

On Parametric Obligation Policies: Enabling Privacy-aware Information
Lifecycle Management in Enterprises

Marco Casassa Mont, Filipe Beato
Trusted Systems Laboratory
HP Laboratories Bristol
HPL-2007-7
January 29, 2007*

identity
management,
privacy,
information
lifecycle
management,
obligation policies,
obligation
management
system, scalability

Enterprises that collect and process personal data must deal with related
privacy management issues. It is not just a matter of privacy-aware access
control: privacy obligation policies, dictating duties and expectations on
how personal data has to be handled, must be considered too. The
management of obligation policies is a promising area (affecting the
lifecycle management of personal data) but it is still underestimated.
Enterprises require solutions that enable automation and leverage their
current identity management solutions. HP Labs have been working on
this topic in the last few years, also in the context of the EU PRIME
project. In this paper we present our recent work on parametric obligation
policies and a related obligation management framework to deal with a
scalable management of these obligation policies on large amounts of
data, stored in distributed data repositories.

* Internal Accession Date Only Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.

On Parametric Obligation Policies:
Enabling Privacy-aware Information Lifecycle Management in Enterprises

Marco Casassa Mont, Filipe Beato

Hewlett-Packard Laboratories, Trusted Systems Lab, Bristol, UK
marco.casassa-mont@hp.com, filipe.beato@hp.com

Abstract

Enterprises that collect and process personal data

must deal with related privacy management issues. It
is not just a matter of privacy-aware access control:
privacy obligation policies, dictating duties and
expectations on how personal data has to be handled,
must be considered too. The management of obligation
policies is a promising area (affecting the lifecycle
management of personal data) but it is still
underestimated. Enterprises require solutions that
enable automation and leverage their current identity
management solutions. HP Labs have been working on
this topic in the last few years, also in the context of
the EU PRIME project. In this paper we present our
recent work on parametric obligation policies and a
related obligation management framework to deal with
a scalable management of these obligation policies on
large amounts of data, stored in distributed data
repositories.

1. Introduction

Personal data, digital identities and users’ profiles
are collected by enterprises and other organizations to
enable their business processes and provide required
services. Privacy laws and legislation [1,2] dictate
policies and constraints on how this personal data
should be handled, stored, processed and disclosed by
enterprises. Part of these policies have an impact on
access control aspects i.e. how data should be
accessed, based on data subjects’ consent, stated
purposes for collecting data, etc. [1,2]. Another part of
these policies dictate obligations that enterprises need
to fulfill on collected data, i.e. expectations and duties
on how to handle this data in terms of data
retention/deletion, notifications, data transformation,
etc. [1,2].

This paper focuses on privacy obligation policies.
The management of obligations has an impact on how
the lifecycle of personal data is handled in distributed
data repositories and systems within enterprises [15].

This area is still underestimated and open to
innovation. HP Labs have been working on this topic
in the last few years, both in the context of the EU
PRIME project [3] and internal R&D projects. Our aim
is to provide a pragmatic approach to the
representation, management and enforcement of
obligation policies to be deployed within enterprise IT
infrastructures, in particular state-of-the-art identity
management solutions. This is a key requirement made
by enterprises, as well as the need for automation and
cost reduction.

This paper provides an overview of our vision and
previous work in the area of obligation policies and
their management: it describes lessons we learnt,
including the need to address scalability issues. It then
focuses on our recent R&D work on parametric
obligation policies that aims at addressing these issues.
This paper is a follow-up of [4]: it introduces our
actual approach to parametric obligation policies and
provides details on how these policies are represented.
It also describes a related scalable obligation
management system prototype that has been fully
implemented and, as a proof-of-concept, integrated
with an HP state-of-the-art identity management
solution. Technical details are provided, as well as a
comparison against related work.

2. Our Vision on Privacy Obligation
Policies

Privacy obligations are policies that dictate

constraints, expectations and duties on how personal
data must be managed by enterprises [5]. They require
dealing with data deletion, data retention, data
transformation and minimisation, notifications,
execution of (potentially complex) workflows on data
by involving human and system interactions, etc. [5].
Privacy obligations could be short-termed, long-termed
or have ongoing implications [5]. Their management
and enforcement is at the very core to enable privacy-
aware information lifecycle management in enterprises
[5,6,15]. In previous papers on this topic [5,6] we

argued on the importance of explicitly dealing with
privacy obligation policies as first-class entities i.e. by
not subordinating their representation and enforcement
to access control policies - as, instead, mandated by
related work, for example EPAL [7], XACML [8], etc.

This is a key aspect of our vision. The main reason
for this is that access control policies and their
enforcement framework are not fully suitable to
capture and manage a broad variety of obligation
policy aspects. For example, deletion of personal data
after a predefined period of time must happen at the
right time, independently if that data has ever been
accessed.

