Therefore, the workload of e-
commerce and enterprise sites is best described at the level
of sessions.

According to the TPC-W specification, the number of
concurrent sessions (i.e., customers) or emulated browsers
(EBs) is kept constant throughout the experiment. For each
EB, the TPC-W benchmark statistically defines the user
session length, the user think time, and the queries that are
generated by the session. To better simulate the behavior
of a real system, there is a time-out period (uniformly
distributed between 5 and 15 minutes) that is associated
with each EB. If a time-out occurs, then the session ends
and a new session starts immediately. The database size
is determined by the number of items and the number of
customers. In our experiments, we use the default database
setting, i.e., the one with 10,000 items and 1,440,000
customers.

TPC-W defines 14 different transactions which are
roughly classified as either of browsing or ordering types
as shown in Table II:

TABLE II

BASIC 14 TRANSACTIONS AND THEIR TYPES IN TPC-W

Browsing Type Ordering Type
Home Shopping Cart
New Products Customer Registration
Best Sellers Buy Request
Product detail Buy Confirm
Search Request Order Inquiry
Search Results Order Display

Admin Request
Admin Confirm

One way to capture the navigation pattern within a
session is through the Customer Behavior Model Graph
(CMBG) [9], which describes patterns of user behavior,
i.e., how users can navigate through the site, and where
arcs connecting states (transactions) reflect the probability
of the next transaction type. TPC-W defines the set of
probabilities that drive user behavior from one state to
another at the user session level.

According to the weight of each type of activity in a
given traffic mix, TPC-W defines 3 types of traffic mixes
as follows:

• the browsing mix: 95% browsing and 5% ordering;
• the shopping mix: 80% browsing and 20% ordering;
• the ordering mix: 50% browsing and 50% ordering.

Table III gives the 5 most popular transaction types of each
workload mix.

TABLE III

TOP 5 TRANSACTION TYPES OF EACH WORKLOAD MIX

Browsing Mix Shopping Mix Ordering Mix
Home 29% Search Request 20% Search Request 15%

Product Detail 21% Product Detail 17% Shopping Cart 14%
Search Request 12% Search Results 17% Search Results 13%

New Products 11% Home 16% Customer Reg. 13%
Best Sellers 11% Shopping Cart 12% Buy Request 13%

For each workload mix, we ran a set of experiments with
the number of EBs equal to 30, 100, 200, 300, 400, 500,
and 600 respectively. Each experiment ran for 5 hours. The
first 20 minutes and the last 20 minutes are considered as
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Fig. 2. Three TPC-W Transaction Mixes: a) Throughput; b) Average CPU Utilization of Front Server, and c) Average CPU Utilization of DB Server.

warm-up and cool-down periods, thus omitted in our anal-
ysis. Figure 2 presents a summary of these experiments.
Figure 2(a) shows that the system becomes overloaded
with 300 EBs, 400 EBs, and 500 EBs under the browsing
mix, shopping mix and ordering mix, respectively. System
throughput asymptotically flattens with higher EBs due to
the effect of a closed-loop system, i.e., there is a constant
number of EBs (customers) that circulate in the system
at all times. Figures 2 (b) and (c) show the average CPU
utilization at front and database servers respectively under
the three workloads. From these results it is apparent
that the front server is a bottleneck when the system is
processing shopping and ordering transaction mixes (CPU
utilization of the front tier is reaching 90-98%, while
CPU utilization of the database tier is under 40-60%).
However, for the browsing mix under high loads it is
not obvious which tier and resource is responsible for
the bottleneck: the average CPU utilization of the front
and database tiers reaches 65-70%. It is not uncommon
especially under bursty workload conditions [18] for the
system to become overloaded. Here, average utilizations
of both front and database servers are within the 65-
80% range and additional performance measurements show
that I/O (either at the disk or network) is not the system
bottleneck either.
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Fig. 3. Utilization of Front and DB Servers at 1 min granularity while
processing browsing transaction mix under high load (400 EBs).

Figure 3 shows the CPU utilization of the front and
database servers across time (at 1 min granularity) for
the browsing mix with 400 EBs. The figure shows that
there is a continuous bottleneck switch between the front
and database servers over time. If switching of bottlenecks
occurs across time, one can observe increased client re-
sponse times and violations of service level agreements,
while server utilizations on individual components remain
modest [18]. This non stable behavior is difficult to model.

