O}

invent

Towards Trustworthy Virtualisation Environments: Xen Library
OS Security Service Infrastructure

Melvin J. Anderson, Micha Moffie, Chris I. Dalton
Trusted Systems Laboratory

HP Laboratories Bristol
HPL-2007-69
April 30, 2007*

trusted computing,
virtualization,
Xen hypervisor

New cost effective commodity PC hardware now includes fully virtualisable
processors and the Trusted Computing Group's trusted platform module (TPM).
This provides the opportunity to combine virtualisation, trusted computing and
open source software development to tackle the security challenges modern
computing faces. We believe that leveraging this technology to partition critical
operating system services and applications into small modules with strictly
controlled interactions is a good way to improve trustworthiness.

To support the development of small applications running in Xen domains we
built a library OS. We ported the GNU cross-development tool chain and
standard C libraries to the small operating system kernel included with the Xen
distribution, and wrote an inter-domain communications (IDC) library for
communications between Xen domains. To confirm the usability of our library
OS we ported a software TPM to run on it as a typical application. We
evaluated the performance of our IDC system and showed that it has good
performance for the applications we envisage.

We have shown that a lightweight library OS offers a convenient and practical
way of reducing the trusted computing base of applications by running security
sensitive components in separate Xen domains.

* Internal Accession Date Only Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.

Towards Trustworthy Virtualisation Environments:
Xen Library OS Security Service Infrastructure

Melvin J. Anderson Micha Moffie*
Hewlett-Packard Laboratories Computer Architecture Research Laboratory
Filton Road, Stoke Gifford Northeastern University
Bristol BS34 8QZ, UK Boston, MA 02115, USA
melvin.anderson@hp.com mmoffie@ece.neu.edu
Chris I. Dalton

Hewlett-Packard Laboratories
Filton Road, Stoke Gifford
Bristol BS34 8QZ, UK
chris.i.dalton@hp.com

February 1, 2007

Abstract

New cost effective commodity PC hardware now includes fwilfualisable processors and the
Trusted Computing Group’s trusted platform module (TPM)isIprovides the opportunity to combine
virtualisation, trusted computing and open source sofvad@velopment to tackle the security challenges
modern computing faces. We believe that leveraging thisrtelogy to partition critical operating sys-
tem services and applications into small modules with tifrimontrolled interactions is a good way to
improve trustworthiness.

To support the development of small applications runningen domains we built a library OS. We
ported the GNU cross-development tool chain and standaitir@ries to the small operating system
kernel included with the Xen distribution, and wrote an irdlemain communications (IDC) library for
communications between Xen domains. To confirm the usgbiiour library OS we ported a software
TPM to run on it as a typical application. We evaluated thégyarance of our IDC system and showed
that it has good performance for the applications we engisag

We have shown that a lightweight library OS offers a convenand practical way of reducing
the trusted computing base of applications by running sigcsensitive components in separate Xen
domains.

1 Introduction

Information Technology is moving towards a world where passible to deliver highly flexible and scalable
solutions over virtualised and constantly evolving infrastures [14]. Such a world throws up significant
trust and security challenges. One example is the challeh@ssuring that the isolation goals of an IT
system built on top of software based machine virtualisatechnology are being met. With non-shared
dedicated physical hardware this is a fairly tractable b Once hardware is virtualised and shared
amongst differing and perhaps competing parties the pmoldecomes much harder. Even the mundane

*Work carried out at Hewlett-Packard Laboratories

but critical requirement of being able to identify hostdabkly and robustly within a management domain,
already difficult in the physical world, becomes signifidaritarder in an infrastructure where hosts are
virtualised. The increased trust and security managemedeh posed by problems like these threatens to
outweigh the benefits that flexible virtualised environrsdming.

In this paper we present our library OS and related inter@aioncommunication mechanism work for
the Xen virtualisation layer [1]. With the library OS an ajgpltion can run directly on Xen without requiring
a full blown OS such as Linux underneath it. The motivatiorthraf work is two-fold. Firstly, to support
the reduction of the overall Xen trusted computing base lmpahg the restructuring of the privileged Xen
management and control plane applications. Secondly,ttasaan implementation infrastructure for the
provision of security services on top of the virtualisatilayer. We consider these security services key
in moving towards a fulletrustworthy virtualisation environmenvhere the trust and security problems
introduced by virtualised infrastructures can begin to térassed [15].