Our approach has been refined and implemented
both in PRIME and HP Labs projects. In our vision, a
privacy obligation policy is a self contained entity
having a unique identifier and consisting of: Target,
Events and Actions sections. The Target section
describes the storage location and properties of
sensitive data (e.g. personal data, digital credentials,
user profile, etc.) subject to the obligation policies. The
Events section describes a logical combination of
events (e.g. time-based event, context-based events),
that - once happen - trigger the enforcement of the
obligation. Specifically, an event happens if its
(internal) conditions are satisfied. The Actions section
describes the actions to be enforced (e.g. deletion of
data, sending notifications, etc.) once events are
satisfied. Simple examples of privacy obligations are:
(1) “Delete credit card details of User X at time T and
Notify this User”; (2) “Notify Administrator A if
financial details of User X have been accessed more
that Y times in T hours”; (3) “Execute Workflow W on
Information X of User Y if Context C has property P”.
More details can be found in [6].

From an operational perspective (i.e. actual
representation of privacy obligation policies in a
format that can be programmatically interpreted,
managed and enforced) we proposed an explicit
representation of obligation policies in an XML
format, as reactive rules: WHEN Events happens
THEN trigger the execution of Actions on Target.
Details and examples can be found in [6]. Based on
our XML representation of obligation policies, we also
proposed an obligation management framework model
and a related obligation management system to
interpret, schedule, enforce and monitor these policies
[5,6]. Our obligation management technology and
framework was designed to allow users (at the time of
disclosing their personal data or afterwards) to express
privacy preferences (e.g. on deletion time of some of
their attributes or notification preference) on how their
personal data should be handled by the enterprise. Our
obligation management system was then able to

automatically derive and instantiate related obligation
policies based on these privacy preferences. We
achieved this capability by introducing the concept of
obligation policy template. In our approach, a template
consisted basically of an obligation policy which
contained simple “placeholders” in its Events and
Actions sections [4]. Templates were defined upfront,
by privacy administrators, to cover all the types of
obligations supported by an enterprise. In this context,
a template was instantiated just by replacing its
placeholders with the actual privacy preference values
(for example a deletion date or a notification
preference, etc.).

In this context an “instantiated” obligation policy
was (1) uniquely associated to a piece of data and (2) it
embedded privacy preferences in its Events and
Actions sections. The resulting “instantiated”
obligation policies were then scheduled, enforced and
monitored by our obligation management system [5,6].
A working prototype was fully implemented and
integrated with HP Select Identity [9], a state-of-the-art
identity management solution, to demonstrate the
feasibility of our ideas and its deployment in enterprise
contexts.

2.1. Lessons Learnt

 In PRIME we initially explored how to represent
privacy obligation policies in RDF [13] (in the context
of semantic web [14]), coupled with ontologies [13] to
reason on involved types of data. Our RDF-based
policies (basically graphs of inter-related policy
components) where directly associated to RDF
“graphs” representing personal data and stored in
protected data repositories. We soon discovered that
this representation was too heavy, in terms of the
redundancy introduced in the notation and explosion of
stored data (as triples) [13]. This approach was also
limiting the expressiveness of our policies, hence the
decision to use XML instead. This is currently work in
progress in PRIME: we are exploring alternative and
more efficient RDF representations of policies.

In the meanwhile, the implementation of our
prototype (and a related demonstrator), related tests
and feedback received by HP customers/third parties
helped us to identify another key problem: the
scalability of our approach. On one hand our approach
provided great flexibility in defining a broad range of
privacy obligation policies, potentially customisable to
users’ needs and directly associated to personal data.
On the other hand for each piece of managed data (and
related privacy preferences), one or more “instances”
of our obligation policies had to be created and
associated to this data, as shown in Figure 1.

Obligation
Policy

Template

Users’ Preferences

Instantiation

Obligation Policy 1

Obligation Policy 2

Obligation Policy 3

User’s Data 1

User‘s Data 2

User’s Data 3

Users’ Personal Data

Figure 1. Association of Obligation Policies to Data

In real world scenarios, large amounts of user’s data
(greater than 100K records) are collected and managed
by enterprises. In our approach, this meant having to
deal with a similar (large) amount of associated
obligation policies with negative implications and
impacts in terms of required resources and processing
power to run our obligation management system.

Additional feedback highlighted the need not only
to passively monitor failures in enforcing privacy
obligations (i.e. spotting cases where the enforcement
of stated Actions fails or changes in the status of
managed data invalidates previously enforced actions
[5]) but also being able to proactively remediate to
these failures (e.g. by notifying administrators or
trying to reinforce failed actions).

Usability tests carried out on our obligation
management system (by the Karlstad University, in the
context of PRIME) highlighted that end-users are
looking for simple ways to express their privacy
preferences, via graphical GUI, on a well defined,
small and clear set of stated obligation policies. This
finding reinforced the validity of our approach based
on using pre-defined templates for privacy obligation
policies, as a way to reduce the “types” of obligation
policies to be managed in our obligation management
system [4]. This aspect was actually taken into account
and implemented in PRIME.

