

Picasso: A Service Oriented Architecture for Model-based Automation

Sharad Singhal, James Pruyne, Vijay Machiraju
Enterprise Systems and Software Laboratory
HP Laboratories Palo Alto
HPL-2007-50R1
January 23, 2008*

SOA, model-based
automation,
service models

The increasing costs and complexity of maintaining IT environments has
resulted in a focus on both Services Oriented Architectures (SOA) as well
as model-based automation. By creating IT functions as modular
building-blocks and automating common interaction patterns between
them, IT can be made more flexible, easier to manage, and less costly to
maintain.

This paper presents Picasso, an architecture targeted at automating IT
capabilities based on SOA and Model Driven Architecture (MDA)
principles. Picasso structures IT capabilities as a set of services, each of
which exposes a description of itself as a service model to the SOA.
Service interactions are restricted to operations on the service models.
Picasso thus balances a decentralized view of the world with the ability to
re-use services in an automated manner. It provides service architects
with a structured methodology and interaction patterns that can be used to
create model based automation capabilities.

* Internal Accession Date Only Approved for External Publication

© Copyright 2008 Hewlett-Packard Development Company, L.P.

Hewlett Packard Laboratories

Table of Contents

1 Introduction.. 3

1.1 Audience... 4

1.2 Assumptions .. 4

1.3 Benefits ... 4

1.4 Document Scope .. 5

1.5 Document Overview.. 5

2 Definitions.. 7

2.1 Architecture Entities... 7

2.1.1 Domain .. 8

2.1.2 Service ... 8

2.1.3 Service Model ... 9

2.1.4 Service Access Point ..11

2.1.5 Model Event ...12

2.1.6 Role ..14

2.2 Entity Relationships ..14

3 SOA Architecture...17

3.1 Model Exchange Pattern...18

3.2 SOA Foundation Services ...21

3.3 Roles ...23

4 Use Cases...25

4.1 Domain Creation...25

4.1.1 DO01 – Create Domain and Start Foundation Services ..26

4.1.2 SD01 – Service Development..27

4.1.3 SA01 – Start a Service Access Point ..28

4.1.4 SR01 – Service Model Registration ..30

4.1.5 SS01 – Start a Service ...32

4.2 Service Operations ..33

4.2.1 SI01 – Invoke Transient Service...34

4.2.2 SI02 – Invoke Service Operation...36

4.2.3 SS02 – Stop a Service ...38

Hewlett Packard Laboratories

 Page ii

4.3 Service Event Triggers ..39

4.3.1 EH01 – Register Event Trigger...40

4.3.2 EH02 –Send Indication ..41

5 Model Operations..43

6 Frequently Asked Questions...46

Glossary ...50

Hewlett Packard Laboratories

 3

1 Introduction

Recently, the notion of a Services Oriented Architecture (SOA) has been proposed as a means of
governing large-scale information technology (IT) systems to simplify the integration and management of
IT. An SOA is defined1 as “a paradigm for organizing and utilizing distributed capabilities that may be
under the control of different ownership domains.” An SOA breaks IT functionality into a series of
services, each assumed to be controlled and managed independently of others. The services expose
state and operations to one another, and can be composed into larger building blocks by integrating
them through standardized interfaces. The premise of SOA is that by defining services that are linked to
business value and business process, the governance of IT systems can be improved. By explicitly
creating IT “service blueprints” that define interactions between services, SOAs formalize relationships
and interactions2 between IT systems.

While the reason for breaking up tightly coupled systems into service-oriented building blocks is novel
from an IT governance point of view, the underlying distributed computing concepts behind SOAs date
back at least two decades. The notion of encapsulating functionality as a “service” dates back to client-
server systems. Similarly, object-oriented programming paradigms use “objects” as the abstraction to
capture state encapsulation and create application programming interfaces (APIs) to allow software
modularity and reusability. Microsoft’s DCOM3 and the Object Management Group’s CORBA4
standards have service-oriented architectures at the implementation level. The Object Management
Group (OMG) is currently developing Model-driven-architectures5 (MDA) to extend the notions of
object-oriented paradigms in distributed systems to services oriented blocks. MDA treats service
specifications as model abstractions, and places them into two categories:

• Platform Independent Models (PIM): provide vendor neutral specifications for services, and
specify standard vocabularies and taxonomy that can be used to ensure that independent
implementations can interoperate.

• Platform Specific Models (PSM): translate and extend PIM to specific underlying
implementations. This enables the PIM to be mapped to different underlying middleware
platforms, and provide additional platform specific capabilities beyond PIM.

1 Reference Model for Services Oriented Architecture 1.0, OASIS SOA Reference Model Technical Committee:
http://www.oasis-open.org/committees/download.php/19434/soa-rm-cs.pdf

2 SOA Adoption Blueprint “GeneriCo”, OASIS SOA Adoption Blueprints Technical committee: http://www.oasis-
open.org/committees/download.php/17616/06-04-00002.000.doc

3 COM: Component Object Management Technologies, Microsoft Corporation: http://www.microsoft.com/com/default.mspx

4 CORBA Basics, Object Management Group: http://www.omg.org/gettingstarted/corbafaq.htm

5 Model Driven Architecture FAQ, Object Management Group: http://www.omg.org/mda/faq_mda.htm

Hewlett Packard Laboratories

 4

Within this context, MDA applies formal modeling and object oriented concepts to the development of
an SOA.

While SOA methodology focuses on the taxonomy of services required for IT governance and the
interactions between those services, it typically follows a functional remote procedure call (RPC)-like
methodology (usually based on web services) for the service interfaces. Similarly, while MDA takes a
model-based approach for integration, its focus is on the process for defining the models and the
tooling required for managing those models. The Picasso architecture treats the underlying functional
capability (implemented as software tools) required for automation as a set of loosely coupled services,
which are orchestrated using SOA to perform automation tasks. However, it models the service
descriptions and the service interactions using the modeling process described for MDA.

The Picasso architecture melds the SOA concepts with the object-oriented approach suggested by MDA
for describing IT services. It is therefore a concrete instantiation of SOA and MDA principles for the
purposes of IT automation.

