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Abstract
Data center costs for computer power and cooling are staggering.  Because certain physical locations inside the data 
center are more efficient to cool than others, this suggests that allocating heavy computational workloads onto those 
servers that are in more efficient places might bring substantial savings.  This simple idea raises two critical research 
questions that we address:  (1) How should one measure and rank the cooling efficiency of different places in a data 
center?  (2) How substantial is the savings?  We performed a set of experiments in a thermally isolated portion of a 
real data center, and validated that the potential savings is substantial and therefore warrants further work in this area
to exploit the savings opportunity.

1. Introduction
The total cost of ownership of a fully managed data center 
with a 1.3 megawatt cooling capacity is approximately $18 
million per year (e.g. 100 fully loaded 13KW racks with 
4000 1U servers) [9].  About 15% of the cost is for 
operation and maintenance of the environmental control 
system.  This partly reflects that cooling resources are over-
provisioned to cover worst-case situations. The temperature 
at the air inlet of all servers must be kept below a target
threshold, ≤ 28º C for example, even when all servers are 
running at 100% capacity.

Local variations in airflow and server heat generation 
impact the efficiency of cooling different places within the 
data center.  Figure 1 is a temperature plot from a 
computational fluid dynamics model of an HP data center 
located in Palo Alto.  In the figure, air conditioning units on
the periphery supply cool air into an under-floor plenum.  
The cool air is delivered to the room via ventilation tiles on 
the floor located in between the two rows of equipment 
racks in the figure (see also Figure 2).  The equipment racks 
are oriented such that their air intakes are facing the “cold 
aisle” with the vent tiles.  Hot spots in the top middle of the 
row result from recirculation of hot air exhausted on the 
opposite side of the server racks.  The temperature of the 
exhaust air is primarily a function of equipment power 
consumption which is driven by server design and 
computational workload.  Hot spots are a ubiquitous 
problem in air-cooled data centers, and drive the 
environmental control system to work much harder to 
ensure that no server is fed hot air (i.e. air at a temperature 
greater than the target threshold). Figure 2.  Server racks used in our experiments.

Figure 1.  Data center temperature variations.
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Related work [8,10,11,18] considered the placement of 
computational workload to alleviate these local hotspots 
and provide failure mitigation.  Various algorithms have 
been developed to guide the placement of resources 
according to the external environment, but none yet have 
considered the varying ability of the air conditioning units
to cool different places in the room. For example, a 
location might appear to be a good place because it is 
currently cold, but it may be difficult to cool, such as in a 
corner of the room in a location far removed from an air 
conditioning unit.  Secondly, while simulations of the type 
shown in Figure 1 have been used to prove the concept of 
the various approaches, validation in a real data center 
under realistic workload conditions has not previously been 
attempted. This paper addresses these issues.

Section 2 describes a new practical metric to grade cooling-
efficiency, which involves both the current air temperature 
and the historical ability of the computer room air 
conditioners (CRACs) to cool the location along with 
information about local airflow conditions. This metric can 
then be used to rank the different places in the data center, 
providing a preference for where to place heat-generating 
computational workload.

Unfortunately, the great complexity of managing a data 
center makes any additional considerations for cooling 
efficiency unwelcome.  But the adaptive enterprise vision is 
that next-generation data centers will have management 
control software that will provide increased levels of 
automation and can more easily integrate cooling 
considerations into their policies. Of course, adding such 
software complexity to future data centers—as well as the 
research on how best to do it—is only warranted if the 
savings are sufficiently substantial.  We address this 
strategic research question empirically:

We use our efficiency metric of Section 2 in a practical 
experiment described in Section 3 that measures the total 
power consumed by a thermally isolated portion of our data 
center under different control policies. The experiment 
assumes that computational workload, such as batch jobs, 
can be placed or moved within a data center based on 
cooling efficiency. Although this is not the practice today, it 
could be achieved easily enough by having job schedulers 
take a server preference list into account when allocating 
large new jobs onto the servers, or else by future data center 
controllers that leverage Virtual Machine (VM) technology
to dynamically migrate [6] running jobs from one server to 
another to improve cooling efficiency.