However, the usage of templates, on its own, does
not solve the scalability problem: even if the enterprise
could just define a reduced set of obligation templates,
these templates have nevertheless to be instantiated for
each piece of managed data - based on related privacy
preferences. Hence the scalability problem was still
there. A complete analysis of this issue and other
related aspects can be found in [4].

3. Addressed Problem and Requirements

The key problem addressed in this paper is how to
manage obligation policies in a scalable way, on a
potentially large set of personal data stored in various
enterprise data repositories. The following related

requirements must be satisfied (based on customers’
feedback, our analysis and lessons learnt):
• Limit the number of “instantiated” policies (and

related management resources) independently on
the amount of managed data and related privacy
preferences;

• Preserve the key capability to “customize” the
management of each individual piece of personal
data, based on users’ privacy preferences;

• Provide a more comprehensive automation of
obligation policies, ensuring that obligations (once
enforced) are not only passively monitored but
also actions are taken to remediate/react to any
violation. This to reduce the need for human
intervention in case of large datasets.

Addressing this problem has implication on two key
aspects: (1) how to represent obligation policies; (2)
how to manage, enforce and monitor these policies.

Next section introduces a reference scenario (used
in the remaining part of this paper). Section 5 describes
our approach and solution to the problem, based on the
concept of parametric obligation policies.

4. Scenario

We consider an enterprise scenario where a
potential large number of users (customers, employees,
etc.) have to disclose their personal data in order to
access services. This personal data is provided by users
at the registration time, potentially via a web-based
self-registration service. In this context a user can
check which obligation policies (e.g. in terms of
deletion of data, data minimization, notifications, etc.)
the enterprise can support (and on which data). The
user can make decisions in opting-in/opting-out some
of these obligation policies (others might be
mandatory). For each selected obligation policy the
user can instantiate specific privacy preferences and
submit the overall information. The user could later on
access this “registration” web service and make
changes to their personal data, selected obligations and
privacy preferences. A privacy administrator, in the
enterprise, can set additional obligation policies
(derived from laws and/or internal guidelines) on any
subset of collected personal data.

The enterprise can enforce these obligation policies
on managed data, by means of a privacy-aware
information lifecycle management solution – that
leverage our approach and technology. This automates
the enforcement of these policies, their monitoring and
remediation activities (in case of violation of policies).

5. Parametric Obligation Policies

To address the stated problem and keep into
account related requirements, we introduce the concept
of parametric obligation policies. A parametric
obligation policy is a policy that leverages the concepts
of our previous version of obligation policies [5,6].
The same categories of obligation policies [5,6] are
managed. However, the key differences are:
• A parametric obligation policy can be associated

to a potentially large set of personal data (i.e.
no multiple instantiations) and, at the same time, it
can dictate customized obligation constraints
(based on users’ privacy preferences) on each data
item;

• A parametric obligation policy does not embed
privacy preferences in its Events and Actions
sections (as instead happens in our previous
version of obligation policies). Instead, this policy
contains explicit references to these preferences,
that are stored elsewhere - in data repositories;

• The Target section of parametric obligation
policies explicitly model and describe the data
repositories that will contain preference values
pointed by these references - in addition to
repositories containing personal data;

• A new “On Violation” section has been
introduced to explicitly automate the process of
“remediation” of violated obligations – as
described in the requirement section.

 The key feature introduced by parametric
obligations is that privacy preferences are stored
separately from parametric obligation policies:
references are used to retrieve these preferences. This
ensures that a parametric obligation policy can apply
to a potentially large set of personal data – as defined
in its Target element – and, at the same time, allows
the “customization” of its Events and Actions based on
references to external privacy preferences.

From a formal perspective a parametric obligation
policy is a <i,t,L(e[r]),C(a[r]),C(va[r])> tuple, where
<i,t,e,a,va>∈<I, 2T, 2E, 2A, 2VA> and r∈ 2R :
• I: set of unique identifiers, associated to

parametric obligation policies;
• T: set of possible obligation targets, i.e. data

entities subject to obligations;
• E: set of possible parametric events that can

trigger an obligation i.e. events that might contain
references (e.g. to privacy preferences);

• A: set of all possible parametric actions that can
be executed as an effect of enforcing an obligation
i.e. actions that might contain references (e.g. to
privacy preferences);

• VA: set of all possible parametric “on violation”
actions to be executed to remediate any violation
of enforced (parametric) obligations. These
actions might contain references to preferences as
well;

• R: set of all possible references (e.g. to privacy
preferences) that could be used in a policy.