1.1 Audience

The primary audience of this document includes system architects, designers, and implementers wishing
to instantiate SOAs using model-based interaction patterns for the purposes of automating IT systems. A
secondary audience includes strategic planners and product managers who wish to understand how
systems management tools can expose model-based interfaces to enable interoperability and “plug-and-
play” capabilities within solutions or tasks that require interaction between multiple management tools.

1.2 Assumptions

It is assumed that the reader is familiar with UML6 notation (especially class diagrams and sequence
diagrams), basic object-oriented concepts that define software patterns, as well as SOA and MDA
principles.

1.3 Benefits

The Picasso Architecture offers the following benefits for IT automation:

PlugPlugPlugPlug----andandandand----play Servicesplay Servicesplay Servicesplay Services: By merging SOA and MDA concepts, Picasso balances a decentralized view of
the world with the ability to re-use services in an automated manner.

Services EvolutionServices EvolutionServices EvolutionServices Evolution: The Picasso architecture assumes that both services and service descriptions will
evolve over time, and multiple versions of services will need to co-exist in the IT environment. Since
version incompatibility is one of the main causes of faults within distributed systems, the Picasso
architecture supports service and model version handling and validation at a low level.

Decentralized Decentralized Decentralized Decentralized Service ModelsService ModelsService ModelsService Models: In any IT automation environment, there will be multiple vendors or
developers for the management tools that are required. This makes it difficult, if not impossible, to

6 Unified Modeling Language, http://www.uml.org/

Hewlett Packard Laboratories

 5

maintain a single model that captures all dependencies and tools within the IT environment. The Picasso
architecture addresses this issue by clearly defining domains within which model coherency can be
maintained, while providing freedom to each service to define its own model of interaction.

Protocol Evolution and IndependeProtocol Evolution and IndependeProtocol Evolution and IndependeProtocol Evolution and Independencencencence: There is a plethora of ever growing and evolving “standards” that
are used within tool implementations. This poses a problem for SOA developers, since a change in
interaction protocols requires changes in every service within the SOA. The Picasso architecture follows
the MDA approach of defining service descriptions in a platform independent manner by describing
them in models. It then uses the notion of a communication proxy service to handle the details of
transforming these descriptions to actual “on-the-wire” data structures, thus freeing the service developer
from these details. By localizing any protocol related dependencies within the communication proxy
service, the Picasso architecture frees the service developer from the burden of protocol evolution.

CustomizationCustomizationCustomizationCustomization: Picasso is targeted at service automation. Because the scope of IT automation within the
enterprise is large, the architecture assumes that any given instance of the architecture will need to be
customized to the IT domain. Thus the architecture makes very few assumptions about the services,
products, and protocols that are present within a domain

1.4 Document Scope

The Picasso architecture is targeted at IT automation. Thus references to service interactions within the
architecture relate to management functions exposed by services, not the interactions necessary to
provide end-user functionality. The document describes requirements that any instance of Picasso must
meet, and provides design patterns for important interactions between services as a set of use cases.
However, many architectural and design choices are left open because they necessarily depend on the
specific IT functions being considered for automation. In that sense Picasso may be considered a “meta-
architecture,” in that any instance of this architecture may need additional architectural choices within
boundaries specified in this document.

Footnotes within the document provide references, carry important clarification information and
highlight currently unresolved issues within the architecture. Thus they should be read as an important
part of the text.

Please note that this document is under active revision, and undergoing continuous change as the
architecture is fleshed out further. The document version is maintained for this purpose, and information
in a later version of the document supersedes that in earlier versions. Issues that need addressing or
discussion items are marked using colored text in brackets such as <comment or issue yet to be
resolved, or text yet to be written>.

1.5 Document Overview

This document is organized as follows:

Section 2 provides definitions for important terms used within the architecture. Because these terms
(e.g., service, event etc.) are used widely in different contexts, they are defined precisely to avoid
confusion over their use. In addition, their purpose and the concepts supported by them are given.
Finally, their relationships are specified to define how these terms relate to one another within the scope

Hewlett Packard Laboratories

 6

of the architecture. In case of ambiguity, the reader is referred to this section for the semantics
associated with any term defined there, and no additional semantics should be assumed by the reader
beyond that provided in this section.

Section 3 defines the overall architecture. Because we assume that the actual functional capabilities
within any instance of the architecture will be custom to that instance, the traditional functional block
diagrams are avoided, and only a very small set of services and roles that are necessary for every
instance of the architecture are identified. In addition, the model exchange pattern used by all services
to communicate with one another is defined.

Section 4 elaborates on the architecture to show how the roles and services defined in Section 3
accomplish lifecycle tasks such as creating a domain; starting or stopping services; invoking operations
on services, and communicating asynchronous events using the communication patterns also defined in
Section 3.

Some operations that are used to manipulate models are enumerated in Section 5. These operations
provide guidelines that describe typical model operations that are available within the architecture.
Finally, we finish with some frequently asked questions and our responses to those questions in Section
 6.

Hewlett Packard Laboratories

 7

2 Definitions

This section introduces concepts that underpin the Picasso architecture and recur throughout it. These
concepts establish the terms (the vocabulary), notions and principles as well as how they are used
within the architecture.

PicassoPicassoPicassoPicasso uses uses uses uses the the the the terms defined in this section in a precise mannerterms defined in this section in a precise mannerterms defined in this section in a precise mannerterms defined in this section in a precise manner.... WWWWithin the scope of the architecture, ithin the scope of the architecture, ithin the scope of the architecture, ithin the scope of the architecture, no no no no
additional semantics additional semantics additional semantics additional semantics should be assumed for any definition prshould be assumed for any definition prshould be assumed for any definition prshould be assumed for any definition provided in this section.ovided in this section.ovided in this section.ovided in this section.

The material within this section is normative for the Picasso architecture.

2.1 Architecture Entities

A system of entities defines a canonical set of types within the architecture. It is preferred that the set be
a minimal and complete set of types that are semantically orthogonal.

