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Abstract
Server consolidation has become an integral part of IT
planning to reduce cost and improve efficiency in to-
day’s enterprise datacenters. The advent of resource
virtualization allows consolidation of multiple applica-
tions into virtual servers hosted on a single or multiple
physical servers. However, despite its salient features,
this poses new challenges, including selection of the
right virtualization technology and consolidation con-
figuration for a particular set of applications. In this pa-
per, we evaluate two representative virtualization tech-
nologies, Xen and OpenVZ, in various configurations.
We consolidate one or more multi-tiered systems onto
one or two nodes and drive the system with an auction
workload called RUBiS. We compare both technologies
with a base system in terms of application performance,
resource consumption, scalability, low-level system met-
rics like cache misses, and virtualization-specific metrics
like Domain-0 consumption in Xen. Our experiments
indicate that the average response time can increase by
more than 400% in Xen and by a more modest 100% in
OpenVZ as the number of application instances grows
from one to four. This large discrepancy is found to
come from the higher virtualization overhead in Xen,
which is likely caused by higher L2 cache misses and
larger number of misses per instruction. A similar trend
is observed in the CPU consumptions of the virtual
servers. We analyze the overhead with kernel-symbol-
specific information generated by Oprofile and suggest
possible remedies for these problems.

1. INTRODUCTION
In the last several years, server consolidation has been

a common practice in enterprise datacenters as a means
to achieve cost savings in hardware, software, floor space,
power and cooling, as well as server administration. As
a key technology enabler, server virtualization allows
multiple “virtual servers” to be created on each phys-
ical machine sharing the server resources. This way,
many enterprise applications that traditionally run on
dedicated servers can be consolidated onto a smaller

and shared pool of servers. Although server consoli-
dation offers great potential to increase resource uti-
lization, centralize administration, and improve opera-
tional efficiency and flexibility, it also introduces new
challenges in managing the applications running in the
virtual servers in a consolidated environment.

In particular, capacity planning and workload man-
agement for the virtual servers are non-trivial tasks for
system administrators. The common approach of us-
ing resource-utilization traces collected from the pre-
consolidated servers as a predictor for the resource de-
mands of the virtual servers running the same applica-
tions can be inaccurate and problematic due to the vir-
tualization overhead. Moreover, today’s enterprise ap-
plications typically employ a multi-tiered architecture,
where the Web and the application tiers serve static
files and implement business logic, and the database
tier executes data queries and interacts with the stor-
age devices. During server consolidation, each tier of an
application can be moved from a physical server into a
virtual server, and the various tiers of the same applica-
tion may be hosted on the same physical node or across
different nodes. A key question is then how application-
level performance, such as transaction response time
and throughput, will be impacted. There are two po-
tential causes for performance degradation, if any —
consolidation, as more application tiers run on a sin-
gle physical server; and virtualization, for there may be
additional layers between an application tier and the
physical hardware besides the operating system.

In this paper, we focus on the performance degrada-
tion caused by virtualization on Linux-based systems
in a consolidated environment. We refer to the differ-
ence in application performance between a virtualized
system and a native Linux system under the same con-
figuration as the performance overhead by the underly-
ing virtualization technology. Such performance over-
head is likely dependent upon many factors, including
the type of virtualization used. In general, there are
two main types of virtualization technologies today —
hypervisor-based virtualization including VMware ESX
Server [1], Microsoft Virtual Server [2], and Xen [3];
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and OS-level virtualization including OpenVZ [4], Linux
VServer [5], and Solaris Zones (or Containers) [6]. De-
termining which virtualization technology to use for
server consolidation requires a careful evaluation of the
tradeoff between the pros and cons of different technolo-
gies, because no single technology will excel at every-
thing. For each technology chosen, the datacenter ad-
ministrators need to determine how many applications
can be hosted on a given number of physical servers,
and for each application, what is the maximum load
it can take without violating its service-level objectives
(SLOs). Moreover, how to place the various tiers of the
multi-tiered applications on the shared servers in order
to minimize potential performance overhead?

We will address these issues using RUBiS [7] as an ex-
ample of a multi-tiered application in a case study. We
focus on Xen and OpenVZ as the representatives for
the hypervisor-based and OS-level virtualization tech-
nologies, respectively. It is to be expected that OS-
level virtualization incurs lower performance overhead
whereas hypervisor-based virtualization provides better
fault-isolation between the virtual servers [8]. However,
to the best of our knowledge, there is little published
work quantifying the difference in performance over-
heads between the two technologies, especially for con-
solidation of multi-tiered applications and in terms of
application-level metrics, such as transaction response
time. In this paper, we present the experimental results
that aim to evaluate the performance overhead incurred
by Xen or OpenVZ under different consolidation config-
urations and workload conditions. Our experiments in-
dicate that, in spite of their comparable throughput, the
average response times of the consolidated applications
on a Xen system and an OpenVZ system can be sig-
nificantly different, especially as the workload intensity
or the scale of consolidation increases. For example, we
observe that the average response time increases by over
400% in Xen and by a more modest 100% in OpenVZ
as the number of consolidated applications grows from
one to four.