Specifically, this <i,t,e,a,va> tuple is defined as:
• i ∈ I: i is an element that belongs to I;
• t T: t is a set of targets included in T; ⊆
• e[r]⊆E: e[r] is a set of parametric events

included in E;
• a[r] A: a[r] is a set of parametric actions

included in A;
⊆

• va[r] VA: va[r] is a set of parametric “on
violation” actions included in VA;

⊆

• r R: r is a set of references (to values) included
in R.
⊆

In this context the L operator and the C operator mean:
• L(e[r]): a logical combination of parametric

events, for example AND, OR and NOT
combination of events contained in e;

• C(a[r]): a combination of parametric actions,
such as a sequence of actions;

• C(va[r]): a combination of parametric actions to
be executed in a sequence, when an enforced
obligation is violated.

A set of parametric obligation policies can be
created by a privacy administrator to dictate the
“criteria” by which personal data should be handled:
the referencing mechanism (coupled to appropriate
data descriptions in the Target section) ensures that
these policies are “instantiated” on-the-fly by our
obligation management system - based on associated
privacy preferences, enforced and monitored on a
potentially large set of managed data (Sections 6,7).

From an operational perspective a parametric
obligation policy in still represented as an XML
format, as a reactive rule. XML has been used
because of its versatility and suitability to extensions.
The XML skeleton of a parametric obligation policy is:
<?xml version="1.0"?>
<obligation oid="">
 <target> …….. …</target>
 <metadata> … ….</metadata>
 <events> ……….</events>
 <actions> ………</actions>
 <onViolation> …</onViolation>
</obligation>

The remaining part of this section provides more
details about the actual content of parametric
obligation policies i.e. their Target, Metadata, Events,

Actions, OnViolation sections. For illustration
purposes we consider a simplified scenario based on
Section 4. This scenario consists of an e-commerce site
that collects personal data about users and their
preferences and stores this information in database
tables. In this context, we consider a very simple
parametric obligation policy dictating that: for each
piece of managed personal data (Target), credit card
information must be deleted (Parametric Action) based
on time-based deadlines specified by users via their
privacy preference (Parametric Event). When this
happens the correspondent user must be notified
(Parametric Action). Should the enforcement of any of
these actions fail, the obligation management system
should try to reinforce them and notify an
administrator (“On Violation” Actions).

.1. Target

on policy
us

•

g. by

keys)

•

her sections of the privacy

•
levant

L skeleton of the Target section (low-level
d for space reasons) follows:

5

The Target section of a parametric obligati
is ed to provide the following information:

A description of data repositories containing
(personal) data that is subject to privacy
obligations. In this context one or more data
repositories can be described (e.g. RDBMS
database or LDAP directory, etc.). A data
repository description includes location and name
of the data repository, data schema structures (e.g.
database tables) and primary keys. It is important
to notice, that by default, all data stored in these
repositories will be affected by this obligation
policy. A more selective choice of which data
items must be managed can be made by
instantiating a “Conditions” sub-section (e.
testing properties/values of the stored data).
Each data repository is identified by a unique alias
that is used as a shortcut in other parts of the
parametric obligation. If multiple data repositories
are described, it is possible to specify any
relationship (i.e. links between primary
existing on data stored in these repositories;
A description of data repositories used to store
privacy preferences. The definition of this sub-
section is identical to the previous one, with the
exception that it refers to repositories storing
preferences/parameters. These preferences are
associated to the managed personal data and used
to customize ot
obligations;
A cross-links sub-section defining how to link
preferences to personal data, by using re
keys defined in the other two sub-sections.

The XM
details have been omitte
<target>
 <DataRepositories>
 <Repositories>
 <DataRepository alias= “…”
 <DRType> … ……..</DRType>
 <DBname> … …….</DBname>
 <TableName>……...</TableName>
 <Conditions>
 <Condition> …..</Condition>
 </Conditions>
 <UniqueIdentifier>
 <References> … </References>
 </UniqueIdentifier>
 </DataRepository>
 <InternalLinks>
 <Link> ……..</Link>
 </InternalLinks>
 </DataRepositories>
 <PreferenceRepositories>
 <Repositories> … </Repositories>
 <InternalLinks>
 <Link>…….. </Link>
 </InternalLinks>
 </PreferenceRepositories>
 <CrossLinks> ………. </CrossLinks>
 </target>

In case of our simple example of privacy obligation
policy, the above skeleton could be instantiated with
the following information: (1) a data repository entry,
containing the database and table names where
personal data is stored, the table’s “primary key” (e.g.
UserId) and an alias (e.g. DataRepAlias) for this
repository; (2) a preference repository entry,
containing the database and table names where
preferences are stored, the table’s “primary key” name
(e.g. PrefId) and a alias for this repository (e.g.
PrefRepAlias). A field in this table, for example called
TimePreference, could be used to store users’
preferences about deletion time of Credit Card details;
(3) a description (in the “Cross link” sub-section) of

ow to link personal data to preferences (e.g.
erId = PrefRepAlias.PrefId)

5.2

he
resented to users and/or administrators.

