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Data centers contain heterogeneous sets of machines. Some machines are faster
and some – often the same ones – consume more energy and cost more to 
operate. The data center coordinator must decide how to allocate these machines
to multiple applications of potentially many customers, each of which has 
different requirements. Given a stream of customer requests for machines, how
does the data center provider decide which machines to give to whom and
when? 

We propose new algorithms for a cost-aware provider to maximize its profit as 
it makes admission and scheduling decisions for the customer requests. We
show that it matters which machines are assigned to each customer, especially
when the data center is undersaturated. (Most data centers are.) Our new 
algorithms do best when they try to anticipate the ”riskiness” of their decisions,
that is, the likelihood that even higher-value requests will arrive later. We also 
show that turning unused machines off, rather than leaving them idle, even 
using simple heuristics like “turn off a machine that has been idle for ten
minutes,” can save a lot of money. Finally, we show that having heterogeneity
in the data center is, in fact, beneficial. We demonstrate that the same set of 
customers can be satisfied at a lower cost and a higher profit in a heterogeneous 
data center rather than in a data center comprised solely of the newest, fastest,
machines. 
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Data centers contain heterogeneous sets of machines.
Some machines are faster and some – often the same ones
– consume more energy and cost more to operate. The
data center coordinator must decide how to allocate these
machines to multiple applications of potentially many cus-
tomers, each of which has different requirements. Given
a stream of customer requests for machines, how does
the data center provider decide which machines to give to
whom and when?

We propose new algorithms for a cost-aware provider to
maximize its profit as it makes admission and scheduling de-
cisions for the customer requests. We show that it matters
which machines are assigned to each customer, especially
when the data center is undersaturated. (Most data centers
are.) Our new algorithms do best when they try to anticipate
the ”riskiness” of their decisions, that is, the likelihood that
even higher-value requests will arrive later. We also show
that turning unused machines off, rather than leaving them
idle, even using simple heuristics like “turn off a machine
that has been idle for ten minutes,” can save a lot of money.
Finally, we show that having heterogeneity in the data cen-
ter is, in fact, beneficial. We demonstrate that the same set
of customers can be satisfied at a lower cost and a higher
profit in a heterogeneous data center rather than in a data
center comprised solely of the newest, fastest, machines.

[version of: 2006-09-19 20:51]

1 Introduction
Data centers today provide machines (and other re-

sources, such as storage) to customers. These customers
may be different departments in the same organization shar-
ing a company-owned data center, or they may be inde-
pendent entities renting time from an infrastructure server
provider in a service-oriented architecture. Either way, the
data center must understand its costs in order to charge its
customers appropriately for time on its machines.

Costs include both provisioning costs, such as buying
server and cooling hardware, and operating costs, includ-
ing the energy cost to power the machines and cool them.
Additional costs include those for floor space, people, and

software[4]. While no one cost component dominates, en-
ergy costs are increasing – Google reports that they are over
10% of their operating costs[3] and Moore estimates that
a 30,000 square foot data center can spend $4-8 million
per year on electricity just to power its servers[14]. Fur-
thermore, energy costs roughly double when the additional
energy to cool the servers is included[4] – and restricting
energy costs allows the data center to spend less money on
cooling hardware. Conserving energy is therefore an im-
portant goal to contain costs.

However, conserving energy is not simple. Data centers
nearly always have a heterogeneous pool of machines: dif-
ferent generation servers, different kinds of blade servers, or
even a mix of blades and servers. Different machines pro-
vide different performance and consume different amounts
of power. It is even possible to get different power-
performance ratios for the same machine by modifying its
power-states[1] or by running multiple virtual machines,
each with its own power-performance ratio.

To complicate matters further, different customers of-
fer different amounts of money and have different require-
ments: how fast their requests must be met, what frac-
tion of requests must be satisfied, what penalties exist for
non-compliance, etc., all of which are specified in contracts
called service-level agreements (SLAs).

In this paper, we try to maximize the profit of the data
center. Profit is a function of both value to customers
and costs to satisfy them. While much prior work has
looked at individually minimizing cost[9, 19] or maximiz-
ing value[7, 10], we realize that neither cost nor value is a
static function and it is important to consider both[16, 2].
By understanding and comparing the power-performance
ratios of the different machines to the SLAs of the cus-
tomers, the data center provider can make informed choices
about which customers get which machines when.

The data center provider must make two key kinds of
decisions. First, it must make both initial and incremental
provisioning decisions. Which machines to buy? Which
machines to replace? Second, it must make scheduling de-
cisions: Which workloads (sets of customers) are best to
write contracts for? As customers request machines, how



do I decide which machines to allocate to each customer?
How many and which machines should be left idle or turned
off? If I allocate this machine now, what is the risk that a
higher-paying customer will arrive and there won’t be any
machines left?

We develop new algorithms that address all of these
scheduling considerations. Furthermore, we show how to
use our algorithms to compare different provisioning sce-
narios for a given workload and make good provisioning
decisions.

Our results can be summarized as follows:

� It does matter which machines get used, especially
when the data center is underutilized. Since most
data centers provision enough capacity to handle their
peak utilization, they have excess capacity at average
utilization[18]. We present new algorithms that choose
the right machines to maximize profit, both at high and
low utilization of the data center. The new algorithms
do even better when they try to anticipate the “risk-
iness” of their decisions, that is, the likelihood that
more important customers will make requests soon.

� It also matters whether the unused machines can be
turned off, rather than left idle. Idle machines con-
sume roughly 50% of the power of machines at full
utilization[14]. Simple heuristics like “turn off a ma-
chine that’s been idle for 5 minutes” are sufficient to
save a lot of money.