Traditional analytic and simulation models assume that
system is capable of higher throughput. We return to this
phenomenon in the future sections with modeling results.

III. TRANSACTION AS A UNIT OF CLIENT/SERVER

INTERACTION

Since service providers are interested in dynamic re-
source provisioning methods for their production systems
under live, real workloads, we must first understand which
are the most important properties of these workloads to
incorporate in analytic models. To this end, we first focus
on what is required at the server side to generate a reply
in response to a web page request issued by a client.

Typically, a client communicates with a web service
(deployed as a multi-tier application) via a web interface,
where the unit of activity at the client-side corresponds
to a download of a web page. In general, a web page is
composed of an HTML file and several embedded objects
such as images. A browser retrieves a web page by issuing
a series of HTTP requests for all objects: first it retrieves
the main HTML file and after parsing it, the browser
retrieves all embedded images. Thus, at the server side,
a web page retrieval corresponds to processing multiple
smaller objects that can be retrieved either in sequence
or via multiple concurrent connections. It is common that
a web server and application server reside on the same
hardware, and shared resources are used by the application
and web servers to generate main HTML files as well as
to retrieve page embedded object 1. Additionally, the main
HTML file may be built via dynamic content generation
where the page content is generated on-the-fly to incorpo-
rate customized data retrieved via multiple queries from
the back-end database.

Since the HTTP protocol does not provide any means to
delimit the beginning or the end of a web page it is very
difficult to accurately measure the aggregate resources con-
sumed due to web page processing at the server side. There
is no practical way to effectively measure the service times
for all page objects, although accurate CPU consumption
estimates are required for effective model parameterization.
To address this problem, we define a transaction as a
combination of all the processing activities at the server
side to deliver an entire web page requested by a client, i.e.,

1This is the case for TPC-W implementation that uses PHP web-
scripting/application development language [10], and it is common for
many production systems that are built in a similar way.



generate the main HTML file as well as retrieve embedded
objects, and perform related database queries.

IV. SESSION-BASED VERSUS TRANSACTION-BASED

SYSTEMS

While it is well-accepted [2], [6] that a workload of e-
commerce and enterprise sites is more accurately described
at the level of sessions, we focus on whether a simplified
workload model that is only based on the probabilistic
transaction mixes can be used for performance modeling
of such sites.

A session is defined as a sequence of interdependent
individual transactions. Therefore, effective system provi-
sioning requires to evaluate the amount of system resources
needed to support a targeted number of concurrent client
sessions without violating a negotiated upper limit on the
transaction response time. There are explicit transaction
dependencies in session-based systems, e.g., “an order”
cannot be submitted to an e-commerce system unless the
previous transactions have resulted in “an item being or-
dered”. Therefore, the session-based system is not stateless
since the next client transaction explicitly depends on the
previous ones. Such transaction dependency in the client
behavior limits the opportunity for an efficient analytical
model design. Because we aim at simple analytic models,
we focus on simplifying the workload such that all trans-
action dependencies are ignored.

We refer to systems that do not have inter-request
dependencies as transaction-based systems. The question
we would like to answer is whether we can model well re-
source requirements of a session-based system by evaluat-
ing the resource requirements of its simplified transaction-
based equivalent.

Assume that there is a total of N transaction types
processed by the server. We use the following notation:

• let pi,j be the probability of the transaction type i
following the transaction type j in the same client
session, where 1 ≤ i, j ≤ N ;

• let P be the probability matrix of the transition
probabilities of all the transaction types, i.e.,

P =




p1,1 p1,2 · · · p1,N−1 p1,N
p2,1 p2,2 · · · p2,N−1 p2,N
· · ·

pN−1,1 pN−1,2 · · · pN−1,N−1 pN−1,N
pN,1 pN,2 · · · pN,N−1 pN,N



(1)

• let π = [π1, π2, · · · , πN ] be the vector of stationary
probabilities of the transactions, i.e., πP = π and
πe = 1, where e is a column vector of 1s with the
appropriate dimension.

Vector π represents the steady-state probability all transac-
tions, i.e., πi gives the overall percentage of transactions
of type i in the workload.

In order to compare performance of session-based ver-
sus transaction-based system, we designed and imple-
mented a simulation model of session-based system and
its transaction-based equivalent as follows:

• session-based model: we simulate the real session
behavior of each client. The transaction type is de-
termined when a client sends out the request to the

system (according to the pre-defined transition prob-
ability matrix P), and this transaction type generates
the appropriate sequence of requests to the other tiers
in the modeled multi-tier system. The next client
transaction in the session is generated according to
the transaction probability matrix P.