In addition, using Oprofile [9], a system profiler for
Linux, we report the values of a few selected hardware
performance counters and kernel-symbol-specific infor-
mation, and infer that the higher performance overhead
in Xen is likely caused by higher L2 cache misses in the
virtual servers. And in most cases, the majority of these
cache misses occur in the vmlinux kernels in Dom0 and
the guest domains. Finally, based on the analysis, we
suggest a number of potential ways to reduce the over-
head so that we can take better advantage of the virtu-
alization technologies for server consolidation.

The remainder of the paper is organized as follows.
Section 2 discusses related work. Section 3 introduces
the architecture of our testbed and the various tools
used. The details of the experiments are described in

Section 4, and the results along with our analysis are
presented in Sections 5 and 6. Section 7 presents a
plausible interpretation of the performance difference
between the two virtualization technologies. Finally,
we summarize our key findings and discuss future work
in Section 8.

2. RELATED WORK
There is rich literature on the Xen virtualization sys-

tem. A performance evaluation of Xen was provided in
the first SOSP paper on Xen [3] using SPEC CPU2000,
OSDB, dbench and SPECWeb benchmarks. The per-
formance of Xen was compared to VMWare, native Linux
and User-mode Linux in terms of the total system through-
put. The results have been re-produced by a separate
group of researchers [10]. In this paper, we extend this
evaluation to include OpenVZ as another virtualization
platform, and test both Xen and OpenVZ under differ-
ent scenarios including multiple VMs and multi-tiered
systems. We also take a deeper look into some of these
scenarios using OProfile [9] to provide insights into the
possible causes of the performance overhead observed.

Menon et al. conducted a similar performance eval-
uation of the Xen environment and found various over-
heads in the networking stack [11]. The work provides
an invaluable performance analysis tool Xenoprof that
allows detailed analysis of a Xen system. The authors
identified the specific kernel subsystems that were caus-
ing the overheads. We perform a similar analysis at
a macro level and apply it to different configurations
specifically in the context of server consolidation. We
also investigate the differences between OpenVZ and
Xen specifically related to performance overheads.

Menon et al. used the information gathered in the
above work and investigated causes of the network over-
head in Xen [12]. They proposed three techniques for
optimizing network virtualization in Xen. We believe
that our work can help develop similar optimizations
that help server consolidation in both OpenVZ and Xen.

Gupta et al. have studied the performance isolation
provided by Xen [13]. In their work, they developed a
set of primitives to address the problem of proper ac-
counting of work done in device drivers by a particular
domain. Similar to our work, they used XenMon [14]
to detect performance anomalies. Our work is orthog-
onal to theirs by providing insights into performance
overhead observed in Xen or OpenVZ systems in a con-
solidated environment.

There has also been published work on OS-level (or
container-based) virtualization. Osman et al. have de-
veloped Zap, a container-based virtualization system
that allows easy migration of applications running in
pods (process domains) [15]. The primary focus of that
paper was on migration of virtual containers, which dif-
fers from the focus of our paper. In the paper, the au-
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thors also compared Zap to VMware Workstation 3.2
that provides hardware emulation. We believe that
hypervisor-based virtualization is fundamentally differ-
ent from hardware emulation.

Soltesz et al. have developed Linux VServer, which
is another implementation of OS-level virtualization on
Linux [5]. They have done a comparison study between
VServer and Xen in terms of performance and isolation
capabilities [8]. In particular, average throughput was
used as the metric for comparison of application-level
performance between VServer and Xen. In this paper,
we compare performance overheads between OpenVZ
and Xen instead, and demonstrate that, even when
throughput is comparable between two virtualization
technologies, the difference in response time can be fairly
significant. This needs to be taken into account in server
consolidation, especially when there are SLOs defined
in terms of transaction response times.

In all the prior work mentioned above, there has been
no specific evaluation of virtualization technologies in
the context of server consolidation for multi-tiered ap-
plications. In particular, performance overheads as a re-
sult of virtualization in a consolidated environment have
not been quantified. In this paper, we comprehensively
evaluate two representative virtualization technologies
in terms of their performance overheads relative to a
base Linux system and demonstrate how the overheads
may change in different consolidation scenarios.

3. TESTBED ARCHITECTURE
Figure 1(a) shows the architecture of our testbed,

where a Xen-based system, an OpenVZ-based system,
and a vanilla Linux system (referred to as base system
hereafter) with an identical hardware setup are used for
our experimentation. We ran the same application(s)
on the three systems under various configuration scenar-
ios. In each scenario, each physical node may host one
or more virtual servers supported by Xen or OpenVZ as
shown in Figure 1(b). And two separate nodes may be
used for the Web and the database tiers of one or more
multi-tier applications. Each node is equipped with
a sensor collecting various system-level metrics includ-
ing CPU consumption, memory consumption as well
as hardware-level events. And each application has a
sensor that measures its application-level performance
including throughput and response times. All of this
data is transferred to a separate machine for perfor-
mance analysis later.

We use HP Proliant DL385 G1 for all our servers
and client machines. Every server has two 2.6 GHz
processors, each with 1MB of L2 cache, 8 GB of RAM,
and 2 Gigabit network interfaces.