� Entity – An entity is a thing or a concept that is relevant for the operation of the system and thus
needs representation inside the system.

The following entities have been identified within the Picasso architecture.

Table 1: Primary entities in the Picasso architecture.

Entity Purpose Concepts supported by entity

Domain Defines the scope of an instance
of the architecture

Ontology, scope, type system

Service Encapsulates specific
functionality, state, and behavior

State encapsulation, implementation
neutrality, capability re-use, loose coupling,
contract-based interactions

Service Model External representation of a
service

Introspection, interoperability, abstraction,
discovery, service composition

Service Access
Point

Hosting service that provides a
model-exchange interface

Protocol independence, simplified interfaces,
model validation, SOA services

Service Model
Event

A pending change within a
service model at a service access
point

State coherence, distributed operations,
orchestration, efficiency, asynchronous
communication, scalability

Role Mapping of function to services Permission, delegation, orchestration

These entities provide the basic building blocks for structuring the information about things and
concepts needed for the operation of any instance of the architecture. Reasoning upon entities controls

Hewlett Packard Laboratories

 8

the behavior of an instance of the architecture with respect to all internal and external interactions. They
are introduced in more detail in the following sections.

2.1.1 Domain

The scope of an instance of the architecture is defined by a domain.

� Domain – A Domain is the set of related entities that interact with one another to accomplish some
purpose. Domains define the scope of discourse between related entities, and hence the types of
entities necessary, the vocabulary (ontology) used to describe the entities, and the syntactic constructs
that are understood by all entities within the domain. A given entity may participate in multiple
domains.

Domains limit the scope and types of entities that exist in a given instance of the architecture, as well as
the vocabulary used to describe them. Thus, for example, an instance of the architecture that is
concerned with business process may define BPEL7 workflows while an instance of the architecture used
for deployment of computing resources may define computers and networks. Frequently, entities that
participate in multiple domains create communication bridges between the domains, and may provide
different views of themselves to the different domains. Domains may be nested within other domains.8

Within the architecture domains are used for specifying:

Ontology – Domains define the vocabulary (semantics) that is understood by communicating entities
within that domain. This allows a specific implementation of the architecture to be customized and
specialized for the purpose at hand.

Scope – Domains allow separation of multiple instances of the architecture that co-exist side-by-side by
restricting the set of members within the domains to be disjoint, while at the same time providing the
freedom to create bridges between the domains in controlled fashion through entities which participate
in both instances.

Meta-model – Communicating entities within a domain use a common type system and syntactic
constructs (the meta-model) to communicate. This improves interoperability and evolution of the
underlying entities by ensuring that existing entities can inter-operate with new entities without requiring
extensive re-work.

2.1.2 Service

A service defines the basic entity that captures some useful functionality within the architecture.

7 Business Process Execution Language for Web Services 1.1, IBM, http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/

8 The architecture currently leaves open the exact relationship between a domain and its sub-domains. It is anticipated that sub-
domains will be used within the architecture for purposes of SOA administration (allowing sub-domains to be administered
independently of the enclosing domain), for SOA specialization (allowing sub-domains to extend and refine the vocabulary or
entities in the enclosing domain, without affecting other entities outside the sub-domain), and for SOA partitioning (allowing
separate vocabularies to exist in the different sub-domains, while the enclosing domain reconciles communication across them).

Hewlett Packard Laboratories

 9

� Service – A Service is an entity that represents an encapsulation of functionality and state useful to
other entities within a domain.

A service9 is the central entity in the architecture. A service provides (in an object-oriented sense) an
encapsulation of some functionality10 that is useful to other services within a domain by exposing that
functionality through operations. A service may expose part of its internal state, and provides
mechanisms for other services to access and manipulate the exposed state. Services may also capture
interactions with entities in the external environment (e.g., IT systems or human operators) and present
the results of those interactions as exposed state to other services within a domain. Thus, from the
perspective of communicating services, it is possible for the exposed state within a service to change
spontaneously or autonomously.

Services address the following capabilities within the architecture:

State Encapsulation – Services encapsulate parts of the state of the external world and present that state
to other services within a domain. This simplifies the management of state by allowing creation of
modular services, each of which is concerned with managing only part of the global state. It also limits
the scope that any given service needs to handle.

Implementation Neutrality – Services use implementation neutral interaction patterns among them. This
implies that implementation specific communication patterns are prohibited in the architecture and it is
possible to replace one instance of a service with another instance that provides the same capability.

Capability Reuse – By appropriately scoping the functionality provided by a service, it is possible to
develop services that are re-usable in different contexts.

Loose Coupling – Services allow the overall system to be re-configured and re-purposed by changing
the interactions between them.

Contract Based Interactions – Services offer both mechanisms to access and manipulate state within
them, as well as explicit behavior guarantees. This permits the overall system to recover from faults (or
at least isolate them) and enables automation of different tasks performed by the collection.

2.1.3 Service Model

All services within a domain interact through service models.

� Service Model – A Service Model is the representation of a service within the SOA. It defines the
externally visible description, behavior, state, and operations available from a service to other services.
Within a domain, each service defines its own service model and is responsible for exposing it to other

9 We will use the word “service” to mean both the service type (the external definition of the service) as well as the service
instance (the concrete instance of the service based on some implementation), unless the context requires distinction. In that case,
“service type” is used to mean the definition of the service, while “service instance” is used to mean a running instance of a
service. The term “service package” will be used to mean the software (or other) implementation that underlies the service
instance.

10 Note that this does not mean that the service implementation is object oriented, or even automated. Indeed, the service
implementation may rely on human operators behind the scenes.

Hewlett Packard Laboratories

 10

services within that domain.

Note that other architectures11 define both external and internal models for services. The Picasso
architecture does not concern itself with any internal models, since they are, by definition, internal to
the service, and thus do not (or should not) affect any external interactions from that service. Similarly,
the architecture does not require (but also does not preclude) any desired state or observed state12
models.

