

MagiXen: Combining Binary Translation and Virtualization

Matthew Chapman, Daniel J. Magenheimer, Parthasarathy Ranganathan
Enterprise Systems and Software Laboratory
HP Laboratories Palo Alto
HPL-2007-77
May 4, 2007*

virtualization,
dynamic binary
translation,
hypervisor, Xen
Itanium, virtual
appliances, virtual
machine monitors

Virtualization is emerging as an important technology in future systems,
providing an extra layer of abstraction between the hardware and
operating system. Previous work on virtualization has focused on the
partitioning, isolation, and encapsulation features of virtual machines and
their use for different applications, but mainly in the context of a specific
processor architecture. In this paper, we argue for integrating an interface
transformation layer to virtualization, specifically combining
virtualization with a dynamic binary translator. This feature significantly
increases the benefits from current applications of virtualization (e.g., for
server consolidation and resource provisioning) while potentially
enabling additional new uses of virtualization matched with emerging
trends (e.g., virtual appliances and heterogeneous hardware). We have
built MagiXen — pronounced “magician”— a prototype implementation
of a Xen virtual machine monitor with integrated binary translation that
can run IA-32 virtual machines on Itanium platforms. We present
performance results for several typical benchmarks and discuss insights
from our experiences with building the prototype.

* Internal Accession Date Only Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.

MagiXen: Combining Binary Translation and Virtualization
Matthew Chapman

matthewc@cse.unsw.edu.au

Daniel J. Magenheimer
Dan.Magenheimer@hp.com

Parthasarathy Ranganathan
Partha.Ranganathan@hp.com

University of New South Wales, Australia HP Labs, Palo Alto,CA 94304

Abstract
Virtualization is emerging as an important technology

in future systems, providing an extra layer of abstraction
between the hardware and operating system. Previous
work on virtualization has focused on the partitioning,
isolation, and encapsulation features of virtual machines
and their use for different applications, but mainly in the
context of a specific processor architecture. In this pa-
per, we argue for integrating an interface transforma-
tion layer to virtualization, specifically combining virtu-
alization with a dynamic binary translator. This feature
significantly increases the benefits from current applica-
tions of virtualization (e.g., for server consolidation and
resource provisioning) while potentially enabling addi-
tional new uses of virtualization matched with emerging
trends (e.g., virtual appliances and heterogeneous hard-
ware). We have builtMagiXen — pronounced “magi-
cian” — a prototype implementation of a Xen virtual ma-
chine monitor with integrated binary translation that can
run IA-32 virtual machines on Itanium platforms. We
present performance results for several typical bench-
marks and discuss insights from our experiences with
building the prototype.

1 Introduction
Virtual machine technology is rapidly emerging to be-

come an integral component of future systems. A num-
ber of software-based virtualization solutions are com-
mercially available (such as from VMware, Microsoft
and XenSource), while Intel and AMD are introducing
a series of platform changes to better support hardware-
based virtualization. Mirroring this growth is a large
and expanding body of academic, commercial, and open-
source work in the area. Several recent studies [16, 15]
report that 40–60% of enterprises already implement
some form of server virtualization, and that within a few
years, this fraction is likely to approach 100%.

Virtual machine technology provides three primary
features. It allows multiple operating enviroments to re-
side on the same physical machine; it provides fault and
security isolation which can be tied to guaranteed service
levels; and it allows the entire state of the “machine” —
memory, disk images, I/O state, etc. — to be captured,
saved, and potentially reused. In turn, these three fea-
tures of virtualization enable several interesting applica-
tions such as server consolidation, resource provisioning,

software delivery, security, availability, debugging, sim-
ulation, etc. [30]

In this paper, we argue for adding one additional capa-
bility to virtualization, namelydynamic transformation
of the hardware interface. Specifically, we propose com-
bining dynamic binary translation of the instruction-set
architecture with conventional virtualization functional-
ity. This will significantly increase the benefits from cur-
rent applications of virtualization while potentially en-
abling additional new uses of virtualization targeted at
emerging trends in hardware and software.

For example, the traditional resource consolidation ad-
vantages of virtualization can be further improved by
being able to consolidate enterprise deployments across
different vendor ISAs — such as IA-32 (x86), Itanium,
Power and SPARC — into one single server, but without
the complexities of moving away from legacy environ-
ments. Similarly, the resource management benefits from
VM migration can be enhanced through the increased di-
versity of heterogeneous server configurations to choose
from.

Furthermore, the notion of a “virtual appliance” has
been gathering momentum. A virtual appliance is an en-
capsulation of the application and operating system bits
required for a workload, targeted at a particular virtual
machine platform. Having cross-ISA translation at this
level enables interesting new system architectures to be
designed with a degree of freedom in the ISA that can
be very valuable. It has also been suggested that virtual
appliances can potentially lead to adoption of “custom
operating systems” [28]. The consequent non-uniformity
at the application binary interface (ABI) and the relative
stability of the ISA interface motivate binary translation
to be performed at this layer to continue to obtain all the
benefits of binary translation.

From a hardware perspective, several academic stud-
ies have documented the benefits from asymmetric mul-
tiprocessing on a single core [19, 17, 5, 20]. Recent in-
dustry trends such as IBM’s Cell processor and AMD’s
acquisition of ATI, and keynote talks from processor ven-
dors [3, 26], suggest that this can be an interesting de-
sign point commercially. Having cross-ISA virtual ma-
chines can provide novel opportunities to leverage such
asymmetry and design even more heterogeneity for im-
proved performance. Finally, given the pervasiveness of

1

2

the IA-32 ISA, our approach will enable the IA-32 in-
struction set to transition from a hardware interface to
essentially become an application that needs to be sup-
ported for future architectures; this can allow new server
designs that go beyond the limited choices available from
a small number of processor vendors.

There has been a lot of work on system virtual ma-
chines and binary translation individually, but we are not
aware of any previous study considering the combina-
tion of both in the manner we suggest. Specifically, prior
work on binary translation has predominantly focused
at the application level (e.g., IA32-EL [7], FX!32 [11],
QuickTransit [36]) or at the hardware level (Transmeta
Crusoe processor [13], IBM AS/400). The closest re-
lated work we are aware of is the VirtualPC work [37]
that uses binary translation to emulate a Windows sys-
tem on a Mac platform, and the full-system mode of the
popular Linux-based QEMU [10], but neither system is
integrated with general virtualization software in the way
we propose.

This paper discusses the implementation of virtual ma-
chines that augment traditional virtualization capabilities
with integrated dynamic binary translation functionality.
To understand the issues involved, we built MagiXen,
an extension to the Xen virtual machine monitor that in-
corporates binary translation from the IA-32 instruction
set to the Itanium instruction set. Given the large body
of existing work on user-level binary translation, we fo-
cus primarily on system-level binary translation issues.
Consequently, our approach leverages a commercially
available binary translator, wraps this in a home-grown
support layer for system ISA translation, and interfaces
the combination with the open-source Xen (specifically
Xen/ia64) virtual machine monitor.

We have built a prototype that currently runs certain
IA-32 virtual machines on an Itanium machine. Key is-
sues that we needed to address included interfacing to
the Xen API, pagetable and segmentation handling, and
Xen virtual I/O. Our performance results show that, for
predominantly user mode benchmarks, the performance
overhead of integrating binary translation at the virtual
machine layer is similar to binary translation at the user
level, while enabling all the benefits discussed earlier.
For more OS-intensive benchmarks, our current imple-
mentation suffers from higher performance degradation.
We evaluate the reasons for this higher overhead and dis-
cuss how these can be addressed. Overall, our experience
with the prototype demonstrates that a cross-ISA virtual
machine monitor with integrated binary translator can be
a viable solution for the future.