3.1 System configurations
We conduct our experiments on three different sys-

tems as explained below. All systems are set up to be as
similar as possible with the same amount of resources
(memory and CPU) allocated to a particular virtual
server. A complete description of all system configu-
rations is available at http://www.eecs.umich.edu/

~ppadala/research/perfeval/config.html

3.1.1 The base system
We use a plain vanilla 2.6 Linux kernel that comes

with the Fedora Core 5 standard distribution as our
base system. Standard packages available from Fedora
repository are used to set up various applications.

3.1.2 Xen system
Xen is a paravirtualization [16] technology for x86

that allows multiple guest OSes to be run in virtual
servers (called domains). The Xen hypervisor provides
a thin software virtualization layer between the guest
OS and the underlying hardware. Each guest OS is a
modified version of the base Linux (XenoLinux) because
the hardware abstraction presented by the hypervisor
is similar but not identical to the raw hardware. The
hypervisor contains a CPU scheduler (see Figure 1(b))
that implements various scheduling policies including
proportional fair-share, along with other modules such
as the memory management unit.

The Xen 3.0.3 unstable branch [17] is used for our
experiments as it provides a credit-based CPU sched-
uler (in short, credit scheduler), which, in our exper-
iments, provides better performance than the earlier
SEDF scheduler. The credit scheduler allows each do-
main to be assigned a cap and a weight. A non-zero cap
implements a non-work-conserving policy for the CPU
by specifying the maximum share of CPU time a do-
main can consume, even if there are idle CPU cycles
available. When the cap is zero, the scheduler switches
to a work-conserving mode, where weights for multiple
domains determine their relative shares of CPU time
when the CPU is under contention. At the same time,
a domain can use extra CPU time beyond its share if
other domains do not need it. In all our experiments,
we use the non-capped mode of the credit scheduler, and
the system is compiled using the uni-processor architec-
ture. In this case, Dom0 and all the guest domains share
the full capacity of a single processor.

3.1.3 OpenVZ system
OpenVZ [4] is a Linux-based OS-level server virtual-

ization technology. It is the open source basis of Vir-
tuozzo, a commercial virtualization tool from SWsoft [18].
It allows creation of multiple secure, isolated virtual en-
vironments (VEs) on a single node enabling server con-
solidation. Each VE behaves exactly like a stand-alone
server. They can be rebooted independently and a dif-
ferent distribution with separate root directory can be
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(a) Testbed setup (b) A virtualized server

Figure 1: System architecture

set up. Different from Xen, OpenVZ uses a single kernel
shared by all the VEs. Therefore, it does not provide
the same level of fault-isolation as well as customization
that Xen offers.

In our experiments, we use the stable, verion 2.6, uni-
processor OpenVZ kernel that provides an FSS sched-
uler, which also allows the CPU share of each VE to
be either capped or not capped. As in the Xen system,
the non-capped option of the scheduler is used in the
OpenVZ system.

We will henceforth use the term virtual server to refer
to either a domain in the Xen system or a VE in the
OpenVZ system.

3.2 Instrumentation
To measure the CPU consumption accurately, we wrote

scripts that use existing tools to collect data. In the
base system, the output from command top -b is gath-
ered and then analyzed later. Similarly, xentop -b
is used in the Xen system, which provides informa-
tion on the CPU consumptions of individual domains.
For OpenVZ, there is no existing tool to directly mea-
sure the CPU consumption by a particular VE. We use
the data provided from /proc/vz/vestat to obtain the
CPU time spent by individual VEs.

3.2.1 Oprofile
Oprofile [9] is a tool for measuring certain hardware

events using hardware performance counters. For ex-
ample, one can measure the number of cache misses
that happen in a particular application. The profiles
generated by Oprofile are very detailed and provide a
wealth of information. Menon et al. [11] have modified
Oprofile to support Xen. The resulting tool, Xenoprof,
allows us to profile multiple domains in a Xen system.

We focus on the following two aspects when analyzing
the data generated by Oprofile:

• Comparing hardware performance counters for var-
ious configurations;

• Understanding differences in overheads experienced

within specific kernels. We want to identify par-
ticular kernel sub-systems where most of the over-
heads occur, and quantify the overheads using re-
lated hardware counter values.

We monitor three hardware counters for our analysis:

• CPU_CLK_UNHALT: The number of cycles outside of
halt state. It provides a rough estimate of the CPU
time used by a particular binary or a symbol.

• RETIRED_INSTRUCTIONS: The number of instruc-
tions that are retired. It is a rough estimate of the
number of instructions executed by a binary or a
symbol.

• L2_CACHE_MISS: The number of L2 cache misses.
It measures the number of times the memory ref-
erences in an instruction miss the L2 cache and
thus access main memory.

For each set of experiments, we analyze differences
in these counter values along with the observed appli-
cation performance in various configurations, and infer
possible sources of the performance overhead observed
in the corresponding virtualization technology.

4. EXPERIMENT DESIGN
The experiments are designed with the goal of quanti-

tatively evaluating the impact of virtualization on server
consolidation. Specifically, we are not interested in per-
forming micro benchmarks that compare the perfor-
mance of system calls, page miss penalties, etc. Instead,
we focus more on typical multi-tiered applications and
how application-level performance, particularly trans-
action response time, is affected when the consolidated
servers are virtualized using Xen or OpenVZ.

