

Towards Trustworthy Virtualisation Environments: Xen Library
OS Security Service Infrastructure

Melvin J. Anderson, Micha Moffie, Chris I. Dalton
Trusted Systems Laboratory
HP Laboratories Bristol
HPL-2007-69
April 30, 2007*

trusted computing,
virtualization,
Xen hypervisor

New cost effective commodity PC hardware now includes fully virtualisable
processors and the Trusted Computing Group's trusted platform module (TPM).
This provides the opportunity to combine virtualisation, trusted computing and
open source software development to tackle the security challenges modern
computing faces. We believe that leveraging this technology to partition critical
operating system services and applications into small modules with strictly
controlled interactions is a good way to improve trustworthiness.

To support the development of small applications running in Xen domains we
built a library OS. We ported the GNU cross-development tool chain and
standard C libraries to the small operating system kernel included with the Xen
distribution, and wrote an inter-domain communications (IDC) library for
communications between Xen domains. To confirm the usability of our library
OS we ported a software TPM to run on it as a typical application. We
evaluated the performance of our IDC system and showed that it has good
performance for the applications we envisage.

 We have shown that a lightweight library OS offers a convenient and practical
way of reducing the trusted computing base of applications by running security
sensitive components in separate Xen domains.

* Internal Accession Date Only Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.

Towards Trustworthy Virtualisation Environments:
Xen Library OS Security Service Infrastructure

Melvin J. Anderson
Hewlett-Packard Laboratories

Filton Road, Stoke Gifford
Bristol BS34 8QZ, UK
melvin.anderson@hp.com

Micha Moffie∗

Computer Architecture Research Laboratory
Northeastern University

Boston, MA 02115, USA
mmoffie@ece.neu.edu

Chris I. Dalton
Hewlett-Packard Laboratories

Filton Road, Stoke Gifford
Bristol BS34 8QZ, UK

chris.i.dalton@hp.com

February 1, 2007

Abstract

New cost effective commodity PC hardware now includes fullyvirtualisable processors and the
Trusted Computing Group’s trusted platform module (TPM). This provides the opportunity to combine
virtualisation, trusted computing and open source software development to tackle the security challenges
modern computing faces. We believe that leveraging this technology to partition critical operating sys-
tem services and applications into small modules with strictly controlled interactions is a good way to
improve trustworthiness.

To support the development of small applications running inXen domains we built a library OS. We
ported the GNU cross-development tool chain and standard C libraries to the small operating system
kernel included with the Xen distribution, and wrote an inter-domain communications (IDC) library for
communications between Xen domains. To confirm the usability of our library OS we ported a software
TPM to run on it as a typical application. We evaluated the performance of our IDC system and showed
that it has good performance for the applications we envisage.

We have shown that a lightweight library OS offers a convenient and practical way of reducing
the trusted computing base of applications by running security sensitive components in separate Xen
domains.

1 Introduction

Information Technology is moving towards a world where it ispossible to deliver highly flexible and scalable
solutions over virtualised and constantly evolving infrastructures [14]. Such a world throws up significant
trust and security challenges. One example is the challengeof assuring that the isolation goals of an IT
system built on top of software based machine virtualisation technology are being met. With non-shared
dedicated physical hardware this is a fairly tractable problem. Once hardware is virtualised and shared
amongst differing and perhaps competing parties the problem becomes much harder. Even the mundane

∗Work carried out at Hewlett-Packard Laboratories

1

but critical requirement of being able to identify hosts reliably and robustly within a management domain,
already difficult in the physical world, becomes significantly harder in an infrastructure where hosts are
virtualised. The increased trust and security management burden posed by problems like these threatens to
outweigh the benefits that flexible virtualised environments bring.

In this paper we present our library OS and related inter-domain communication mechanism work for
the Xen virtualisation layer [1]. With the library OS an application can run directly on Xen without requiring
a full blown OS such as Linux underneath it. The motivation ofthe work is two-fold. Firstly, to support
the reduction of the overall Xen trusted computing base by allowing the restructuring of the privileged Xen
management and control plane applications. Secondly, to act as an implementation infrastructure for the
provision of security services on top of the virtualisationlayer. We consider these security services key
in moving towards a fullertrustworthy virtualisation environmentwhere the trust and security problems
introduced by virtualised infrastructures can begin to be addressed [15].