The rest of the paper is organized as follows. Section 2
provides some background and further examines the mo-
tivation for a cross-ISA virtual machine. Sections 3 and 4
present our MagiXen prototype and our performance re-

sults. Section 5 discusses the insights from our prototyp-
ing effort and Section 6 summarizes some related work.
Finally, Section 7 concludes the paper.

2 Background and Motivation
Although literature describing efforts in both virtual-

ization and dynamic binary translation has been common
in recent years, readers less familiar with recent advances
will benefit from a review of some of the key concepts.
In this section, we first review some general computer ar-
chitecture terms fundamental to both fields, then review
concepts related to virtualization, then dynamic binary
translation. We then introduce our approach to combine
the two and discuss the benefits from the combination.

2.1 Basic Concepts
An instruction set architecture(ISA) defines the

boundary between machine hardware and software, and
consists of a set of instructions and rules about how those
instructions execute under various circumstances. On
most machines, the hardware enforces some concept of
privilege and software is executed in eitherprivileged
mode or unprivileged (or user) mode. Similarly, an ISA
can be subdivided into two parts: thesystem ISAand the
user ISA. In general, the system ISA consists of instruc-
tions that are privileged while the user ISA consists of
instructions that are unprivileged, though there are some
subtleties that we will expand on shortly. If software ex-
ecuting in user mode (anapplication) attempts to exe-
cute a privileged instruction, the hardware forbids the
execution by invoking atrap, which delivers control to
privileged code (generally an operating system). This
allows an operating system to isolate applications from
each other and to provide an illusion that each applica-
tion owns all of the machine’s resources (thus providing
the foundation formulti-programming). Since an appli-
cation may wish to control the machine in ways that are
privileged, an operating system provides an abstract in-
terface to privileged functionality through a set ofsystem
calls. Thus, an application may execute code either of
the user ISA or system calls. The sum of these two is
called anABI.

2.2 Virtualization concepts.
Although the virtualization field admits to many dif-

ferent variations of implementation, fromcontainer-
basedvirtual machines [31] tohostedvirtual machines,
we focus specifically onhostless, systemvirtual ma-
chines, in which avirtual machine monitor (VMM)en-
forces and abstracts the system ISA to support multiple
operating systems — orguest OSs— on the same physi-
cal machine, each with their own set of applications. The
VMM is also sometimes known as ahypervisor.

On some architectures, the system ISA and user ISA
are clearly disjoint. On others, however, there is a sub-
tle overlap. Specifically, there are privileged instruc-

3

tions that have one result when executed in privileged
mode and a different — non-trapping — result when exe-
cuted in unprivileged mode. Such instructions are called
privilege-sensitiveinstructions, orproblem instructions
as opposed to all other instructions which are calledsafe
instructions. If an ISA has no privilege-sensitive instruc-
tions and also conforms to certain other constraints [24],
it is referred to asclassically virtualizable. Notably, the
Intel IA-32 ISA has privilege-sensitive instructions and
thus is not classically virtualizable [27].

Whether or not an ISA is virtualizable is important be-
cause in order to enforce isolation, the VMM must be the
most privileged software and so a guest operating system
runsdeprivileged. Just as an operating system would trap
any attempt by an application to execute a privileged in-
struction, the VMM traps every privileged instruction ex-
ecuted by a guest OS. Thistrap-and-emulatetechnique
is widely described in the literature and has proven ef-
fective at guaranteeing guest isolation but, depending
on the workload, may have significant performance im-
pact. Worse, trap-and-emulate fails if the ISA contains
privilege-sensitive instructions; since these instructions
do not trap, the VMM cannot enforce the different se-
mantics intended when executed by a deprivileged OS.

As the Intel IA-32 architecture has become increas-
ingly ubiquitous, various researchers have explored how
to overcome the hazards resulting from the fact that IA-
32 is not classically virtualizable, while balancing the
tradeoffs of faithfully emulating the IA-32 ISA with the
performance loss of trap-and-emulate. VMware [33]
provides virtualization of unmodified guests using a
technique referred to asbinary rewriting, which exam-
ines each instruction prior to execution and translates
problem instructions into safe instructions, with some
cost in runtime performance. Paravirtualization is a tech-
nique first introduced by Denali [42] and popularized by
Xen [8], whereby the guest OS is modified to cooperate
with the VMM; problem instructions are manually con-
verted to safe instructions in the guest OS source code
andhypercalls(hypervisor calls) are added to commu-
nicate efficiently with the VMM. In essence, the strict
definition of the ISA is blurred in order to obtain perfor-
mance. Although the impact of paravirtualization on the
guest OS can be minimized [21], use of the approach is
largely limited to OS’s for which source code is avail-
able. More recently, Intel has added a set of architec-
tural extensions called Intel Virtualization Technology
(VT) [38] to the IA-32 ISA which allow classical virtual-
ization to be supported; AMD has an analogous scheme
called AMD Virtualization (more commonly known by
the codename Pacifica). While one might assume that the
VT hardware solution has eliminated the need for soft-
ware solutions, studies [1] have shown that the increased
dependency of VT on trap-and-emulate results in a sig-

Project Source ISA Target ISA OS
HP3000OCT HP3000 PA-RISC MPE
FX!32 IA-32 Alpha WinNT
Aries PA-RISC Itanium HP-UX
IA-32 EL IA-32 Itanium Win or Linux

Figure 1: Some commercial application-level dynamic
binary translators

nificant relative performance loss for many workloads.
Regardless of the technique used, modern virtualiza-

tion has enabled a number of exciting new capabilities.
An entire guest OS and all the applications running on it
can be stopped, saved, and then restored and restarted on
a different physical machine [29]. This migration may
even be conducted live [12, 39], such that the apparent
time the guest is stopped is so short that it is essentially
zero to an outside observer. Live migration has sparked
research toward optimizing data center resource utiliza-
tion, while the ability to encapsulate an entire operat-
ing environment into a distributable file has enabled a
nascent market for virtual appliances [40]. This in turn
has engendered speculation that the role of the future
general purpose operating system will be greatly dimin-
ished [28] or perhaps even eliminated [9]. We will ex-
pand on these benefits shortly.

2.3 Dynamic binary translation concepts
Dynamic binary translation (DBT), as its name im-

plies, is runtime compilation of a binary image from one
architecture so that the resultant code will run on another
architecture. The translation occurs between asourceen-
vironment and atarget environment. The exact charac-
teristics of both the source and target environments yields
a variety of types of translators, which we will briefly
taxonomize with examples.

In recent decades, many new machine architectures
have been introduced, and commercial success of a new
machine is often dependent on the number and breadth
of applications the new machine is capable of running.
Consequently, hardware vendors have invested a great
deal of engineering and money in tools that assist and
encourage software vendors to port their applications to
new architectures, and even more in ensuring that the
porting process is easy and that the applications have
both high fidelity and high performance. As a result,
commercialapplication-level binary translatorsare the
most prevalent and the most commercially-stable form of
DBT. A few commonly cited in the literature are shown
in Figure 1, along with the source and target ISAs and
OS.

Recall that an ABI consists of two interfaces, a user
ISA and a set of system calls associated with a particu-
lar OS. All of the examples in Figure 1 translate from
one ISA to another but retain the same OS. We call

4

thesecross-ISA-same-OStranslators. QuickTransit [36],
a product of Transitive Corp, supports multiple source
and target ISAs but also allows the source and target
OS to differ; we call this across-ISA-cross-OStransla-
tor. We explicitly reemphasize that, although we use the
term ISA in both of these DBT categories, it is specifi-
cally the user ISA that is being translated; none of these
examples translate the system ISA.