In our view atrustworthy machine virtualisation layer will be a core component of tnggneration
IT infrastructures. As a core component, a trustworthy tayal require robust, reliable and predictable
behaviour. The amount of code that currently forms the édisbmputing base (TCB) of Xen, i.e. the code
that needs to be trusted to uphold the Xen isolation prageeftir example, is too large in our opinion for Xen
to be considered a trustworthy virtualisation layer. TheBI& Xen includes both the VMM layer itself and
also the necessary management functionality. At the mantl@etmanagement functionality is hosted on
top of a full Linux OS running in a privileged Xen domain (doim&). Our library OS work and associated
inter-domain communications support the restructuring eeduction of the Xen trusted computing base
leading towards a more trustworthy VMM.

A trustworthy VMM alone however will not be sufficient in addising the trust and security challenges
introduced by the move to virtualised environments. Wedwelithat some form of trust management frame-
work, i.e. a framework for securely bootstrapping managgmemponents on top of a trusted VMM along
with a set of appropriate security services is also requBgdAs an example, an integrity security senvice
layered on top of a trustworthy VMM would support the runnafgnultiple operating systems with varying
trust levels concurrently whilst still allowing for the m@agful attestation and remote verification of the
identity and trustworthiness state of individual opemgtsystems and configurations running on that virtu-
alised platform [15]. Our library OS work and associate@irdomain communications act as an excellent
foundation for the implementation of security serviceslom Xen VMM.

The rest of the paper is organised as follows: In section 2 ave\gr the related work. We present
the design and implementation of our new environment inice@& and provide performance numbers in
section 4. We report our experience porting the virtual TRELsIty service in section 5. We discuss further
work that we plan to do based on the library OS in section 6, @gisduss our approach and conclude in
section 7.

2 Related Work

2.1 \Virtualisation

Virtualisation is a technology that has been around at lease the VM/CMS in the 1960’s — but it is only
recently that commodity processors from AMD and Intel hasd hardware extensions to support virtual-
isation. Before then VMMs such as Xen2 have used para-lisaigon to obtain reasonable performance.
Xen3 has support for the new generation of virtualisablecgssors, allowing unmodified guest operating
systems and their applications to run under Xen.

1Another example is a virtual network service [7]

2.2 Containment

There have been a number of examples of operating systemsifigacontrols designed to offer application
containment properties above and beyond normal processl isgation. Several have been based on the
Bell-Lapdula information flow control model [2]. Some moexent systems have attempted to cope with
the changing nature of applications and services and are neiwork control centric [6, 18]. However, in
all these examples the large body of operating system keodd has to be trusted. In principal, a VMM
can be a fairly small and tight code base with much less of @clasurface than a typical OS, making the
VMM a more reasonable placeholder for our trust.

2.3 Open Trusted Computing

With the recent additions to commodity hardware (hardwanteaisation, trusted platform module (TPM))
we can run legacy guest operating systems within a virtuailhina to support legacy applications, while
running para-virtualised operating systems within patalirtual machines which are aware of and can take
advantage of the new security features.

The Open Trusted Computing (OpenTC) project [15] managkshy compartmentalisation, using the
Xen hypervisor [1] and L4/Fiasco [16] micro-kernel to erdercontrolled sharing between compartments.
The Private Electronic Transaction (PET) demonstratocrilesd in [15] runs a financially sensitive appli-
cation in a trusted compartment, while other applicatians in less trusted compartments. The financial
application runs in an environment with limited connedyivio reduce exposure to sources of threat, and
runs trusted code to minimise vulnerabilities. The ungdstompartment only runs applications whose
compromise would have less impact.

2.4 Microkernels and Hypervisors

The principle of compartmentalisation can be applied to ponents of applications, not just complete
applications. Hohmuth et al [12] show how untrusted comptsean be used in a trusted system. They
propose extending VMMs with IPC primitives to provide eféiot, secure communications between trusted
and untrusted components.

The designers of hypervisors such as Xen, and micro-kesuels as L4 have chosen different styles of
interface to support their differing intended use. Xen roosplete operating systems in separate domains—
either unmodified (when running Xen3 on the latest range otgssors from AMD and Intel supporting
full virtualisation), or using a para-virtualisation imtace. L4 emphasises IPC, and aims at a particularly
fast implementation. This allows efficient implementatafrfiner-grained protection domains, and allows
operating system services to be implemented as serverssactthrough IPC.

Hohmuth et al view traditional separation VMMs and micrareds as the extreme ends of a spectrum.
We agree that the design space between VMMs and micro-keisah area worthy of investigation. The
promise is to be able to run legacy applications and opeyatystems without any modification alongside
new security critical applications, where the TCB of the ragplication can be minimised by partitioning
it into cooperating components.