Within the architecture, service models13 are used for the purposes of:

Introspection – The requirement that all services expose models of themselves14 allows new services to
be added (or old services to be updated) within the architecture, and their semantics and interaction
patterns understood by new and existing services without reprogramming.

Service Composition – By including appropriate meta-model constructs (e.g., references), services can
be composed for different functions. A composed service is not required to have a service model
separate from its constituent services, although the architecture permits a service instance to act as a
proxy for the composite (and thus be required to expose a model of the composite).

Interoperability – The type system used within the domain is represented by a common meta-model15,
i.e., the model structure used by all entities is also explicitly represented using a model. While each
service is free to define its own service model, all communicating services use the same meta-model.
This allows the services to selectively access model components of interest to them, without requiring
them to recognize and deal with model elements that are not of concern to them. Note that it may be
possible to use more than one meta-model within a domain. However, this requires the presence of at
least one service that can communicate using both meta-models and can act as an intermediary
between other services that use different meta-models. While different meta-models may be unavoidable
across domains, use of different meta-models is strongly discouraged within a single domain.

Discovery – The models exposed by all services within a domain allow discovery of information and
service instances within the architecture. The architecture does not presume (or preclude) any specific
form of discovery (e.g., through registries).

Abstraction – Service models present abstractions of the external world within a domain as state
exposed by services. Thus, information that is unnecessary for interactions among services over the

11 Extending Radia into a Service Delivery Controller, http://www.hpl.hp.com/techreports/2005/HPL-2005-52.pdf

12 Ibid.

13 Note that we use the word model to represent both the model schema (M1) and the model instance (M0) unless the context
requires distinction. In that case we use “Model Type” and “Model Instance” to distinguish the two. We will also frequently omit
the prefix “Service” from “Service Model” if the context is clear.

14 Within the context of management services used for automation tasks, it is important to understand that the service is required
to expose a model of itself for purposes of introspection, not just a model of the elements it manages, although that information is
also likely to be present in the model as exposed state. Thus a deployment service exposes a model that permits other services to
recognize that the service is a type of “deployment service.” It is not sufficient for the service to simply expose the computers or
network models that it is managing. The domain within which the service exists determines both the representation of the model
as well as the type ontology (e.g. “deployment service”) that are permitted inside the domain.

15 Meta-models (M2) represent the common structure that is used to define Model Types (M1) within a domain.

Hewlett Packard Laboratories

 11

SOA can be hidden from view by omitting it in the models. By properly abstracting information present
within models, services can hide heterogeneity and support the domain purpose to be accomplished
even when the underlying components change over time.

2.1.4 Service Access Point

Service instances within a domain communicate with one another using proxy services provided by
service access points.

� Service Access Point – A Service Access Point is a service end-point that provides a standard
interface for interaction between services using a model exchange pattern. A service access point
represents a distributed proxy service that provides the ability to utilize other services through a
restricted set of model operations.

The Service Access Point (SAP) hosts service models exposed by services, and provides a standardized
interface for accessing those models. Because the models capture the external view of the service,
service access points act as proxies for services within the SOA, and jointly provide an access service
within the domain. Note that a service access point may act as a proxy for many services, and a given
service may advertise itself through multiple access points16. The service access point differentiates the
Picasso architecture from other service-oriented architectures, in that it allows service instances to
delegate the responsibility for their interaction with other services to the services access point.

A service access point provides the following capabilities to the architecture:

Simplified Interfaces – In traditional web services, each service presents its own interface (e.g.,
WSDL17) to the SOA implementation. In addition, this interface is frequently tied directly to “on-the-wire”
representations (e.g., XML message formats) of the information. The service access point, however,
restricts its API to model exchange patterns18, and therefore presents a much simpler API within the
SOA that can be used independently of the service operations (which are captured in the models). By
shifting the complexity away from the SOA APIs, Picasso simplifies the composition of services at the
SOA level, while allowing the services to define more complex operations as necessary within service
models.

Protocol Independence – traditional web services use an ever-evolving set of standards for on-the-wire
communications. Each update or change requires all service implementations to change within the
SOA. By delegating the communication responsibility to the service access point, service designers can
focus on the capabilities provided by their services rather than requiring updates from every service
instance in the architecture.

Model and Message Validation – Typically, message validation is required within an SOA by each
service because of the loosely-coupled nature of the services. The service access point uses the meta-

16 Even if a service instance is accessible through multiple access points, its identity (within a domain) at the different service
access points stays the same, i.e., the service clients can query the service at any service access point and recognize that they

are communicating with the same service instance. See discussion under “Identity Service” later in Section 3.2.1.2.

17 Web Services Description Language (WSDL) 1.1, W3C: http://www.w3.org/TR/2001/NOTE-wsdl-20010315

18 The model exchange pattern is defined in detail in Section 3.1.

Hewlett Packard Laboratories

 12

model and domain ontology defined by the domain to validate all model exchanges through it, and
ensures that mal-formed messages and models are avoided.

Model Caching – In a distributed environment, SAPs may cache information about the different models
that exist within the SOA, thus reducing the network and communication overhead of repeatedly
transporting model elements between services.

2.1.5 Model Event

A Model Event represents a pending change within a service model hosted by a service access point.

� Model Event – A Model Event is a pending change of some service model element caused by a
model operation performed by some service at a service access point. The model operation may target
either the model type or the model instance at the SAP. Model operations or changes in external state
that cannot cause in changes in models hosted by an SAP do not represent model events.

Model events19 are the primary mechanism by which the service access points track service model
changes, decide which changes are permitted (and which ones are not), and interact with services and
service clients in order to respond to pending changes.

Within the architecture model events are used for:

State Coherence – Since model events represent pending changes (before they are made), services
have the opportunity to reject the proposed change before it is committed to be a part of the service
model. This reduces the likelihood that the distributed state within the models becomes inconsistent.

Distributed Operations – Model events allow operations to be distributed by providing a mechanism
whereby a single operation on some model results in multiple operations on other models in a
distributed environment. They provide a way of creating, customizing, and orchestrating distributed
workflows implicitly within the architecture.