We note in passing that there are alsosame-ISA-cross-
OS translators, such as Wine [35] which allows many
unmodified Windows programs to run on several IA-32
Unix flavors, Project Janus [34] which provides an envi-
ronment for running Linux applications on IA-32 Solaris,
and the not-subtly-named Linux Runtime Environment
for HP-UX [18] available on HP’s Itanium machines.
And to fill out the matrix there are evensame-ISA-same-
OStranslators, such as Dynamo [6], in which the trans-
lation is solely focused on improving performance.

However, the DBT category most relevant to our dis-
cussion are those that translate between full ISAs, not
just the user ISA but also the system ISA. These DBTs
are generally disguised as part of the hardware to cre-
ate the illusion that a machine implementing one ISA
actually supports a completely different ISA. This hard-
ware generally implements a fundamentally different ar-
chitecture intended to provide some market differenti-
ation, such as dramatically greater performance or re-
duced power consumption. The most notable com-
mercial example is Transmeta’s code-morphing software
(CMS) [13] which combines an interpreter, optimizing
DBT, and runtime system, to allow a co-designed VLIW
processor with little resemblance to IA-32 to neverthe-
less boot and run unchanged IA-32 operating systems
and applications.

Translating efficiently and reliably between ISAs
presents some significant challenges and engineering
tradeoffs, many of which are enumerated in detail in [4].
We have encountered a number of these challenges first-
hand and will explore some of them in later sections.

2.4 Proposed Approach
While virtualization research is experiencing rapid

growth, DBT research is presently in decline. This is
in part due to the rise in popularity of the IA-32 archi-
tecture and the resultant reduction in ISA diversity in the
computer marketplace. New machine architectures have
been relegated to smaller but still significant computing
niches, such as high-performance and fault-tolerant ma-
chines at one extreme, and game consoles and smart-
phones at the other. Some believe that the IA-32 ISA will
continue to dominate and, indeed, eventually become the
only architecture of interest; others believe that monop-
olies historically tend to unleash countervailing innova-
tions. Regardless of one’s crystal ball, for the near future
it is certain that IA-32 will be a dominant force and exist-

ing and emerging machines of other architectures would
do well to harness this force. Consequently, we res-
onate with this quote from the work of the DynamoRIO
team [41]:In the future, legacy ISAs such as x86 will no
longer simply be an ISA, but rather x86 and the accom-
panying ecosystem will become an application that all
future architectures will have to execute effectively.

To achieve just that, we propose to combine the in-
herent flexibility and emerging applications of a hostless
system VMM with the transformational capability of a
cross-full-ISA DBT. Our approach provides several ben-
efits which are discussed below.

More potential for resource consolidation. One of
the key customer usage models for virtualization today
is consolidation, where the workload of several smaller
servers is combined into one larger server. Currently, the
workloads to be consolidated are platform-specific which
constrains the choices for purchasing the new server.
For example, if the workload contains applications that
only run on Windows Server on an IA-32 platform, the
consolidation server must be capable of running IA-32
Windows applications. However, the selection of “large
servers” on the market consists largely of systems built
on other ISAs such as Itanium, Power, and SPARC.
Though Windows Server supports Itanium, many IA-
32 Windows applications have never been ported to Ita-
nium. Our approach allows the workload of both IA-32
servers and non-IA-32 servers to be consolidated onto
more high-end non-IA-32 servers.

Resource migration. Another key value of virtu-
alization is in disconnecting the virtual platform from
the physical platform. A workload can be transparently
and dynamically moved from one platform to another,
even without reboot or noticeable downtime. This live
migration provides great flexibility: workloads can be
moved to maximize resource utilization, allow for main-
tenance, reduce power and cooling costs. But one of the
not-widely-advertised limitations of migration is that the
source and target processors must be identical, or nearly
so. Certainly the ISA must be the same, but even to the
extent that no currently available virtualization software
allows for Pentium 4 applications to run on a Pentium
3. Our approach allows resource pools with completely
different ISAs to be combined into the same pool. Our
technique could also be used to combine non-identical
similar-ISA pools (such as the example of P4 vs P3).
Even more aggressively, having a cross-ISA virtual ma-
chine migration provides a level of ISA agnosticity that
can enable more power-efficient or lower cost general-
purpose processors from different markets (e.g., SiByte,
PASemi) to support a broader set of applications.

Emerging virtual appliances and ISA agnosticity.
An interesting and rapidly growing niche of the virtual-
ization market is the availability of “virtual appliances”,

5

packages of bits combining an OS and an application
that are distributed to run on top of a particular virtual
machine monitor product. This greatly reduces installa-
tion, hardware, and testing costs for sampling new soft-
ware. Some believe that its advantages are sufficient
that it could replace current software distribution mod-
els. However, creating virtual appliances involves some
of the same vendor costs as traditional software deliv-
ery, and thus virtual appliances are likely to be first (or
only) available on the dominant ISA and virtualization
platforms, e.g. VMware on IA-32. In such cases, our ap-
proach could allow commercially available IA-32 virtual
appliances to run on other platforms.

Custom operating systems. Some believe that the
advent of virtual appliances will hasten the end of the
reign of the classic OS at the center of the software
universe [28]. For example, most applications run on
Windows because Windows is nearly ubuquitous; nearly
all application vendors’ customers are already running
on Windows, so the barrier for deployment of new ap-
plications on Windows is small, which in turn makes
Windows even more ubiquitous. As a result of this
virtuous (for Microsoft) cycle, the majority of hard-
ware and software is designed for Windows. How-
ever,virtualization allows multiple software stacks to co-
exist, so application vendors are free to build a stack us-
ing different criteria. For example, Oracle could deliver
a Linux-based database environment that could run on
a server that is simultaneously running applications in a
Windows environment. Indeed, some application ven-
dors are considering elimination of the OS entirely [9].
Should this trend toward OS-agnosticity gather momen-
tum, traditional application-level binary translation soft-
ware, which is very dependent on translating between the
ABIs of a rapidly diversifying set of OS’s, could be at a
severe disadvantage. Our approach is much more con-
ducive to this trend as our nexus of translation is at the
ISA which, due to the huge costs of changing hardware,
is much more stable.

Heterogeneous hardware. Looking even further, an-
other trend has been the support for heterogeneous or
asymmetric cores in future processors. For example,
AMD’s Torrenza [2] initiative allows for heterogene-
ity at the socket level that can enable, say, a graphics
processor to co-exist with a general-purpose processor.
Other studies have also discussed heterogeneity at the
core level [19, 17, 5, 20]. In these environments, hav-
ing a binary translation layer combined with the virtual
machine layer can enable future virtual appliances to be
seamlessly migrated between configurations supporting
different heterogeneous accelerator cores.

In short, we believe that the combination of virtual-
ization with binary translation provides the advantages
of both. However, each technology presents significant

challenges too and these challenges could diminish the
benefits. To test this, we implemented a prototype, which
we now introduce. We call our prototype MagiXen (pro-
nounced “magician”).

3 MagiXen Prototype Design
In this section, we discuss the design of MagiXen,

our prototype virtual machine monitor with integrated
dynamic binary translation. MagiXen augments an
application-level binary translator with a system ISA
translation support wrapper, and then mates it with a sys-
tem virtual machine monitor. More simply, MagiXen al-
lows virtual machines of one architecture to run on an-
other architecture, and more specifically allows IA-32
paravirtualized virtual machines to run alongside Itanium
virtual machines on an Itanium VMM.