We have chosen RUBiS [7], an online auction site
benchmark, as an example of multi-tiered applications.
We use a version of the application that has a two-tiered
structure: the Web tier contains an Apache Web server
with PHP, and the DB tier uses a MySQL database
server. A workload generator is used to emulate a spec-
ified number of RUBiS clients who connect to the Web
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Server 1 Server 2

DB I

Web I Web II

DB II

(a) Single-node

Server 1 Server 2

Web II

Web I DB I

DB II

(b) Two-node

Figure 2: Two placement configurations for con-
solidating two multi-tiered applications

tier and perform various operations. More specifically,
each client starts a session in which the client browses
through items, looks at prices, and buys or sells items.
In each session, the client waits for a request to com-
plete before sending out the next request. If the request
fails due to time-outs, the session is aborted and a new
session is started. This gives rise to a closed-loop be-
havior where the clients wait for the server when it is
overloaded. RUBiS provides different workload mixes,
and we use the browsing mix in our experiments, which
introduces a higher resource demand on the Web tier
than on the DB tier.

We consider the scenario where one or more instances
of RUBiS are running on virtualized, consolidated servers,
and design a series of experiments to evaluate the per-
formance overhead incurred by Xen or OpenVZ. In par-
ticular, we observe how the overhead changes as we vary
the following three parameters:

• Workload intensity - the number of threads in
the RUBiS workload emulating the number of con-
current clients accessing the same application;

• Scale of consolidation - the number of applica-
tions consolidated onto a given number of servers;

• Placement configuration - the way multiple tiers
of an application are placed on the consolidated
servers;

With respect to placement configuration, we compare
the following two options for hosting two RUBiS appli-
cations on two physical nodes:

• Single-node: Both the Web and the DB tiers of
each RUBiS application are hosted on a single phys-
ical node (Figure 2(a));

• Two-node: The Web and the DB tiers of each RU-
BiS application are distributed on two separate
nodes (Figure 2(b)).

There are additional reasons why one configuration
may be chosen over the other in a practical scenario. For
example, the single-node configuration offers the benefit
of reduced network traffic by handling tier-to-tier com-
munication of an application within a node, whereas the

two-node option may be preferable in a case where it can
reduce software licensing cost. In this work, we focus
on the difference in the observed performance overheads
between the two configurations.

5. EVALUATION RESULTS
This section presents the results of our experimen-

tal evaluation using the RUBiS benchmark. In particu-
lar, we evaluate the application performance along three
dimensions: workload intensity, scale of consolidation,
and placement configuration. Each experiment is con-
tinuously run for 15 minutes, and both application- and
system-level metrics are collected. For each dimension,
a three-way comparison of the results from the base
Linux, OpenVZ, and Xen systems is presented.

5.1 Impact of workload intensity
We start with the single-node configuration and eval-

uate how the performance overhead changes with the
intensity of the workload coming into the application.
In this case, both the Web and the DB tiers are hosted
on the same node, as shown in Figure 2(a). For each
of the base, Xen, and OpenVZ systems, we scale up
the workload by increasing the number of concurrent
threads in the RUBiS client from 500 to 800.

Figures 3(a) and 3(b) show the throughput and av-
erage response time as a function of workload intensity
for the three systems. In all three cases the throughput
increases linearly as the number of threads increases,
and there is little difference among the three systems.
However, we observed a marked difference in the re-
sponse time between the Xen system and the other two
systems. As the workload intensity increases from 500
to 800 threads, the response time increases only slightly
in both the base and OpenVZ systems, whereas in the
Xen case, it grows from 18 ms to 130 ms, an increase
of over 600%. For 800 threads, the response time for
Xen is approximately 4 times that for OpenVZ. There-
fore, in the single-node case, the observed performance
overhead is higher in Xen than in OpenVZ, which as ex-
pected. However, the difference between the two goes
up significantly as the workload increases. As a result,
the Xen system is less scalable with the workload inten-
sity than OpenVZ or a non-virtualized system.

Figure 4 shows the average CPU consumptions of the
Web and the DB tiers as a function of workload in the
three systems. For both tiers in all the three cases, the
CPU consumption increases linearly with the number
of threads in the workload. The DB tier’s consumption
remains very low at about 1-4% of total CPU capac-
ity in all the cases, due to the Web-intensive nature
of the browsing mix workload. A bigger difference can
be seen in the Web tier’s consumption from the three
systems. For each workload, the Web tier’s consump-
tion in Xen is roughly twice the consumption by the
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Figure 3: Single-node configuration - application performance as a function of workload intensity
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Figure 4: Single-node configuration — average
CPU consumption per tier as a function of work-
load intensity

base system, whereas the OpenVZ’s consumption stays
close to the base case. As the workload increases, the
slope of increase is higher in the case of Xen than the
other two systems. More specifically, 100 more concur-
rent threads consume roughly 3% more CPU capacity
for Xen and only 1% more for the other two systems.
Since the throughput is comparable among the three
systems, this indicates higher CPU overhead per unit
of workload in Xen than in OpenVZ, and should be re-
lated to the higher response times observed in the Xen
case.