tadata section follows:

h
DataRepAlias.Us

. Metadata

The Metadata section of a parametric obligation
policy describes: (1) Type of obligation policy (e.g.
“Parametric”); (2) Natural language description of t
obligation, p
The XML skeleton of the me
 <metadata>
 <type>Parametric</type>
 <description> … </description>
 </metadata>

5.3. Events

The Events section of a parametric obligation policy
describes “parametric” events that must occur to
trigger the obligation. These events can contain
references to personal data and preferences described
in the Target section. The high level XML skeleton of
the Events section follows:

<events operator="AND/OR/NOT ">
 <event id="e1">
 <type> …</type>
 </event>
 </events>
One or more event or events sub-sections can be

described in this section, in a recursive way, combined
via logical AND/OR/NOT operators. Each “event”
subsection has a unique, local identifier. The actual
definition of these events depends on their types.
Currently managed types of events are:
• Time based event: it describes a condition that

checks the current time (NOW) against a stated
time. The “stated time” can be retrieved via a
reference (e.g. to a field in a Privacy Preferences
data repository) ;

• Data Access event: it describes a condition on
how many times a specified user’s data item(s)
can be accessed in a predefined period of time.
The actual information (user’s data item, number
of accesses and period of time) can be retrieved
via references to values stored somewhere;

• Data Deletion event: it describes a condition that
is true when a specified piece of data has been
deleted (by an external system). The location of
this data can be specified via a reference.

• Context-based event: it describes conditions on
contextual information (e.g. system attributes, OS
or application-based information). References to
this information can be used.

In our example of privacy obligation policy, a simple
time-based event is described as follows:

<events operator=" ">
 <event id="e1">
 <type>TIMEOUT</type>

 <date">
 NOW > [#ref] PrefRepAlias.TimePreference
 </date>

 </event>
 </events>

In our example, the “NOW > [#ref] PrefRepAlias.
TimePreference” condition is verified if the current
time (NOW) is greater then a time accessible via the
“[#ref] PrefRepAlias.TimePreference” reference. This
reference points to information stored in the Privacy

Preferences repository (having the PrefRepAlias alias)
in the “TimePreference” field, as declared in the Target
(see the Target example in section 5.1). It is important
to notice that, in our example, each piece of data has
an associated preference value - specified by the user
and stored in the Preference Repository
(“TimePreference” field).

At this “declarative” stage, this reference is a
“generic” reference to potentially many values stored
in the Preference Repository. It must be contextualized
to each specific “piece of data” the policy applies to.
This happens at “runtime”, during the interpretation of
events. Our scalable obligation management system
will achieve this by using the Target section of this
policy: for each targeted piece of data it will retrieve
the associated preferences based on the specified
reference (e.g. “TimePreference” value in the
Preference Repository) and check any related
condition in the events section (in our simple example
it is a simple time-based condition). This is done in an
efficient way, via a few SQL queries to databases. In
our example, when the time-based condition is
satisfied for a given piece of data and an associated
preference, the system triggers the enforcement of
related actions (on that piece of data).

5.4. Actions

The Actions section of a parametric obligation
policy describes “parametric” actions to be enforced
when an obligation is triggered by its events. These
actions can contain references to data and preferences
consistently with the definitions in the Target section.
A high level XML skeleton of the Actions section
follows:

<actions>
 <action id="a1">
 <type> …………..</type>
 <onCondition> … </onCondition>
 …
 </action>
 </actions>
One or more action sub-sections might be defined

in this section. Each “action” sub-section has a unique,
local identifier. Actions are executes in a sequence,
potentially subject to the satisfaction of (optional)
conditions (e.g. constraints on Privacy Preferences. By
default these conditions are TRUE i.e. actions are just
executed). The actual definition of these actions
depends on their types. Currently managed types of
actions are:
• Notification Action: this action sends a

notification to an entity. The e-mail address of

this entity can actually be a reference to a value in
the Data Repository;

• Deletion Action: this action deletes a piece of
personal data or some of its attributes. A reference
can be used to identify this piece of data;

• Command Execution Action: this action
executes an external application or service (e.g. a
workflow application to process a piece of data or
transform it). References to personal data or
privacy preferences can be passed as parameters;

• Logging Action: this actions logs information
(including referenced information) for auditing
purposes.

In our example of privacy obligation policy, two
actions are defined, to delete user’s credit card details
and notify users:

<actions>
 <action id="a1">
 <type>DELETE</type>
 <data attr="part">
 <item>
 [#ref] DataRepAlias.CreditCardRef
 </item>
 <item>
 [#ref]DataRepAlias.CreditCardNumber
 </item>
 </data>
 </action>
 <action id="a2">
 <type>NOTIFY</type>
 <method>EMAIL</method>
 <to> [#ref] DataRepAlias.Email </to>
 <text> some e-mail text here </text>
 </action>
 </actions>
These actions contain references to personal data

(credit card details and e-mail address). The same
observations made in the “Events” section apply here.
These references are “solved” at runtime, based on
contextual information i.e. specific pieces of personal
data for which obligations have been triggered.