3.1 MagiXen implementation overview
As described earlier, there has been a large body of

prior work on user-level binary translation. Thus, for
our prototype, we decided to leverage an existing binary
translator: IA-32 EL (Execution Layer) from Intel [7].
We also considered QEMU [10], but the performance of
QEMU on translated user code does not compare favor-
ably with commercial translators like IA-32 EL. The lat-
ter is very well optimised for the Itanium target platform,
and uses a two-stage translation process: a fast template-
based translation stage with some instrumentation, and
a re-optimisation stage using the results of the instru-
mentation, for frequently used code. Further, IA32-EL
is commercially available for several operating systems,
has proven fidelity and is supported by Intel. In contrast,
QEMU translation is purely template-based, and the Ita-
nium support is largely orphaned and unstable. Since we
consider both stability and performance to be important
parts of validating the approach, we decided to use IA-32
EL. The main disadvantage of using IA-32 EL is that it
is not open source; the source is closely guarded by In-
tel. It had to be regarded as a black box; the interfaces to
it were gleaned from the shim code shipping with Linux
distributions.

Figure 2 shows the high-level organization of the
prototype. We architect our MagiXen prototype us-
ing the Itanium port of the open-source Xen hypervi-
sor (Xen/ia64) [25] as a foundation, and IA-32 EL for
application-level ISA translation, but developed our own
home-grown transformation layer to handle system-level
instructions and emulate Xen APIs.

The core binary translation functions are provided by
the Intel IA-32 EL component, which can be considered
a software implementation of the user IA-32 ISA. Mag-
iXen acts like a virtual machine monitor, providing an
emulated IA-32 Xen environment for the guest kernel, in
terms of the Itanium APIs provided by Xen/ia64.

For the initial prototype, we chose to require a guest

6

Xen/ia64

Itanium Linux

IA-32 Linux

MagiXen interface
translation layer

IA32-EL
binary translator

Itanium processor(s)

Native Itanium
applications

IA-32
applications

Domain 0 (native) MagiXen Domain

Figure 2: MagiXen architecture

kernel that has been paravirtualized for Xen, rather than
an unmodified stock kernel compiled for a hardware plat-
form, for a number of reasons.

Firstly, we consider the most common use case to be
migrating a complete virtual machine image from an
IA-32 Xen hypervisor to an Itanium Xen hypervisor;
whether done manually or through automatic load bal-
ancing. Migrating an image from real IA-32 hardware to
Xen is feasible, but is a much more difficult operation.
For example, the same devices may not be available.

A kernel built for Xen also has a simpler boot se-
quence and virtualized drivers. If simulating a real
hardware platform, one would need to create dummy
firmware tables and emulate real devices, adding signifi-
cant complexity.

Finally, as previously noted, the IA-32 architecture is
not classically virtualizable. In particular, there are a
number of privilege-sensitive instructions which do not
generate traps but need to be intercepted by a virtual
machine monitor. In theory this should not be a prob-
lem for dynamic translation; however currently, like real
IA-32 hardware, IA-32 EL does not produce traps for
these sensitive instructions. This behaviour is difficult to
change since the IA-32 EL source is not publicly avail-
able. When using a paravirtualized kernel built for Xen,
any privilege-sensitive instructions have already been re-
placed, which circumvents the problem.

While this decision limits the ability for the MagiXen
prototype to support commercially available virtual ap-
pliances, future versions of popular operating systems
are expected to support transparent paravirtualization
and thus run both natively and as a Xen guest. Virtual
appliances based on such dual-capable operating systems

set up IA-32 state
in memory buffer

load IA-32 state
to registers

execute
translated code

cached translations

translate IA-32
basic block(s)

re-construct
IA-32 state

handle exception

IA32-EL

runtime
exception

Figure 3: IA-32 EL execution flow

could be supported in MagiXen.

3.2 Startup
In keeping with the desire to minimize Xen modifica-

tions, MagiXen is packaged into a loader binary which
uses the Linux boot protocol, so that it can be started in
the same way as a Linux domain (adomainis the Xen ter-
minology for an individual virtual machine). The loader
binary is specified instead of an Itanium Linux kernel,
and the IA-32 guest kernel is specified in place of an ini-
tial RAM disk.

The loader binary contains the MagiXen runtime com-
ponent as well as the Intel IA-32 EL component. The
loader relocates the components to their runtime loca-
tions, establishes virtual mappings, switches to virtual
mode, and starts MagiXen. The loader memory is then
no longer needed and can be reclaimed.

MagiXen is responsible for installing aninterruption
vector table, a table of entrypoints for handling Itanium
processor exceptions generated by the domain. It also
sets up an initial IA-32 environment, including register
state, initial pagetables, and a memory structure contain-
ing Xen-specific startup information for the guest oper-
ating system.

MagiXen then passes control to IA-32 EL’s fetch-and-
execute loop, as shown in Figure 3. Control is returned
to MagiXen only when one of three things happens:

• IA-32 EL encounters an exception condition such as
a privileged instruction or hypercall; IA-32 state is
saved and a MagiXen callback function is invoked.

• Execution causes a hardware exception such as a

7

page fault, which is reflected by Xen to MagiXen.
Typically execution resumes at the interrupted point
after handling. However, if an exception needs to
be delivered to the guest OS, MagiXen calls back to
IA-32 EL to re-construct IA-32 state. It then mod-
ifies the state to simulate exception delivery, and
restarts the fetch-and-execute loop.

• Execution is interrupted by an asynchronous notifi-
cation destined for the guest operating system, such
as a device interrupt. MagiXen checks if the notifi-
cation is safe to deliver immediately. If so, it pro-
ceeds as for an exception; otherwise, it requests IA-
32 EL to halt execution as soon as possible, and re-
sumes execution of IA32-EL, which invokes a Mag-
iXen callback at the next safe point.

3.3 Emulating the Xen API
In accordance with the Xen API, the guest kernel per-

forms Xen hypercalls by branching to offsets within a
special page. That page is filled out by the hypervisor, or
MagiXen in this case, at startup.

In general, hypercalls need to exit IA-32 execution and
call back into MagiXen for handling. Any IA-32 instruc-
tion that exits execution should be equally efficient; we
use a software interrupt instruction, just like real Xen.
MagiXen then simply inspects IA-32 register state and
dispatches to the appropriate emulation function.

There are around 20 different hypercalls used by an
IA-32 guest kernel, and many of these have more than
one sub-operation. Even so, implementing the emula-
tion for these was not especially difficult. Some of these
hypercalls are emulated by calling the corresponding Ita-
nium APIs, while others act purely on data maintained
within MagiXen.

MagiXen also emulates a number of privileged in-
structions which are still present in a kernel compiled
for Xen. These includeiret (return from interrupt), I/O
port accesses, and some control register accesses. This
is implemented in a similar way to any other virtual ma-
chine monitor: by inspecting the instruction at the IA-32
instruction pointer, and updating IA-32 register state ap-
propriately.

3.4 Segmentation
For performance reasons, IA-32 EL assumes a simple

segmentation model, with the main code, data and stack
segment selectors (cs/ds/ss) accessing a flat 32-bit lin-
ear address space starting at address 0. In other words,
segmentation is ignored in the common case, and IA-32
references to a given address are translated into Itanium
references to the same address. Otherwise, every mem-
ory reference would need to be instrumented with code to
add the base address of the segment and to check limits
and permissions.

Fortunately, this is also sufficient for kernel code; most

modern operating systems including Linux use such a flat
memory model, and only ever use a base address of 0 in
these segment descriptors. The lack of limit checking is
not without side-effects, however, since Linux relies on
these limit checks to protect the kernel from user code.
Instead we must use paging mechanisms to provide this
protection.