� We perform a sensitivity analysis of different kinds of
customers and different types of machines. We draw
some conclusions about which properties of a contract
have the biggest impact on the ability of the data center
to satisfy the customer. Namely, it is possible to satisfy
some customers whose requests are very urgent, some-
times as many as three-quarters of all customers. It is
even better if they will pay more for their urgent re-
quests. Further, it is easy to make good choices even if
the customers pay using as little as two different rates.

� Finally, having heterogeneity in the data center saves
money compared to having only homogeneous ma-
chines. We show that the same set of customers can
be satisfied at a lower cost and a higher profit in a het-
erogeneous data center using our new algorithms.

The rest of the paper is organized as follows. In the next
section, we lay out our assumptions and our model of how
the data center makes decisions. In Section 3, we describe
our scheduling algorithms. Then we present our simulation
framework and our results in Sections 4 and 5. In Section 6,
we identify related work. Finally, we draw conclusions in
Section 7.

2 Data center model
In this section we describe our model of a data center

and lay out our assumptions about customers, data center
providers, and the interactions between them. We also de-
fine our terminology.

2.1 Customers
Customers rent machines from the data center. The ma-

chines are used for one customer at a time and the customer
gets the whole machine. If multiple virtual machines run
on each physical machine, then machine here means each
virtual machine.

Between customers, the machine must generally be re-
configured: disks wiped clean and new software installed.
Whether the data center provider or the customer takes re-
sponsibility for setting up the machine, it takes time on the
order of minutes or hours, not seconds. Therefore, cus-
tomers rent machines for long blocks of time — a few hours
to several days or a week. Their willingness to receive a ma-
chine after requesting one is similarly a few hours to days.

We use the word request to describe a customer asking
for a single machine for a continuous block of time. The
same customer may make many requests under the terms
of the same contract. We use request instead of job or task
to make it clear that one machine can only be used for one
request at time. Task and job are often used for things like
web page retrieval, where many of them from multiple cus-
tomers can be run in parallel on the same machine. The
scheduling of requests is otherwise similar to scheduling
jobs onto processors.

2.2 Data center coordinator
The data center coordinator makes decisions for the data

center. The basic problem that it tries to solve is to max-
imize the profit from a set of customer requests (a work-
load) and a set of machines. By comparing profits for dif-
ferent workloads, its solutions can be used to decide which
workloads are best for a fixed set of machines. This desired
workload can then be used to make decisions about which
kinds of contracts to form with customers. By comparing
profits for different sets of machines for a fixed workload,
its solutions can be used to inform provisioning decisions.

Figure 1 shows our model of the data center. The data
center coordinator has a data center model of the machines
in the data center listing how many there are of each type.
The power model tells it the number of watts each type of
machine uses at different levels of CPU utilization, includ-
ing when the machine is idle or off. (The power models we
used for our experiments are shown in Table 2).

Customers arrive continuously and ask the data center
coordinator for machines. For each customer request, the
coordinator must first decide whether to accept or reject the
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Figure 2. Utility function. How much the customer is
willing to pay for a request varies with when the request
is scheduled.

request. The admission controller makes this decision. Ac-
cepting (rejecting) the request is telling the customer that
they will (not) receive a machine. If the coordinator accepts
the request, it then allocates the machine to the customer
(possibly at a later time, if the customer is willing to wait).
The scheduler decides when to allocate the machine to the
customer.

The coordinator does not know when customers will ar-
rive or what requests they will make. It therefore must solve
an online scheduling problem.

2.3 Customer requests
Each customer request consists of a utility function such

as the one shown in Figure 2[2]. The utility function con-

tains the desired length of time (duration) on a machine, the
customer’s patience to wait for a time slot, the price (value)
that the customer is willing to pay, and the penalty that the
customer will demand for non-fulfillment.

There may be a rejection penalty for rejecting the re-
quest, if the customer has a contract that requires the data
center to accept a certain percentage of its requests. Or there
may be a cancellation penalty for failing to schedule a re-
quest (actually allocate a machine within the correct time
frame) after accepting it.

We believe that most requests will arrive in the context
of a longer-term contract. The individual requests within
the contract will share a utility function. Most customers
only want to negotiate contract terms once or twice a year.
Moreover, they may not want to think hard about what to
pay, but simply choose a “gold standard” contract for ur-
gent work with high guarantees at a high price or a “bronze
standard” contract for less urgent work at lower price. We
therefore use only a few different utility functions to model
customers, although we do vary patience and price indepen-
dently.

To avoid confusion, we call the price that the customer is
willing to pay the value of the request. If the value does not
exceed the data center’s cost to fulfill the request, the coor-
dinator will always reject the request. In earlier work[2] we
discussed how general contract terms can be used to influ-
ence the value of each request. We then assume that the cus-
tomer pays this price when the request is completed. There
are other forms of price-setting, such as auctions, but they
are outside the scope of this work.



2.4 Data center costs and profits
We are primarily concerned with data centers that con-

tain heterogeneous machines. In this paper, we focus on
energy costs. We model the energy cost for powering each
machine, although we could double it to include the en-
ergy cost for cooling it. The cost-rate for a machine is the
cost per watt per hour that we pay for electricity. Simi-
larly, the value-rate of a request is the value per hour that
the customer pays. Therefore, profit-rate = (value-rate �
cost-rate).

2.5 Under vs. oversaturation
While the data center coordinator always tries to maxi-

mize its profit, the problem it tries to solve really has two
cases: undersaturation vs. oversaturation of the data center.
Both cases are interesting.