Efficiency – Model events avoid the need for constant polling of service models by services to detect
changes. By delegating the responsibility of tracking model changes to the SAP and requesting
notification when a change is pending, the services and service clients reduce the overhead of
monitoring state within the environment.

Asynchronous Communication – Model events provide asynchronous communication capability
between services. Since only model operations are permitted at service access points, a pending
change on some service model element represents a request for one or more service actions. This
permits the service access point to communicate with other services on an as-needed basis.

Model event handling is provided in the architecture through three entities: Model Event Triggers,
Indications, and Model Event Filters.20

19 We will often omit the prefix “Model” when referring to Model Events, unless the context requires it.

20 We will often omit the prefix “Model Event” when referring to Model Event Triggers and Model Event Filters unless the context
requires it.

Hewlett Packard Laboratories

 13

2.1.5.1 Model Event Trigger

Not all model events require action on part of some service or a service client. A model event trigger is
a model event that requires notification of some service other than the service access point itself.

� Model Event Trigger – A Model Event Trigger is a model event that requires the service access
point to notify some service (or service client) of a pending change in some model element.

Model event triggers are intended to distinguish model events that can be handled by the service
access point from those that require notification of a service by the service access point. Note that
implementations may choose to use the same mechanism to implement model event triggers and other
events that are internal to the service access point—that decision is implementation specific and does
not affect the architecture.

Model event triggers are further refined into two21 categories:

Approval requestApproval requestApproval requestApproval request: An approval request is a trigger that requires approval from some listener (the
change approver) before the pending change can be committed. In this case, the SAP waits for a
response (approve/reject) from the approver before committing the model change or generating other
triggers to services that actually perform the underlying operations implied by the pending model
change.

Change notificationChange notificationChange notificationChange notification: A change notification is a trigger that that simply informs the listener of a model
change that has been committed at the SAP. Note that in this case, the SAP allows the pending change
to complete before notifying the listener that the change has taken place. Change notifications are
intended primarily as a mechanism to improve efficiency in distributed environments, because they are
sent “after-the-fact” and do not require the listener to query the SAP again to check if the pending
change actually succeeded or not.

2.1.5.2 Indication

Indications are model elements that define the messages that are passed to a service or a service client
by service access points as a result of a model event trigger.

� Indication – An Indication is a model element that is passed to a service (or service client) as result
of a model event trigger. Indications provide sufficient information to the recipient to allow it to obtain
the model state as proposed by the change.

A service that is capable of receiving indications is an indication listener. Because indications are used
by approval requests, the architecture recommends that indications should provide sufficient information
to allow the indication listener an efficient way of accepting (or rejecting) the proposed change.

21 Note that this does not imply that these are the only two types of triggers. Triggers may represent other conditions besides
approval requests and change notifications. For example, a service may be notified of a pending change, and may explicitly
have to take action or perform other operations on the model in order to commit the change rather than just returning an accept

or reject status to the SAP. See Model Exchange Pattern later (Section 3.1) in the document.

Hewlett Packard Laboratories

 14

2.1.5.3 Model Event Filter

Model event filters are model elements that allow the service access point to decide which model events
should be labeled as model event triggers.

���� Model Event Filter – A Model Event Filter is a model element that defines a query on service
models held at a service access point. The query specifies model operations (create/ update/ delete/
invoke) on specified model elements, as well as references to one or more indication listeners that need
to be notified if the corresponding query succeeds.

Model event filters provide mechanisms for different services to register interest in model operations
performed at the service access point, and provide the service access point with a model-neutral way of
recognizing when a model change requires action on part of an external entity.

2.1.6 Role

Service (or human) entities within the domain perform activities based on roles assigned to them.

� Role – A Role represents the expectation that a certain service (or human) entity within a domain is
assigned or required to perform a given task or activity.

Note that the assignment of roles to entities may change over time; multiple entities may share a role,
and entities may delegate their roles to other entities. Roles are used within a domain to determine
which service instance has responsibility for which function, and which service instance is permitted to
perform which operation. The visibility of service models (or model elements) may depend on the role of
the requestor.

A role provides the following capabilities to the architecture:

Permissions – Roles define which services (or service instances) are permitted to perform which
operations within the domain. Note that the role of a service is not the same as its identity. Roles permit
permissions to be defined independently of the identity of service instances.

Delegation – Within a domain, services may perform operations on behalf of other services, and may
delegate their authority to perform operations to other services. Roles provide a mechanism for allowing
such delegation.

Orchestration– When services interact to accomplish some larger task, it becomes important that
specific tasks be performed in some well-defined order, but it is usually not as important which service
instance performs a given task. Roles allow such tasks to be specified independently of the underlying
service instances that perform those tasks.

2.2 Entity Relationships

This section summarizes the relationships between the different entities defined in the architecture. For
ease of representation and precision in description, we use UML notation.

Hewlett Packard Laboratories

 15

As shown in Figure 1, each instance of the architecture is scoped by some domain. The domain defines
one or more meta-models that are used by all services within that domain22 to express their service
models. The domain is an aggregate of one or more entities, and an entity can participate in one or
more domains. Domain entities include other domains, services, models exposed by services, events
and roles.

Each service within a domain exposes a model of itself, which is hosted by some service access point
on behalf of that service. All services within the domain are thus associated with service access
points23. The model exposed by the service conforms to the meta-model defined by the domain. Service
access points are end points of a domain-wide proxy service that provides SOA communication
capabilities based on a model-exchange pattern to other services. The model-exchange pattern is a
restricted set of standard model operations (on models exposed by the services) for communication with
other service access points and/or service clients.

Entity

Domain Service

Service Access

Point

Model

1..*

1..*

1..* 1
Exposed Model

Defines Meta Model(s) for

Event

1

*

GeneratesRole

*

*
Service Role

*

*

ModelVisibility

Hosts

1

1

Pending change for

Figure 1: Entity Relationships

Services may have roles associated with them. The service role defines the visibility of models (or model
elements) to that service, and hence the functionality available to that service from other services. Roles
are used within a domain for defining access from one service to another.