The other segment selectors (es/fs/gs) are often used
for special purposes; in particulargs is typically used
on Linux for thread local storage. IA-32 EL implements
these more fully, with a configurable base for each and
a callback to MagiXen when the selectors are modified,
thus MagiXen can correctly emulate such accesses.

3.5 Paging
Since the IA-32 linear address space must start at ad-

dress 0, the bottom region of the Itanium virtual address
space is set aside for IA-32 virtual mappings. Within this
region, 4KB mappings are established, corresponding di-
rectly to the mappings that would be present in the TLB
of an IA-32 processor. (In order to allow 4KB mappings,
Itanium Xen must be configured for 4KB page size inter-
nally.)

On an IA-32 system, when a TLB miss is encountered,
the IA-32 processor directly accesses the operating sys-
tem pagetable, allowing the miss to be resolved in around
50 cycles. This is even true when running on Xen; one
of Xen’s novel features is that it sets up the hardware
to access the domain’s pagetable directly (and monitors
pagetable writes to prevent subversion) [8].

On an Itanium system with MagiXen, however, the
Itanium processor is not capable of interpreting the do-
main’s IA-32 pagetable. Instead, a fault is delivered
to Xen, which is reflected to MagiXen, which accesses
the IA-32 pagetable and provides the required transla-
tion. This is significantly more expensive, to the tune of
around 1900 cycles. In order to improve this situation,
we implemented an IA-32 pagetable walker within Xen,
so that most faults can be handled within the Xen hyper-
visor without needing to be reflected to MagiXen. How-
ever, the overhead of TLB misses is still not negligible
— around 900 cycles.

This is compounded by the fact the IA-32 architecture
necessitates a TLB flush for every context switch (when-
ever the pagetable base register is changed). It is not
possible to avoid this flush since existing operating sys-
tems depend on this behaviour. After such a flush, there
is a flurry of TLB misses as the required translations are
established; thus, on a system where TLB misses are ex-
pensive, the indirect cost of a context switch is also high.

Even worse, flushing translations also necessitates
flushing the corresponding pre-translated code. If this is
not done, the old code on the page will still be looked up
and executed by the execution engine, even if the page
is no longer mapped. Thus, after a full TLB flush, IA-

8

32 EL starts with a cold translation cache, and must re-
translate the IA-32 code.

Ideally, the old translated basic blocks could be
cached, and later restored if the same TLB entry is re-
established. Unfortunately such a scheme is difficult to
implement in the present system because IA-32 EL is
closed source.

However, since MagiXen knows the location of the
guest kernel, and that code can be assumed not to change,
a simple optimisation is to avoid flushing kernel code
on a context switch. Additionally, we can disable self-
modifying-code detection for the kernel area. This re-
sults in a modest performance improvement.

3.6 Devices
The Xen hypervisor does not contain drivers. In-

stead, device drivers are contained within certain privi-
leged driver domains, such as Domain 0 (the first domain
started when booting Xen). These domains then ser-
vice I/O requests on behalf of unprivileged domains, us-
ing inter-domain communication abstractions provided
by Xen.

Most architecture-independent Xen abstractions, par-
ticularly those used for inter-domain communication, are
mapped by MagiXen directly onto those provided by the
host hypervisor. This allows stub drivers in the IA-32
guest operating system to communicate with real hard-
ware drivers running in a driver domain, via the normal
Xen mechanisms, with minimal intervention from Mag-
iXen.

For example, event channels are used for asyn-
chronous notifications between domains in Xen. Mag-
iXen propagates event channel requests to the host hy-
pervisor and delivers events from the hypervisor to the
guest operating system. One example is the timer inter-
rupt, which is delivered as an event like any other.

Another Xen abstraction is the grant table, used to
share pages between domains. The granting domain puts
an entry into its grant table specifying the physical frame
number and destination domain; the receiving domain
asks Xen to map the page by supplying the source do-
main and grant table index. Thus, normally there are no
hypercalls necessary on the granting side.

Originally, we had placed MagiXen at the bottom of
the domain’s memory, and offset the guest’s physical
memory by a fixed amount. However, this meant that
the guest’s physical frame numbers did not correspond
to real physical frame numbers, and thus hooks needed
to be added to the guest kernel to translate entries and
place them into the Itanium grant table.

To avoid this, we re-arranged the address space such
that the guest’s physical memory is at the bottom of the
domain’s physical memory, and MagiXen at the top, as
per Figure 4. This allows the Itanium grant table to be
exported directly to the guest kernel. The downside is

Guest memory
(1:1 mapped)

MagiXen

IA-32 EL

MagiXen heap memory

0

384MB

512MB

128MB

Figure 4: Memory layout of a 512MB domain

that the guest OS could specify MagiXen addresses in
grant table entries, and thus MagiXen itself is not com-
pletely protected from the guest OS kernel. However, we
consider this to be only a academic issue, since the guest
OS would normally be privileged inside a domain in any
case, and inter-domain protection is enforced by Xen.

An implication of sharing memory directly between
IA-32 and Itanium domains is that the data structures
used in that memory must be compatible. Endianness
is not a problem for MagiXen, since both of the archi-
tectures are little-endian1. However, size and alignment
needs to be considered carefully. We only found one
problem in the Xen drivers, where a misaligned 64-bit
value is aligned to a 64-bit boundary on Itanium and only
a 32-bit boundary on IA-32. This can be addressed by
making sure that the 64-bit value is always aligned. (A
similar problem would arise if attempting to run an IA-32
guest on AMD64.)

Another issue that should be considered is that sharing
pages with other domains could bypass self-modifying-
code detection; if the guest kernel was to map a
currently-mapped instruction page to a remote domain
for DMA, the changed code might not become imme-
diately visible to the instruction stream. However, this
scenario is unlikely to happen in current operating sys-
tems.

3.7 Disabling the FPU
The IA-32 architecture provides a mechanism to tem-

porarily disable the floating point unit, resulting in an ex-
ception when the FPU is accessed. Typically this is used
to detect when a process needs to use the FPU, so that
floating point state can be saved and restored only when
necessary.

However, as far as we can tell IA-32 EL does not
currently provide any such mechanism to disable IA-
32 floating point instructions or access to IA-32 floating

1Technically, Itanium is bi-endian, but Xen/ia64 and Linux use
little-endian mode.

9

point registers. Disabling Itanium floating point registers
does not have the intended effect, since IA-32 EL also
uses the Itanium floating point registers internally and
for integer multiplication/division.

As a workaround, we signal this exception whenever
returning to userspace with the floating point unit dis-
abled. The net effect is that every process appears to use
the FPU, whether or not it actually does. This guarantees
correctness at the expense of performance, but the per-
formance impact is barely noticable in our benchmarks.

4 Preliminary experiments
In this section, we present our performance results

for two widely used benchmarks: AIM9 and SPEC
CINT2000. Together these measure application-level
computational performance as well as the overheads of
various operating system mechanisms. In order to aid
in understanding the overheads involved, we also mi-
crobenchmark some primitive operations such as system
calls.

It is difficult to choose a good reference point for
benchmarking a dynamic translation system. The most
obvious option might be to compare against an IA-32
system; however, it is not clear what IA-32 system to
choose to provide a fair comparison. Therefore, gener-
ally the most sensible comparison is with native code ex-
ecuting on the same system. We have normalised the per-
formance numbers to the native benchmark performance
on Itanium, in a native Xen domain. (Admittedly this
does depend on the quality of the native compiler, but
one could consider the compiler to be part of the plat-
form, since most users are interested in the performance
resulting from a combination of compiler and hardware.)