Hohmuth et al propose adding IPC primitives to a VMM. Xen'sguirtualisation interface gives
system-level code access to hypervisor calls which exteadhardware interface with operations on virtual
CPUs, shared memory and event passing between virtual APftsvides operations for shared memory
and event passing that allow IPC to be implemented as ayibvdhin domains without needing explicit
changes to Xen. This is the approach we take in this paper.

3 Design and Implementation of the Library OS

Our aim is to minimise the TCB of applications, which mearet tlve wish to minimise the system code
in critical domains to just what is needed by the domain’sliapfion code. This suggests that we should
implement a library operating system, like that proposadtHe Exokernel architecture [8].

This section describes how we designed and implementedaayli®S to run as a para-virtualised guest
operating system within a Xen domain. We implemented theagtfucture needed to run small secure
servers under Xen as a building block for constructing ajagiibns. The objective was to package the
development tool chain, standard libraries and inter-dnrsammunications (IDC) so that it would be as
easy to prepare image files to load into a Xen virtual machini ia to compile applications to run under
Linux.

The aim is to allow domains to maintain shielded internalesthat can only be accessed and updated
in a controlled manner. In the terminology of object oriehfgogramming, we are implementing a secure
infrastructure for type managers.

The API provided to a guest OS by the Xen hypervisor is vergelwm the underlying hardware API.
This means that although Xen provides secure sharing oldwel-resources, any services or abstractions
that the application requires must be provided by librawékin it's domain, or IPC calls to servers in other
domains.

The library OS consists of:

e a cross-development environment based on the GNU tool chain
e a set of libraries including the Red Hat “newlib” C library,

e a simple kernel based on Mini-OS—a simple example kerngblggbwith the Xen source distribu-
tion, and

e an inter domain communication mechanism (IDC) layered on's<ehared memory and event mech-
anisms.

Figure 1 shows an overview of the library OS and applicatimterfaces. The application, library and
kernel all run in a single address space within a single ptigte ring (ring 1 in the x86 version of Xen).
Applications are free to use any interfaces, but it is recemaed for maximum portability that the standard
C library functions [13] provided by Red Haew i b are used.

3.1 Development Tool Chain

The GNU binary utilities and GCC compiler were the naturadick of development tools. GCC is a mature
compiler that produces good quality code. It is used to tomitamXen and Linux on the x86 architecture,
so it integrates well with the other software components.

The aim is to achieve maximum source code compatibility betwcross-compiling for the library OS
and compilation to run in a Linux process. There are diffeembetween the two environments and the wide
range of libraries available to Linux applications are naikable to stand-alone Xen domains. However,
even limited compatibility will allow easier applicatioredelopment by using Linux as an environment for
initial debugging. In particular, no special command lingions should be needed—appropriate header
files and libraries should be available without needing tejirecified explicitly on the command line.

An advantage of the GNU tool chain is that it supports crassylation, and is widely used for em-
bedded applications. There are two ways to use the tool dbaicross-compilation, the easiest being to
use the tool chain installed as part of Linux distributioi$ie disadvantage is that command line options

Application

Other libc
Libraries (Red Hat newlib

libgloss (GNU Low—
level OS Support)

Mini-OS and Drivers

| |
! |
1

!
l Console IDC Other !
| Driver Driver Drivers }
| |
| !
| |
1 1
; Mini-OS 1
\ 1
| |

Xen VMM

Figure 1: Overview of application and libraries

are needed to specify the locations of headers, libranésalicode and loader directives, which makes it
difficult to use existing Makefiles without major modificatm

The alternative approach used in this project was to modiey GNU compiler and binary utilities
to support a new target architecture, a so-called “fully ki’ target. This allows the compiler to be
called explicitly as I 386- m ni 0s- gcc”, and it selects the correct headers, libraries, initiattstip code
and loader directives. This convention works well when cibimgp existing libraries, particularly those
packaged usingdut omake” and “aut oconf ”, which have integrated support for cross-compilation. It
is interesting to note that the developers of the embeddbedr)i uClibc [3] have made the same decision
for similar reasons—see “Do | really need to build a uClibaltchain” at [4].

It was difficult to locate the information needed on portihg GGNU tools. There is a lot of documen-
tation, but parts of it have not been updated to describe thermt version of the tool chain. The build
process is confusing, being based on the so-called “Cygeas tWe were able to piece together sufficient
understanding by reading [20] and reviewing mailing ligthéves to fill in the gaps.