When the data center is undersaturated, the coordinator
can accept and schedule all or close to all requests, so value
is a constant. The key part of its decisions is choosing which
machines will satisfy the requests on time at the lowest cost.

Many data centers are undersaturated because they are
provisioned for peak usage while average usage is much
lower[18]. In fact, part of the motivation for utility comput-
ing is to use the same data center to satisfy requests from
different customers whose peaks rarely overlap. That is, the
data center can allocate a machine to customer A during A’s
peak usage and then allocate the same machine to customer
B during B’s peak usage.

If the data center is over-saturated by requests, all ma-
chines are fully utilized and cost is a constant. The data cen-
ter coordinator must prioritize requests from different cus-
tomers to earn the maximum value, which generally means
choosing the highest-valued requests. Trying to please too
many customers results in broken SLAs and penalties. It
is therefore better to make rejection decisions early, either
before forming a contract or before accepting a request.

In the next section, we discuss the algorithms that the
data center coordinator uses to make its admission and
scheduling decisions.

3 Data center coordinator
Our data center coordinator makes its allocation deci-

sions using the admission controller and request scheduler
shown in Figure 1. Whenever a request arrives, the admis-
sion controller decides whether to admit or reject the re-
quest. The admission controller first invokes the scheduler
to create a new schedule and then decides which is better be-
tween the schedules that include and omit the new request.

We first discuss different scheduling algorithms and then
define what it means for a schedule to be “better” than an-
other one. While the simple version of the admission con-
troller simply takes the schedule with the higher profit, our

new admission algorithm weighs the risk of rejecting future
requests in its decisions.

3.1 Scheduling algorithms
We consider several different request scheduling algo-

rithms.
fifo: The most basic scheduler is a standard first-in, first-

out (FIFO) scheduler that assigns each new request to the
next available machine of any type. This policy is oblivious
to heterogeneity. If more than one machine is available at
the same time, the next machine is chosen randomly from
this group. fifo appends each new request to the existing
schedule; it does not modify it. Therefore, any request that
is already in the schedule will never be cancelled to acco-
modate later arriving requests.

fifo-profit: The fifo-profit scheduler is a heterogeneity-
aware variant of fifo. Whenever there is a tie for the first
available machine, this algorithm will choose the machine
where the request will earn the highest profit. That machine
is usually the cheapest machine available, unless it is unable
to complete the request in time.

fifo-type: The fifo-type scheduler considers the first avail-
able machine of each type, rather than only looking at
whichever types are available first. Like fifo-profit, it
chooses the type where the request will earn the highest
profit. Unlike fifo and fifo-profit, fifo-type is not work-
conserving: some machines can sit idle while there are re-
quests waiting to run on other (cheaper) machines.

fifo-opp: The fifo-opp scheduler is a fifo-type scheduler
augmented to account for the opportunity cost of waiting
for a machine of one type while other (more expensive) ma-
chines sit idle. Instead of choosing the machine with the
highest profit, it compares machines by their (profit � op-
portunity cost). In this case, it uses the corresponding profit
and opportunity cost for the block of time on each proposed
machine. We describe how the opportunity cost is computed
in the next section; it is the same opportunity cost that we
calculate for admission control.

profit-rate: The profit-rate scheduler, inspired by [16],
prioritizes requests by their profit-rates. Unlike the fifo vari-
ants, which never move a request that has been assigned to
a machine, profit-rate will recompute the entire schedule
whenever a new request arrives. profit-rate sorts all of the
outstanding requests plus the new one by their profit-rate
on the next available machine and chooses the request that
earns the highest profit-rate. Note that requests earn differ-
ent profit-rates on different types of machines, so they need
to be kept in multiple sorted orders while computing the
schedule.

best: The “best” scheduler is neither an online nor a re-
alistic scheduler. Instead, it calculates an upper bound on
the total profit achievable for a particular workload. best
works offline: it receives information about all of the re-



quests in the workload at once, ignores time constraints (ar-
rival times, deadlines, and penalties), and allows migration.

best sorts all of the requests in the workload in descend-
ing value-rate order and greedily packs the machines (like
knapsacks with a capacity equal to the length of the simula-
tion) in order from lowest cost to highest. If a machine can
only partially fulfill a request, the remainder of the request
is assigned to the next machine; this part is quite unrealistic
because it splits the request onto two machines at very dif-
ferent times at no extra cost. Unused time on any machine
is charged at the idle cost.

Any online or offline schedule constrained by arrival
times and deadlines cannot earn more profit than that pro-
duced by best.

3.1.1 Discussion

None of the FIFO schedulers will move existing requests
within a schedule as new requests arrive. These algorithms
complete each request in the schedule at the time that was
predicted when the request arrived, so they generally satisfy
all requests when the data center is undersaturated. When
the data center is oversaturated, however, so that not all re-
quests can be satified, the FIFO algorithms select requests
by their arrival time rather than by their profit.

Unlike the FIFO algorithms, the profit-rate scheduler
may move a request around in the schedule many times be-
fore starting it, as better requests arrive in the interim. It
is therefore likely to complete more of the higher-valued
requests when the data center is oversaturated. However,
a lower-valued request may get pushed so far back in the
schedule that it misses its deadline. Cancellations are unde-
sirable for several reasons, including maintaining good re-
lationships with customers and the inclusion of cancellation
penalties in SLAs.

All of the above algorithms may leave some machines
unused some of the time, either because there are not
enough incoming requests or because the values of the re-
quests may not compensate the data center for the costs of
running them. Most data centers will leave intermittently
used machines idle.