Our test system is an HP rx2600 Itanium server run-
ning a recent version of the Xen/ia64 hypervisor (specif-
ically changeset 12895 of the 3.0.4 series, plus a number
of minor fixes which we hope to submit to the Xen main-
tainers). The test system has two physical processors but
it has been configured to use only one, to improve re-
producibility of results. The processor is a 1500Mhz Ita-
nium 2 “Madison” part, with 6MB of L3 cache. A sin-
gle privileged domain (Domain 0) runs continuously to
provide drivers for the real hardware. There are two un-
privileged domains configured — one for MagiXen, and
one for a second Itanium domain, each assigned 512MB
of memory — but these are started as needed, and never
run at the same time during benchmarking.

With the exception of the microbenchmarks, for which
we used the processor cycle counter, the benchmarks all
use thegettimeofday system call to measure wall-clock
time. We verified that this system call provides good cor-
respondence with wall-clock time both within the native
domain and on MagiXen. SPECint automatically runs
each test three times and uses the median; we have fol-
lowed the same methodology for the AIM9 results.

Xen/ia64 MagiXen
Null hypercall 430 cycles 800 cycles
Null system call 600 cycles 5500 cycles
Handle TLB miss 45 cycles (h/w) 900*/1900 cycles
Handle timer tick 6700 cycles 1000000+ cycles

* with modified Xen

Figure 5: Approximate costs for common operations

4.1 Microbenchmarks
Times for some basic operations are presented in Fig-

ure 5.We usedgetppid to represent a “null” system call
— one that does little work — andxen version to rep-
resent a “null” hypercall.

Generally we used a simple microbenchmark method-
ology: placing the code to be measured inside a loop that
is executed a large number of times, subtracting the over-
head of the loop by itself, and dividing by the number of
iterations. We also varied the loop count to verify that the
rate of increase produces a similar number. (The Itanium
processor uses in-order execution, with stalls occuring
when the results of long latency operations are consumed
prematurely, so this methodology should be reasonably
accurate providing that the results of any operations are
consumed within the loop. This is not necessarily true
on a real IA-32 processor, where loop iterations can in-
teract.)

There is one IA-32 EL specific issue that we had to
contend with. If a basic block is executed more than
4000 times (theheating threshold), the hot code opti-
mizer is invoked to re-optimize the code. This optimiza-
tion is very expensive (at least a million cycles in our ex-
perience) and naturally changes the timing of the code,
disturbing any methodology that relies on each iteration
having a fixed cost. Thus we were very careful not to
run any particular instruction sequence too many times,
using multiple loops where necessary.

For measuring timer overhead, we used a different
strategy. We wrote a small program which polls the cy-
cle counter in a loop, and notes any discontinuities more
than 1000 cycles in a memory buffer. In this way, we
obtained a trace of the occasions when application exe-
cution is interrupted. Most commonly this is due to the
local domain’s timer tick, although Domain 0’s timer tick
is also visible in the data, as well as some negligible noise
due to other Domain 0 driver processing (such as incom-
ing network frames). However the total overhead due to
Domain 0 is not more than 0.2%.

A surprising result is that timer-related processing
takes over a million cycles per tick (with large vari-
ance in this number); this time is primarily spent exe-
cuting in translated kernel code, and some of it can be
attributed to speculation-related TLB misses (see Sec-
tion 5). While we have limited visibility into the inner

10

 0

 20

 40

 60

 80

 100

so
rt

st
rin

g

ar
ra

y

m
at

rix

nu
m

_r
tn

s

tr
ig

si
ev

e

se
rie

s

ne
w

_r
ap

h

di
v_

flo
at

di
v_

in
t

m
ul

_f
lo

at

m
ul

_i
nt

ad
d_

flo
at

ad
d_

in
t

R
el

at
iv

e
pe

rf
or

m
an

ce
 (

%
)

Test

reaim Computational Tests - Performance Relative to Native

121% 386% 387%

Figure 6: Results ofreaim computational tests

 0

 20

 40

 60

 80

 100

fif
o

pi
pe

dg
ra

m

st
re

amud
p

tc
p

lin
k

cr
ea

t_
cl

o

si
gn

al

br
k

pa
ge

sh
ar

ed
_m

em

ex
ec

fo
rk

R
el

at
iv

e
pe

rf
or

m
an

ce
 (

%
)

Test

reaim OS Tests - Performance Relative to Native

Figure 7: Results ofreaim operating system tests

workings of IA-32 EL, we expect that the code in the
timer interrupt would rapidly pass the heating thresh-
old and be re-optimized. It is possible, then, that the
optimizer uses speculation somewhat too aggressively
for this code. Since the guest kernel is using a 100Hz
timer, the effect is that as much as 7–8% of the available
CPU time is spent executing the timer interrupt. In com-
parison, on the native domain, the local timer interrupt
accounts for less than 0.1% of available time. This is
clearly an area that should be addressed in future work.

4.2 AIM9
AIM9 is the short name for the AIM Independent Re-

source Benchmark Suite IX, originally from AIM Tech-
nology. The goal of AIM9 suite is to separately mi-
crobenchmark different aspects of a UNIX computer
system, independently measuring processing rates for a
large number of workloads including numerical opera-
tions, C library calls and UNIX system calls.

We use a modern re-implementation of AIM9 named
reaim [23]. reaim is also capable of simulating the AIM
Multiuser Benchmark, AIM7, however here we used the
AIM9 mode.

The reaim workloads can roughly be divided into two
categories: those which extensively use operating system
services, such as I/O workloads, and those that do not,
such as numerical workloads.

Figure 6 shows results for computational tests in the
suite. These include simple microbenchmarks which
add, multiply and divide numbers, as well as small prac-
tical codes such as finding roots of an equation (Newton-
Raphson method), finding prime numbers (sieve), matrix
multiplication, array sorting and string manipulation.

These numerical applications perform well, generally
between 50-80% of native performance, which is a trib-
ute to the IA-32 EL optimizer. In fact, some of the trivial
test loops, particularly adding and multiplying floating
point numbers, perform better on IA-32 EL than the na-
tive code compiled with gcc, thanks to the very good IA-
32 EL optimiser. The one disappointing result is for the
trig test, which benchmarks trigonometric functions in
the system math library. The native math library contains
handwritten (and very well tuned) assembly code; thus it
is no great surprise that the translated code cannot match
its performance.

Figure 7 shows results for OS-oriented workloads.
Some of the tests are dominated by the cost of invok-
ing various kernel services via system calls. These in-
cludecreat close andlink, which perform file opera-
tions,brk, which uses the system call of the same name
to resize its data segment, as well astcp, udp, stream,
dgram, pipe andfifo, which test various mechanisms
for local inter-process communication (but are imple-
mented within the one process).signal, which sends
UNIX signals to itself, can also be considered to be
in this category. The performance of such benchmarks
is around 20–40call overhead is significantly higher in
MagiXen, so this is not unreasonable.

The remaining four benchmarks,exec, fork,
shared mem and page, perform very poorly. The pri-
mary reason that the operations they perform — tear-
ing down mappings, and in some cases context switching
— cause TLB flushes in every iteration of the test loop.
For the reasons mentioned previously, TLB flushes have
a large indirect cost on MagiXen because of the large
cost of re-establishing the mappings. In fact,page not
only causes TLB flushes, but then deliberately causes
extra page faults, pushing MagiXen’s worst behaviour
to its limits (the performance ofpage is around 0.6%,
the others three around 2%). Fortunately, such extreme
test loops are unlikely to occur in real applications, but
they do highlight the limitations and are useful in under-
standing the behaviour of other benchmarks. We address
possible improvements in Section 5.