The experiment results are described in Section 4.  Briefly, 
we observed ~⅓ savings in the cooling power required, 
despite only having control of a fraction of the computers in 
the isolated data center. The ensuing discussion in Section 
5 includes a translation of this savings into an estimate of 
the dollar savings for a modern, large scale data center.  
Depending on usage and other factors discussed in that 
section, it could easily exceed $1,000,000 savings per 
annum.

We round out this introduction with a final item of 
motivation.  The proposed savings depends considerably on 
the utilization of the data center, e.g. when the data center 
servers are ~100% busy or ~100% idle there is no 
flexibility about where to place workload. Thus, the 
potential for savings depends on the data center being only 
partially utilized a substantial fraction of the time.  
Although one cannot argue that this is the case in most data 
centers, we find various evidence that this is the case in at 
least some data centers:

1. Reports from the field indicate that many customer 
data centers run at fairly low utilization most of the 
time [2]. Indeed, this has recently led to research and 
services in server consolidation via virtualization
technology [14].

2. Anecdotal evidence of several academic batch job 
servers and our experience with those within HP Labs 
suggest that, although there are periods when all 
servers are continually busy (e.g. conference 
submission season), many other times the offered 
workload is sporadic, with substantial periods of low 
but non-zero utilization.

3. Finally, for a quantitative analysis we examined the 
utilization of the HP Labs movie rendering service 
used by DreamWorks in the production of the movie 
Shrek II [1], and again found substantial periods of 
middling utilization.  Refer to the visualization in 
Figure 3, where a black pixel indicates a server was 
idle for an entire 5 minute interval, and is white 
otherwise. Over this 30 day period corresponding to 
November 2004 (the x-axis has 8627 pixels; the y-
axis has 345 servers), we see times when all servers 
were busy and other times when all servers were idle.   
But, significantly, we find many times when only a 
portion of the servers were busy.  To quantify this, 
Figure 4 presents the cumulative distribution of time 
spent with ≤ X servers busy.  Approximately 10% of 
the time all the servers were idle (point A).  
Likewise, ~80% of the time there were ≤ 280 servers 
busy (point B). Subtracting A from B, the remaining 

Figure 3.  Utilization of HP rendering service for 30 days (x-axis) over 345 servers (y-axis):  black= idle, white= busy.
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~70% of the time there was work for only a 
‘middling’ number of servers. If the servers had been 
either fully busy or fully idle most of the time, the 
CDF would appear as a nearly horizontal line in the 
graph, but instead it appears mostly as a diagonal, 
indicating substantial portions of time spent at 
middling utilization. Although we are aware of 
certain data quality complications with this data, the 
qualitative result stands:  the servers saw partial 
utilization for a great deal of their operation.

2. Measuring Cooling Efficiency
Initial work regarding measurement and optimization of 
data center cooling efficiency was centered around the 
modeling and characterization of airflow and heat transfer 
in the data center [4,12,15].  The work relied upon 
numerical models similar to that shown in Fig. 1 to improve 
the placement of cooling resources via the manipulation of 
vent tiles, CRAC unit placement and server placement.  
Additional work has focused on the optimization of the 
fundamental equations of fluid mechanics and 
thermodynamics within racks [13] and data centers [16,17]
to minimize a given cost function and improve operational 
efficiency. Although much progress has been made in this 
area, the modeling techniques involved are time consuming 
and have to be re-run as data center operation changes with 
time, either due to changes in workload distribution or 
physical configuration.  

More recent work has focused on real-time control systems 
that can directly manipulate the distribution of cooling 
resources throughout the data center according to the needs 
of the computer equipment.  One such system, called 
Dynamic Smart Cooling, uses a network of temperature 
sensors at the air inlet and exhaust of equipment racks [3]. 
Data from the sensors is fed to a controller where it is 
evaluated. The controller can then independently 

manipulate the supply air temperature and airflow rate of 
each CRAC in the data center. In order to accomplish this 
efficiently, the impact of each CRAC in the data center 
must be evaluated with respect to each sensor.  The result of 
such an evaluation will define the “regions of influence” of 
each CRAC unit as shown in Figure 5.  This information 
can then be used to determine which CRACs to manipulate 
when a given sensor location requires more or less cool air.  
Such a system has been shown to operate much more 
efficiently than traditional control systems that contain 
sparse temperature sensing, usually only at the inlet of each 
CRAC, and rudimentary operating algorithms that do not 
consider local environmental conditions [3].