22 Currently, the architecture mandates a “dictionary service” for each domain that holds the authoritative meta-model(s) and the
service ontology for the domain.

23 Note that service access points provide an access service, and are thus required to expose a model representing that they are
“service access points” for that service.

Hewlett Packard Laboratories

 16

Figure 2: Event Generation

Service access points may generate model events as shown in Figure 2. Model events represent
pending changes in models at a service access point. Service access points monitor model events using
Model event filters, which are model elements that represent an interest in the pending change by some
service. Model events selected by Model event filters are Model event triggers, which cause the service
access point to generate indications to be sent to the service(s) interested in the pending change.
Triggers may represent notifications or approval requests (not shown).

Within the Picasso architecture, these relationships form the basis for specification of services (in terms
models), interaction between services (as changes to the models, permitted by service roles) and the
means to maintain state coherency and control within the IT environment (using event triggers and
indications).

Hewlett Packard Laboratories

 17

3 SOA Architecture

This section defines the overall Picasso architecture using terms defined in Section 2. Because Picasso is
a services-oriented architecture, at the top level it is structured simply as a set of communicating
services.

Figure 3 illustrates an instance of the architecture. It consists of a number of service access points (sap1 -
sap4). The SAPs host a number of services (S1 – S7) of types (T1 – T6) in a distributed manner. The
services in turn interact with external world entities including human operators (e.g., S7), information
systems (e.g., S2), or IT infrastructure (e.g., S5 and S6). Note that multiple instances of the same service
type may be present in the environment, perhaps providing the same service bound to different parts of
the infrastructure (e.g., S5 and S6), and the same service instance may present itself to other services
through multiple SAPs (e.g., S2), perhaps to provide a distributed service.

The Picasso architecture is concerned with interactions between the SAPs, interactions between the
SAPs and the services, and (mediated via the SAPs) interactions between the services themselves.

sap2

:SAP

sap3

:SAP

sap4

:SAP

sap1

:SAP

S1:T1 S2:T2

S4:T4

S5:T5

S6:T5
S7:T6

S3:T3

DB1

Figure 3: Illustration of Picasso Architecture

The SOA capabilities within Picasso are represented by the capabilities of foundation services (see
Section 3.2) required within the architecture as well as interaction patterns that are used by services to
communicate with one another (see Section 3.1).

The subsequent material within this section is normative for the Picasso architecture.

Hewlett Packard Laboratories

 18

3.1 Model Exchange Pattern

Services communicate by exchanging models (or changing exposed models) using a “REST-ful” style of
communication that uses operational semantics such as “GET” and “PUT” on model elements. However,
the architecture enforces additional semantics on this communication because models represent
“exposed” state and operations available from any service. Thus, it is important that changes within
service models be controlled to ensure that invalid or undesired representations are not propagated
between service entities. This is facilitated by the model exchange pattern within Picasso.

Generate Service Event

Client
service

SAP1 SAP2

Server

service
Model

AB
B

1

Client
service

SAP1 SAP2

Server
service

Invoke Service Operation

Model

AB B

2

AB B

Figure 4: Communication between services

Within Picasso, three types of communications are possible:

1. Communication between two SAPs: Since the SAPs represent the ability for services to
communicate, they are aware of “on-the-wire” protocols used within the SOA and
communicate with one another directly using those protocols. However, the architecture limits
the communication between SAPs to operations defined on service models24 that are being
hosted at an SAP. These communications are shown in Figure 4 by interactions labeled (A).

2. Communication between a service and an SAP: Services expose their operations and state to
other services within the SOA by providing models to the hosting SAP. This implies the need for
a service to communicate with an SAP. The API between the service and the SAP follows the
same pattern of model-based operations as the SAP – SAP communication. However, the
Picasso architecture leaves the actual protocols and APIs for the communications as choices
made by the Service Developer and the Domain Architect25. These communications are shown
in Figure 4 by interactions labeled (B).

3. Communication between two services: Within Picasso, services communicate with one another
mediated by the SAPs. Two forms of communication between services are defined, depending

24 Note that the models may represent the SAP itself, or may represent a service hosted at the SAP.

25 In general, we expect that this API will be a “programmatic API” such as a Java or C++ API depending on implementation
choices made by the Service Developer. While it is possible to also expose “on-the-wire” protocols for this purpose, the
architecture does not encourage this.

Hewlett Packard Laboratories

 19

on the model targeted by the communication. Note that in both cases, the communication can
be broken down further into SAP – Service communication and SAP – SAP communication.

a. A service modifies its own model: A service may make a change to its own model at
the SAP based on changes in its internal state. In this case, it is possible for other
services to subscribe to changes in the service model (by defining the appropriate
triggers on the service model). Here, the SAP sends appropriate indications to the
subscriber to notify the remote service of the model change. This form of
communication is closest to a “publish/subscribe” mechanism between services that is
provided by the SAPs. This is shown in Figure 4 by interactions labeled (1).

b. A service invokes an operation on a different service: In this case, the service invokes
an operation on the model exposed by a different service. If both services are hosted
at the same SAP, that SAP can handle the operation internally. If the “client service” is
located at a different SAP than the “server service”, the client SAP invokes the
appropriate model operation at the remote SAP on behalf of the client service26. This is
shown in Figure 4 by interactions labeled (2).

All three types of communication target models held at an SAP. Picasso treats these communications as
“model exchanges” wherein a change in some model at an SAP is requested by a service (or by an
SAP acting on behalf of some service).

The basic model exchange pattern is shown27 in Figure 5. When a change28 in some service model is
requested (Step 1) at a service access point by some service (the change requestor), the model
representation is not changed immediately. Instead, the request is validated29 (Step 2), the pending
change is cached (Step 3) and Filters defined on the model are used to decide if an approval request is
generated (Step 4).