We also consider a variant of each algorithm that turns
the machine a off when it has been idle for one minute.
When a machine is off, the algorithm assumes a minimum
delay (we use five minutes) to reboot a machine before it
can be used again.

3.2 Admission control algorithms
The goal of the admission controller is to limit the set of

admitted requests to the set that will earn the highest profit.
Hopefully, all admitted requests can be satisfied.

We explore two admission control algorithms. Both al-
gorithms compare schedules that include and omit the re-
quest under consideration and choose one of them.

The higher admission control algorithm, as in [16, 2],
chooses the schedule that earns more profit. However, the
amount of additional profit is not considered, nor is the like-
lihood that the schedule will be too full to include future
requests. This algorithm limits the number of requests ad-
mitted, but is unable to restrict the set of admitted requests
to the most profitable ones.

Our second algorithm, risk, tries to predict the the ar-
rival times and values of requests that will arrive in the near
future so that it can weigh the opportunity cost of accept-
ing this request. For each decision, the admission controller
compares the potential increase in profit from accepting the
request against the risk that more profitable requests will
arrive but be rejected or delayed due to this request.

The pseudocode in Figure 3 shows how the opportunity
cost is calculated for each request R. When a FIFO algo-
rithm computes a new schedule, it appends to the old sched-
ule. Wherever a request is first inserted is where it stays in
the schedule. Therefore, the opportunity cost of a request
is the profit we did not get because this request occupied a
particular block of time on a particular machine.

The opportunity cost for each block of time on a machine
is calculated using an estimate of how many higher-valued
requests we expect to arrive between now and the end of
that block, that would be scheduled onto a machine of the
same type, and that would not be scheduled if this block of
time were unavailable.

To predict future arrivals, the workload estimator keeps
statistics about requests that arrived in the recent past. Each
request is placed in a histogram bin determined by its value-
rate. We use �log1�05�value-rate � 100� 1�� to choose the
bin and store a variable number of bins determined by the
largest value-rate needed. For each bin, the histogram stores
an estimate of the arrival rate and the average request dura-
tion.

We store a simple count of requests and a time interval
to estimate the arrival rate, which is sufficient for workloads
with a constant arrival rate. We could store an exponentially
weighted estimate instead to adapt to changing arrival rates.
The accuracy of the arrival rate estimate depends more on
the number of requests that have arrived than on the interval
duration. With the exponentially distributed arrival times in
our workloads, about 30 requests appears to be sufficent to
get a good estimate.

3.2.1 Example of calculating opportunity cost

We illustrate the algorithm with a simple example in a data
center with 4 machines, all of type A. Each machine has
a cost-rate of $0�50�hour for idle time and a cost-rate of
$1�hour at full utilization. Suppose request R arrives at time
t with a value-rate of $2�hour, a duration of 4 hours, and a
patience of 6 hours.



compute_opportunity_cost(request R)
{

mtype = type of machine R scheduled on
bin_R = R’s value-rate bin
lost_time = 0 // time not used for higher-valued requests
opp_cost = 0 // opportunity cost so far
Rlen = R.end - R.start
for bin = bin_high downto bin_R + 1 {

// req_rate is the arrival rate on R’s machine from this bin
req_rate = bin.arr_rate * percent_completed_on_type(mtype) /

num_machines_of_type(mtype)
// compute number of requests that will arrive before R completes
expected_requests = req_rate * (R.end - now)

// if higher-valued requests take less time than R
if (lost_time + expected_requests * bin.avgsize * timeFactor(mtype) < Rlen) {

// add them to opportunity cost
opp_cost += expected_requests * bin.avgValRate * bin.avgsize
lost_time += expected_requests * bin.avgsize * timeFactor(mtype)

}
else {

// else add only fraction of value prevented by R
opp_cost += bin.avgValRate / timeFactor(mtype) * (Rlen - lost_time)
lost_time = Rlen
break

}
}
// so far, opp_cost is just the value of the missed requests
// subtract cost of fulfilling the missed requests and cost of idle time
opp_cost -= lost_time * costPerMin(mtype)
opp_cost -= (Rlen - lost_time) * idleCostPerMin(mtype)
return opp_cost

}

Figure 3. The opportunity cost algorithm. Calculating the opportunity cost of adding a request R to the schedule.

The scheduler proposes the schedule depicted in Fig-
ure 4, in which R starts at time t�4 on M0.

The workload estimator’s current statistics are illustrated
in Table 1. We need to estimate the total value we would
miss because R is occupying M0 from time t�4 to t�8.

We first look at the arrival rate for the requests of the
highest value-rate, 4. There are 8 hours before R would
complete, so we expect 8�0�1 � 0�8 requests of value-rate
4 to arrive. However, because we have 4 machines, we as-
sume only 1�4 of those requests would go to M0. Therefore,
we expect 0�8 � 0�25� 2 � 0�4 hours worth of value-rate 4
requests to run on M0 at a profit-rate of $4� 1 � $3. By
running R, we would miss $3 � 0�4 � $1�20 of profit from
value-rate 4 jobs.

There are still 4�0�4� 3�6 hours left in R’s time block,
so we repeat the calculation for value-rate 3 jobs. That
yields 8 � 0�25 � 0�25 � 2 � 1 hour of value-rate 3 jobs

for �$3� 1� � 1 � $2 worth of missed profit on M0 and
3�6� 1� 2�6 hours left over. Since there are no other bins
of higher value-rate than R, we subtract the idle cost for the
2�6 hours: $0�50 � 2�6 � $1�30. The total opportunity cost
of R is $1�20�2�00�1�30� $1�90.