4.3 SPEC CINT2000
SPEC CINT2000 [32] is a collection of applications

representative of a compute-intensive workload with pri-

11

 0

 20

 40

 60

 80

 100

twolfbzip2vortexgapperlbmkeonparsercraftymcfgccvprgzip

R
el

at
iv

e
pe

rf
or

m
an

ce
 (

%
)

Application

SPECint - Performance Relative to Native

163%

Figure 8: Results of SPEC CINT2000 benchmarks

marily integer computation (there is a CFP2000 suite for
floating point applications). The CINT2000 applications
vary in memory usage, but generally spend little time
performing I/O compared to computation time.

Figure 8 shows the relative performance of the IA-
32 CINT2000 applications on MagiXen, as compared to
their native Itanium counterparts. The shape of the graph
is essentially the same as that presented in the IA-32 EL
paper [7]. This is to be expected, since these are compu-
tational benchmarks which depend on the performance
of the application-level binary translator. The raw results
vary slightly, some higher and some lower, however this
can be partly attributed to the fact that we used a different
compiler (gcc 3.3 rather than the proprietary Intel com-
piler). The high overhead of timer handling is also likely
to degrade performance slightly.

The mcf benchmark is unique in that it actually per-
forms better than the native version; the reason is that
it uses word-sized data and thus the 32-bit version has
a significantly smaller memory footprint (100MB vs
190MB) [32]. gcc, on the other hand, performs poorly.
It is very memory intensive — even more so thanmcf —
and also maps and umaps memory in various stages of
the run, causing TLB flushes and a large number of page
faults.

With the exception of these two benchmarks, the per-
formance is in the range of 30–80% of native, with a har-
monic mean of 59% (compared to 61% for the IA-32 EL
on Linux results — and yet MagiXen is virtualizing the
whole operating system, not just a single application).

5 Discussion
Performance is very good for most of the numeri-

cal benchmarks, validating IA-32 EL, which has clearly
been optimised for numerical workloads such as SPEC
CINT2000. Memory and system call intensive work-
loads perform worse, although still within reasonable ex-
pectations. Workloads involving multiple processes and
context switching perform poorly.

Profiling using Xenoprof [22] shows that, despite the
optimisations described in the design section, a large por-
tion of the time is still being spent servicing TLB misses.

Some of these TLB misses are to invalid addresses;
the result of widespread use of control speculation within
IA32-EL. However, making hardware defer TLB misses
as late as possible only produces a small improvement
on some benchmarks and a small degradation on others;
mostly it just transfers some of the overhead to specula-
tion recovery code. It is possible that some of the uses
of speculation in IA32-EL are overly frivolous; effective
use of control speculation requires that the speculative
memory reference is valid in the vast majority of cases.
Also, presumably IA-32 EL is optimised for Linux where
TLB misses are less expensive than on Xen.

The I/O and system call intensive workloads suffer be-
cause all system calls and hypercalls require temporar-
ily exiting the fetch-and-execute environment, and this
is heavyweight in IA-32 EL, of the order of 800 cycles.
This is because the full IA-32 state is saved and restored.
While this provides a nice robust interface, it sacrifices
performance when callbacks to MagiXen are quite fre-
quent. It would be preferable if such callbacks could be
made with the majority of IA-32 state still in registers,
and the remainder of the state only saved on request. For
example, in most cases there is no need to save and re-
store floating point state.

A large amount of overhead can also be accounted to
context switches, and the fact that all translations are lost
on every context switch, in terms of both TLB transla-
tions and also the pre-translated Itanium code. Imple-
menting an IA-32 pagetable walker within the Xen hy-
pervisor does improve the situation somewhat, since it
reduces the cost of TLB misses when the translation is
in the IA-32 pagetable, which is usually the case for the
translations that need to be re-installed after a context
switch. However, the cost is still a lot greater than a TLB
miss on an IA-32 processor, and this does not address the
indirect cost of having to re-translate the IA-32 code.

If one was allowed to modify the guest kernel for a
slightly different paravirtualised architecture, a good op-
timisation for a system like MagiXen would be to in-
troduce the concept of multiple contexts, as supported
by most MMU architectures other than IA-32. Then,
switching the pagetable base from A to B to A would
possibly re-instate the mappings associated with A; if the
kernel truly wanted to flush part or all of A, it would is-
sue an explicit flush. Context switches could then be em-
ulated efficiently on Itanium and other architectures sup-
porting multiple contexts. This would not only to reduce
the number of TLB misses, but also allow efficiently
switching between pre-translated instruction streams for
different processes. The binary translator, IA-32 EL in
this case, would also need to be modified to allow such

12

switching.
If modifying the guest kernel is not practical, then

tricks could be used to simulate a similar architecture
given the information available. For example, on switch-
ing back to A, one could validate the Itanium pagetable
entries against the IA-32 pagetable entries, or validate
a checksum of the IA-32 pagetables. Such approaches
might be expensive in the worst case (there may be many
megabytes of IA-32 pagetables), but if done intelligently,
are still likely to result in a performance gain when com-
pared to the cost of re-creating the translations lazily via
page faults.

In addition to context switches, there are also a number
of other cases in the Linux kernel where a full TLB flush
is used gratuitously, when the actual intention is only to
flush a small number of mappings. It may be that on real
IA-32 hardware the full TLB flush is faster than flushing
the individual pages; however on a system like MagiXen
it is significantly more expensive. Once again, one could
either modify the guest kernel, or use workarounds based
on detecting changes to the pagetables to try to limit the
pages that are flushed.

In summary, our results show that the frequency of IA-
32 TLB flushes poses one of the most significant chal-
lenges to providing good system performance for IA-32
code executing on a non-IA-32 platform. While we have
implemented MagiXen on Itanium, we believe that simi-
lar problems would arise on other host architectures. We
plan to further investigate possible solutions in the future.

6 Related Work
As the many references throughout this paper indicate,

there is much previous work in both virtualization and
DBT. We combine the benefits and many of the chal-
lenges of both, in order to support guest virtual ma-
chines consisting of an extremely popular source ISA on
a rapidly growing target ISA.

As previously mentioned, VMware combines virtual-
ization with binary rewriting, which is a form of binary
translation. In this case, the binary translation occurs
from one ISA to a subset of the same ISA. MagiXen is
more flexible in that it supports an entirely different ISA.
The DELI [14] provides an API and service to clients
which allows translation or emulation of heterogeneous
binaries. Because of its flexibility (specifically the fact
that the API can be inserted below the operating system)
it potentially could be used as a translation layer between
a VMM and multiple guests, though the available liter-
ature does not suggest or propose this. For MagiXen,
support of multiple guests, some native and some non-
native, is a core objective. QEMU [10] is positioned
as a fast emulator with dynamic translation capability
for multiple guest/host combinations, providing a system
emulation mode. It is approaching the objectives and
possibilities of MagiXen from a slightly different tack,

but we believe the fact that is is hosted will limit it from
achieving some of the consolidation and migration ben-
efits of a VMM-based solution and, as previously noted,
its current performance for translated user programs is
crippled without a dynamic optimizer.

7 Conclusions
In this paper, we have considered the notion of re-

defining the ISA at the virtualization layer. Specifically,
we have proposed integrating dynamic binary translation
functionality into a full-function virtual machine moni-
tor. We have discussed how our proposed approach can
extend the benefits of current applications of virtualiza-
tion, with respect to uses such as server consolidation and
resource provisioning More importantly, our approach is
also well-aligned with recent trends towards virtual ap-
pliances and heterogeneous hardware. To understand the
implementation issues, we builtMagiXen, a prototype
implementation of a Xen virtual machine monitor with
integrated binary translation.