In our view a trustworthymachine virtualisation layer will be a core component of next generation
IT infrastructures. As a core component, a trustworthy layer will require robust, reliable and predictable
behaviour. The amount of code that currently forms the trusted computing base (TCB) of Xen, i.e. the code
that needs to be trusted to uphold the Xen isolation properties for example, is too large in our opinion for Xen
to be considered a trustworthy virtualisation layer. The TCB of Xen includes both the VMM layer itself and
also the necessary management functionality. At the moment, this management functionality is hosted on
top of a full Linux OS running in a privileged Xen domain (domain 0). Our library OS work and associated
inter-domain communications support the restructuring and reduction of the Xen trusted computing base
leading towards a more trustworthy VMM.

A trustworthy VMM alone however will not be sufficient in addressing the trust and security challenges
introduced by the move to virtualised environments. We believe that some form of trust management frame-
work, i.e. a framework for securely bootstrapping management components on top of a trusted VMM along
with a set of appropriate security services is also required[5]. As an example, an integrity security service1

layered on top of a trustworthy VMM would support the runningof multiple operating systems with varying
trust levels concurrently whilst still allowing for the meaningful attestation and remote verification of the
identity and trustworthiness state of individual operating systems and configurations running on that virtu-
alised platform [15]. Our library OS work and associated inter-domain communications act as an excellent
foundation for the implementation of security services on the Xen VMM.

The rest of the paper is organised as follows: In section 2 we go over the related work. We present
the design and implementation of our new environment in section 3 and provide performance numbers in
section 4. We report our experience porting the virtual TPM security service in section 5. We discuss further
work that we plan to do based on the library OS in section 6, anddiscuss our approach and conclude in
section 7.

2 Related Work

2.1 Virtualisation

Virtualisation is a technology that has been around at leastsince the VM/CMS in the 1960’s – but it is only
recently that commodity processors from AMD and Intel have had hardware extensions to support virtual-
isation. Before then VMMs such as Xen2 have used para-virtualisation to obtain reasonable performance.
Xen3 has support for the new generation of virtualisable processors, allowing unmodified guest operating
systems and their applications to run under Xen.

1Another example is a virtual network service [7]

2

2.2 Containment

There have been a number of examples of operating systems featuring controls designed to offer application
containment properties above and beyond normal process based isolation. Several have been based on the
Bell-Lapdula information flow control model [2]. Some more recent systems have attempted to cope with
the changing nature of applications and services and are more network control centric [6, 18]. However, in
all these examples the large body of operating system kernelcode has to be trusted. In principal, a VMM
can be a fairly small and tight code base with much less of an attack surface than a typical OS, making the
VMM a more reasonable placeholder for our trust.

2.3 Open Trusted Computing

With the recent additions to commodity hardware (hardware virtualisation, trusted platform module (TPM))
we can run legacy guest operating systems within a virtual machine to support legacy applications, while
running para-virtualised operating systems within parallel virtual machines which are aware of and can take
advantage of the new security features.

The Open Trusted Computing (OpenTC) project [15] manages risk by compartmentalisation, using the
Xen hypervisor [1] and L4/Fiasco [16] micro-kernel to enforce controlled sharing between compartments.
The Private Electronic Transaction (PET) demonstrator described in [15] runs a financially sensitive appli-
cation in a trusted compartment, while other applications run in less trusted compartments. The financial
application runs in an environment with limited connectivity to reduce exposure to sources of threat, and
runs trusted code to minimise vulnerabilities. The untrusted compartment only runs applications whose
compromise would have less impact.

2.4 Microkernels and Hypervisors

The principle of compartmentalisation can be applied to components of applications, not just complete
applications. Hohmuth et al [12] show how untrusted components can be used in a trusted system. They
propose extending VMMs with IPC primitives to provide efficient, secure communications between trusted
and untrusted components.

The designers of hypervisors such as Xen, and micro-kernelssuch as L4 have chosen different styles of
interface to support their differing intended use. Xen runscomplete operating systems in separate domains—
either unmodified (when running Xen3 on the latest range of processors from AMD and Intel supporting
full virtualisation), or using a para-virtualisation interface. L4 emphasises IPC, and aims at a particularly
fast implementation. This allows efficient implementationof finer-grained protection domains, and allows
operating system services to be implemented as servers accessed through IPC.