5.5. On Violation Actions

The “On Violation” section of a parametric
obligation policy describes “parametric” actions to be
executed in case an enforced policy is violated i.e. if
any of its enforced actions fail. The XML skeleton
follows:

<onViolation>
 <ovAction id="ova1">
 <type> …………..</type>
 <onCondition> … </onCondition>
 …
 </ovAction>
 </onViolation>

An action can fail either at the enforcement time or
afterwards (e.g. deleted data could reappear because of
wrong database synchronisation): this latter case is
detected by the monitoring component of our
obligation management system. All actions described
in the “Actions” section can be used in the
“OnViolation” section. A specific “RE-ENFORCE”
action has been introduced just for the “OnViolation”
section: when used, it requires the system to re-enforce
just the actions that have failed (in the Actions
section).

6. Deployment of Parametric Obligation
Policies

Parametric obligation policies must be deployed in
an obligation management framework for their
interpretation, enforcement and monitoring. Figure 2
provides a high level view of the key aspects involved
in this process:

Data Subject
(Users)

Personal Data
+

Privacy
Preferences

ENTERPRISE

Scalable
Obligation
Management
System

Personal
Data

Parametric
Obligations

Parametric
Obligation 1

Parametric
Obligation 2

Parametric
Privacy

Obligations
derived from
Templates

Enterprise
Data Repositories

Personal Data

Privacy
Preferences

Privacy
Preferences

(Deletion,
Notification, etc.)

Privacy
Preferences

1:N Association

Self
Registration
& User
Provisioning
Solutions

Figure 2. Deployment of Parametric Obligation Policies

Privacy administrators still need to interpret and

refine privacy laws and guidelines and express them
into obligation policies that can be managed within
their enterprise realities. Administrators must also
understand how personal data is collected and where it
is stored within an enterprise IT infrastructure. They
need to make decisions on which types of obligations
an enterprise wants to enforce and which degree of
customization (privacy preferences) provide to their
users (customers, employees, etc.). Once this
information is known, obligation policies can be
expressed in an explicit format, programmatically
interpreted and enforced.

An administrator can leverage our obligation
management framework and related scalable
obligation management system – also referred in this
paper as SOMS system (see next section for more
details) - to achieve this. In this context an
administrator can use SOMS GUI capabilities to author

parametric obligation policies by describing all their
sections (Target, Events, Actions, On Violation
actions, etc.). Via these GUI tools, for each parametric
obligation, information is collected about which
privacy preferences are required, how they relate to the
policy and how to present this policy to the end-user
via a meaningful description.

A set of parametric obligation policies are then
deployed in the SOMS system, to drive its privacy-
aware information lifecycle management capabilities.

The SOMS system can be integrated with back-end
Identity Management enterprise solutions, such as
Self-Registration and Provisioning solutions, e.g. [9].
In this context when users self-register (i.e. provides
their personal information) via an enterprise portal,
they are also presented with a list of supported
(parametric) obligation policies along with the required
parameters. Users can make their choices, select (a
sub-set of) obligations and provide their preferences.
These solutions provision users’ information (personal
data) in enterprise data repositories. Thanks to
adaptors, they will also provision the SOMS system
with the list of selected parametric obligation policies
and preferences. The SOMS system, based on the
Target definition of selected parametric obligation
polices, knows where to store related preferences and
ensure that links to personal data are maintained.

A potentially large set of users and their personal
data (>100K) can be provisioned to the enterprise. In
this context, just a potentially small set of predefined
parametric obligation policies is required to dictate all
the criteria enabling privacy-aware information
lifecycle management tasks. The SOMS system will
manage them. There is no anymore need to instantiate
an obligation policy for each provisioned data item:
each predefined parametric obligation policy is
dynamically associated to a set of managed data (that
can change over time). This addresses the scalability
requirement.

Next section provides more insight on the Scalable
Obligation Management System (SOMS).

7. Scalable Obligation Management
System

The SOMS system is an evolution of our previous

version of the Obligation Management System (OMS)
[5,6] to interpret, enforce and monitor parametric
obligation policies. Figure 3 shows a high level
architecture of the SOMS system. Its main components
are:
• Obligation GUI: this is the graphical GUI used

to: (a) author obligation policies; (b) check for

their run-time status; (c) check the status of SOMS
system components;

• Obligation Server: it is the core engine
orchestrating interactions with other SOMS
components. It interprets calls to SOMS APIs (1),
stores privacy preferences in stated repositories
(2), update associations between preferences and
parametric obligation policies. Provides
information to the Obligation Scheduler (3) to
ensure that the SOMS system is aware of the need
to manage obligations on new personal data, based
on specified preferences;