• transaction-based model: each tier has the same trans-
action mix as the session-based system. However, the
transaction type in each tier is selected according to
the stationary probabilities π.

This simulation model is implemented using C++Sim [13].
For performance comparison we use the browsing, shop-

ping, and ordering workloads in TPC-W as defined in Sec-
tion II. Figures 4-5 present the simulation results for these
workloads modeled as session-based versus transaction-
based systems. Figure 4 and Figures 5 show system
throughput and average transaction response time, respec-
tively, for the three workload mixes. Simulation results
confirm that performance and resource requirements of
session-based systems in multi-tier environment can be
efficiently modeled by their simplified transaction-based
equivalent.

Under the transaction-based workload, each transaction
arriving in the system is totally independent of other
transactions while the overall transaction distribution is the
same as in the system with session-based behavior. Such
transaction distribution can be easily monitored for an ex-
isting production system. If we find a way to approximate
the service time of each transaction type in the workload,
then we can evaluate the average service time for the entire
system under changing workload conditions (i.e., under
varying transaction mix and load conditions over time) and
design compact and efficient analytical models answering
capacity planning and resource requirement questions.

V. CPU COST OF TRANSACTIONS

In this section, we propose a statistical regression-based
approach for an efficient approximation of CPU demands
of different transaction types. With the knowledge of
CPU demands of transactions one can easily compose
the resource requirement of scaled or modified transaction
mixes. Thus, this methodology can be directly applied to
production systems operating under live, real workloads,
and can be used for explaining large-scale system behavior
and predicting future system performance.

Prerequisite to applying regression is that a service
provider collects the following:

• the application server access log that reflects all
processed client transactions (i.e., client web page
accesses);

• the CPU utilization if every tier of the evaluated
system.

A. Regression Methodology

To capture the site behavior across time we observe a
number of different transactions over monitoring windows
of fixed length T . The transaction mix and system utiliza-
tion are recorded at the end of each monitoring window.
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Fig. 4. Session-Based versus Transaction-Based Model: Average Throughput under Three TPC-W Transaction Mixes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  100  200  300  400  500  600

R
es

po
ns

e 
T

im
e 

(m
s)

Number of EBs

 

session-based
transaction-based

(a) Browsing

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  100  200  300  400  500  600

R
es

po
ns

e 
T

im
e 

(m
s)

Number of EBs

 

session-based
transaction-based

(b) Shopping

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0  100  200  300  400  500  600

R
es

po
ns

e 
T

im
e 

(m
s)

Number of EBs

 

session-based
transaction-based

(c) Ordering

Fig. 5. Session-Based versus Transaction-Based Model: Average Response Time under Three TPC-W Transaction Mixes.

Assuming that there are totally N transaction types
processed by the server, we use the following notation:

• T is the length of the monitoring window;
• Ni is the number of transactions of the i-th type,

where 1 ≤ i ≤ N ;
• UCPU,n is the average CPU utilization at n-tier during

this monitoring window;
• Di,n is the average service time of transactions of the

i-th type at the n-tier of the system 2, where 1 ≤ i ≤
N .

From the utilization law, one can easily obtain Eq. (2)
for each monitoring window.∑

i

Ni · Di,n = UCPU,n · T . (2)

Because it is practically infeasible to get accurate service
times Di,n, let Ci,n denote the approximated CPU cost of
Di,n for 0 ≤ i ≤ N . Then, an approximated utilization
U ′

CPU,n can be calculated as

U ′
CPU,n =

∑
i Ni · Ci,n

T
. (3)

To solve for Ci,n, one can choose a regression method
from a variety of known methods in the literature. A typical
objective for a regression method is to minimize either the
absolute error: ∑

j

|U ′
CPU,n − UCPU,n|j

or the squared error:∑
j

(U ′
CPU,n − UCPU,n)2j ,

2This value is defined for all transactions and for all tiers. If there is
no processing activity for transaction i at n-tier, then Di,n = 0.

where j is the index of the monitoring window over time.
Finding the ideal regression method for the above prob-

lem is outside of the scope of this paper. In all experiments,
we use the Non-negative Least Squares Regression (Non-
negative LSQ) provided by MATLAB to obtain Ci,n. This
non-negative LSQ regression minimizes the error

ε =
√∑

j

(U ′
CPU,n − UCPU,n)2j ,

such that Ci,n ≥ 0.
This regression solver produces a solution for 200 equa-

tions with 14 variables only in 7 millisecond. In general,
the common least squares algorithms have polynomial time
complexity as O(u3v) when solving v equations with u
variables, and hence, can be efficiently used as a part of
on-line resource evaluation method [1].