5.2 Evaluation of scalability
We now consider the two-node configuration shown

in Figure 2(b) and investigate the scale of consolidation
that can be achieved by the two virtualization tech-
nologies. We increase the number of RUBiS instances
sharing the two physical nodes from one to two, then
to four. For example, in the case of four instances, one

node is used to host four instances of the Web tier and
the other node is used to host four instances of the DB
tier. We compare the scalability of Xen and OpenVZ
with respect to application performance and resource
consumption.

We omit figures for application throughput. Even
as the number of RUBiS instances is increased to four,
we still observe a linear increase in the throughput as
a function of workload, and approximately the same
throughput from both the OpenVZ and the Xen sys-
tems.

Figures 5(a), 5(b), and 5(c) show the average re-
sponse time as a function of workload when running
one, two, or four instances of RUBiS on two nodes,
respectively. In the cases where there are more than
one instances of the application, multiple curves are
shown in the figure for either Xen or OpenVZ, where
each curve represents one of the multiple application
instances. For all the cases tested, the average response
time for OpenVZ varies at most by 10 ms and remains
near or below 30 ms at all times. Instead, the response
time for Xen increases significantly along with the work-
load. For example, in the cases of one, two, and four
application instances, as the workload increases from
500 to 800 threads, the average response time experi-
enced by each application instance increases by 133%
(from 12 ms to 28 ms), 500% (from 15 ms to 90 ms on
average), and nearly 700% (from 20 ms to 160 ms on
average), respectively.

Figure 6(a) compares the mean response times of
Xen and OpenVZ averaged across all the application
instances as the number of consolidated applications in-
creases from one to four in the two-node configuration.
In the Xen system, the average response time per ap-
plication grows from 28 ms for one instance to 158 ms
for four instances, an over 400% increase. In contrast,
this increase is only about 100% in the OpenVZ case.
This indicates much better scalability of OpenVZ with

6



 0

 5

 10

 15

 20

 25

 30

 500  550  600  650  700  750  800

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

Number of Threads

Base
Xen

OpenVZ

(a) One instance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 500  550  600  650  700  750  800

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

Number of Threads

Xen I
Xen II

OpenVZ I
OpenVZ II

(b) Two instances

 0

 50

 100

 150

 200

 250

 500  550  600  650  700  750  800

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

Number of Threads

Xen I
Xen II
Xen III
Xen IV

OpenVZ I
OpenVZ II
OpenVZ III
OpenVZ IV

(c) Four instances

Figure 5: Two-node configuration — average response time as a function of workload intensity and
nscale of consolidation

 0

 20

 40

 60

 80

 100

 120

 140

 160

OpenVZXen

R
es

po
ns

e 
tim

e 
(m

s)

System type

1inst
2inst
4inst

(a) Average response time

 0

 5

 10

 15

 20

 25

 30

OpenVZXen

A
ve

ra
ge

 C
P

U
 c

on
su

m
pt

io
n 

(%
 C

P
U

)

System type

1inst
2inst
4inst

(b) Web tier CPU consumptions

Figure 6: Two-node configuration — average response times and Web tier’s CPU consumptions for
different scales of consolidation (800 threads)

7



 0

 2

 4

 6

 8

 10

 12

 500  550  600  650  700  750  800

A
ve

ra
ge

 C
P

U
 C

on
su

m
pt

io
n 

(%
 C

P
U

)

Number of Threads

2node 1inst 
2node 2inst
2node 4inst

Figure 7: Two-node configuration — Xen Dom0
CPU consumption as a function of workload in-
tensity and number of consolidated applications

respect to application-level performance.
Figure 6(b) compares the average Web tier’s CPU

consumptions seen by all the application instances in
the Xen and the OpenVZ systems. We can see that
the average consumption per application instance for
Xen is roughly twice that for OpenVZ. Moreover, with
four instances of RUBiS, the Xen system is already be-
coming overloaded (with the sum of all four instances
exceeding 100%), whereas the OpenVZ system has the
total consumption below 60% and should be able to ac-
commodate at least two more instances of the RUBiS
application without sacrificing the throughput of each
application instance.

Figure 7 shows the Xen Dom0 CPU consumption as
a function of workload in the two-node case. The dif-
ferent lines in the graph correspond to different num-
bers of RUBiS instances hosted. For each scenario, the
Dom0 consumption increases approximately linearly as
the workload increases from 500 to 800 threads. This
was expected because Dom0 handles I/O operations on
behalf of the guest domains causing its consumption to
scale linearly with the workload. Interestingly, as the
number of instances grows from one to four, the Dom0
consumption increases by a factor of 3 instead of 4,
showing a certain degree of multiplexing in Dom0.

To investigate how much more overhead can be in-
curred in the Xen system, we ran the four instances on
two CPUs running the SMP kernel. We observed that
the average CPU consumption by the Web tiers is 25%
and the average Dom0 consumption is 14%. The latter
is higher than that obtained using the UP kernel.

