

Fully Distributed Service Configuration Management♦

Paul Murray, Patrick Goldsack
Enterprise Systems and Software Laboratory
HP Laboratories Bristol
HPL-2007-84
June 28, 2007*

configuration
management,
data centre,
peer to peer,
dependability,
security

Configuration management in today's data centers is largely a human activity.
Where automation does exist it is usually implemented by centralized
management tools that coordinate configuration actions across the entire
infrastructure and applications. These systems are limited in scale, reliability,
and security.

We propose that dependable service configuration management is more
naturally implemented by a loose federation of fully distributed and self
discovering management systems that interact through controlled information
exchange.

* Internal Accession Date Only
♦Third Workshop on Hot Topics in Dependability, 26 June 2007, Edinburgh, Scotland
 Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.

Fully Distributed Service Configuration Management

Paul Murray, Patrick Goldsack
Hewlett-Packard Laboratories

pmurray@hp.com, patrick.goldsack@hp.com

Abstract

Configuration management in today’s data centers

is largely a human activity. Where automation does
exist it is usually implemented by centralized
management tools that coordinate configuration
actions across the entire infrastructure and
applications. These systems are limited in scale,
reliability, and security.

We propose that dependable service configuration
management is more naturally implemented by a loose
federation of fully distributed and self discovering
management systems that interact through controlled
information exchange.

1. Introduction

Service configuration management in a data center
environment is an ongoing activity involving
deployment, modification and ultimately removal of
distributed software systems and underlying
infrastructure.

Centralized configuration management uses a
central control process to manage the configuration of
a distributed system remotely. Coordination of actions
across the configured elements is simple as it is
handled from within a single process. However there
are significant problems. The centralized configuration
function is an additional element that introduces a
point of failure. It also needs to be configured and
managed. It interacts with all system elements and so
has widespread security risks if compromised. And its
scale is limited to that which the central process can
handle. The centralized approach is well understood
and easy to implement, but as the scale of systems
increases it becomes ever more inappropriate.

We believe the other extreme, fully distributed
configuration management has more to offer our
understanding of how to build future configuration
management systems.

In fully distributed configuration management each
element has its own configuration capability.

Coordination of configuration across the elements is
more complicated as it is a distributed act. However,
there are advantages. The system is more resilient to
failures. There is no separate configuration element to
manage. Unrelated elements need not interact, so
stronger isolation can be used to reduce security risks.
And the total system scale is potentially unlimited.

Our experiments to date suggest that for reasons of
dependability the fully distributed approach leads
naturally to federated, self discovering management
environments that interact through loosely coupled
information exchange: firstly because self discovery
leads to robust systems that handle change by design,
and secondly because isolated management systems
with limited interaction are simpler and offer improved
security.

Here we concentrate on the dependability aspects
that lead us to this conclusion, and discuss the
implications for configuration management system
design.

2. Configuration Management

We have developed a collection of tools that form the
basis of our configuration management experiments.
At the core of these tools is the SmartFrog framework.
This framework is extended for dependability with the
WoodFrog persistence mechanism and the Anubis state
monitoring service.

2.1. SmartFrog

SmartFrog (described in [2]) is a software
framework for describing and managing distributed
software systems as collections of cooperating
components. SmartFrog components are Java objects
that are implemented by extension of SmartFrog core
framework objects. These components can be
configured and composed together using the
SmartFrog description language. The core framework
uses agents on each server to deploy systems by
interpreting the descriptions, placing and constructing

the described components, and transitioning them
through their runtime lifecycles. At runtime the core
framework provides a fully distributed naming and
name-based reference resolution framework through
which components can inspect and manipulate their
configuration and interact with their environment.
Components are also able to deploy further
descriptions or terminate deployed components
programmatically.

SmartFrog has been used for some years as a model
based approach to distributed system configuration
management. Examples are documented in [1], [3] and
[4]. We refer to a deployed system as a live model as
the framework reflects the system’s current
configuration as it undergoes changes throughout its
runtime existence.

In [1], Anderson et al. demonstrated integration of
SmartFrog with LCFG, a policy based system for
installing and configuring UNIX servers, which has
since been repeated with other OS neutral tools. The
integration allowed LCFG policies to be managed as
SmartFrog components, allowing software and server
configurations to be deployed as components. With
LCFG able to install the SmartFrog agents themselves,
this provided the means for SmartFrog to not only
deploy the application software described in a model
but also as much management infrastructure as it
needed.

Given further integration with other tools to
configure virtual machines, networking and storage,
one does not need to extrapolate far to see that the
entire virtual infrastructure, OS, management systems
and applications can be deployed on demand in the
same manner.

The weakness of live models is that the loss of these
runtime objects, due to failures, or even just rebooting
a server, disrupts the operation of the framework. The
WoodFrog and Anubis components address these
issues.