Figure 5:  CRAC Regions of Influence

The regions of influence of Figure 5 are defined with 
respect to a metric called the Thermal Correlation Index 
(TCI) shown in Equation 1.  It quantifies the response at the 
ith rack inlet sensor to a step change in the supply 
temperature of the jth CRAC.  TCI is a static metric based 
on the physical configuration of the data center.  Since it 
does not contain dynamic information, it can be thought of 
as the steady-state thermal gain at the sensor to a step 
change in thermal input at the CRAC.  The regions of 
influence that are defined by the TCI metric are stable with 
time, but are functions of data center geometry and 
infrastructure (e.g. vent tile arrangement) as well as CRAC 
flow rate uniformity.   
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The process by which TCI is evaluated can be performed 
numerically or in-situ in the data center with the deployed 
sensor network.  In-situ measurements are more accurate 
while numerical simulations can be done off-line and enable 
parametric analysis.

Another attribute of TCI is that it describes the efficiency 
by which any given CRAC can provide cooling resources to 
any given server. We therefore use it in the development of 

Figure 4. Cumulative time spent with ≤ X servers busy.
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a more general workload placement index that we term the 
“Local Workload Placement Index” described by Equation 
2 as follows:  

LWPIi =                                                                              
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where the numerator quantifies the thermal management 
and air conditioning margin at sensor location i  and the 
denominator quantifies the amount of hot air recirculation 
at the server (this is related to the Supply Heat Index 
described in [4]).  Specifically, Tset is the desired computer 
equipment inlet temperature setpoint within Dynamic Smart 
Cooling, Tin is the current inlet temperature measured 
within the server or with an externally deployed sensor 
network, TSAT and TSAT,min are the supply air temperature 
and minimum allowable supply air temperature of the air 
conditioning unit(s) respectively.  Both are reported by the 
CRAC.  The Thermal Correlation Index TCIi,j represents 
the degree to which CRAC j can provide cooling resources 
to the computer equipment at sensor i.  Finally, T’

SAT,i is the 
temperature of the air delivered through the vent tiles in 
close proximity to the ith server and is a strong function of 
the supply air temperature (TSAT) of the CRACs that serve 
the region in which the ith sensor resides.  As defined, the 
metric is a ratio of local (i.e. server level) thermal 
management and air conditioning margin to hot air 
recirculation and can therefore be used to gauge the 
efficiency of cooling resource placement and, by extension, 
workload placement.

3. Experiment Methodology
We begin with the rationale of our experiment design, then 
describe the experiment protocol and our test bed.

3.1 Experiment Design
Fundamentally, any sort of workload might be placed so as 
to optimize cooling efficiency.  We chose to focus on an
opportunity that may be practical for widespread use in the 
near term: the placement of CPU-intense batch jobs.  An 
obvious experiment scenario is to have jobs arrive 
occasionally, and to allocate each to the most cooling-
efficient server available.  It would remain only to choose 
job arrival rates and a distribution of job durations. One 
could then measure the power savings of cooling-efficient 
placement vs. today’s cooling-oblivious placement.  
Though uncomplicated, this scenario is naïve. 

In batch processing systems it is common that a user 
enqueues a large number of jobs in a burst. For example, in 
the server utilization diagram in Figure 6, a large burst of 
jobs arrives at 8am, making all the servers go from idle 
(black) to busy (white).  As each job completes, servers are 
kept busy by the supply of enqueued jobs.  When the queue 
finally goes empty (~10am), each server runs its last 
allocated job to completion and then goes idle (the last 
being at 3pm). This type of pattern is evidenced repeatedly 
in the 30 day snapshot in Figure 3. Thus, in a practical 
deployment, the savings of cooling-aware placement will 
likely be realized only after the work queue is drained and 
servers begin to go idle.

The duration of this ‘wind-down phase’ can be substantial, 
especially if the variance in job lengths is large, as we often 
observe in practice. As a practical example, the job lengths 
in the NASA iPSC benchmark [7] have a coefficient of 
variation of ~350% (CV=std.dev/mean), and for a recent 
machine learning experiment by the second author, the CV 
was 130%.  Thus, the placement of the last few long jobs 
determines which servers will remain busy long after the 
others have finished.