In the next two subsections, we explore the impact
of monitoring window size and workload rates on the
accuracy of the regression solution.

B. Sensitivity of Regression to Monitoring Window Size

We use the traces collected from the TPC-W experiments
under the three workload mixes (i.e., browsing, shopping,
and ordering mixes as described in Section II) to validate
the accuracy of the proposed regression-based method.

Every minute, we monitor and record the following:
• the average CPU utilization UCPU,n at each n-tier in

the system, and
• the number Ni of processed transactions of the i-

th transaction type in the total 14 unique transaction
types.

We then examine the sensitivity of the regression results
to the length T of the monitoring window, i.e., T equal to
1 minute, 5 minutes, 10 minutes, and 15 minutes.
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Fig. 6. Front Server: CDF of Relative Error of Regression Results under Different Monitoring Window Size.
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Fig. 7. DB Server: CDF of Relative Error of Regression Results under Different Monitoring Window Size.

Using the aggregated values of N1 to N14 and UCPU,n

for each monitoring window T we obtain a set of equations
in a form of Eq. (2) to approximate the CPU processing
cost of transaction i at the n-tier, i.e., the front-tier and
db-tier in our experiments. Then, using non-negative LSQ
can solve this set of equations Ci,n (1 ≤ i ≤ 14) in
order to estimate an approximation of the CPU processing
cost of all transaction types across all tiers. After this
step, the approximated U ′

CPU,n (we call it fitted) of every
monitoring window is computed by using the original N1

to N14 and the computed C1,n to C14,n values.
We use the relative error of the approximated CPU

utilization with respect to the originally measured CPU
utilization as a metric to validate the regression accuracy.
For every monitoring window, the relative error of the
approximated utilization is defined as

ErrorR =
|U ′

CPU,n − UCPU,n|
UCPU,n

. (4)

Figures 6 and 7 show the CDF of the relative errors
for the front server and the database server under differ-
ent lengths of monitoring window and the three TPC-W
transaction mixes: browsing, shopping, and ordering. These
performance results can be summarized as follows:

• The approximation of CPU transaction cost at the
front server is of higher accuracy than that at the
database server.
For the three TPC-W transaction mixes, the relative
errors of the CPU cost approximation at the database
server is higher than that at the front server. Partially,
this reflects a higher variance in the CPU service time
at the database tier for the same transaction type. The
relative errors of the CPU cost approximation at the
database server is lower for shopping and ordering

mixes as shown in Figures 7 (b), (c), while at the front
server, the relative errors are lower for the browsing
mix, see Figure 6 (a);

• Larger T achieves higher accuracy.
The larger monitoring windows T work better, espe-
cially at the database server. For example, for brows-
ing and shopping mixes, with T=1 min, the percentage
of monitoring windows at the database server that
show less than 20% of relative errors are 50% and
70%, respectively. With T=15 min, the percentage of
monitoring windows at the database server with the
same relative errors (less than 20%) increases to 83%
and 89%, respectively. Larger T allows us to find a
better “average” approximation for a variable CPU
service time for the same transaction type.
A larger monitoring window T has less impact at the
front server. However, for the browsing mix, it still
provides a reasonable improvement: with T=15 min
87% of monitoring windows show less than 10% of
relative error compared to 77% of windows in the
same error range when T=1 min.

By considering “worst” / “best” numbers across the three
transaction mixes and using a larger monitoring window
T=15 min, we can summarize the accuracy of regression
results for approximating the CPU transaction cost as
follows:

• at the front server: 87% - 98% of monitoring windows
have relative errors less than 15%;

• at the database server: 79% - 89% of monitoring
windows show relative errors less than 20%.

Now, we turn our attention to the impact of workload type
on the accuracy of regression.
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Fig. 8. Front Server: CDF of relative error of regression results under light and steady loads.
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Fig. 9. DB Server: CDF of relative error of regression results under light and steady loads.