• Obligation Scheduler: it is the component that
checks if (parametric) events trigger any
parametric obligation (5). It solves, at runtime, any
reference contained in the Events section of
obligations (4), based on the contextual personal
data;

• Event Manager: it is the component that checks
for incoming external events (time, access, context
events, etc.) of relevance of SOMS, translate them
in a meaningful internal format and transmit them
to the Obligation Scheduler for further processing
and correlation (4);

• Obligation Enforcer: it is the component that
enforces the Actions part of triggered parametric
obligations (6), by resolving, on-the-fly, related
references, in the context of specific personal data
and informs the Obligation Monitor (7);

• Obligation Monitor: it is the component that
periodically checks the status of enforced
obligation policies against the current status of
data. Violations are reported and graphically
visualized in the SOMS GUI. When specified in
parametric obligations, this component will
automatically try to remediate violations by
executing the “On Violation” section of these
policies (8).

Obligation
Server Obligation

Scheduler
Obligation
Enforcer

Obligation Monitor

Obligation GUI

Privacy
Preferences

Obligation
Policy Repository

Fr
on

t-e
nd

 S
O

M
S

 A
PI

s

SOMS
Operational Data

Enterprise
Data

Repositories

Ev
en

t M
an

ag
erUser’s

Prefs.

User’s
Data

External
Events

1 3 4

6

7

8

52

Figure 3. High-level SOMS System Architecture

The key innovation introduced in the SOMS system is
its capability to dynamically interpret parametric
obligation policies (i.e. their Target, Events, Actions
and OnViolation Actions sections) and map their
references on actual “targeted” data and preferences.
This is done in an efficient way, via SQL queries that
are instantiated on-the-fly – based on targeted data and
related preferences. Figure 4 provides and high-level
view of the related process implemented in the SOMS
system, triggered by the occurrence of external events
of relevance for a given parametric obligation policy.

Target

Events

Actions

OnViolation
Actions

Data Repository

Preference
Repository

Identify Relevant
Personal Data

and Preferences

dynamically build SQL queries
to solve Each Event Reference against a stated

Preference, for each given Piece of Data

external events triggers
a parametric obligation on a given

Piece of Data?

External Events Happen Param. Obl. Policy

Update
Stateful
Events

dynamically build SQL queries
to solve Each Action Reference for each
involved Piece of Data. Enforce Actions

NO

YES

Figure 4. Reference Resolution Process

When external events happen for a given parametric

obligation, the SOMS system identifies the targeted
personal data and related preferences. Based on this
context, a few SQL queries are dynamically built to
solve any reference in the Events section and, at the
same time, check their values against stated Events
conditions. For each piece of data (targeted by this
parametric obligation) where the “customized” Events
section triggers the enforcement of Actions, the system
will dynamically build SQL queries to solve references
in the Actions section and enforces them.

It is important to notice that some of the Events and
Actions defined in parametric obligation policies might
be stateful. For example, a parametric “Access Event”,
that is triggered once targeted pieces of data are
accessed more than X times, has to keep access
counters specific for each piece of targeted data. The
status of enforced Actions has to be stored for
monitoring purposes, etc.

The SOMS system stores all this metadata
associated to parametric obligation policies in its
internal “SOMS Operational Data” repository.

Of course, this information can grow with the
amount of managed personal data. However, it is just a
matter of storage of simple data and efficient retrieval:
this is done by using RDBMS databases and properly

crafted queries (similar to the ones used to solve
references).

The SOMS system extends our previous version of
obligation management system [5,6]: it provides this
new features in addition to the existing ones. As such
the SOMS system can manage both parametric
obligation policies and “traditional (non-parametric)”
obligations. This allows an administrator to tune the
system and take advantage of a hybrid obligation
management approach [4] depending on: (1) the need
for efficiency and scalability (hence using parametric
obligations); (2) the need for flexible and ad-hoc
definition of obligations on specific instances of data
(hence the usage of “non-parametric” obligations).

A full working prototype of our SOMS system has
been implemented and re-integrated with HP
OpenView Select Identity solution [9], a state-of-the-
art User Account and Provisioning solution for
enterprises. This shows the feasibility of our approach
in a real-world environment.

Initial results are very encouraging. Despite the fact
that at this stage we cannot yet provide a quantitative
analysis of SOMS performance, our prototype has
been already tested with about 100K items of personal
data – in a context where about 10 parametric
obligation policies have been deployed (covering most
common combination of event and action types). Each
item of personal data was associated to specific
privacy preferences.

The SOMS system (installed in a “standard” PC
using MS Windows XP Professional, with data stored
in MySQL databases) has gone through all the required
steps in terms of event processing, action enforcement
and monitoring - without noticeable problems.

We are currently performing additional tests on
larger datasets and different types of parametric
obligations and collecting information on the behavior
of the system (future papers will provide this
information). Future work includes further extensions
of managed policies, performance tests and R&D in
PRIME.