The main changes to the GNU tool chain were to add the newttarghitecture to the build scripts
based on existing 386 targets, and to modify the default linker scripts, include &nd library search
paths, and initial code.

3.2 The Library OS

The C language specification [13] specifies library functitimat application writers can expect to be avail-
able to C programs. There are at least three widely availapés source implementations of this library:
GNU glibc [17], uClibc [3], and Red Hatewl i b [19]. The GNU glibc library is comprehensive, but large,
and is not well suited for small stand-alone applicationed Rlatnew i b is mature code, has been used
for many embedded projects, and integrates well with the GddlUchain, and was therefore chosen for this

5

project. uClibc has not been investigated, but may also k@tamative worth considering.

As well as adding the new target architecture identifier t ed Hatnewl i b library configuration
scripts, it was necessary to write low-level Posix-likedtions on whicmew i b depends. Some of these
functions, such akor k andexec, are null place holders as the equivalent functionalityasprovided by
our library OS.

There are a number of options when choosing a kernel, suchritisgnone from scratch, porting an
existing kernel to Xen, or extending the Mini-OS examplenieémvhich is part of the Xen distribution. The
choice was made to use the Mini-OS example kernel becaulsedts supports the Xen para-virtualisation
interfaces, and any bug fixes or extensions can usefullydbdek to the Xen team.

The application, libraries and kernel all run in a single redd space in supervisor state (which in the
i386 version of Xen is actually ring 1), so there is no didtimc between kernel and library code. This is an
appropriate choice for running small trusted servicesnodtgeneral user code.

The aim was to minimise changes to the Mini-OS example kepreferring to add code in the inter-
face between Red Hatewl i b (a library calledl i bgl o0ss—GNU low-level operating system support)
or additional libraries. There are some small changes ta-RB which are generally useful and do not
significantly increase its size or complexity.

3.3 Inter-domain Communication

Servers built using the library OS need to be able to comnat@iwith other domains. Conventional operat-
ing systems run as guests in Xen domains already have walajgd networking support, so it is possible
to use protocols such as TCP/IP over virtual network int&afor inter-domain communications. For the
small servers we expect to run over the library OS a full T€Rfltotocol stack adds unnecessary code size
and complexity. Hohmuth et al [12] propose adding IPC hyjiservcalls to a VMM. We are using the
existing para-virtualisation interface provided by Xesterad to implement inter-domain communications
as a library component layered over Xen’s shared memory aresims. This has the advantage of needing
no changes to the Xen VMM itself, and ensures that any mandagzurity policy applied by Xen security
modules also applies to our IDC mechanism.

We developed a kernel module for Linux and a module for theatipOS which exposes the communi-
cations API to the applications. We have striven to develsprgple API which is compatible (as much as
we can) to known ones. This API allows applications runnirigee on our library OS or on para-virtualised
Linux kernels to communicate.

The IDC API is similar to file 10 with a hint of resemblance tocket 10. The core API includes 6
functions:

Init Initialise the channel,
Close Closes the channel,

Create The Create operation allows the user to write to the chanhké user is expected to specify the
remote domain id,

Connect The Connect operation enable the user to read from a remataiddwith a valid ring already
created). The user supplies the remote domain id as well eenaigference associated with the ring
created in the remote domain,

Write Write a buffer to the channel, and

Read Read to a buffer from the channel.

Domain | Domain Il

Write Read Read Write

Produce/

Consumer

Figure 2: Inter-domain communications using a shared ring

A client program may create a one way channel to write onlgdt®) or read only (connect), or a two
way channel (create and connect).

Figure 2 shows an outline of the implementation of inter-dantommunications. We use separate ring
buffers for write and read channels, each ring buffer sufipmione way communications. Each ring buffer
is allocated in memory shared between domains. Short messag passed in ring buffer entries, while
larger messages are passed using separate physical pagesavehpointed to from the ring buffer entry.

4 Inter-domain Communication Performance

The aim of performance measurement is to confirm that theafaeter-domain communication is not ex-
cessive for the class of application envisaged. Itis exquketttat two styles of use will predominate: request-
reply transactions and bulk data transfers. Performancespest-reply transactions requires low message
passing latency, while for bulk data transfers overall tigtoput is important. These observations influence
the tests performed: firstly a check for scalability oveat@mount of data transferred to ensure that our
measurements are not being influenced by cacheing or otleetsfsecondly a test to measure throughput
against different ring buffer sizes, and finally a measumtnoéround trip delay. These measurements were
run between domains running Linux rather than the library €0Shat meaningful comparisons could be
made with TCP/IP performance as a reference. The bulk ofRkEitnplementation is similar for the Linux
driver, and the library OS implementation.