5.3 Impact of placement configuration
In this subsection, we compare the two placement

configurations for hosting two RUBiS applications using
two physical nodes. In the single-node configuration
(Figure 2(a)), each node is used to host both the Web
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Figure 8: Two-node vs. single-node — average
response time as a function of workload intensity

tier and the DB tier of an application. In the two-
node configuration (Figure 2(b)), one node is used to
host the two Web tiers from both applications, and the
other node is used to host the two DB tiers. The goal
of this study is to evaluate the impact of placement
configuration on the application-level performance.

We plotted the observed application performance in
both the single-node (Figure 3(b)) as well as the two-
node (Figure 5(b)) configurations in the previous two
subsections. Figure 8 shows a comparison of placement
configurations in terms of the average response time
seen by the two application instances as a function of
the workload intensity in the Xen or the OpenVZ sys-
tem. We observe that, when two nodes are used to
host two multi-tiered RUBiS applications, the two-node
configuration where each node hosts multiple instances
of the same application tier provides lower average re-
sponse times for the consolidated applications for both
Xen and OpenVZ. In the case of Xen, for example, an
SLO that indicates a maximum average response time
of 100 ms for a workload up to 800 concurrent clients
can be met by the two-node configuration but not by the
single-node configuration. The Oprofile analysis shown
in the next section helps uncover possible causes for this
observed difference in the two placement configurations.

6. OPROFILE ANALYSIS
In this section, we consider some of the test scenarios

from the previous section where interesting differences
in performance overheads have been observed. All of
these scenarios correspond to a workload intensity of
800 threads such that the observed difference is the
largest. Here we provide a detailed analysis of the corre-
sponding Oprofile statistics for each scenario and point
to plausible causes for the observed performance over-
heads.

6.1 Single-node
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Figure 10: Single-node — counter values break down for three different systems
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Figure 9: Single-node — normalized hardware
counter values from Oprofile

In the single-node configuration, both the Web and
the DB tiers of a RUBiS application are hosted on a
single node. To understand the possible causes for the
observed performance overheads in Xen and OpenVZ,
we use the selected hardware counters described in Sec-
tion 3 and compare their aggregate values for the three
systems in Figure 9. For OpenVZ, each of the counter
values is for the whole system including the shared ker-
nel and the two virtual servers hosting the Web tier
and the DB tier. For Xen, Oprofile provides us with
one counter value for each domain, and we calculate the
sum of the values for all the domains, including Dom0.
We also calculate the number of L2 cache misses per in-
struction for each system. Finally, the observed average
response times (ART) from the three systems are also
included in the figure for easy comparison. In particu-
lar, the average response time observed from the Xen

system is almost six times that from the base system,
whereas the average response time from the OpenVZ
system is only slightly higher than that from the base
system. All of the values shown are normalized with
respect to the base case.

For OpenVZ, we observe twice as many instructions
executed as that from the base system, and almost
twice as many L2 cache misses as well. Therefore, the
OpenVZ and the base systems have comparable num-
bers of L2 cache misses per instruction. On the other
hand, relative to the base system, there are roughly 4.5
times as many instructions executed and more than 11
times as many L2 cache misses in the Xen system. Effec-
tively, the number of L2 cache misses per instruction is
more than twice as large in Xen as in OpenVZ or in base
Linux. Therefore, we conjecture that L2 cache misses
is the main cause of the observed difference in trans-
action response times between Xen and OpenVZ. Fur-
thermore, the data suggests two reasons for the higher
number of L2 cache misses in Xen: (i), there are many
more instructions being executed in Xen compared to
OpenVZ and base Linux, most likely due to the mod-
ified kernel for Dom0 and the two guest domains; (ii),
the number of L2 cache misses per instruction is higher
in Xen, possibly due to context switching between the
two guest domains. Note that more cache misses per
instruction causes the instructions to take longer to ex-
ecute, which leads to higher latency at the application
level.

Since the normalized values of the CPU_CLK_UNHALT
counter and the RETIRED_INSTRUCTIONS counter are
similar for the three systems, we infer that these three
systems have average instructions per cycle values that
are comparable. Therefore, in the subsequent figures,
we omit the CPU_CLK_UNHALT values in our analysis and
focus on the values of the other two hardware counters.
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We also did a breakdown of the total number of L2
cache misses by different binaries (like httpd, mysqld)
running in each system, and the result is shown in
Figure 10(a). The dynamic library libphp5.so is re-
sponsible for executing the PHP scripts on the Apache
side. The data clearly indicates that the majority of the
L2 cache misses seen by the Xen system are from the
vmlinux kernels running in Dom0 and the two guest do-
mains rather than from the application. Moreover, the
kernels in Xen experience more L2 cache misses than
the kernel for base Linux or OpenVZ, and OpenVZ has
slightly higher cache misses from the kernel than base
Linux does. To see why this is the case, we further show
in Figure 10(b) the retired instructions value and the
number of L2 cache misses per instruction associated
with vmlinux in all the cases. Both sets of values have
been normalized with respect to the base value. In the
case of Xen guest domains, we see both a larger number
of instructions executed and a higher number of cache
misses per instruction. But for Xen Dom0 or OpenVZ,
the higher cache misses relative to the base system is
mainly due to a larger number of instructions executed,
because its number of cache misses per instruction is
either lower than or comparable to the number for the
base system.

