

A Management and Performance Framework for Semantic Web Servers

M. Mesarina, Venugopal K.S., N. Lyons, C. Sayers
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2007-54
March 30, 2007*

management,
performance

The unification of Semantic Web query languages under the SPARQL
standard and the development of commercial-quality implementations are
encouraging industries to use semantic technologies for managing
information. Current implementations, however, lack the performance
monitoring and management services that the industry expects. In this
paper, we present a performance and management framework interface to
a generic SPARQL web server. We leverage existing standards for
instrumentation to make the system ready-to-manage through existing
monitoring applications, and we provide a performance framework which
has the distinct feature of providing measurement results through the
same SPARQL interface used to query data, eliminating the need for
special interfaces.

* Internal Accession Date Only
Published in the 16th International World Wide Web Conference, 8-12 May 2007, Banff, Alberta, Canada
 Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.

A Management and Performance Framework
for Semantic Web Servers

M. Mesarina, Venugopal K.S, N. Lyons, and C. Sayers
Hewlett-Packard

Palo Alto, CA, USA
malena.mesarina@hp.com

ABSTRACT
The unification of Semantic Web query languages under the
SPARQL standard and the development of commercial-quality
implementations are encouraging industries to use semantic
technologies for managing information. Current implementations,
however, lack the performance monitoring and management
services that the industry expects. In this paper, we present a
performance and management framework interface to a generic
SPARQL web server. We leverage existing standards for
instrumentation to make the system ready-to-manage through
existing monitoring applications, and we provide a performance
framework which has the distinct feature of providing
measurement results through the same SPARQL interface used to
query data, eliminating the need for special interfaces.

Categories and Subject Descriptors
RDF, SPARQL, Semantic Server, Semantic Web, JMX
General Terms: Management, Measurement, Performance.

Keywords: Management, Performance.

1. INTRODUCTION
The vision of the Semantic Web as a universal medium for
knowledge sharing and autonomous transactions between
machines has spurred increasing research activity in the last five
years, resulting in specifications such as the W3C standards for
describing resources (RDF), constructing ontologies (OWL), and
specifying queries (SPARQL) [2]. Now that implementations of
these standards are readily available, businesses are starting to
explore semantic technologies to improve the efficiency of
internal enterprise operations, provide new services, and invent
new applications. For example, we are currently exploring the
capabilities of semantic technologies in the areas of sensor data
collection and information management. In our research, as we
started using an implementation of a SPARQL server, we
stumbled into performance problems. We could not diagnose if
our problem was with the query, the network, the remote server,
or the size of the store. Just as we faced these problems, so will
other end users. Recognizing that wide corporate adoption will
require solutions for management and performance we have
focused on building such tools.

Semantic SPARQL servers are different than traditional web
servers, they are designed to service queries in a semantic web
language (called SPARQL) to specific semantic stores (called
models) stored in memory or persistent storage. The underlying

mechanism is a semantic layer stack through which queries are
decomposed, augmented with inference engines, and processed. In
this type of system, performance concerns typically revolve
around the ‘query’ as opposed to higher level web server tasks.
The types of state information and performance metrics that a user
would want will be related to the semantic query and model rather
then the higher level metrics of the server or lower-level details of
the underlying database. For example, a typical request for state
information would be for RDF model names and for the number
of RDF triples in the models, rather than for database tables or the
number of rows. And a typical request for performance would be
query response time rather than servlet processing time.
Our approach to management control consists of utilizing a
widely adopted standard for software instrumentation (JMX) to
leverage existing implementations of monitoring applications.
And our approach to performance monitoring consists of
leveraging the underlying semantic technology to store and
provide performance measurements as RDF, providing a
homogeneous interface to both data and performance data to the
user. This eliminates the need for the user to understand the
server environment or knowledge of a specific language to
retrieve performance information.

2. ARCHITECTURE
Our implementation consists of a management component, a
performance framework and an additional query simulator for
testing. Figure 1 shows how these components fit together. The
JMX Agent and instrumentation of the SPARQL engine form the
management control, while the Telescope measurement and
Telescope client form the performance framework. For our
implementation we used the open-source Joseki SPARQL server
and will refer to it in the coming descriptions [2].