Hohmuth et al view traditional separation VMMs and micro-kernels as the extreme ends of a spectrum.
We agree that the design space between VMMs and micro-kernels is an area worthy of investigation. The
promise is to be able to run legacy applications and operating systems without any modification alongside
new security critical applications, where the TCB of the newapplication can be minimised by partitioning
it into cooperating components.

Hohmuth et al propose adding IPC primitives to a VMM. Xen’s para-virtualisation interface gives
system-level code access to hypervisor calls which extend the hardware interface with operations on virtual
CPUs, shared memory and event passing between virtual CPUs.It provides operations for shared memory
and event passing that allow IPC to be implemented as a library within domains without needing explicit
changes to Xen. This is the approach we take in this paper.

3

3 Design and Implementation of the Library OS

Our aim is to minimise the TCB of applications, which means that we wish to minimise the system code
in critical domains to just what is needed by the domain’s application code. This suggests that we should
implement a library operating system, like that proposed for the Exokernel architecture [8].

This section describes how we designed and implemented a library OS to run as a para-virtualised guest
operating system within a Xen domain. We implemented the infrastructure needed to run small secure
servers under Xen as a building block for constructing applications. The objective was to package the
development tool chain, standard libraries and inter-domain communications (IDC) so that it would be as
easy to prepare image files to load into a Xen virtual machine as it is to compile applications to run under
Linux.

The aim is to allow domains to maintain shielded internal state that can only be accessed and updated
in a controlled manner. In the terminology of object oriented programming, we are implementing a secure
infrastructure for type managers.

The API provided to a guest OS by the Xen hypervisor is very close to the underlying hardware API.
This means that although Xen provides secure sharing of low-level resources, any services or abstractions
that the application requires must be provided by librarieswithin it’s domain, or IPC calls to servers in other
domains.

The library OS consists of:

• a cross-development environment based on the GNU tool chain,

• a set of libraries including the Red Hat “newlib” C library,

• a simple kernel based on Mini-OS—a simple example kernel supplied with the Xen source distribu-
tion, and

• an inter domain communication mechanism (IDC) layered on Xen’s shared memory and event mech-
anisms.

Figure 1 shows an overview of the library OS and application interfaces. The application, library and
kernel all run in a single address space within a single protection ring (ring 1 in the x86 version of Xen).
Applications are free to use any interfaces, but it is recommended for maximum portability that the standard
C library functions [13] provided by Red Hatnewlib are used.

3.1 Development Tool Chain

The GNU binary utilities and GCC compiler were the natural choice of development tools. GCC is a mature
compiler that produces good quality code. It is used to to compile Xen and Linux on the x86 architecture,
so it integrates well with the other software components.

The aim is to achieve maximum source code compatibility between cross-compiling for the library OS
and compilation to run in a Linux process. There are differences between the two environments and the wide
range of libraries available to Linux applications are not available to stand-alone Xen domains. However,
even limited compatibility will allow easier application development by using Linux as an environment for
initial debugging. In particular, no special command line options should be needed—appropriate header
files and libraries should be available without needing to bespecified explicitly on the command line.

An advantage of the GNU tool chain is that it supports cross-compilation, and is widely used for em-
bedded applications. There are two ways to use the tool chainfor cross-compilation, the easiest being to
use the tool chain installed as part of Linux distributions.The disadvantage is that command line options

4

Xen VMM

Mini−OS and Drivers

Application

level OS Support)

Libraries
libc

(Red Hat newlib)

libgloss (GNU Low−

Other

Standard C Library

Console
Driver

IDC
Driver

Other
Drivers

Mini−OS

Figure 1: Overview of application and libraries

are needed to specify the locations of headers, libraries, initial code and loader directives, which makes it
difficult to use existing Makefiles without major modifications.

The alternative approach used in this project was to modify the GNU compiler and binary utilities
to support a new target architecture, a so-called “fully defined” target. This allows the compiler to be
called explicitly as “i386-minios-gcc”, and it selects the correct headers, libraries, initial start up code
and loader directives. This convention works well when compiling existing libraries, particularly those
packaged using “automake” and “autoconf”, which have integrated support for cross-compilation. It
is interesting to note that the developers of the embedded library uClibc [3] have made the same decision
for similar reasons—see “Do I really need to build a uClibc tool chain” at [4].