We are also interested in what specific kernel func-
tions are causing more L2 cache misses. For example,
Table 1 shows the percentage of L2 cache misses for the
OpenVZ and the base systems for high overhead kernel
functions. The function do_anonymous_page is used to
allocate pages for a particular application by the kernel.
The functions __copy_to_user_ll and
__copy_from_user_ll copy data back and forth from
the user-mode to kernel-mode pages. These three func-
tions together account for over 50% and 35% of total
cache misses in the OpenVZ kernel and the base Linux
kernel, respectively. This suggests that the cache misses
in OpenVZ result mainly from the usual context switch-
ing that happens between the processes. The higher
percentage of cache misses spent on these functions in
OpenVZ could be contributing to the slightly higher
response times we observe in Figure 3(b).

Because Xen uses a modified kernel, it is not possible
to directly compare calls within it with the numbers ob-
tained from the base system and OpenVZ. Tables 2, 3,
and 4 show the kernel functions with the highest cache
misses identified using Oprofile for the Web domain, the
DB domain, and Dom0, respectively, in the Xen system.

The function hypervisor_callback is called when
an event occurs that needs hypervisor attention. These
events include various activities including page faults,
and interrupt handling that usually happen in privi-
leged mode in a normal kernel. After some preliminary
processing of stack frames, the function
evtchn_do_upcall is called to process the event and

Symbol Name OpenVZ Base
do_anonymous_page 31.84 25.24
__copy_to_user_ll 11.77 9.67
__copy_from_user_ll 7.23 0.73

Table 1: Base vs. OpenVZ — % of L2 cache
misses

Symbol name L2 cache misses (%)
evtchn_do_upcall 44.54
hypervisor_callback 32.00
__copy_to_user_ll 3.57
__do_IRQ 2.50

Table 2: Xen Web kernel — % of L2 cache misses

to set up the domain to continue normally. These func-
tions are the main source of overhead in Xen and reflect
the cost of hypervisor-based virtualization.

For Dom0, the function get_page_from_freelist is
similar to the function do_anonymous_page in OpenVZ
and the base kernel. It allocates pages for use by kernel
sub systems. The number of L2 cache misses in this
function is at least 50% more than what is observed in
the the OpenVZ and the base kernels.

6.2 Two-node
In this subsection, we present the Oprofile statistics

for the two-node configuration, and reveal how the val-
ues of the hardware counters change as the number of
application instances hosted on the two nodes increases
from one to two.

We start with the two-node, one-instance scenario.
Figure 11(a) shows the total number of L2 cache misses,
total number of retired instructions, and the average
number of cache misses per instruction for the base, the
OpenVZ, and the Xen systems. Similar to the single-
node case, the Xen system has the highest value for each
of the three metrics, whereas the values for OpenVZ and
the base system are more comparable. This is consistent
with the trend we observe in the application response
times that are also included in the figure (labeled as
ART).

Figure 11(b) shows a comparison of the same metrics
as the number of application instances increases from
one to two in both the Xen and the OpenVZ systems.
As we can see, when the number of applications goes

Symbol name L2 cache misses (%)
hypervisor_callback 39.27
evtchn_do_upcall 28.71
__do_IRQ 2.43
__copy_to_user_ll 2.34

Table 3: Xen DB kernel — % of L2 cache misses
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Figure 11: Single-node — counter values break down for three different systems

Symbol name L2 cache misses (%)
hypervisor_callback 30.35
get_page_from_freelist 19.80
net_tx_action 9.55
__do_IRQ 1.61

Table 4: Xen Dom0 — % of L2 cache misses

from one to two, a larger number of instructions were
executed in both systems, as expected. The number of
L2 cache misses per instruction goes up only slightly in
OpenVZ, but more than doubled in Xen. As a result,
the total number of L2 cache misses in Xen is more than
5 times higher when there are two applications sharing
the two nodes. This again can be the main reason for
the significant increase in average response time in Xen
as shown in the same figure.

Similar to what was done for the single-node case,
we have analyzed a breakdown of the total L2 cache
misses seen by the Xen or the OpenVZ system in the
two-node configuration by different virtual servers and
binaries, and looked into the specific kernel functions
that accounted for the majority of the cache misses.
Our key observations are similar to what we have made
in the single-node case, therefore are not repeated here.

6.3 Two-node vs. single-node
We now compare the two placement configurations

shown in Figure 2(a) and 2(b) in terms of the Oprofile
statistics collected from both the Xen and the OpenVZ
systems. In Figure 12, we show the values of the same
hardware counters for the four configurations (Xen one-
node, Xen two-node, OpenVZ one-node, and OpenVZ
two-node). The metrics shown include the number of
L2 cache misses, the number of retired instructions, the
calculated number of cache misses per instruction, as
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Figure 12: Two-node vs. single-node — Nor-
malized hardware counter values from Oprofile

well as the average response time reported in the pre-
vious section. For each metric, the set of values shown
have been normalized with respect to the OpenVZ two-
node case. As we can see, for each of the four met-
rics, the value for the one-node configuration is higher
than that for the two-node case in the Xen system.
In addition, with both configurations, the values from
OpenVZ are significantly smaller than those from Xen.
This again demonstrates a strong correlation between
the number of L2 cache misses and misses per instruc-
tion that occurred and the transaction response times
observed under various configurations. It further vali-
dates that higher number of L2 cache misses is likely the
culprit that leads to higher average latency observed at
the application level.
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7. PLAUSIBLE INTERPRETATION OF PER-
FORMANCE DIFFERENCES

We would like to discuss the big question: Why do we
have these differences in performance? We believe that
the fundamental difference in hypervisor-based and OS-
level virtualization technologies is the trade-off between
performance and isolation. They also differ in the goals
they are trying to achieve. For example, Xen allows
multiple OSes to run and that cannot be achieved by a
simple OS-level technology running on a single kernel.