It is here in the wind-down phase that we must focus our 
experiments. We will compare today’s cooling-oblivious, 
first-come first-served (FCFS) placement vs. a smart 
placement that puts the longer running jobs on the more 
efficient servers to cool.

In practical implementations, this could be achieved either 
by (1) having rough estimates of job lengths so that an 
efficient schedule can be devised, or (2) dynamically 
migrating long running jobs to the more efficient servers via 
virtualization technology, such as Xen [6].   We initially 
attempted the latter, which is perhaps more elegant because 
it can be difficult to obtain job length estimates.  
Unfortunately, due to ownership constraints, we could not 
get Xen installed on enough servers to make any significant 
impact on the room temperature, considering the many 
other computers present.  Forced to resort to method (1), we 
developed a simple FCFS scheduler that placed the longest 
schedule on the most efficient server and the progressively 
shorter schedules on the less efficient servers in sequence.  
We used the pre-determined job lengths of 126 machine 
learning jobs from a previous experiment. This generated 
the job schedule shown in Figure 6.

But assuming one takes power savings seriously, there is 
another factor to consider:  putting servers that are not 
being used into a low power state, e.g. shutting them off.   

8am 10am 3pm
Figure 6.  Example server utilization, 8am burst of jobs

(Thermal Management Margin)i + (AC Margin)i

(Hot Air Recirculation)i



5

This is simple enough to implement, and with quick 
hibernation available in future servers, it will become quite 
easy to effect.  As we shall show, this complements efficient 
placement nicely, and used together, a great deal of power 
savings can be had. 

To conclude, the experiment design follows a lesion study 
model, determining the power savings of cooling-efficient 
placement together with server shutdowns, as well as the 
marginal benefit of each technique by itself. The detailed 
protocol will be discussed after we introduce the test bed.

3.2 Test Bed
We are fortunate to have available to us a thermally isolated 
portion of an active data center at HP Labs, Palo Alto, 
depicted in Figure 7.  We isolated the research area (upper 
right quadrant) via a heavy plastic curtain and closeable air 
baffles beneath the floor plenum.  This area is cooled by 
two redundant Computer Room Air Conditioning units 
(CRACs), but for these experiments we turned off CRAC 5.  
Both CRACs 5 and 6 have two operational modes.  One 
mode utilizes the facility’s chilled water system to remove 
heat from the air via an internal heat exchanger while the 
other uses a vapor compression refrigeration system internal 
to the unit.    When operating in the latter mode, power 
consumption of the unit can be directly measured and was 
therefore used throughout the experimental phase of this 
work.  This CRAC was controlled via Dynamic Smart 
Cooling by using the temperature sensors in the test bed.  

In this experiment, five external temperature sensors were 
used to collect data at various heights at the inlets of each 
rack and, along with data collected from CRAC 6 per 
Equation 2, were used to calculate LWPI.  Since sensor 
granularity (5/rack) did not match server granularity 
(12/rack) nor align vertically with the air intakes of the 
servers (Figure 10), we had to develop a practical 

interpolation procedure to map sensor data to the individual 
servers. We accomplished this via a simple camera 
snapshot, mouse clicks to identify sensor and host pixel 
locations, and a small Perl script to generate a linear, 
weighted-average interpolation function for each host. We 
verified with a handheld thermometer that the interpolation 
provided a good representation of actual inlet temperature
at the server. More modern Proliant-class HP servers have 
inlet temperature sensors built into each server, which 
would obviate this interpolation step.

As for servers, we obtained control of 54 of the 76 
NetServer LP2000r servers in the 6 racks in Row F (marked 
in Figure 7 and pictured in Figure 2). Although other users 
had control of the remaining NetServers and a substantial 
number of servers in the other row, we were able to monitor 
their power consumption so that we could detect any 
systematic change in power that would invalidate our 
current results.