It was difficult to locate the information needed on porting the GNU tools. There is a lot of documen-
tation, but parts of it have not been updated to describe the current version of the tool chain. The build
process is confusing, being based on the so-called “Cygnus tree”. We were able to piece together sufficient
understanding by reading [20] and reviewing mailing list archives to fill in the gaps.

The main changes to the GNU tool chain were to add the new target architecture to the build scripts
based on existingi386 targets, and to modify the default linker scripts, include file and library search
paths, and initial code.

3.2 The Library OS

The C language specification [13] specifies library functions that application writers can expect to be avail-
able to C programs. There are at least three widely availableopen source implementations of this library:
GNU glibc [17], uClibc [3], and Red Hatnewlib [19]. The GNU glibc library is comprehensive, but large,
and is not well suited for small stand-alone applications. Red Hatnewlib is mature code, has been used
for many embedded projects, and integrates well with the GNUtool chain, and was therefore chosen for this

5

project. uClibc has not been investigated, but may also be analternative worth considering.
As well as adding the new target architecture identifier to the Red Hatnewlib library configuration

scripts, it was necessary to write low-level Posix-like functions on whichnewlib depends. Some of these
functions, such asfork andexec, are null place holders as the equivalent functionality is not provided by
our library OS.

There are a number of options when choosing a kernel, such as writing one from scratch, porting an
existing kernel to Xen, or extending the Mini-OS example kernel which is part of the Xen distribution. The
choice was made to use the Mini-OS example kernel because it already supports the Xen para-virtualisation
interfaces, and any bug fixes or extensions can usefully be fed back to the Xen team.

The application, libraries and kernel all run in a single address space in supervisor state (which in the
i386 version of Xen is actually ring 1), so there is no distinction between kernel and library code. This is an
appropriate choice for running small trusted services, butnot general user code.

The aim was to minimise changes to the Mini-OS example kernel, preferring to add code in the inter-
face between Red Hatnewlib (a library calledlibgloss—GNU low-level operating system support)
or additional libraries. There are some small changes to Mini-OS which are generally useful and do not
significantly increase its size or complexity.

3.3 Inter-domain Communication

Servers built using the library OS need to be able to communicate with other domains. Conventional operat-
ing systems run as guests in Xen domains already have well developed networking support, so it is possible
to use protocols such as TCP/IP over virtual network interfaces for inter-domain communications. For the
small servers we expect to run over the library OS a full TCP/IP protocol stack adds unnecessary code size
and complexity. Hohmuth et al [12] propose adding IPC hypervisor calls to a VMM. We are using the
existing para-virtualisation interface provided by Xen instead to implement inter-domain communications
as a library component layered over Xen’s shared memory mechanisms. This has the advantage of needing
no changes to the Xen VMM itself, and ensures that any mandatory security policy applied by Xen security
modules also applies to our IDC mechanism.

We developed a kernel module for Linux and a module for the library OS which exposes the communi-
cations API to the applications. We have striven to develop asimple API which is compatible (as much as
we can) to known ones. This API allows applications running either on our library OS or on para-virtualised
Linux kernels to communicate.

The IDC API is similar to file IO with a hint of resemblance to Socket IO. The core API includes 6
functions:

Init Initialise the channel,

Close Closes the channel,

Create The Create operation allows the user to write to the channel.The user is expected to specify the
remote domain id,

Connect The Connect operation enable the user to read from a remote domain (with a valid ring already
created). The user supplies the remote domain id as well as a grant reference associated with the ring
created in the remote domain,

Write Write a buffer to the channel, and

Read Read to a buffer from the channel.

6

Data Data

Data

DataData

Producer Consumer

Write Read Read Write

Domain IIDomain I

Figure 2: Inter-domain communications using a shared ring

A client program may create a one way channel to write only (create) or read only (connect), or a two
way channel (create and connect).

Figure 2 shows an outline of the implementation of inter-domain communications. We use separate ring
buffers for write and read channels, each ring buffer supporting one way communications. Each ring buffer
is allocated in memory shared between domains. Short messages are passed in ring buffer entries, while
larger messages are passed using separate physical pages which are pointed to from the ring buffer entry.