C. Sensitivity of Regression Results to Workload Rate

As our more detailed analysis indicates that the CPU
service time might be load dependent, we evaluate this
conjecture by splitting regression equations into two sets
according to their corresponding loads. Measurements from
experiments with less than or equal to 200 EBs are used to
get CPU costs under light load, and data from experiments
with larger than 200 EBs are used to get the costs under
steady load. Here, we do not partition equations and results
according to different workload mixes, but rather present
the overall (combined) impact of all mixes on the accuracy
of CPU transaction cost approximation.

Figures 8–9 present the combined CDF of relative errors
across the three TPC-W mixes: browsing, shopping, and or-
dering, under light load and steady load. Comparing these
figures, we can summarize the observations as follows:

• The approximation of CPU transaction cost is much
more accurate when the regression is done separately
for different workload rates. This observation holds
for both the front and the database servers.

• The approximation of CPU transaction cost is less
accurate under the “light” workload rates. Partially,
it is due to a smaller number of transactions per
monitoring window, and at the same time, higher
variance of processing time in a lightly loaded system.

It means that in the modelling exercise one can use the
transaction cost as a function of load, e.g., use two-values
transaction cost for low and steady load areas.

Overall, we demonstrated that regression provides a
simple and powerful solution to accurately approximate
CPU transaction costs, especially with appropriately tuned
monitoring window size and with the workload rates (or
system load) taken into account.

VI. ANALYTIC MODEL

Our next step is to use the results of the regression
method to parameterize an analytic model of queues to
enable dynamic evaluation of required system resources
under changing workload conditions 3. In this section, we
explore this idea and perform a detailed performance study
comparing the accuracy of our analytic model for resource
usage evaluation with the real system results.

A. Analytic Model

Because of the upper limit on the number of simulta-
neous connections at a web server (which is reflected by
the fixed number of EBs in the TPC-W benchmark), the
system can be modeled as a closed system with a network
of queues, see Figure 10.

...

Q0

Q1

1

Q2

2

Fig. 10. The queuing model of the TPC-W environment.

The number of clients in the system is fixed and circulate
in the network. When a client receives the response from
the server, it issues another request after certain think time,

3For the TPC-W benchmark and most production multi-tier services
CPU is a typical system bottleneck. However, in practice, when one
needs to make a projection of the maximum achievable system throughput,
additional “back of the envelope” computations for estimating memory
and network requirements under the maximum number of concurrent
clients are required to justify this maximum throughput projection.



i.e., after spending some time at Q0. One could argue that
since some of the requests are satisfied in at the front server
tier, i.e., Q1, therefore there must be direct flow from Q1

back to Q0. This is not needed here since we do not model
each single visit at each tier, but an aggregated service time
spent in each tier by a transaction.

This model can be efficiently solved using Mean-Value
Analysis (MVA) [8], a classic algorithm for solving closed
product-form networks. This model takes as inputs the
think time in Q0 and the service demands of Q1 and Q2,
and provides average system throughput, average transac-
tion response time, and average queue length in each queue.
The think time in Q0 is defined by the TPC-W benchmark
as exponentially distributed with mean equal to 7 seconds,
this is the value used in all experiments here. In production
systems this value can be measured on-line or extracted
by analyzing historic data. The average service demand at
tier n is computed as follows. First, the CPU cost Ci,n is
obtained by regression for all i and all n. After calculating
the transaction mix distribution vector π (see Section IV),
the overall service demands at tier n is given by

Sn =
14∑

i=1

πi · Ci,n (5)

The above value is used by the MVA model to evaluate the
maximum achievable system throughput for the three TPC-
W transaction mixes: browsing, shopping, and ordering.

B. Simulation Model

We also evaluate an accuracy and performance of our
transaction-based simulation model introduced and used in
Section IV. Here, we briefly describe its basic functionality.
After a certain think time (exponential distributed), the
client sends a transaction to the front server. The transac-
tion type i is randomly selected according to the stationary
probabilities π of the browsing, shopping, or ordering
mixes. Then, the front server processes this transaction
with an exponentially distributed service time with mean is
equal to Ci,front of the front server, i.e., the approximated
CPU cost of transaction type i as given by regression. If
this transaction type issues a query to the database server
then the database server processes it and sends the reply
back to the client. The service time at the database server
is exponentially distributed with mean equal to Ci,db, this
value is also provided by regression.