2.2. WoodFrog and Anubis

WoodFrog (described in [9]) is an extension to the
SmartFrog core framework that implements recovery
from stable storage. It does this by maintaining a copy
of the component’s live model, representing its current
configuration, on stable storage, and provides a means
to re-deploy the component from this model.

The WoodFrog extension transparently rebinds
references held by other components and extends the
runtime component lifecycle to accommodate the
offline status of a component that undergoes an outage.

Components defined by extension of the WoodFrog
recoverable component can be included in any
SmartFrog system model. This provides a means for

the live models to overcome the limitation of only
existing as runtime Java objects.

Anubis (described in [7]) provides the ability for
distributed components to discover each other, monitor
each others' states, and perform distributed failure
detection. It is implemented as a distributed service
provided by components that form a peer group and
use group communication protocols to disseminate
state information.

Anubis can be combined with WoodFrog to support
the rebind feature by proactively disseminating
updated references, and to provide more accurate
failure detection to inform decisions about when to
recover components.

A component can also use Anubis to indicate that it
is about to undergo a deliberate outage, perhaps to
reboot its server, by changing its status.

3. Architectural Principles

We have constructed several experimental systems
using the fully distributed configuration management
framework described above. Each was able to handle
failures of the application, server, and networking by
detecting the failure and automatically reconfiguring
the service to compensate. Examples include the print
service demonstrator reported in [1], the HP Utility
Rendering Service [3], and the SoftUDC virtual
infrastructure management prototype reported in [4].

Over the evolution of these prototypes we have
recognized two principles that have simplified our
systems and made them remarkably robust: self
discovery and loose federation.

In the following we describe resource management
in the HP Utility Rendering Service and how it
exemplified these principles.

3.1. The HP Utility Rendering Service

The HP Utility Rendering Service [3] ran 12
separate instances of a CGI film rendering service for
12 independent film makers in a shared data center
environment. The services all competed for access to a
shared resource pool of 120 servers, allocated
dynamically according to market based principles.

The resource allocation service and the 12 rendering
services all operated as independent, distributed and
self discovering systems. From the perspective of this
paper, the primary interest is the way these separate
services interacted to deal with dynamic configuration
changes and failures using the resource management
pattern described in [8].

Each computer in the system contained its own
resource allocation component, forming a distributed

resource allocation service. A single market based
arbitrator was deployed into the resource pool.

An instance of the rendering service was deployed
into the resource pool for each customer (film maker).
This included a service manager that would control
rendering jobs: sets of independent batch tasks (frames
to render) that the manager could assign to a compute
node.

Anubis was used as a general discovery and state
observation service throughout. All compute nodes
were configured to join the Anubis service and expose
information about their allocation status. The resource
arbitrator observed resources through it. The rendering
service managers observed their resources and
software components through it as well. Anubis was
also used as the information exchange medium
between the different configuration systems.

Figure 1: Service Interaction

Figure 1 shows the interaction both between and

within the resource allocation service and one of the
rendering services.

Each compute node was either free or allocated to a
specific rendering service. The resource arbitrator
would observe the resources and the requirements and
use a market based scheme to propose matches. The
compute nodes would observe these proposals, but
were free to determine their own assignment.

A compute node would expose itself in a state space
owned by a particular service instance. The service
manager would discover the set of compute nodes
allocated to it and, on finding a new one, would deploy
code and data to that node (using SmartFrog) to
provision it for the service.

The recovery models for the different parts of the
system differed according to the role. Each service
manager persisted information into stable storage using
WoodFrog so that it could be recovered as required.
The resource arbitrator worked purely from observed
states and could be treated as stateless. The dynamic
compute nodes hosting rendering engines lost their

work in progress (the rendering software didn’t
checkpoint part-completed frames), so the recovery
model was simply to allocate a spare node and to
restart the computation.

Failure would be noticed by affected systems
through their respective discovery mechanisms (the
state space) ultimately leading to correction of the
resulting incorrect configuration.

3.2. Self Discovery

The HP Utility Rendering Service provides a good
demonstration of the dependability aspects of our
framework. Each service was a self organizing
collection of distributed components that discovered
each other and their environment and responded to
changes in an attempt to maintain their ideal
configuration.

The underlying philosophy was to build a
configuration management system for the utility that
was responsible for discovering and reacting to its own
environment, including discovering the availability of
its own resources. Allocation of the resources was
handled as a separate concern and was not directly
exposed to the other services other than the fact that
each service itself discovered its resources.

The resulting dependability of the HP Utility
Rendering Service surpassed our expectations. During
a 10 month period it ran 24 hours a day, encountering
154 failures due to rendering software and NFS and
approximately 40 reboot failures (hang on reboot). All
these failures were detected and handled automatically.
Machines were permanently excluded on 19 occasions
due to faults requiring human intervention to correct.