4 Inter-domain Communication Performance

The aim of performance measurement is to confirm that the costof inter-domain communication is not ex-
cessive for the class of application envisaged. It is expected that two styles of use will predominate: request-
reply transactions and bulk data transfers. Performance for request-reply transactions requires low message
passing latency, while for bulk data transfers overall throughput is important. These observations influence
the tests performed: firstly a check for scalability over total amount of data transferred to ensure that our
measurements are not being influenced by cacheing or other effects, secondly a test to measure throughput
against different ring buffer sizes, and finally a measurement of round trip delay. These measurements were
run between domains running Linux rather than the library OSso that meaningful comparisons could be
made with TCP/IP performance as a reference. The bulk of the IDC implementation is similar for the Linux
driver, and the library OS implementation.

For our tests we have used an AMD Athlon(TM) 64 dual core processor with 1 MB cache per core and
1GB of main memory. Our domain 0 was configured with two virtual CPUs and 256MB of memory. The
user domains had one virtual CPU and 256MB of memory available. All domains were running Fedora
Core 5 GNU/Linux [10].

4.1 Scalability

We first investigate the scalability of the communication channel in relation to different number of transac-
tions. Figure 3 shows the impact of different number of transactions (where each transaction is a write of
a 4KB block) on the performance of the channels. In our test weuse Enhanced ttcp (ettcp) [9], a program
based on ttcp which allows to measure network throughput. Wehave modified ettcp to allow us to use IDC

7

 0.01

 0.1

 1

 10

 100

 1000

 10000

100,000,00010,000,0001,000,000100,00010,000

S
ec

on
ds

Number of write (4KB) transactions

Scalability: Time vs. number of transactions

 IDC
 TCP/IP

Figure 3: The impact of the number of transactions

as well. In a user domain, we run ettcp which continually writes 4KB blocks to the channel and use ettcp on
domain 0 to continually read the blocks.

In the scalability test we used a program in a user domain to write and another program in domain 0 to
read. We also tested whether the direction of data had an impact on the performance. Figure 4 shows the
effect of the source and destination on the throughput. On the left side of the figure we write (considering a
different number of transactions) from domain 0 to a user domain. The right side of the figure is a repeat of
the test where we write from a user domain to domain 0.

The figure clearly shows that when using the TCP/IP protocol family writing from a user domain to
domain 0 is faster than writing from domain 0 to a user domain.This is due to an additional copy of the
data when we transfer from domain 0 to a user domain. The IDC channel does not have this effect, the
throughput is not dependent on data direction, although some start-up effects can be seen.

4.2 Throughput

We evaluated the impact of the number of entries in the ring onthe throughput of our communication
channel. We compared different write buffer sizes (same number of transactions) and considered the effect
of different ring sizes2. Figure 5 and 6 show the time needed for 100,000,000 transactions and 10,000,000
transactions respectively. In figure 5 we can clearly see theeffect of the optimisation we implemented in
the ring buffer: Enabling small enough data to be placed in the ring itself—instead of allocating a new page
proved very useful. The figure clearly shows a jump in time when the buffer being written can’t fit into the
ring. This happens between 12 and 32 bytes for the 128 ring (since we can only fit 31 bytes), between 100
and 128 bytes for the 32 ring (can only fit 127 bytes) and between 500 and 512 bytes for the ring of size 8
(where we can only fit 511 bytes). One can see that the TCP/IP protocol handles this much more gracefully.

Figure 6 shows the performance when the buffer sizes are bigger. It is interesting to note that increasing

2We always “waste“ one entry, a ring size of 8 has in effect only7 usable entries

8

 0.1

 1

 10

 100

 1000

10,000,0001,000,000100,00010,000,0001,000,000100,000

S
ec

on
ds

 Number of write transactions (Dom0->DomU) Number of write transactions (DomU->Dom0)

Symmetry: the effect of source and drain on throughput

 IDC (Dom0->DomU)
 TCP/IP (Dom0->DomU)

 IDC (DomU->Dom0)
 TCP/IP (DomU->Dom0)

Figure 4: Impact of the direction of the write transactions

 0

 100

 200

 300

 400

 500

 600

 700

5125001281003212

S
ec

on
ds

Write data size (buffer length in Bytes)

Impact of ring size (100,000,000 transactions)

 TCP/IP
 IDC (8)

 IDC (32)
 IDC (128)

Figure 5: Impact of ring buffer size, 100,000,000 write transactions.