8. Related Work

As anticipated, this paper is a follow-up of [4] that
described in details the scalability issues we
encountered in our previous work and lessons learnt.
Our previous papers [5,6] in the area of privacy
obligation policies provide a detailed comparison of
our vision and approach against related work. In a
nutshell, existing approaches to privacy obligation
policies (targeting personal data) such as EPAL [7] and
XACML [8] subordinate obligation policies to access

control policies whilst our approach considers them as
first-class entities, independent from access control
aspects. In this paper we have already argued that this
is required, if we want to enable a proper management
and enforcement of obligation policies.

 A relevant, formal definition of obligation policies
and a related framework is described in [10]. However,
also this work positions the concept of obligations in
an authorization context.

We have not found relevant papers providing
scalability analysis of obligation management systems,
in the specific context of privacy management. Paper
[11] describes an approach to obligation policies and a
related solution that is very similar to our previous
work on obligation management (affected by
scalability issues). It looks like that their approach
requires multiple instantiation of obligation policies on
managed entities.

Relevant work on obligation policies (beyond the
privacy realm) has been done in the Ponder Language
and its management framework [12]. Obligation
policies are expressed in terms of event conditions and
actions, executed on targeted objects once events are
triggered. These policies are deployed and used in a
security and network management context, coupled
with access control/authorization policies. The actual
representation of policies and their enforcement
framework is different from ours, as dependent of the
deployment context: in our case the focus is on data
and information – in theirs on network component and
security properties. Further R&D work could be done
to compare approaches and scalability properties of the
two systems and explore opportunities for
collaboration.

9. Conclusions

The management of privacy is very important for
enterprises in order to deal with regulatory compliance
and customer satisfactions aspects. In particular
privacy obligations need to be managed. In this context
solutions are required to automated privacy-aware
information lifecycle management and reduce costs.
Their scalability to large set of data is a key
requirement.

This paper describes our recent work in this space
(that keeps into account learnt lessons) based on the
concept of parametric obligation policies and a
scalable obligation management system and
framework. A working prototype has been fully
implemented and integrated with HP identity
management solutions to show the feasibility of our
approach in a real world domain. Initial tests

demonstrate the scalability of our approach to handle
obligation policies on large sets of data (about 100K).
This is work in progress. Further research will be done
in the context of PRIME and HP Labs.

10. References

[1] Rotemberg, M., Laurant, C.: Privacy International:

Privacy and Human Rights 2004. Electronic Privacy
Information Center (EPIC), Privacy International.
http://www.privacyinternational.org/survey/phr2004/,
2004

[2] OECD: OECD Guidelines on the Protection of Privacy
and Transborder Flows of Personal Data.
http://www1.oecd.org/publications/e-
book/9302011E.PDF, 1980

[3] PRIME Project: Privacy and Identity Management for
Europe, European RTD Integrated Project under the
FP6/IST Programme, http://www.prime-project.eu/,
2006

[4] Casassa Mont, M: Towards Scalable Management of
Privacy Obligations in Enterprises, TrustBus 2006,
2006

[5] Casassa Mont, M.: Dealing with Privacy Obligations:
Important Aspects and Technical Approaches, TrustBus
2004, 2004

[6] Casassa Mont, M.: A System to Handle Privacy
Obligations in Enterprises, HP Labs Technical Report,
HPL-2005-180, 2005

[7] IBM: The Enterprise Privacy Authorization Language
(EPAL), EPAL 1.2 specification. IBM, 2004

[8] OASIS: Extensible Access Control Markup Language
(XACML) 2.0, 2005

[9] Hewlett-Packard (HP): HP OpenView Select Identity,
http://www.openview.hp.com/products/slctid/index.htm,
2005

[10] Hilty, M., Basin. D., Pretschner, A.: On Obligations,
ETH Zurich Switzerland, ESORICS 2005, 2005

[11] Gama, P., Ferreira, P.: Obligation Policies: An
Enforcement Platform, POLICY 2005, 2005

[12] Damianou, N., Dulay, N. , Lupu, E. , Sloman, M.: The
Ponder Policy Specification Language, 2001

[13] W3C: Resource Description Framework (RDF),
http://www.w3.org/RDF/, 2004

[14] W3C: Semantic Web, http://www.w3.org/2001/sw/,
2006

[15] Casassa Mont, M: On Privacy-aware Information
Lifecycle Management in Enterprises: Setting the
Context, ISSE 2006, 2006

	1. Introduction
	2. Our Vision on Privacy Obligation Policies
	2.1. Lessons Learnt

	3. Addressed Problem and Requirements
	4. Scenario
	5. Parametric Obligation Policies
	5.1. Target
	5.2. Metadata
	5.3. Events
	5.4. Actions
	5.5. On Violation Actions

	6. Deployment of Parametric Obligation Policies
	7. Scalable Obligation Management System
	8. Related Work
	9. Conclusions
	10. References