If no approval requests are generated (Case A), the corresponding service operations are performed
[See 4.2.2- SI02 – Invoke Service Operation], the change is committed (Step 7a) and the requestor is
notified of a successful change (Step 8a). If however, an approval request30 is generated (Case B), the
“Model Owner” associated with the affected model (or model fragment) is notified (Step 5) by sending
an indication to it. If the model owner approves the change (Step 6a), any service operations

26 Note that we are using the terms “server” and “client” in the traditional distributed computing sense. That is, a server is the
entity that is exposing some operation, and the client is the entity invoking the operation. Depending on the direction of
communication, a particular service instance can act either as the server or the client. This should be distinguished from terms
such as “Service Provider,” “Customer,” or “End User,” which are roles attached to entities within the SOA.

27 In this and subsequent diagrams, we are taking some liberties with UML notation. Specifically, rather than showing alternate
cases on messages, we are showing alternatives by splitting the object lifeline. In our opinion, at the conceptual level, this makes
the diagram more readable.

28 Note that the definition of a “change” includes initial creation and final deletion of the model instance or model type.

29 Note that “validation” in this step includes checking the request against the domain ontology and meta-model for semantic and
syntactic correctness, and may include mutual authentication between the change requestor and the SAP, as well as checks
against requestor roles to decide if the change is permitted. Depending on implementation, these steps may be explicitly done by
generating Triggers at Step 4, or may be a part of the SAP logic.

30 It is currently open what happens if more than one approval request is generated. <One suggestion is that only one “owner”
can exist at a time. Another possibility is that the domain meta-model defines the semantics (AND/OR) followed by the SAP when
multiple requests are present>

Hewlett Packard Laboratories

 20

associated with the change are performed [see 4.2.2- SI02 – Invoke Service Operation], the change is
committed (Step 7a), and the requestor notified of the successful change (Step 8a), and if notifications
need to be generated, the appropriate indications are sent (Step 9). If however, the model owner
rejects the pending change (Step 6b), the change is discarded (Step 7b) and the requestor is notified of
change failure (Step 8b). Note that during this process the pending change is not visible to services
(including the requestor) other than the SAP and the model owner until the end of Step 7a, when the
change is committed.

Service Access Point

Model

representation

Change

Requestor
Model Owner

1. Request model change

5. Notify model owner of pending change

8a. Return “success”

6. Approve/Reject change

3. Cache change

4. Apply Filters

A. No Approval

Request
B. Approval request Generated

7a. Perform operations

and commit Change

7b. Discard Change
8b. Return “Failure”

2. Validate request

6a. Model change approved 6b. Model change rejected

9. Generate notification

triggers

Change becomes visible

to requestor at this point

This is use case

SI02: Invoke

Service

Operation

Figure 5: Model Exchange Pattern

This basic pattern forms a “handshake” that is used extensively within the Picasso architecture to
maintain coherence of models at SAPs and prevents arbitrary or incorrect changes to state represented
within the service models in Picasso. Variants of this handshake are used in different interactions to
ensure that only valid state is presented through the models.

Because the model owner (typically the service exposing the model) stays in control of the exposed
model at all times, it can decide which model changes require approval and/or notification. It can also
analyze pending changes to ensure model coherence. Finally, such a handshake provides assurance to
the clients that any changes they make in the models are valid changes, and receive explicit notification
when the changes fail.

In the subsequent discussion, thIn the subsequent discussion, thIn the subsequent discussion, thIn the subsequent discussion, theeee model exchange patte model exchange patte model exchange patte model exchange pattern is not explicitly shown to simplify interaction rn is not explicitly shown to simplify interaction rn is not explicitly shown to simplify interaction rn is not explicitly shown to simplify interaction
diagrams. However, it should be recognized that this semantics is followed by all interactions that require diagrams. However, it should be recognized that this semantics is followed by all interactions that require diagrams. However, it should be recognized that this semantics is followed by all interactions that require diagrams. However, it should be recognized that this semantics is followed by all interactions that require
model changes (including initial creation and final deletion of models) at the SAP.model changes (including initial creation and final deletion of models) at the SAP.model changes (including initial creation and final deletion of models) at the SAP.model changes (including initial creation and final deletion of models) at the SAP.

Hewlett Packard Laboratories

 21

3.2 SOA Foundation Services

The SOA within Picasso relies on a number of services (Foundation Services). Note that foundation
services are defined like any other service within Picasso, and follow the same restrictions of model-
based communications mediated by the SAPs as other services. However, they are listed separately as
part of the architecture because they are core to the operation of the SOA, and are often required by
any distributed architecture. This section defines the foundation services identified within Picasso.

3.2.1.1 Service Access Service

The service access points provide access to all services within the Picasso architecture using a model
exchange pattern. The SAP distinguishes the Picasso architecture from other MDA or SOA
instantiations. The service access points expose service descriptions and state as models to one
another, and are responsible for implementing any “on-the-wire” protocols to communicate model
information between them. They jointly provide a distributed access service that is responsible for all
communication between services. The Service Access Service provided by SAPs is the only foundation
service that MUST be implemented within any instantiation of the Picasso Architecture.

3.2.1.2 Identity Service

Every service instance within Picasso is required to have a globally unique identity that differentiates a
given service instance from all other service instances31. Picasso does not mandate a specific form for
the service identity, beyond the requirement that two service instances are considered to be the same
instance if and only if their identity is the equal. The architecture assumes that while the semantics of
“equality” may vary depending on the domain, the identity service provides operations that allow two
identities to be compared.

Service identities may be managed within each (sub) domain by an “identity service,” which serves as
the authoritative source for assigning identities to service instances within that (sub) domain. The identity
service in a (sub) domain may form a hierarchical relationship with the identity service in the enclosing
domain.

31 Note that the notions of an identity, a name, a role, an address, and a credential are frequently used interchangeably in many
contexts. The Picasso architecture draws clear distinctions between a service “name”, its “identity”, its “role”, its “address” and its
“credentials.” These distinctions are best understood by drawing parallels with how these words are used within human contexts.
Each person is unique from birth and has an identity that is unique from any other person. A person may have a specific
identifier (e.g., a social security number) that is unique to them for identification purposes within a domain (e.g., the domain
defined by all US residents). People are referred to by their names, which serve as convenient labels for them. However, there
may be many people named “Joe” and a given individual may be known by many names, e.g., “Joe” and “Joseph.” A person
may take on one or more roles, e.g, “Joe” could have the role of a “father”, a “son”, and an “employee”. People may be located
at addresses, which are a mechanism for associating location information with people. Finally, people carry credentials (e.g.,
driver’s licenses or passports) that vouch for their identity.