9

 0

 100

 200

 300

 400

 500

 600

 700

32768819240961024

S
ec

on
ds

Write data size (buffer length in Bytes)

Impact of ring size (10,000,000 transactions)

 TCP/IP
 IDC (8)

 IDC (32)
 IDC (128)

Figure 6: Impact of ring buffer size, 10,000,000 write transactions.

the number of descriptors in the ring doesn’t have a significant effect on throughput for the conditions in
this test.

4.3 Latency

In addition to throughput, latency is an important measure in many applications. We measured the latency
(round trip of data) in figure 7. We compare the latency of different data sizes and different number of
transactions. Each transaction here is defined here as a write and a read (and a corresponding read and
write in a remote domain). The figure shows the relative performance of our IDC and TCP/IP when sending
different buffer sizes.

4.4 Performance Implications

We have shown that our inter-domain communication mechanism has a significantly higher throughput and
lower latency than using TCP/IP to communicate between Xen domains. Of course, this is not unexpected,
considering the much greater functionality and complexityof the TCP/IP protocol stack. However, we
believe that our IDC mechanism is well suited for communicating with small security-sensitive applications
running in their own Xen domains. In order to validate this further, we ported a software implementation of
the Trusted Computing Group’s Trusted Platform Module (TPM), as described in the next section.

5 Case Study—Porting a virtual TPM

As a case study, to evaluate our design and implementation wechose to port the virtual Trusted Platform
Module (virtual TPM or vTPM) to our system.PhysicalTPM (Trusted Platform Module) technology from
the Trusted Computing Group (TCG) provides a firm foundationfor enabling trust in a computing platform.

10

 0.1

 1

 10

 100

 1000

 10,000,000

 1,000,000

 100,000

 10,000,000

 1,000,000

 100,000

 10,000,000

 1,000,000

 100,000

S
ec

on
ds

 Number (r&w) Number (r&w) Number (r&w)
 transactions (4 Bytes) transactions (64 Bytes) transactions (1024 Bytes)

Latency: round trip time of different block sizes

TCP/IP (4B)
IDC (4B)

TCP/IP (64B)
IDC (64B)

TCP/IP (1024B)
IDC (1024B)

Figure 7: Impact of write and read size on latency

For example it can be used to ensure that a system boots with anoperating system version and configuration
that its owner considers trustworthy. Further, through attestation and verification, it allows for a platform
to convey information about its trustworthiness state in anassured manner to other parties interacting or
wishing to interact with the platform. However it is unlikely that a single OS version or configuration can
be considered trustworthy or suitable for all uses or applications of a particular computing platform. For
example, a configuration considered trustworthy enough foron-line banking may not be performant enough
for computer gaming. Likewise, a platform configuration optimised for game playing may not be considered
trustworthy enough for on-line banking.

A virtual TPM bound to a particular virtual machine instancecan be used to attest and remotely verify
the trustworthiness state of that particular VM and its associated operating system and configuration, much
like a physical TPM can be used to attest and remotely verify the trustworthiness state of a physical machine
and its associated operating system.

When combined with a suitable trustworthy virtualisation layer and appropriate trust chaining [15],
we have the capability to run multiple operating systems with varying trust levels concurrently whilst still
allowing for the meaningful attestation and remote verification of the trustworthiness state of individual
operating systems and configurations running on a platform.With such a system, a platform can safely and
flexibly run both on-line banking and gaming applications simultaneously whilst still for example being able
to convince a banking service that the platform meets the banks security requirements.

5.1 The current Xen vTPM Architecture

Figure 8 shows the software architecture of the vTPM as currently delivered with Xen 3.0 [21]. On the
right, a TPM enabled user domain is running. A front end (FE) TPM driver is used to forward commands
to domain 0. The back end (BE) driver in domain 0 forwards all commands to the vTPM manager. The
manager demultiplexes the commands (which may originate from multiple domains) to vTPM daemons. A

11

Domain 0

vTPM

vTPMD

Manager

vTPM

emulator

Xen VMM

Domain U

vTPM BE vTPM FE

Figure 8: vTPM software architecture for Xen 3.0

vTPM daemon is responsible for executing commands on behalfof one and only one user domain, and each
domain has a private instance of the vTPM daemon.