For our tests we have used an AMD Athlon(TM) 64 dual core eocewith 1 MB cache per core and
1GB of main memory. Our domain O was configured with two vif@G&Us and 256MB of memory. The
user domains had one virtual CPU and 256MB of memory avalallll domains were running Fedora
Core 5 GNU/Linux [10].

4.1 Scalability

We first investigate the scalability of the communicatiommel in relation to different number of transac-
tions. Figure 3 shows the impact of different number of teations (where each transaction is a write of
a 4KB block) on the performance of the channels. In our testiseeEnhanced ttcp (ettcp) [9], a program
based on ttcp which allows to measure network throughputh&Vie modified ettcp to allow us to use IDC

Scalability: Time vs. number of transactions

10000 [

|D(I: T T T T
TCPIP -3¢

1000 __

100

Seconds

10 |

0.01 1 1 1 1 1
10,000 100,000 1,000,000 10,000,000 100,000,000

Number of write (4KB) transactions

Figure 3: The impact of the number of transactions

as well. In a user domain, we run ettcp which continually @egidKB blocks to the channel and use ettcp on
domain 0 to continually read the blocks.

In the scalability test we used a program in a user domain i@ \&nd another program in domain 0 to
read. We also tested whether the direction of data had ancingpathe performance. Figure 4 shows the
effect of the source and destination on the throughput. ®rett side of the figure we write (considering a
different number of transactions) from domain O to a user@omThe right side of the figure is a repeat of
the test where we write from a user domain to domain 0.

The figure clearly shows that when using the TCP/IP protoaniilfy writing from a user domain to
domain 0 is faster than writing from domain 0 to a user domdihis is due to an additional copy of the
data when we transfer from domain O to a user domain. The ID&hmél does not have this effect, the
throughput is not dependent on data direction, althoughesstart-up effects can be seen.

4.2 Throughput

We evaluated the impact of the number of entries in the ringhenthroughput of our communication
channel. We compared different write buffer sizes (samebmirrof transactions) and considered the effect
of different ring size<. Figure 5 and 6 show the time needed for 100,000,000 transacand 10,000,000
transactions respectively. In figure 5 we can clearly seeffet of the optimisation we implemented in
the ring buffer: Enabling small enough data to be placedérithg itself—instead of allocating a new page
proved very useful. The figure clearly shows a jump in time mttee buffer being written can't fit into the
ring. This happens between 12 and 32 bytes for the 128 ringdsive can only fit 31 bytes), between 100
and 128 bytes for the 32 ring (can only fit 127 bytes) and betv&® and 512 bytes for the ring of size 8
(where we can only fit 511 bytes). One can see that the TCPdtBeqwl handles this much more gracefully.
Figure 6 shows the performance when the buffer sizes arebigigs interesting to note that increasing

2\We always “waste” one entry, a ring size of 8 has in effect ahlysable entries

Seconds

Seconds

Symmetry: the effect of source and drain on throughput

1000 F T T T T T T
b IDC (Dom0->DomU) —F— ‘ ‘
TCP/IP (Dom0->DomU) <~ X
IDC (DomU->Dom0Q) ---X-- .7 ;
TCP/IP (DomU->DomQ) -4 .~ ‘
e L]
} il
H|
1 3 e i
¥
o1 ; ; ; ; ; ;
100,000 1,000,000 10,000,000 100,000 1,000,000 10,000,000
Number of write transactions (Dom0->DomU) Number of write transactions (DomU->Dom0)
Figure 4. Impact of the direction of the write transactions
Impact of ring size (100,000,000 transactions)
700
TCP/IP —F—
IDC (8) -->¢--
IDC (32) - K-
600 IDC (128) ~-f-}- i
500 B
400 E
300 -
200 B
100 E
0 : : ' j : :

12 32 1(|)O 128 500 512
Write data size (buffer length in Bytes)

Figure 5: Impact of ring buffer size, 100,000,000 write sactions.

Impact of ring size (10,000,000 transactions)

700
TCP/IP —F—
IDC (8) —->¢--
IDC (32) K

600 - IDC (128) -~} i

500

400

Seconds

300

200

100

oI

]]]
10|24 40|96 81|92 32&68
Write data size (buffer length in Bytes)

Figure 6: Impact of ring buffer size, 10,000,000 write tractions.

the number of descriptors in the ring doesn’t have a sigmifiedfect on throughput for the conditions in
this test.