Power consumption was monitored and logged at the rack 
level in Row F via power meters from Power Measurement 
Limited.  Typical power consumption of an LP2000r 
system under load in our experiments was approximately 
200W.  In Row G rack-level power was measured via rack 
mounted power distribution units.  Overall data center 
power was monitored via the four power distribution units 

CRAC 4

CRAC 5

CRAC 6

CRAC 2

Row F

Movable Curtain

Row G

PDU

PDU PDU

PDU

CRAC 1 CRAC 3

Figure 7.  Experimental test bed. 

Figure 8. Computer Room Air Conditioning units 5 & 6.

Figure 9.  Power Distribution Unit (PDU) near Row F.

CRAC 5

CRAC 6
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(PDUs) located around the raised floor (top and bottom in 
Figure 7; shown in Figure 9).

3.3 Experiment Protocol
Here we spell out the protocol we followed:

0. Turn off CRAC 5, place CRAC 6 in vapor compression 
refrigeration mode, close the isolation curtain & under-
floor air baffles, and post signs to warn people.

1. Commission the data center, i.e. determine CRAC 
effectiveness for each sensor via Equation 1, as 
described elsewhere [3]. In brief, this sets the CRAC 
to various operating levels and measures the effect on 
each sensor to define the regions of influence shown in 
the illustration of Figure 5.

2. Determine the general temperature profile of sensors, 
and from this and the efficiencies computed in the 
previous step, compute the LWPIi value for each 
sensor.

3. Interpolate a LWPIi value for each server by a linear
weighted average of nearby sensors based on distance.  
This step could be skipped for modern servers with 
built-in inlet temperature sensors.

4. Determine FCFS job schedules from the batch job 
predicted run-times, and place the longest running 
schedules on the most efficient servers, according to 
their LWPIi.

5. At 8am, all servers go busy for two hours. This gives 
the data center ample time to come to a thermally 
steady state, and reflects the situation after an arbitrary 
number of hours of being fully busy, such as for a 
much larger work queue.  (We used a simulated 
workload that keeps the NetServer’s dual CPUs 100% 
busy for the entire job time.)

6. At 10am we verify that the sensors are at 
approximately the same temperature as the other 
experiment days, and that the CRAC is operating at 
roughly the same level.  (These numbers were usually 
consistent, but one day we found the CRAC working 
much harder because some additional servers had been 
installed and were generating greater heat output. 
Consequently we disregarded the data from that 
particular day.)

7. Servers finish their scheduled jobs between 10am and 
3pm (see Figure 6).  As each server completes, it shuts
down (simulating a low power mode, unavailable with 
this generation of servers, unfortunately).

8. As servers shut down and contiguous regions of servers 
around a sensor are all off, the acceptable temperature 
limit for that sensor is increased by about +5ºC—
enough to essentially remove it from control while still 

providing minimal cooling. This is described further 
below.

9. Measure the server and CRAC power consumption 
during the wind-down phase: 10am to 3pm. Since 
placement has no effect when all servers are busy or all 
are idle, we need only compare the differences from 
10am to 3pm.

10. On separate days, repeat the above experiment without 
server shutdowns, without efficient placement, and
without either—for the baseline mimicking current 
behavior of batch services.  

Cooling requirements are determined by individual data 
center owners based on equipment manufacturers’ 
specifications.  For ours, the Dynamic Smart Cooling server 
is instructed to keep the inlet temperature at or below 24ºC 
for all running servers.  However, where a sensor is 
surrounded only by servers that have been shut down, it is 
considered inactive, and permitted to climb to 29ºC (this is 
a manual process today, unfortunately, which we had to 
tend throughout the day for each experiment).  Refer to
Figure 10, where five active servers are highlighted—the 
bottom servers tend to be the more efficient ones by their 
proximity to the floor vent tiles.  The sensors around these 

Figure 10.  Servers & sensors: highlight à active.

temperature sensors: 5/rack

servers: 12/rack
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servers are active (highlighted with circles), but the ones 
above are inactive.

LWPI values for the experiment ranged from 0.33 to 4.9 
with a median value of 2.4.  Servers located higher up in the 
racks generally exhibited lower LWPI values than those 
located near the floor though there were some exceptions 
based on local recirculation patterns.

4. Experiment Results
Table 1 displays the experimental results in terms of 
average power consumed over the duration of the 
experiment and the savings with respect to the baseline 
setting.  

Table 1. Kilowatts consumed (or saved) by each setting.