The vTPM manager runs in domain 0, and handles two types of command. The first type are virtual
TPM commands which are handled by the manager itself—examples are load and save the TPM non-volatile
memory. The second type of commands are real TPM commands which are forwarded to the vTPM daemon.
The daemon can be viewed as a wrapper around a TPM emulator which actually handles the command.
Currently the vTPM daemon is executed in domain 0 and communicates with the manager through a set of
Unix pipes.

5.2 Porting the vTPM to run under the library OS

To port the vTPM we had to overcome two sets of obstacles. The first set was changing the communications.
For simplicity we did not modify the communication channelsbetween the vTPM daemon and the vTPM
manager and allow all TPM and vTPM commands to proceed as before. We modified the vTPM daemon
running in Dom0 to communicate with the TPM emulator runningin our library OS. The vTPM daemon in
domain 0 effectively became a proxy to the TPM emulator running in our system. We used our inter-domain
communication channel and had to make only local and relatively simple modifications. Figure 9 shows the
modified software architecture.

The second set of changes had to be done in TPM emulator. Firstwe added a channel to allow us to
communicate with the vTPM proxy running in domain 0. Secondly we cross-compiled the TPM emulator
for our library OS. We used our new compilation tool chain andour ported libraries to compile the TPM
emulator with very little effort. The TPM emulator requiresmultiple precision integer arithmetic functions
provided by the GNU multiple precision library (GMP). We found that having made the effort to build the
GNU tool chain for our library OS, all we needed to do was to modify the build files to add the new host
architecture (i386-minios).

Overall we had to do very little modification to the code, makefiles etc. We have modified less than 200
lines on the vTPM daemon in domain 0, and less than 500 lines toport the TPM emulator to the library OS.

12

vTPM

emulator

Domain 0

vTPM

vTPMD

Manager

Xen VMM

vTPM FE

Domain U

Trusted VM

IDC
vTPM BE

IDC

Figure 9: modified vTPM software architecture

6 Further Work

We intend to improve and extend the library OS, and to submit it for inclusion in the “extras” section of the
Xen source tree.

We also plan to gain further experience of porting security services on top of the library OS. Our ex-
perience in porting the vTPM highlighted an interesting issue when running applications in a virtualised
environment, and that was how to generate cryptographically secure random numbers for keys.

6.1 Random number generation

A physical TPM includes a cryptographic co-processor whichimplements several cryptographic operations
such asymmetric decryption and encryption. In addition theco-processor includes a random number gener-
ator to generate keys.

There is currently no support for generating random numbersin the library OS so we simply forwarded
random bytes from the vTPM proxy running in domain 0 on each request (using /dev/urandom). This
satisfied the TPM emulator (which passes all the internal tests).

This solution shows—as a proof of concept—that the TPM emulator can be ported and executed in a
separate domain. However, the method used for generating keys is not entirely satisfactory, and we plan to
investigate alternative strategies for a virtualised environment.

7 Conclusion

We have developed a small and specialised environment basedon the Mini-OS example running on Xen
which allows us to execute sensitive applications. This environment is isolated from other domains and has
a very small TCB. Both of these properties increase the trustworthiness of the application and environment
executed.

13

The environment is not intended as a general purpose OS. In order to maintain a small TCB many
features (including file system support and networking) arenot present in our environment. Limited access to
these resources may be provided through a communication channel—but will incur performance overhead.
There is a tradeoff between making our environment more general and keeping the TCB as small as can
be. Instead of starting with the minimum kernel and then layering only essential libraries on top, we could
have taken a more sophisticated kernel such as Linux, and pared it down to what was necessary for the
application. This could be a better approach where physicaldevice drivers are to be moved to a separate
Xen domain [11]. This decision should be made specificly for each security service taking into account the
tradeoffs between security and functionality.

There is also a management issue: Pulling out services into separate domains can increase the complex-
ity of managing many different VMs. For example, a vTPM whichruns in a separate domain is conceptually
attached to the domain using the TPM. If the domain using the TPM is being migrated to another physical
machine the vTPM will need to be migrated as well. All these issues introduce complexity and overhead for
managing the data centre.