4.3 Latency

In addition to throughput, latency is an important measarsmany applications. We measured the latency
(round trip of data) in figure 7. We compare the latency ofaldht data sizes and different number of
transactions. Each transaction here is defined here as @ anit a read (and a corresponding read and
write in a remote domain). The figure shows the relative gerémce of our IDC and TCP/IP when sending
different buffer sizes.

4.4 Performance Implications

We have shown that our inter-domain communication mechahs a significantly higher throughput and
lower latency than using TCP/IP to communicate between Xenains. Of course, this is not unexpected,
considering the much greater functionality and complexitythe TCP/IP protocol stack. However, we
believe that our IDC mechanism is well suited for communmingatvith small security-sensitive applications
running in their own Xen domains. In order to validate thiglier, we ported a software implementation of
the Trusted Computing Group’s Trusted Platform Module (TP&4 described in the next section.

5 Case Study—~Porting a virtual TPM

As a case study, to evaluate our design and implementatiochage to port the virtual Trusted Platform
Module {irtual TPM or vTPM) to our systemPhysicalTPM (Trusted Platform Module) technology from
the Trusted Computing Group (TCG) provides a firm foundaf@renabling trust in a computing platform.

10

Latency: round trip time of different block sizes

1000 3 T T T T T T T T
F TCP/IP (4B) —+— | ‘ ‘ ‘ ‘ ‘
IDC (4B) -->¢-- | ‘ N ‘ ‘ m
TCP/IP (64B) --—-- ‘ \ | ‘
IDC (64B) -t ; ‘ . : ‘ S
TCP/IP (1024B) -l : ‘ ‘ ‘ o
100 L IDC (1024B) --{3// - - ‘ U
: * : L
x S a S
(%) : . ; P e
2 : : D
s 10f o 3
‘ X I -
] o @
3 T g
X O]
o1 ; ; ; ; ; ; ; ; ;
< < < N, < N < < <
() ‘9, o (27} ‘9, o % ‘9, QO
% %, %, % %, %, %, %,
(% 00 (% 00 (% 00
Number (r&w) Number (r&w) Number (r&w)

transactions (4 Bytes) transactions (64 Bytes) transactions (1024 Bytes)

Figure 7: Impact of write and read size on latency

For example it can be used to ensure that a system boots witheaating system version and configuration
that its owner considers trustworthy. Further, througlesittion and verification, it allows for a platform
to convey information about its trustworthiness state iraasured manner to other parties interacting or
wishing to interact with the platform. However it is unlikeihat a single OS version or configuration can
be considered trustworthy or suitable for all uses or apgibmis of a particular computing platform. For
example, a configuration considered trustworthy enougloreline banking may not be performant enough
for computer gaming. Likewise, a platform configurationiogpsed for game playing may not be considered
trustworthy enough for on-line banking.

A virtual TPM bound to a particular virtual machine instargan be used to attest and remotely verify
the trustworthiness state of that particular VM and its eisged operating system and configuration, much
like a physical TPM can be used to attest and remotely verdytitustworthiness state of a physical machine
and its associated operating system.

When combined with a suitable trustworthy virtualisati@ydr and appropriate trust chaining [15],
we have the capability to run multiple operating systemsiwarying trust levels concurrently whilst still
allowing for the meaningful attestation and remote verifara of the trustworthiness state of individual
operating systems and configurations running on a platfd¥ith such a system, a platform can safely and
flexibly run both on-line banking and gaming applicatiomagitaneously whilst still for example being able
to convince a banking service that the platform meets th&aecurity requirements.

5.1 The current Xen vTPM Architecture

Figure 8 shows the software architecture of the vTPM as otlyralelivered with Xen 3.0 [21]. On the

right, a TPM enabled user domain is running. A front end (FEMIdriver is used to forward commands
to domain 0. The back end (BE) driver in domain 0 forwards athmands to the vTPM manager. The
manager demultiplexes the commands (which may originate fnultiple domains) to vTPM daemons. A

11

Domain 0

S

VTPM
Manager

vTPMD Domain U

VvTPM
emulator

VTPM BE

VTPM FE
Xen VMM \/

Figure 8: vTPM software architecture for Xen 3.0

VvTPM daemon is responsible for executing commands on behalie and only one user domain, and each
domain has a private instance of the vTPM daemon.