Copyright is held by the author/owner(s).
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

Web Server

JMX
Agent

Telescope
measurement

Client
simulator

Telescope
client

SPARQL engine
and RDF store

SPARQL engine
and

performance
RDF store

JMX client

Views
Telescope
ontology

Figure 1 - Architecture for our management and
monitoring framework.

2.1 MANAGEMENT
Some of the basic operations that a SPARQL server manager
would like to perform include starting and stopping the server,
monitoring model sizes, and observing logging and debugging
events. We used JMX, which is an industry standard specification
for embedding management controls in Java based applications.
JMX clients connect to the JMX Agent to monitor and control the
SPARQL engine. In the case of Joseki, we rely on the built-in
support for JMX in the Jetty servlet engine to control the server
and supplement that with our own Joseki agent and dynamic
MBeans that instrument internal component of the Joseki server,
such as the Configuration, Logging, Jena, and Debug objects.
The Agent also utilizes JMX monitoring services to periodically
query the state of objects, and create trend models for later
analysis. Any standard JMX client, such as JConsole, or the
MX4J http client can then manage the server.

While the JMX framework provides low-level operational control
to a server administrator, there is also a need to provide
performance monitoring information to SPARQL clients. This is
provided via our Telescope toolset.

2.2 PERFORMANCE MONITORING
To monitor performance of the SPARQL server when servicing
queries we instrument it with a system we term ‘Telescope’.

The Telescope measurement framework (see Figure 1) is built
with a servlet filter, which intercepts a client’s request, extracts
client and service information, times the query response and stores
all this information in a performance RDF store before forwarding
the response to the client. This performance information is
stored in an ontology for performance measurements which we
created. Because servlet filters are detachable components, our
Telescope filter is conveniently independent of the underlying
server system.

Any client application can then query for performance
information by merely issuing an additional query to the
performance store.

We have also developed an AJAX style performance visualization
tool, the Telescope client, which displays charts with performance
results. The performance results are categorized and displayed by
query types to make it easier to distinguish performance of
different queries.
Figure 2 shows a screenshot of this tool. The top chart shows
query response times vs date, and the bottom chart shows dataset
size vs date, thus it is easy to correlate the trend of response times
as the dataset size increases.

2.3 CLIENT SIMULATOR
The final element in our framework is a client simulator for
testing and profiling the end-to-end performance of the SPARQL
server under various query conditions. This tool simulates an end
user making multiple queries and records response times. It allows
a user to enter a list of SPARQL queries, the desired time delays

between queries, and the number of times the query list should be
cycled. We found this simulator very useful not only for testing
and profiling but also for closing the network performance gap, as
it provides statistical query response times at the client. We have
developed working implementations of the entire framework.

3. PRIOR WORK
Oracle Spatial 10g, currently supports SPARQL like queries
embedded in SQL commands. The Oracle Application Server
provides standard server performance metrics but it does not
provide performance information for native RDF operations, like
the query response times for varying service workloads and data
set sizes that we provide. In addition, our system allows a query
writer to analyze performance by simply issuing another query.
To the best of our knowledge, there are no SPARQL server
systems that provide the performance and management functions
we provide.

4. NEXT STEPS AND CONCLUSIONS
In the current implementation, performance results for all clients
are available to any client. We will enhance Telescope to provide
security and succinct results with the addition of a views
mechanism to select the query types of interest to a particular
user. And for the JMX management interface, we plan to use the
JMX controls to collect internal state information (e.g. database
size) and map this and other state information into another
persistent model that could be queried by SPARQL clients..

5. REFERENCES
[1] M. Davis, “The Semantic Wave, Part-1: Executive Guide to
Billion Dollar Markets”, a Project10x Special Report, January
2006.

[2] http://www.hpl.hp.com/semweb/

[3] JMX Specification (JSR-000003)

6. ACKNOWLDEGEMENTS
Many thanks to all those who have contributed to Jena and Joseki
and especially Andy Seaborne. Thanks also to our colleagues: G.
Majunath, R. Badrinath, J. Recker, and T. Close for their
comments and advice on this work. Any errors/omissions are the
responsibility of the authors.

Figure 2- Telescope performance visualization tool