The effort required porting security sensitive applications into our environment as well as the additional
complexity of managing the data centre services poses a tradeoff between additional isolation and security
against manageability. The vTPM example is a service with security needs that are worth the porting effort
despite the increased management complexity—but this is not necessarily true for every security service.
Careful consideration must be exercised before deciding toport and manage a security service in a separate
trusted environment.

We believe our framework would prove useful for securing sensitive services. The library OS and tool
chain can decrease porting effort. The resulting strong isolation and small TCB forms a corner stone for
increasing the trustworthiness of security sensitive applications.

References

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of virtualization. In SOSP ’03: Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, pages 164–177, New York, NY, USA,
2003. ACM Press.

[2] D. E. Bell and L. J. La Padula. Secure computer system: Unified exposition and Multics interpretation.
Technical Report ESD-TR-75-306, Hanscom Air Force Base, Bedford, Massachusetts, March 1976.

[3] A C library for embedded Linux. See websitehttp://uclibc.org/.

[4] A C library for embedded Linux, frequently asked questions about the tool chain. See websitehttp:
//uclibc.org/FAQ.html#toolchain.

[5] Serdar Cabuk and David Plaquin. Trusted component management for virtualized platforms. Technical
report, Hewlett-Packard Laboratories, 2007. In preparation.

[6] Chris Dalton and Tse Huong Choo. An operating system approach to securing e-services.Commun.
ACM, 44(2):58–64, 2001.

[7] Chris I. Dalton. Local and wide area virtual network support for Xen and VMware. Technical report,
Hewlett-Packard Laboratories, 2007. In preparation.

[8] D. R. Engler, M. F. Kaashoek, and Jr. J. O’Toole. Exokernel: an operating system architecture for
application-level resource management. InSOSP ’95: Proceedings of the fifteenth ACM symposium
on Operating systems principles, pages 251–266, New York, NY, USA, 1995. ACM Press.

14

[9] Enhanced ttcp. See websitehttp://sourceforge.net/projects/ettcp/.

[10] Fedora core Linux. See websitehttp://fedora.redhat.com/.

[11] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,and M. Williams. Safe hardware access
with the xen virtual machine monitor. InProceedings of the First Workshop on Operating System and
Architectural Support for the on-demand IT Infrastructure, October 2004.

[12] Michael Hohmuth, Michael Peter, Hermann Härtig, and Jonathan S. Shapiro. Reducing TCB size by
using untrusted components: small kernels versus virtual-machine monitors. InEW11: Proceedings
of the 11th workshop on ACM SIGOPS European workshop: beyondthe PC, page 22, New York, NY,
USA, 2004. ACM Press.

[13] International Organization for Standardization.Programming Language – C. ISO/IEC 9899.

[14] Mahesh Kallahalla, Mustafa Uysal, Ram Swaminathan, David E. Lowell, Mike Wray, Tom Christian,
Nigel Edwards, Chris I. Dalton, and Frederic Gittler. SoftUDC: A software-based data center for utility
computing.Computer, 37(11):38–46, 2004.

[15] Dirk Kuhlmann, Rainer Landfermann, Hari V. Ramasamy, Matthias Schunter, Gianluca Ramunno,
and Davide Vernizzi. An open trusted computing architecture—secure virtual machines enabling user-
defined policy enforcement. Technical Report RZ 3655, IBM Research, 2006.

[16] Jochen Liedtke. Toward real microkernels.Commun. ACM, 39(9):70–77, 1996.

[17] Sandra Loosemore, Richard M. Stallman, Roland McGrath, Andrew Oram, and Ulrich Drepper.The
GNU C Library Reference Manual. GNU Press, Boston, MA, USA, 2001. Two volumes. For glibc
version 2.2.x.

[18] P. Loscocco and S. Smalley. Meeting critical security objectives with security-enhanced Linux. In
Proceedings of the 2001 Ottawa Linux Symposium, 2001.

[19] Red Hat Inc. The Red Hat newlib C Library, 2004. Software and documentation available from
ftp://sources.redhat.com/pub/newlib/index.html.

[20] Ian Lance Taylor. The GNU configure and build system. Technical report, Cygnus Solutions, 1998.
Available fromhttp://www.airs.com/ian/essays/.

[21] Xen user’s manual for Xen version 3.0. Available fromhttp://www.cl.cam.ac.uk/
research/srg/netos/xen/documentation.html/.

15