Baseline Placement Shutdown Both
Servers in Row F 16.2 16.2 11.4 11.4

% savings over baseline 0% 30% 30%

Air Conditioning 25.2 23.2 21.4 16.9

% savings over baseline 8% 15% 33%

Total power 41.4 39.4 32.8 28.3

% savings over baseline 5% 21% 32%

Power consumption of the servers in row F of Figure 7 is 
reduced by 30% when the test machines are shut down after 
their jobs have each completed.1  Naturally, the server
power consumption is unaffected by cooling-aware load 
placement.  

By contrast, power consumption of the air conditioning 
equipment—CRAC 6 in Figure 7—is reduced by 8% via 
cooling-aware placement alone, 15% via shutdown alone, 
and 33% when both cooling-aware placement and shutdown 
are employed.  Overall, note that total power savings 
(compute power plus air conditioning power) is reduced 
32% when both techniques are used.

The savings afforded by cooling-aware placement of 
workloads without shutting servers down is due to the 
change in the distribution of heat that results in the
reduction of recirculation of hot air into the inlet of the 
racked equipment.  Recall that recirculation is a component 
of LWPI.  This recirculation increases air conditioning 
costs, thus placement alone provides savings primarily in 
the cost to provision air conditioning resources.   Shutting 
down machines, however, provides both savings at the 
power delivery level (i.e. power delivered to the computers) 

  
1 Note that we do not include row G power consumption in this 

calculation, which was a constant 40 kW.

and the air conditioning level.  The latter is due to the fact 
that the air conditioning system need not expend the energy 
to remove the heat formerly dissipated by the inactive 
computer equipment. When both are considered, placement 
and shutdown, added benefit is derived from the fact that 
clusters of machines in close proximity to each other are 
shut down as load is compacted to the most efficient places 
in the data center.  These inactive clusters result in zones 
that can tolerate warmer air than active clusters and the 
cooling distribution can be adjusted accordingly (e.g. via 
Dynamic Smart Cooling) resulting in an additional 18% 
savings in the air conditioning costs from Baseline over that
achieved by shutting down machines without regard for 
placement (the shutdown scenario). Indeed, the air 
conditioning savings from adding efficient workload 
placement to the shutdown scenario is more than double 
than that of shutdown alone.

5. Discussion
To help convey the practical impact of these results, we 
work through a simple computation to translate this savings 
into dollars, and then we discuss issues one may face in 
practical deployment.  Finally, we give a remark on how 
difficult it is to perform this sort of research on a real, 
physical data center.

5.1 A Dollar Savings Estimation
The results indicate that the application of job allocation 
based on environmental factors can significantly reduce the 
overall power consumption of the data center.  As an 
example, if we consider a typical large-scale data center 
with a power consumption of 2.5 MW by the computational 
equipment (~190 13 kW racks) and a cooling load factor of 
2.2 (defined as the ratio of the amount of heat being 
removed by the amount of power consumed by the air 
conditioning system to remove the heat), the total power 
consumption of the data center is 3.6 MW.  (Note the load 
factor of 2.2 matches our experimental conditions and is a 
conservative assumption given that many data centers 
operate with load factors much lower than this—i.e. worse.)  
If we further assume that the data center is partially active 
70% of the time per the data from Figure 4, and that the 
savings we observed in our experiment (32%) can be 
extended to the rest of the data center, at an energy cost of 
$0.15/kW⋅hr the energy savings will result in an operational 
savings of more than $1,000,000 per year. Naturally, a 
rough computation such as this is only an illustration, and 
the assumptions will vary for different data centers.

5.2 Practical Deployment
Our experiments avoided several complications that may
need to be surmounted for practical deployment, of course.  
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One issue is that after servers have been shut down, they 
must be booted up again when new jobs arrive.  It takes 
only a moment for Dynamic Smart Cooling to provide 
cooler air to such servers, but the delay of the reboot 
process is comparatively lengthy and undesirable. Future 
servers will have fast methods for low power or hibernation 
modes. Until available, one could trade off some cooling 
efficiency in order to avoid some of the boot-up delays by 
(a) never shutting off some of the most cooling-efficient 
servers, and/or (b) imposing a minimum idleness delay 
before shutting down any server. This is analogous to the 
decision to spin-down disks on a laptop to conserve battery 
power. 