The vTPM manager runs in domain 0, and handles two types ofr@md. The first type are virtual
TPM commands which are handled by the manager itself—e)esguk load and save the TPM non-volatile
memory. The second type of commands are real TPM command$ ate forwarded to the vTPM daemon.
The daemon can be viewed as a wrapper around a TPM emulatohwhbtually handles the command.
Currently the vTPM daemon is executed in domain 0 and comeates with the manager through a set of
Unix pipes.

5.2 Porting the vTPM to run under the library OS

To port the vTPM we had to overcome two sets of obstacles. Tétesét was changing the communications.
For simplicity we did not modify the communication channbé&tween the vTPM daemon and the vTPM
manager and allow all TPM and vTPM commands to proceed asebeftle modified the vTPM daemon
running in DomO0 to communicate with the TPM emulator runnimgur library OS. The vTPM daemon in
domain 0O effectively became a proxy to the TPM emulator mgrim our system. We used our inter-domain
communication channel and had to make only local and relgtsimple modifications. Figure 9 shows the
modified software architecture.

The second set of changes had to be done in TPM emulator. warsidded a channel to allow us to
communicate with the vTPM proxy running in domain 0. Secgmwié cross-compiled the TPM emulator
for our library OS. We used our new compilation tool chain @ ported libraries to compile the TPM
emulator with very little effort. The TPM emulator requirgsiltiple precision integer arithmetic functions
provided by the GNU multiple precision library (GMP). We faithat having made the effort to build the
GNU tool chain for our library OS, all we needed to do was to ifyothe build files to add the new host
architecture i(386- m ni 0s).

Overall we had to do very little modification to the code, nfd&s etc. We have modified less than 200
lines on the vTPM daemon in domain 0, and less than 500 linpsrtahe TPM emulator to the library OS.

12

Domain 0

Domain U

VvTPM Trusted VM

Manager

VTPM

VTPM BE

emulator
VTPM FE
IDC

Xen VMM ~_

Figure 9: modified vTPM software architecture

6 Further Work

We intend to improve and extend the library OS, and to sulirforiinclusion in the “extras” section of the
Xen source tree.

We also plan to gain further experience of porting securityvises on top of the library OS. Our ex-
perience in porting the vTPM highlighted an interestinguéssvhen running applications in a virtualised
environment, and that was how to generate cryptograpkisalture random numbers for keys.

6.1 Random number generation

A physical TPM includes a cryptographic co-processor winaplements several cryptographic operations
such asymmetric decryption and encryption. In additioncivprocessor includes a random number gener-
ator to generate keys.

There is currently no support for generating random numivetise library OS so we simply forwarded
random bytes from the VTPM proxy running in domain 0 on eacjuest (using /dev/urandom). This
satisfied the TPM emulator (which passes all the interné)es

This solution shows—as a proof of concept—that the TPM etaulean be ported and executed in a
separate domain. However, the method used for generatygjig@ot entirely satisfactory, and we plan to
investigate alternative strategies for a virtualised emvnent.

7 Conclusion

We have developed a small and specialised environment lmas#dte Mini-OS example running on Xen
which allows us to execute sensitive applications. Thisrenment is isolated from other domains and has
a very small TCB. Both of these properties increase thewushiness of the application and environment
executed.

13

The environment is not intended as a general purpose OS.der ¢o maintain a small TCB many
features (including file system support and networkingyetgoresent in our environment. Limited access to
these resources may be provided through a communicatiomehka-but will incur performance overhead.
There is a tradeoff between making our environment more rgé@@d keeping the TCB as small as can
be. Instead of starting with the minimum kernel and thentiageonly essential libraries on top, we could
have taken a more sophisticated kernel such as Linux, aret padown to what was necessary for the
application. This could be a better approach where physiegice drivers are to be moved to a separate
Xen domain [11]. This decision should be made specificly fmhesecurity service taking into account the
tradeoffs between security and functionality.

There is also a management issue: Pulling out serviceseap@rate domains can increase the complex-
ity of managing many different VMs. For example, a vTPM whiahs in a separate domain is conceptually
attached to the domain using the TPM. If the domain using k! Ts being migrated to another physical
machine the vTPM will need to be migrated as well. All thesaies introduce complexity and overhead for
managing the data centre.

The effort required porting security sensitive applicaionto our environment as well as the additional
complexity of managing the data centre services poses edffadetween additional isolation and security
against manageability. The vTPM example is a service withisty needs that are worth the porting effort
despite the increased management complexity—but thistiewessarily true for every security service.
Careful consideration must be exercised before decidiqmptband manage a security service in a separate
trusted environment.