Since R will yield a profit of $8�4� $4, the admission
controller accepts R. Note that if R’s scheduled start was
further in the future or if we had fewer alternative machines,
the opportunity cost for R would increase.

Now suppose M0 and M1 are type A machines but M2

and M3 are of type B. Rather than assume that requests are
equally distributed among the 4 machines, we instead look
at the percentage of the completed requests that were as-
signed to machines of each type.

Suppose that 80% of all requests are assigned to the
cheaper type A machines. Then we expect half of the
80% to be assigned to each of M0 and M1. The ex-
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Figure 4. Risk example. At time t we receive request
R. The shaded regions represent requests that are
already scheduled on machines M0, M1, M2, and M3.

average requests average
value-rate per hour duration

2 0�50 4
3 0�25 2
4 0�10 2

Table 1. Example workload estimates

pected duration of requests of value-rate 4 on M0 is then
8�0�1�0�40�2� 0�64 hours at a profit of $3�0�64� $1�92.
Similarly, the expected duration from requests of value-rate
3 is 8�0�25�0�40�2� 1�6 hours with a profit of $2�1�6�
$3�20. The remaining idle time is 4� 0�64� 1�6 � 1�76
hours with a cost of $0�88. The total opportunity cost for
R is then $1�92� 3�20� 0�88 � $4�24 and the admission
controller rejects R.

4 Simulation
We tested the algorithms using an event-driven simulator

and a workload generator that we wrote. The workload gen-
erator creates requests according to distributions for value-
rate, duration, patience and arrival-rate. The data center
coordinator receives the stream of requests. For each re-
quest, it invokes the admission controller and scheduler to
compute a new schedule and make an admission decision of
accept or reject. If the request is accepted, the coordinator
saves the new schedule. This new schedule is followed until
the next accept decision is made (which supercedes it with
a newer schedule). At the end of the simulation, we discard
any unfinished requests when calculating the total profit and
assume the machines remained idle or off instead of starting
the requests.

We validated the simulator in two ways. First, we com-
pared its results on a few small examples to those we de-
rived by hand. Second, we used a completely separate code
base for the offline algorithm best – it is simply an aug-
mented knapsack solver. The simulator’s results are quite

machine 100% util idle off time power-
class Watts Watts Watts factor perf

Power Model A
BL 150 60 0 1�00 150
DL 200 100 25 1�25 250
BC 25 10 0 3�75 92

Power Model B
B1 250 100 0 1�00 250
B2 200 100 0 1�25 250
B3 125 80 0 2�00 250

Power Model C
C1 250 100 0 1�00 250
C2 133 65 0 1�50 200
C3 75 40 0 2�00 150

Table 2. Different power models

similar to those from best, which gives us confidence in both
sets of results.

For our experiments, we ran simulations of 90 days. All
times (request arrival, request duration, etc.) are at the gran-
ularity of 10 minutes and we set the price of electricity at 10
cents per kilowatt hour. We calculate the cost paid by the
resource provider as simply the power cost incurred over
the length of the simulation. We could double this number
to (roughly) include the cost of power for cooling and add
a fixed amount for the other components of total-cost-of-
ownership, but we chose to focus only on the costs that our
scheduling decisions can actually change. This focus makes
the impact of our decisions clearer.

The parameters of the simulation fall into two categories:
data center parameters and workload parameters. The data
center parameters are the number of machines of each type
and the power model for each type.

4.1 Power models
The power model includes points along the power-

performance spectrum. For this paper, we focused on ma-
chines that are either fully (100%) utilized or idle, such as
those used for multimedia rendering workloads and scien-
tific computations. Our simulation can handle more points
and we plan to include other power-performance points,
such as those from using different power-states, also called
dynamic voltage states (DVS), in the future.

Table 2 shows the power models we used. The first
column names the type or class of machine. The next
three columns list the number of Watts consumed by these
machines at 100% CPU utilization, 0% CPU utilization
(idle), and when turned off. Note that some machines con-
sume power even when they are off; in some rack-mounted
servers, the fan must continue to operate to dissipate heat
from other nearby servers.



The next column, the time factor, shows the relative per-
formance to expect on the machines. For example, in power
model A, the BC-class machines have a time factor of 3.75,
which means that the same tasks that take one hour to run
on a BL-class machine will take 3.75 hours on a BC-class
machine. Finally, the last column gives a sense for the rela-
tive power-performance merit of each machine; it is simply
the Watts consumed at 100% utilization multiplied by the
time factor.

Power model A represents three classes of machines
that might be found in a data center today, one server and
two kinds of blades. Most of our experiments use power
model A. Power model B is used to illustrate what happens
when machines of different speeds have the same power-
performance ratio. Power model C represents three servers
of different generations; the oldest generation has the lowest
power-performance ratio.

4.2 Data center models
For each power model, we simulated a data center with

100 machines. In most experiments, one-third of the ma-
chines in the data center were of each type. In the final ex-
periment, we also compared a data center containing only
the newest, fastest machines to one where part of the bud-
get was spent on new but slower and cheaper machines with
a lower power-performance ratio.

4.3 Customer workload
The workload parameters create the utility functions for

requests and also include the arrival rate of requests. In
our simulation, the utility function is determined by the re-
quest duration, patience and value-rate, and whether there is
a penalty for request cancellation and/or request rejection.
Table 3 shows the parameter settings for the workloads used
in our first experiment.