3.3. Loose Federation

There are many reasons for isolating subsystems,
including security and division of responsibility, and
we have repeatedly found that we have been able to
separate configuration concerns and implement them
as isolated services that interact through information
exchange in a loosely coupled way.

If we separate out configuration systems in this way
we find there is no natural single point of authority or
control and any attempt to introduce one is artificial
and unnecessary.

The HP Utility Rendering Service is an example of
loose federation. The rendering services, were entirely
self configuring, were not aware of each others
existence, and did not interact. Similarly, the resource
allocation service did not interact directly with the
rendering services and was not known to them, or vice
versa. The resource manager was only interested in

service
manager

resource
arbitrator

resource allocation
service

rendering
service

requirements

distributed resource allocation

resource requirements and resources. The rendering
services were only interested in the resources allocated
to them. None had authority over the others or played a
subservient role. All interaction was indirect through
the Anubis service.

The fact that Anubis pervaded the entire system
somewhat contradicts our claims of isolation. In other
examples we have provided much stricter isolation: in
the SoftUDC for example, infrastructure resources
allocated to separate service instances had no network
connectivity between them. Interaction with the
resource allocation service could only occur through a
dedicated bastion host per service, and resources were
only discovered when they were introduced to the
same network by a network configuration service.

4. Related Work

Aspects of our approach are similar to autonomic
computing as outlined in [5] and described
architecturally in [10]. Although all the same principles
are present, such as self-configuration, self-adaptation,
and self-protection, we are less strict about the
interaction among configuration systems. Rather than
establishing contractual, service provider style
relationships, we propose a much looser connection
based on information exchange.

In their review paper [6] McKinley et al. identify
assurance, security, interoperability and decision
making as key challenges to adaptive software. We
address these topics for configuration systems,
describing our view of how they should be structured
to separate concerns, localize decision making and
control interaction.

Our claim of potentially unlimited scalability
depends of course on implementation, but is upheld by
the wealth of self-organizing peer-to-peer systems that
have arisen. They are instances of fully distributed
configuration management and both SmartFrog and
Anubis use the same underlying principles.

5. Future Work

We suggest that loosely federated management
systems based on this form of interaction are an ideal
basis for data centre configuration management
precisely because they support isolation and the lack of
central control.

We believe this approach provides a robust and
secure means to construct dynamic configuration
management systems and we are currently working to
extend these concepts to include all aspects of
virtualized infrastructure and adaptive software
systems.

It is essential to provide the means for these systems
to interact in a secure way. The ongoing research in our
group examines suitable interaction mechanisms to
construct federated management systems for shared
data centre environments, including the separation of
responsibility, the security to prevent unauthorized
configuration effects and maintain isolation, and the
reliability to continue control of the system in the face
of failures.

6. References

[1] P. Anderson, P. Goldsack, J. Paterson, “SmartFrog

meets LCFG - Autonomous Reconfiguration with
Central Policy Control”, Proc. of the 2003 Large
Installations Systems Administration (LISA) Conf., Oct.
2003

[2] P. Goldsack, J. Guijarro, A. Lain, G. Mecheneau, P.
Murray and P. Toft, “SmartFrog: Configuration and
Automatic Ignition of Distributed Applications,” 10th
OpenView University Association Workshop, June 2003.

[3] Hewlett-Packard, Servicing the Animation Industry:
HP’s Utility Rendering service Provides On-Demand
Computing Resources, http://www.hpl.hp.com/SE3D,
2004

[4] M. Kallahalla, M. Uysal, R. Swaminathan, D. Lowell,
M. Wray, T.Christian, N. Edwards, C. Dalton, F. Gittler.
“SoftUDC: A Software Based Data Center for Utility
Computing”, IEEE Computer, pp. 46-54, November,
2004.

[5] J. Kephart, D. Chess, “The Vision of Autonomic
Computing”, IEEE Computer, vol. 36, No. 1, 2003,
pp.41-50

[6] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, B. H. C.
Cheng, “Composing Adaptive Software”, IEEE
Computer, Vol.37 No.7, July 2004, pp.56-64

[7] P. Murray, “The Anubis Service”, Hewlett-Packard
Laboratories Technical Report, HPL-2005-72, 2005

[8] P. Murray, “A Distributed State Monitoring Service for
Adaptive Application Management”, Int. Conf. on
Dependable Systems and Networks (DSN-05), June
2005, Yokohama, Japan, pp.200-205

[9] S. Rodrigo, P. Murray, “WoodFrog: A Persistence
Library for SmartFrog Components”, Hewlett-Packard
Laboratories Technical Report, HPL-2006-37, 2006

[10] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, J. O.
Kephart, “An Architectural Approach to Autonomic
Computing”, Proc. of the Int. Conf. on Autonomic
Computing, May 2004, pp.2-9