We believe our framework would prove useful for securings#tare services. The library OS and tool
chain can decrease porting effort. The resulting strontaiem and small TCB forms a corner stone for
increasing the trustworthiness of security sensitive igppbns.

References

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Haridh Rarris, Alex Ho, Rolf Neugebauer, lan
Pratt, and Andrew Warfield. Xen and the art of virtualizatioln SOSP '03: Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principdees 164—177, New York, NY, USA,
2003. ACM Press.

[2] D.E.Belland L. J. La Padula. Secure computer systemfigthexposition and Multics interpretation.
Technical Report ESD-TR-75-306, Hanscom Air Force Basdfdd, Massachusetts, March 1976.

[3] A C library for embedded Linux. See webshét p: // ucl i bc. org/.

[4] A C library for embedded Linux, frequently asked questi@bout the tool chain. See webdgitet p:
[l'uclibc. org/ FAQ htm #t ool chai n.

[5] Serdar Cabuk and David Plaquin. Trusted component memnagt for virtualized platforms. Technical
report, Hewlett-Packard Laboratories, 2007. In preparati

[6] Chris Dalton and Tse Huong Choo. An operating system @gugr to securing e-service€ommun.
ACM, 44(2):58-64, 2001.

[7] Chris I. Dalton. Local and wide area virtual network soppfor Xen and VMware. Technical report,
Hewlett-Packard Laboratories, 2007. In preparation.

[8] D. R. Engler, M. F. Kaashoek, and Jr. J. O'Toole. Exokérrm® operating system architecture for
application-level resource management.SI@SP '95: Proceedings of the fifteenth ACM symposium
on Operating systems principlgsages 251-266, New York, NY, USA, 1995. ACM Press.

14

[9] Enhanced ttcp. See webshet p: / / sour cef orge. net/ projects/ettcp/.
[10] Fedora core Linux. See websheét p: / / f edor a. redhat . com .

[11] K. Fraser, S. Hand, R. Neugebauer, |. Pratt, A. Warfialsg M. Williams. Safe hardware access
with the xen virtual machine monitor. Rroceedings of the First Workshop on Operating System and
Architectural Support for the on-demand IT Infrastructu@ctober 2004.

[12] Michael Hohmuth, Michael Peter, Hermann Hartig, andathan S. Shapiro. Reducing TCB size by
using untrusted components: small kernels versus virnadhine monitors. IiEW11: Proceedings
of the 11th workshop on ACM SIGOPS European workshop: beyendC page 22, New York, NY,
USA, 2004. ACM Press.

[13] International Organization for Standardizatidrogramming Language —.QSO/IEC 9899.

[14] Mahesh Kallahalla, Mustafa Uysal, Ram Swaminatharvidg. Lowell, Mike Wray, Tom Christian,
Nigel Edwards, Chris I. Dalton, and Frederic Gittler. SAitO: A software-based data center for utility
computing.Computey 37(11):38-46, 2004.

[15] Dirk Kuhlmann, Rainer Landfermann, Hari V. Ramasamyatilias Schunter, Gianluca Ramunno,
and Davide Vernizzi. An open trusted computing architestusecure virtual machines enabling user-
defined policy enforcement. Technical Report RZ 3655, IBMd&ech, 2006.

[16] Jochen Liedtke. Toward real microkerneGommun. ACM39(9):70-77, 1996.

[17] Sandra Loosemore, Richard M. Stallman, Roland McGratidrew Oram, and Ulrich DreppeiThe
GNU C Library Reference ManualGNU Press, Boston, MA, USA, 2001. Two volumes. For glibc
version 2.2.X.

[18] P. Loscocco and S. Smalley. Meeting critical securibjeotives with security-enhanced Linux. In
Proceedings of the 2001 Ottawa Linux SymposiRod1.

[19] Red Hat Inc. The Red Hat newlib C Library2004. Software and documentation available from
ftp://sources. redhat.conif pub/ new ib/index. htm.

[20] lan Lance Taylor. The GNU configure and build system. hifgcal report, Cygnus Solutions, 1998.
Available fromht t p: // ww. ai rs. con i an/ essays/ .

[21] Xen user's manual for Xen version 3.0. Available frohttp://wwv. cl.cam ac. uk/
resear ch/ srg/ net os/ xen/ docunent ati on. htni /.

15