We chose these parameter setting to represent a mix of
customers. DreamWorks, for example, has overnight work-
loads that typically last 13 hours where the number of ma-
chines required is sometimes known days or weeks ahead
of time, and sometimes only a few hours ahead (especially
if one data center experiences a failure and work must be
shifted to another one)[21]. Closer analysis of Dream-
Works’ workload reveals that some machines are required
for the entire 13 hours, but others are needed for less time,
and the lengths of time can be predicted fairly accurately
before the 13 hours commences. Finally, individual jobs
within their workload have an average duration of only 2.36
hours. On some nights over the two months studied, the data
center was fully saturated while on others (mostly week-
ends) the data center was quite undersaturated.

Another type of customer might be running an e-
commerce site, such as hp.com. This customer needs
a varying number of servers for its applications as its

parameter value frequency

interarrival time 0.1 hours exponential
gold-high value-rate 4.4 cents/hour 25%
gold-low value-rate 3.2 cents/hour 25%
bronze-high value-rate 1.7 cents/hour 25%
bronze-low value-rate 1.2 cents/hour 25%
short duration 2.5 hours 50%
long duration 24 hours 50%
high patience 1 week 100%
medium patience 1.25 days 0%
low patience 8 hours 0%
superlow patience 2 hours 0%
penalty cancellation 100%

Table 3. Workload parameter settings for base ex-
periment

own workload demand changes. Complementary work to
ours[20, 6, 18] decides how many servers are needed; in-
creased demand is sometimes unexpected and urgent but of-
ten can be predicted days or weeks ahead of time based on
diurnal, weekly, or seasonal patterns[18]. A customer run-
ning such a site might insist on rejection penalties, for ex-
ample, during the December holiday shopping season when
it sells much of its products.

4.4 Assumptions
We make a few assumptions about scheduling requests

to simplify the simulation. First, a request cannot be ex-
tended for a longer period once it has been scheduled. Sec-
ond, once a request has started, it cannot be cancelled, sus-
pended, or migrated. While virtual machines can be used
for suspension and resumption or migration, virtual ma-
chines have other costs and are not yet integrated into our
simulation.

5 Results
We ran many simulations to determine how the power

model, data center model, and workload affect the ability
of each algorithm to earn a profit. In this section we show
results from some of the simulations. All graphs plot the
average of five simulation runs.

We name the algorithms first by their scheduling algo-
rithm, then by whether they used the risk admission con-
trol algorithm, then by whether they turned machines off
or left them idle. For example, fifo-profit uses the FIFO-
profit scheduling algorithm, the higher admission control
algorithm, and leaves machines idle. fifo-opp-risk-off uses
the FIFO-opp scheduling algorithm, the risk admission al-
gorithm, and turns machines off.
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Figure 5. Basic experiment. Exploring the effects of different scheduling and admission control algorithms with a fixed
workload, data center, and power model.

5.1 Basic experiment
We first study the effect the load on the data center has

on the profit obtained by each algorithm. All other work-
load parameters are fixed at the values in Table 3 and we
simulate a data center with 100 machines that conform to
power model A.

Heterogeneity-aware scheduling: Figure 5 shows the
results for all of our algorithms. In Figure 5(a), we com-
pare the different scheduling algorithms, all of which used
the higher admission control algorithm. They all perform
quite well, very close to best, until the data center reaches
saturation. At about 150 requests per day, the data center
no longer has the capacity to satisfy all requests. While
the algorithms vary slightly from each other in their ability
to prioritize the higher-valued requests of those accepted,
the higher admission control algorithm rejects many of the

highest-valued requests: it has already filled the schedule
with lower-valued requests that the fifo-* variants will not
cancel and that profit-rate pays so much to cancel that it
barely compensates their higher-value. These algorithms
therefore have a flat profit curve above saturation, because
they essentially admit and schedule requests based on their
arrival times rather than their values.

Risk admission control: The solution lies in better ad-
mission control, as shown in Figure 5(b), which repeats fifo-
opp for comparison and then shows the other scheduling
algorithms with risk admission control. (There is no profit-
rate-risk combination because calculating the opportunity
cost is much harder when a request can move its position in
the schedule.)

We first notice that fifo-profit-risk and fifo-opp-risk now
do quite well above saturation; both algorithms are very
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(b) fifo-opp-risk-off

Figure 6. Fate of long vs. short duration requests. fifo-profit-off prefers short duration requests, while fifo-opp-risk-off
does not discriminate by duration.
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(b) fifo-opp-risk-off

Figure 7. Fate of requests by value-rate. fifo-opp-risk-off is able to accept more requests of the highest value-rates.

close to best. They are similar to each other because the
opportunity cost of leaving a machine of one type idle now
and filling another, cheaper, machine’s schedule a long time
out rarely makes it worth while to wait for a cheaper ma-
chine. Therefore, fifo-profit-risk, which never waits, and
fifo-opp-risk, which weighs the opportunity cost, make sim-
ilar decisions. fifo-type-risk does not do as well because it
will wait for a cheaper machine without considering the op-
portunity cost.

Turning machines off: In Figure 5(c) we show the al-
gorithms that turn machines off when they have been idle
for ten minutes. When the data center is filled to capacity,
machines are essentially never idle and so there is no impact
on profit. However, when the data center is undersaturated,
machines are idle. Turning machines off then makes the dif-

ference between an operating profit and a loss: note that the
y axis is below zero at low arrival rates unless machines are
turned off. (Whether the data center should have been pro-
visioned differently is a different question; it may be that it
is only undersaturated some of the time.)