Our prototype can indeed seamlessly run IA-32 virtual
machines built for Xen on an Itanium platform. We have
presented performance results for several typical bench-
marks and discussed our experiences with building the
prototype. Our analysis reveals that our design, using
a black-box commercial-grade application-level binary
translator, provides superior performance for user-level
code but results in a number of issues which have con-
siderable impact on the performance of system code and
memory intensive workloads. As part of ongoing work,
we are exploring additional optimizations, but recognize
that a more fully integrated design would likely over-
come many of these issues — at the cost of a large engi-
neering investment.

Overall, our results show that such a cross-ISA virtual
machine with integrated binary translator can be a viable
solution for future enterprise systems. Indeed, as a larger
and larger fraction of enterprises adopt virtualization, we
expect approaches like ours — which go beyond the con-
ventional virtualization benefits of isolation, partitioning,
and encapsulation to include other features like dynamic
interface transformation — will be an important part of
future virtualization solutions.

References
[1] K. Adams and O. Agesen. A comparison of software

and hardware techniques for x86 virtualization. InProc.
ASPLOS XII, Oct. 2006.

[2] Advanced Micro Devices Inc. AMD unveils Torrenza
innovation socket. http://www.hpcwire.com/hpc/
917955.html.

[3] T. Agerwala. Computer architecture: Challenges and op-
portunities for the next decade.

[4] E. R. Altman, K. Ebcioglu, M. Gschwind, and
S. Sathaye. Advances and future challenges in bi-
nary translation and optimization.IEEE Proceedings,

13

89(11):1710–1722, Nov. 2001.
[5] M. Annavaram, E. Grochowski, and J. Shen. Mitigating

Amdahl’s Law through EPI throttling. InProceedings of
the Int’l Symp. Computer Architecture, IEEE CS Press,
pages 298–309, 2005.

[6] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A
transparent runtime optimization system. InProc. PLDI
’00, Jun. 2000.

[7] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skalet-
sky, Y. Wang, and Y. Zemach. IA-32 Execution Layer:
a two-phase dynamic translator designed to support IA-
32 applications on Itanium-based systems. InProc.
36th International Conference on Microarchitecture (MI-
CRO36), 2003.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. InProc. 19th SOSP, pages
164–177, Oct. 2003.

[9] BEA Systems Inc. With VMware’s help, BEA ditches the
operating system.http://www.dabcc.com/article.
aspx?id=3257.

[10] F. Bellard. QEMU, a fast and portable dynamic trans-
lator. In Proc. USENIX Annual Technical Conference,
FREENIX Track, pages 41–46, 2005.

[11] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Ru-
bin, T. Tye, S. B. Yadavalli, and J. Yates. FX!32: A
profile-directed binary translator.IEEE Micro, 18(2),
Mar/Apr 1998.

[12] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. InProc. 2nd NSDI, 2005.

[13] J. Dehnert, B. Grant, J. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson. The Transmeta Code Mor-
phing Software: Using speculation, recovery, and adap-
tive retranslation to address real-life challenges. InProc.
International Symposium on Code Generation and Opti-
mization, pages 15–24. IEEE Computer Society, 2003.

[14] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and
J. A. Fisher. DELI: A new run-time control point. In
35th Annual International Symposium on Microarchitec-
ture (MICRO ’O2, Nov. 2002.

[15] L. DiDio and G. Hamilton. Virtualization, Part 1: Tech-
nology goes mainstream, nets corporations big TCO
gains and fast ROI.Yankee Group, July 2006.

[16] F. E. Gillett and G. Shreck. Pragmatic approaches
to server virtualization: Flexible manageability drives
adoption as users work around obstacles.Forrester Re-
search, June 19 2006.

[17] E. Grochowski et al. Best of both latency and throughput.
In Proc. Int’l Conf. Computer Design, IEEE CS Press,
pages 236–243, 2004.

[18] Hewlett-Packard Company. Achieving binary affin-
ity for HP-UX 11i for the Intel Itanium Processor
Family, 2003. http://h71028.www7.hp.com/erc/
downloads/5982-0483EN.pdf.

[19] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and
D. Tullsen. Single-ISA heterogeneous multi-core archi-
tectures: The potential for processor power reduction. In
Proc. Int’l Symp. on Microarchitecture, San Diego, CA,

Dec. 2003.
[20] R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan.

Heterogeneous chip multiprocessors. InIEEE Computer,
2005.

[21] D. J. Magenheimer and T. W. Christian. vBlades: Opti-
mised paravirtualisation for the Itanium processor family.
In Proc. 3rd Virtual Machine Research and Technology
Symposium, pages 73–82, 2004.

[22] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman,
and W. Zwaenepoel. Diagnosing performance over-
heads in the Xen virtual machine environment. In1st
ACM/USENIX Conference on Virtual Execution Environ-
ments (VEE’05), June 2005.

[23] Open Source Development Labs Inc. reaim bench-
mark suite. http://sourceforge.net/projects/
re-aim-7.

[24] G. J. Popek and R. P. Goldberg. Formal requirements for
virtualizable third generation architectures.Communica-
tions of the ACM, 17(7):413–421, 1974.

[25] I. Pratt et al. Xen 3.0 and the art of virtualization. In
Proc of 2005 Ottawa Linux Symposium, volume 2, pages
65–77, July 2005.

[26] J. Rattner. Multi-core to the masses.
[27] J. S. Robin and C. E. Irvine. Analysis of the Intel Pen-

tium’s ability to support a secure virtual machine mon-
itor. In Proc. 9th USENIX Security Symposium, Aug.
2000.

[28] M. Rosenblum. The impact of virtualization on computer
architecture and operating systems. Keynote atASPLOS
XII, Oct. 2006.

[29] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M. Rosenblum. Optimizing the migration of
virtual computers. InProc. 5th OSDI, 2002.

[30] J. Smith and R. Nair.Virtual Machines: Versatile Plat-
forms for Systems and Processes. Morgan Kaufman,
2005.

[31] S. Soltesz, H. Pötzl, M. Fiuczynski, A. Bavier, and L. Pe-
terson. Container-based operating system virtualization:
a scalable, high-performance alternative to hypervisors.
To appear inProc. EuroSys2007.

[32] Standards Performance Evaluation Corporation. SPEC
CINT2000 benchmarks.http://www.spec.org/cpu/
CINT2000/.

[33] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtual-
izing I/O devices on VMware Workstation’s hosted vir-
tual machine monitor. InProc. 2003 USENIX Technical
Conference, Boston, MA, Jun. 2001.

[34] Sun Microsystems Inc. Solaris operating system runs
Linux applications easily, 2004.http://www.sun.com/
2004-0803/feature/.

[35] The Wine project.http://www.winehq.com/.
[36] Transitive Corporation. QuickTransit software.http:

//www.transitive.com/.
[37] E. Traut. Building the Virtual PC.

BYTE Magazine, pages 51–52, Nov. 1997.
http://www.byte.com/art/9711/sec4/art4.htm.

[38] R. Uhlig, G. Neiger, D. Rodgers, F. C. M. Martins, A. V.
Anderson, S. M. Bennett, A. Kägi, F. H. Leung, and
L. Smith. Intel Virtualization Technology.IEEE Com-

14

puter, 38(5):48–56, May 2005.
[39] VMware Inc. Introducing the virtual appliance market-

place.http://vam.vmware.com/.
[40] VMware Inc. VMware Vmotion: Live migration of

virtual machines without system interruption.http:
//www.vmware.com/pdf/vmotion datasheet.pdf.

[41] D. Wentzlaff and A. Agarwal. Constructing virtual archi-
tectures on a tiled processor. InProc. 2006 International
Symposium on Code Generation and Optimization, 2006.

[42] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
performance in the Denali isolation kernel. InProc. 5th
OSDI, Boston, MA, Dec. 2002.