C. Modeling Results

Figure 11 compare the analytic results with the simula-
tion of the detailed session-based model and experimental
measurements of the real system. The results of the analytic
model perfectly match the experimental results for the
shopping and ordering mixes. The results also validate the
simplified transaction-based model: its performance results
are also in excellent agreement with experimental values.

For the browsing mix, both analytic and simulation
models predict higher system throughput than the measured
one. The reason that the two models do not do as well
relates to the bottleneck switching behavior for browsing
mix under higher loads: we discussed and demonstrated

this phenomenon in Section II. However, even for this chal-
lenging case with a continuous bottleneck switch, the error
remains contained within 15%, providing a close answer
to the fundamental problem of how many simultaneous
sessions can be concurrently supported by the system.

VII. APPROACH LIMITATIONS

Once we approximated the CPU cost of different client
transactions at different tiers, then we could use these
cost functions for evaluating the resource requirement of
scaled or modified transaction workload mix, in order to
accurately size a future system. Ideally, one would like
to use the CPU cost function obtained with the regres-
sion method under WorkloadMix 1 to predict the system
behavior under a different WorkloadMix 2. In this section,
we try to assess the accuracy of performance predictions
under drastic changes in the workload using the analytic
model.

Figures 12 (a)-(c) present the system average throughput
under different workload mixes. The lines on the graphs
have the following meaning:

• the line labeled “browsing” (“shopping” or “order-
ing”) means that the model is parametrized with CPU
transaction costs derived with regression from the
system that is processing the browsing mix (shopping
or ordering mix respectively);

• the line labeled “all” means that the model is
parametrized with CPU transaction costs derived with
regression from the aggregate profile with all three
mixes. It mimics the situation when the workload
mix is changing and varying over time, i.e., when the
system is processing over different periods of time
either browsing, or shopping, or ordering transaction
mixes;

• the line labeled “real” reflects measured performance
of the real system.

The observations from the modeling results can be
summarized as the follows.

• The cost function “all” obtained from the aggregate
profile of all the workload mixes gives excellent
results for a diverse set of workloads. The maximum
error with this cost function occurs when it is used to
approximate system performance under the browsing
mix. For the browsing mix, the model overestimates
performance by 15%. The reason that the product
form model does not do we well here is the bottleneck
switching behavior that we discussed in Section II and
Section VI-C.

• The cost function obtained by the profile of a stable
workload mix gives excellent accuracy for the same
workload mix. The relative error is under 2% when
using the cost function from the shopping (or order-
ing) profile into the shopping (or ordering) simulation.

• The transaction cost function should not be applied to
a very different workload mix compared to the mix it
was derived from. For example, the relative error of
the average throughput reaches 80% when the cost
function from the browsing mix profile is used to
simulate the ordering mix. This observation deserves
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Fig. 11. Comparing Analytic Model Results with Simulation Model and Real System: Average Throughput under Three TPC-W Transaction Mixes.
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Fig. 12. Comparing Performance Results when Analytic Model is Parametrized with Different CPU Transaction Cost Models.

further examination. In general, modeling results re-
lated to the browsing mix appear less accurate and this
is explained by the continuous bottleneck switching at
higher loads. Instead, when we used the “shopping”
cost function to approximate system throughput under
the ordering mix and vice versa, the error is contained
within 20% – in these cases the errors come from
the (inevitably) inaccurate approximations of the cost.
Note that shopping and ordering mixes have 80%-
20% and 50%-50% of transactions of the browsing
and ordering types respectively (see Section II), so
transactions from both classes are represented well in
the overall mix (compared to 95%-5% ratio in the
browsing mix). To obtain the accurate approximation
of CPU transaction cost, the regression method re-
quires a representative number of these transactions
in the workload.

As the system and its workload evolve over time, con-
tinuously aggregated measurements like the ones used in
cost function “all” allow to “adjust” the cost function and
significantly improve model prediction.

VIII. RELATED WORK

Performance evaluation and capacity planning of soft-
ware and hardware systems is a critical part of the system
design process [8]. There is a number of capacity planning
techniques proposed for different popular applications.