Algorithms to compare: Figure 5(d) repeats the algo-
rithms that we will compare for the rest of this section. fifo-
profit-risk-off is our best online algorithm for this workload.
profit-rate is the algorithm advocated in prior work[2] and
fifo is the naive, worst-case algorithm that is unaware of het-
erogeneity. While best-off is not an online algorithm nor
does it produce a followable schedule, it does provide an
upper bound on profit. The profit from fifo-opp-risk-off is
within 10% of best-off is nearly all cases.

Durations of requests: The next set of graphs illustrate
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(b) fifo-opp-risk-off

Figure 8. Utilization of machines of different types. fifo-opp-risk-off prefers the less expensive machines and accepts
fewer requests because it only schedules requests on machines on which they are profitable.

why fifo-opp-risk-off performs so well. Since we want to
highlight the contribution of our opportunity cost calcula-
tion, we compare it to fifo-profit-off, which does not have
one. Figure 6 shows the fate of requests by duration. fifo-
profit-off favors short requests: a short request is more likely
to fit onto a slower, cheaper machine. fifo-opp-risk-off ac-
cepts requests of different durations in proportion to their
appearance in the workload (which is half long, half short),
which leaves it better able to discriminate among requests
based on their value.

Value-rates of requests: The fate of requests by their
value-rate is shown in Figure 7. While both fifo-profit-
off and fifo-opp-risk-off are able to discriminate against
the lowest valued requests, which are only profitable on
the slowest, cheapest machines, fifo-opp-risk-off is able to
strongly prefer the requests of the highest values. fifo-opp-
risk-off does so well because the opportunity cost calcula-
tion anticipates the arrival of these highest valued requests
and essentially saves space in the schedule for them.

Utilization of different machine types: Finally, Fig-
ure 8 compares the utilization of machines of different types
by fifo, the algorithm which is oblivious to machine types,
and fifo-opp-risk-off, which combines all three of our op-
timizations. First, by being heterogeneity-aware, fifo-opp-
risk-off is able to prefer the lowest cost BC-class machines:
those machines are saturated first while the highest cost DL-
class machines are saturated last. fifo, on the other hand,
uses BC-class machines only slightly more than the other
machines, and mostly because requests stay on the BC-class
machines for a much longer period of time. Second, fifo-
opp-risk-off requires a much higher arrival rate to saturate
the data center. Only the gold-high and gold-low value-
rate requests can earn a profit on the DL-class machines.
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Figure 9. All customers want machines urgently:.
75% have superlow patience (within 2 hours); 25%
have low patience (today).

Since the risk admission control algorithm essentially re-
serves space for the highest-value requests on the lowest-
cost machines, there must be enough high-value requests
to saturate all machines before the DL-class machines are
used. Therefore, fifo-opp-risk-off earns more profit than the
other algorithms while also using fewer machines.

5.2 Urgent customers
We now turn to experiments that vary the workload pa-

rameters, one at a time. While the customers in Figure 5 are
patient, the customers in Figure 9 are not. best and best-off
are oblivious to deadlines, so their performance is unaltered.
The other algorithms perform worse when a new request
cannot wait for a few other requests to be scheduled ahead
of it: even though fifo-opp-risk-off predicts the average ar-
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Figure 10. Many customers want to pay a low rate:.
75% bronze low value-rate, 25% gold high value-rate.

rival rate correctly, the actual arrival times are exponentially
distributed and requests do arrive in bursts. The algorithms
cannot satisfy a burst of customers who all want machines
at once. Better prediction methods might leave more room
in the schedule.

Although a high percentage of customers who will not
wait for any other requests to be scheduled ahead of them
cause performance degradation for our algorithms, we did
not see any difference in performance when we tried a mix
of superlow and medium patience customers. Similarly, we
did not see any degradation when customers exhibited any
mix of low, medium, and high patience requests, including
100% low patience requests.

5.3 Cost conscious customers
In Figure 10, we consider what happens when most cus-

tomers want to pay the lowest value-rate, which is only
enough to make a profit on the slowest, cheapest machines
– in this experiment, only on the BC-class machines. First,
with so many lower value requests, it is harder to saturate
the data center; many requests cannot be run profitably on
the highest cost machines and are rejected. Second, even
when all requests can be scheduled, the profit is lower since
the total value of what is scheduled is lower. Finally, low-
value requests can only be satisfied when the data center has
excess capacity of the cheapest machines.

5.4 Impact of penalties
Different contracts may impose different penalties for

rejecting or cancelling requests. In Figure 11 we exam-
ine the impact of these penalties. First, all of the algo-
rithms, even best, suffer tremendously from rejection penal-
ties when the data center is oversaturated. If the customers
can expect rejection penalties, then the data center provider
should limit the number of contracts so that there is no over-
saturation, presumably by requiring the customers to pay
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Figure 11. Impact of penalties:. compare profit-rate
and fifo-opp-risk with rejection, cancellation, and no
penalties.
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Figure 12. Different power models:. compare the
profit available from different power models, all using
fifo-opp-risk-off.

more. AuYoung[2] considers different contract admission
policies, where contract admission precedes request admis-
sion.

Second, fifo-opp-risk never pays any cancellation penal-
ties; if it accepts a request, it is because the request fit into
the schedule. Since new requests only get appended to the
schedule, no requests are ever cancelled.

Third, when profit-rate does not pay any penalties, it per-
forms quite well, comparably to fifo-opp-risk except under
extreme oversaturation. This result both highlights the large
number of requests that profit-rate cancels and suggests that
the very simple profit-rate algorithm is sufficient for cus-
tomers who are indifferent about whether their requests are
granted.
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Figure 13. Provisioning choices:. compare two dif-
ferent ways of provisioning the same data center.