We proposed to place workload either by requiring 
estimates of job length in advance (which can be difficult to 
obtain in most general settings), or else by migrating long-
running jobs during the wind-down phase via virtualization 
technology.  We believe this migration would be quite 
practical for most types of CPU-intense batch jobs, with 
only a sub-second suspension in computation [6].  Note, 
however, that the job’s memory needs to be migrated across 
the high-speed data center network.  If the jobs are very 
memory intense, or if many migrations are requested in a 
short time window, the volume of network traffic may begin 
to pose a substantial cost and delay. Thus, practical 
controllers may occasionally need to temper their eagerness 
for cooling efficiency in order to avoid network overload.

In our experiments, we only considered homogeneous 
servers, i.e. no matter which server is selected to run a job, 
the same amount of heat is generated. But over time, real 
data centers may accumulate a mixture of servers of 
different generations.  Thus, optimal placement decisions 
may also need to take into account the differing amount of 
heat generated by different servers. And with widely 
different CPU speeds, the placement decisions will also 
affect how long the jobs take to complete. This leads to a 
complex area of optimization that mixes cooling efficiency
considerations with traditional scheduling. Furthermore, 
economics may play a role: although it may be most 
efficient to run a user’s jobs on a small set of old, slow 
servers that produce little heat, the user may be willing to 
pay more for a higher class of service that returns their 
results sooner at additional expense. These issues are 
beginning to be explored [5].

5.3 A Note on Experimental Difficulty
Although we were fortunate to have a thermally isolated 
data center available to us, even so it is very difficult to 
execute experiments such as these, because they rely on the 
stability of a great deal of infrastructure.  With the slow 
time scales necessary to observe the gradual thermal 
impact, it requires a day for each experimental condition, 

offering long windows of opportunity to run afoul of 
trouble.  It has required dozens of experiment days to 
collect and verify these few data points, partly due to 
failures.  In the course of these experiments, we have 
experienced server failures, security guards opening the 
thermal curtain, scheduling conflicts, intermittent CRAC 
failures, holiday closures, and failures in the power 
measurement harness.   Furthermore, OSHA requires that 
fresh air be brought into human occupied work 
environments to regulate the amount of carbon dioxide in 
the air.  This supplemental air flow rate, though small 
compared to the air circulated by the CRACs, can impact 
the distribution of cooling resources.  In our test facility this 
supplemental air was only active during normal working 
hours—twelve hours of the day—placing additional limits 
on our experimental timeframes.  

Early on we intended to demonstrate these results by 
migrating jobs on virtual machines. Having only 20 servers 
on which we were allowed to install Xen, we failed to have 
a substantial effect on the room. The isolation area contains 
over a hundred other servers, many of which were new HP 
P-class blade servers, which generate much greater heat 
than our older NetServers. Finally, since we could not
obtain exclusive control over the isolated data center, other 
users could dynamically change their power consumption of 
their servers, affecting our measurements.  Thus, we had to 
detect unusual power consumption and/or cooling effort at 
the CRAC, and occasionally throw out a day’s effort. 

6. Conclusions
The upshot of this work is that cooling-aware placement of 
workload can yield substantial savings in power, especially 
when coupled with server shutdown or low power modes
that permit the cooling infrastructure to ‘relax’ in the hard-
to-cool areas.  We contributed a method by which to rank 
servers according to cooling-efficiency, and proposed that 
implementation in batch servers would pose a useful 
optimization to achieve near term savings.  We suggested 
that the wind-down phase may pose the largest opportunity 
for power savings for batch job services.

Longer term, more general adaptive enterprise software 
may profitably include cooling-efficiency considerations in 
their placement and scheduling algorithms.  How best to do 
this warrants additional research—justified by the 
substantial savings potential.  Future work may include 
considerations for heterogeneous servers with a variety of 
different speed vs. power tradeoffs, as well as constraints 
on placement and scheduling of jobs and application 
layouts.

Finally, this research continues the small but growing trend 
of cross-collaboration between mechanical engineering and 
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computer science.  A trend we feel will continue to bring 
gains in energy efficient computing.
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