Among these techniques, queuing theory is a widely
used methodology for modeling a system behavior and
answering capacity questions [17], [15], [16]. Modeling
of a single-tier system, such as a simple HTTP server, has

been studied extensively. Even for a multi-tier structure
which is employed ubiquitously for most servers, the
system is usually abstracted as the most bottlenecked tier
only: in [17], only the application tier for the e-commerce
systems are modeled by a M/GI/1/PS queue; similarly in
[11] the application tier with N node cluster is modeled
by a G/G/N queue. Recently B. Urgaonkar et al. proposed
analytic models for both open and closed multi-tier sys-
tems [15], [16]. These models are validated by synthetic
workloads running in real systems. However the expense
of accurately estimating model parameters, i.e., service
times and visit ratios, from each server log makes this
model difficult to apply in production environments. Direct
measurements in [16] do not characterize transactions as
we do in this paper. Moreover, existing capacity planning
methods are based on evaluating the system capacity for
a fixed set of typical user behaviors. Once the service
time is estimated, it is consistent throughout the planning
procedure. This approach does not consider the fact that
a changing workload for the same system has different
service times and may result in different system capacity.
Our experiments show that such techniques as those in [16]
may fail to model a real system because of its dynamic
nature.

In this paper, we use a similar closed multi-tier model
as in [16], but in contrast to [16] or other examples in
the existing literature of capacity planning, we propose a
methodology that does not need a controlled environment
for analytic model parameterization. Instead of character-
izing the overall service time of every server, we use a
statistical regression method to approximate the service



cost of individual transactions. This CPU cost function
together with the transaction mix help to approximate
the system service time that varies with the changing
transaction mix.

The use of statistical methods in capacity planning has
been proposed in the early 80’s [3], [8], but the focus
was on a single machine/cluster that is much simpler
than current large-scaled multi-tiered systems. Recently
statistical methods are getting more attention in computer
performance analysis and system performance prediction.
In [12] the authors use multiple linear regression techniques
for estimating the mean service times of applications in a
single-threaded software server. These service times are
correlated with the Application Response Measurement
package (ARM) data to predict system future performance.
In [4],[5] the authors focus on transaction mix perfor-
mance models. Based on the assumption that transaction
response times mostly consist of service times rather than
queueing times they use the transaction response time to
approximate the transaction service demand. The authors
use linear regression to identify performance anomalies in
past workloads and to scrutinize their causes. We do not
use measured transaction response times to derive CPU
transaction demands (this approach is not applicable to the
transactions that themselves might represent a collection of
smaller objects).

The contribution of our paper is that it illustrates how
a multi-tier system with a complex session-based work-
load can be modeled with a transaction-based mix. This
approximation reduces the number of requisite parameters
in a workload and further allows for the use of regression
to derive the model parameters from direct measurements
that are available at any production system, making a step
toward a practical way to effectively model complex, live
system with few parameters only.

IX. CONCLUSION

Predicting and controlling the issues surrounding sys-
tem performance is a difficult and overwhelming task for
IT administrators. With complexity of enterprise systems
increasing over time and customer requirements for QoS
growing, effective models for quick and automatic evalu-
ation of required system resources in production systems
processing diverse real workloads become a priority item
on the service provider’s “wish list”.

In this work, we develop a practical solution to
above problem by providing a theoretical framework
which enables the resource evaluation of complex session-
based systems through the performance modeling of their
transaction-based equivalent. Once dealing with “stateless”
transaction-based workloads, we design an analytic model
for evaluating multi-tier system performance that is based
on a network of queues representing the different tiers.
This model is capable of modeling diverse workloads
with changing transaction mix over time. The effectiveness
of the proposed framework is based on a regression-
based methodology to approximate the CPU demands of
customer’s transactions on a given hardware along all the
tiers in the system. The statistical regression works very

well for estimating the CPU demands of transactions that
themselves might represent a collection of smaller objects
and where direct measurement of the cost of each object
is not feasible.

We illustrate the effectiveness of this methodology via
a detailed set of experiments under different settings in
the controlled TPC-W e-commerce suite. Our experiments
show that for the majority of cases, the analytic model
provides an accurate performance prediction compared to
experimental data. However, the regression results should
be used with care. The CPU transaction demands that are
derived from workload mix which is very different from
the one that is used in prediction might lead to inaccu-
rate performance projections. The accuracy of regression
significantly improves when the CPU transaction demands
are derived from the extensive, aggregate workload profile
that incorporates these possible different behaviors.

While this paper concentrates on evaluating the CPU
capacity required for support of a given workload, we
believe that regression methods can be efficiently applied
for evaluating other shared system resources. We plan to
exploit this avenue in our future work.
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