5.5 Different power models
The next two experiments compare different data centers

running the workload from Section 5.1. In this experiment
we compare data centers whose machines conform to the
three different power models in Table 2. Each data center
has equal numbers of the three machines in its power model.
(We raised the values of the requests for power models B
and C proportionately so that each workload was capable of
earning the same profit.) Figure 12 shows the results. We
see that power model B, whose machines all have the same
power-performance metric, has the least opportunity to save
money when the data center is undersaturated and the least
ability to reserve the fastest machines for the highest-value
requests. Power model A, which has the greatest difference
between the highest and lowest power-performance metrics
in the data center, is able to earn the most profit.

5.6 Provisioning choices
In this last experiment we return to provisioning choices.

Power model C represents servers of three different genera-
tions. We now compare replacing all of the machines in the
data center with 100 new C1 machines to getting 80 new C1
machines but continuing to use 40 older C3 machines. (We
chose 40 C3 machines so that the data center would have
the same capacity either way; the C1 machines are exactly
twice as fast as the C3 machines.) The results in Figure 13
show that by using the older machines, which have a much
lower power cost, it is possible to save a lot of money. For
example, when the arrival rate is 200 requests per day, the
data center is operating at full capacity and using the older
C3 machines increases profit by about 30%.

6 Related work
There is much prior art on scheduling algorithms; we

only attempt to cover work on very similar problems. This
work falls into the three categories below.

Profit-maximizing online scheduling algorithms:
Millenium[7] and RiskReward[10] use utility functions to
performs an online assigment of jobs (requests) to ma-
chines. They try to maximize the value of the jobs com-
pleted, but do not consider their cost. Popovici[16] and
AuYoung[2] add cost functions proportional to machine us-
age on homogeneous machines and try to maximize profit.
They assume that machines are available for intermittent us-
age and do not pay for time when they are not used or for
time to reboot or to acquire a new machine.

AuYoung[2] additionally looks at jobs in the context of
contracts, which can impose constraints like “you need to
accept all requests from this customer.” While we confirm
their conclusion that profit-rate is better than fifo, they only
explore the higher admission control algorithm.

Scheduling algorithms that predict risk of schedule:
Although RiskReward[10] has a notion of the opportunity
cost of a schedule, they define it in terms of prioritizing two
known requests by the relative decay in their utility func-
tions. They do not consider the effects of future requests on
the current schedule; in fact, they do not consider admission
control separately from scheduling.

Iyer and Druschel[11] use short pauses in their schedules
to wait for future work, in their case, future disk read and
write requests. The length of the pause is determined by
arrival rate statistics similar to ours, and taking the pause
is similar to our leaving space in the schedule for future
requests, although there is no notion of value-rate for their
requests.

The theoretical problem most similar to ours is the on-
line knapsack problem where each admittance decision is
based on a moving threshold for the item’s size[12]. Set-
ting the threshold is similar to predicting the opportunity
cost for a given request, although it does not have to worry
about time constraints, multiple machines (knapsacks), or
heterogeneous costs.

Scheduling to conserve power usage: Finally, there
has been much work lately on conserving power usage.
Rajamani[17] provides a good overview of using differ-
ent power-states to conserve power. Other work has fo-
cused on turning (mostly homogeneous) machines off to
save power[5, 15, 13].

Heath[8, 9] considers turning off heterogeneous ma-
chines and also present algorithms to decide how many
machines are needed for a given application load. Both
Chen[6] and Rusu[19] consider both using power-states and
turning machines off. However, Heath, Rusu, and Chen use
a different model of customer requests than we do. Rusu’s
requests are short and overlapping, Chen makes allocation
decisions based on a response time SLA, and Heath is sim-
ply required to run a particular workload. We consider long-
term allocations of machines and we are not required to ac-
cept all requests; we therefore focus on improving profit



rather than simply reducing costs.

7 Conclusions
As data centers evolve to serve more diverse customers

sharing more heterogeneous hardware, it becomes increas-
ingly important to design scheduling algorithms that match
workloads to resources. In this paper, we propose sev-
eral new algorithms for a cost-aware provider to maxi-
mize its profit as it makes admission and scheduling deci-
sions for customer requests. These algorithms incorporate
heterogeneity-awareness and risk and we evaluate them by
simulating a variety of customer workloads on data centers
of different sizes with different combinations of machines.

Our results demonstrate several interesting insights.
First, we show that awareness of heterogeneity can improve
profit, particularly when the datacenter is underused. Sec-
ond, we show that an awareness of the opportunity cost of
scheduling decisions improves profit when the data center
is saturated. Third, we demonstrate that simple heuristics to
turn machines off save even more money. In most cases, in
addition to providing significant increases in net profit, our
algorithms perform fairly close to an ”unachievable best”
algorithm that we use for comparison. Finally, we also
study the effects of varying the workload and data center
parameters (customer patience, value-rates, penalties, and
power models) and show that our algorithms can inform
provisioning decisions for the data center.

We would like to extend our algorithms in several direc-
tions. First, we would like to support additional voltage and
frequency states. Second, we would like to allow additional
scheduler constraints, such as allocating the same machines
to the same customer repeatedly for security or performance
reasons. Third, we would like to include other components
of the total cost of ownership, such as cooling, real-estate,
personnel, and software licenses. Finally, in this paper, we
consider only one data center provider. Future extensions
may consider multiple data centers competing in a market-
based model.
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