Xen allows more isolation by separating the multiple
virtual machines into separate memory regions and only
a selected set of para-virtualized hypervisor calls allow
the OS to access the hardware resources. OpenVZ, sim-
ply creates a set of process domains that are monitored
using beancounters and maintains the isolation at re-
source accounting level. As a result, whenever a switch
happens between different VMs, Xen needs to flush the
TLB and re-organize the memory pages incurring large
overheads.

How do we improve the performance while maintain-
ing good isolation? We inferred in this paper that the
overhead is likely caused by the large number of L2
cache misses. The L2 cache misses can happen in four
different ways.

• Kernel instruction misses: When the context
switch happens, the instruction cache containing
one kernel’s instructions need to be replaced with
the second one. This causes poor locality for the
second VM causing memory latencies. We can im-
prove this behavior by sharing parts of kernel in-
structions that are common to both VMs.

• Kernel data misses: This is difficult to reduce,
because the data pages are usually constantly chang-
ing and a simple read-only memory sharing mech-
anism cannot be used. Any mechanisms allowing
non-read-only memory sharing would compromise
the isolation guarantees provided by the hypervisor-
based technologies.

• Application instruction misses: Similar to ker-
nel instruction misses, one can reduce the over-
heads by sharing read-only memories of the two
applications.

• Application data misses: Unlike kernel data
misses, application-level data misses can be re-
duced by user-level sharing mechanisms. For in-
stance, newer versions of Java allow class sharing
and this can be extended to allow sharing between
different VMs. This can be a good performance
boost for Java applications that constantly pro-
duce memory pressure.

The read-only memory page sharing is implemented
in VMware ESX server [1] and is expected to be imple-
mented in Xen as well. In the case of SMP architecture,
the overhead is also caused by weak affinity scheduling
of the current VM scheduling algorithms. It is possible
to improve the performance by pinning the VMs to one
particular processor to reduce the further cache misses
created by processor switching. The performance may
also improve in multi-core processors where L2 cache is
shared between different processors. We plan to con-
duct further experiments to better understand the be-
havior of virtualized systems in the above scenarios.

8. CONCLUSIONS AND FUTURE WORK
We now summarize our key findings and provide an-

swers to the questions we raised in the introduction in
terms of how Xen and OpenVZ perform when used for
consolidating multi-tiered applications, and how perfor-
mance is impacted by different configurations for con-
solidation.

• For all the configurations and workloads we have
tested, Xen incurs higher virtualization overhead
than OpenVZ does, resulting in a larger difference
in application response times when compared to
the base Linux case.

• Performance degradation in Xen increases as ap-
plication workloads increase. The average response
time can go up by over 600% in the single-node
case, and between 133% and 700% in the two-node
case depending on the number of applications.

• For all the cases tested, the virtualization overhead
observed in OpenVZ is low, and can be neglected
in many scenarios.

• For all configurations, the Web tier CPU consump-
tion for Xen is roughly twice that of the base sys-
tem or OpenVZ. The CPU consumption of all sys-
tems and all containers increases linearly as the
workload increases. The slope of increase in the
case of Xen is higher than in OpenVZ and the
base cases.

• The performance overhead in Xen is likely caused
by the higher number of L2 cache misses, the ma-
jority of which occur in the vmlinux kernels of
Dom0 and the two guest domains. The higher
L2 cache misses can in turn be attributed to the
higher number of cache misses per instruction, likely
due to the context switches between the different
guest domains.

• In the Xen system in a two-node setup, the per-
centage increase in response time from a single ap-
plication instance to multiple instances is signifi-
cant (over 400% for 800 threads per application)
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while in OpenVZ this increase is much smaller
(100%). With our system setup, the two nodes
running Xen become overloaded when hosting four
instances of RUBiS, whereas those using OpenVZ
can host at least six without being overloaded.

• Hosting multiple tiers of two applications on the
same node is not an efficient solution compared
to the case of hosting them on different nodes as
far as response time and CPU consumption are
concerned. This again may be explained by the
higher number of L2 cache misses incurred in the
single-node configuration.

In conclusion, there are many complex issues involved
in consolidating servers running enterprise applications
using virtual containers. In this paper, we evaluated
different ways of consolidating multi-tiered systems us-
ing Xen and OpenVZ as virtualization technologies and
provided a quantitative analysis to understand the dif-
ferences in performance overheads.

More can be done in extending this evaluation for
various other complex enterprise applications, includ-
ing applications with higher memory requirements or
database-intensive applications. We hope that systems
researchers can use these findings to develop optimiza-
tions in virtualization technologies in the future to make
them more suited for server consolidation.
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