Within Picasso, we postulate that each service instance has a unique identity for its lifetime, with an associated identifier that may
be provided to it by the identity service. A service instance may take one or more convenient names (maybe registered with the
name service) that act as convenient mechanisms for labeling the service. A service instance may take on one or more roles
(defined in the directory service). The service instances have associated addresses (maybe registered with the name service) that
allow other services to locate them. Finally, a service instance may have credentials (possibly obtained from a certificate authority
service) that can be used to validate the identity of the service to other services.

Hewlett Packard Laboratories

 22

Once an identity has been assigned to a service instance, it cannot be “revoked” for the duration of the
lifetime of the service instance32.

3.2.1.3 Certificate Authority Service

The certificate authority service provides cryptographic certificates to service instances and acts as a
trusted mediator service to enable service instances to authenticate their identities to one another. Each
(sub) domain should contain at least one instance of a certificate authority service. In case of nested
domains, or when multiple certificate authority services co-exist, they may form hierarchical
relationships with one another that parallel the domain hierarchy.

The certificate authority service may revoke certificates at any time.

3.2.1.4 Name Service

The name service maps one or more “friendly names” to one or more service addresses. Names may
be used by service instances to refer to other service instances, and services may obtain the mapping
from names to addresses (and vice versa) using the name service. Each (sub) domain normally contains
a single instance of a name service. Like the identity service and the certificate authority service, the
name service instances may also form a hierarchy when nested domains are present. The naming
convention (e.g., URIs33) used within a domain is determined by the ontology and type system defined
for that domain.

3.2.1.5 Directory Service

The directory service contains information (e.g., location, role, organization, contact information, etc.)
that defines pertinent information (metadata) about a service instance within the domain. Frequently, the
directory service is co-located with the identity service (and/or the name service), and is tied closely to
it. The architecture recommends (but does not mandate) that each (sub) domain contain a single
instance of the directory service. Note that unlike the Name Service, which simply maps names to
addresses, and vice versa, the directory service supports much more complex queries about the meta-
data associated with the services.

3.2.1.6 Dictionary Service

The dictionary service provides an authoritative repository for the ontology and service model types
used within the domain. Note that the dictionary service provides “semantic definitions” as well as the
“syntactic definitions” within the type system used for model representation. The service access points
validate and check service definitions against the type system provided by the domain dictionary and
reject any non-conforming definitions. The dictionary service provides a mechanism for the domain to
control the taxonomy of services, the vocabulary used within the domain, and to ensure that model
representations are consistent across services within the domain. If multiple dictionary services are

32 It is currently open if a service instance is allowed to maintain its identity across a “restart” of the instance. <This seems a
reasonable assumption assuming that the restarted service instance binds to the same model instance within the SAP, but we need
to test it.>

33 Naming and Addressing, W3C: http://www.w3.org/Addressing/

Hewlett Packard Laboratories

 23

present in a given (sub) domain, it is recommended that they be linked in a hierarchy to prevent
semantic conflicts between them.

3.2.1.7 Match-Making Service

A Match making service provides yellow pages or capability-based selection service. It is similar to a
registry in that it allows instances to discover one-another based on queries made on capability.

3.2.1.8 Audit and Logging Service

The audit and logging service provides the capability to log (and audit) messages between SAPs within
a domain. Since all34 service interactions within Picasso happen through the SAPs, Audit and Logging
services can be conveniently be added there to provide “non-repudiation” capabilities within the SOA.

3.2.1.9 Orchestration Service

The orchestration service provides a mechanism for dynamic composition of services by offering
workflow management capabilities within the SOA. Note however, that implicit workflows that do not
require centralized orchestration can be built by defining appropriate model event triggers.

3.2.1.10 Policy Service

The policy service provides a mechanism for creating, managing, and enforcing domain-level policies
within the SOA. The architecture recommends that the policy service should be implemented so that
SAPs can act as policy enforcement points.35

3.2.1.11 Registry Service

A registry service typically provides capabilities similar to a directory service in that service instances
register themselves with the registry, thus providing “discovery” capabilities within the SOA. It also
frequently provides matchmaking capabilities.

3.3 Roles

The following primary roles are defined within the Picasso architecture:

Table 2: Roles defined within the architecture.

Role Purpose Responsibilities supported by role

Domain
Architect

Defines a domain. Typically a
human role.

Creates the ontology, scope, type system used
within the domain. Defines domain-level
service taxonomy and domain policy. This is

34 Recall that within the context of Picasso, we are concerned only with interactions that relate to management operations, not
end user functionality.

35 Terminology for Policy-Based Management, RFC 3198, IETF: http://www.ietf.org/rfc/rfc3198.txt

Hewlett Packard Laboratories

 24

Role Purpose Responsibilities supported by role
an extension of the Service Architect role

Domain
Administrator

Manages a domain. Typically a
human role.

Manages domain-related services. Grants
domain-level permissions to roles within the
domain. This is an extension of the Service
Administrator role.

Service
Architect

Defines a service model and
service logic. Typically a human
role

Defines model types within the domain.
Defines service-level policy and interactions
with other services.

Service
Developer

Implements the service logic.
Typically a human role.

Develops, tests, and packages the service
logic. Creates the service implementation.

Service
Administrator

Manages the service during
operations. Maybe an automated
system role or a human role.

Registers the model types with the SAP. Starts
or stops service instances. Approves addition
or deletion of service instances from the SAP.

Service Encapsulation unit for of state
and functionality in the system.
Provides state and functionality to
other services. Typically an
automated system role.

Links (binds) model representations to actual
state within the external environment (e.g., IT
systems and user interfaces). Provides
functional capabilities useful to other services
within the architecture. Performs operations
when models changes are made. Performs
model changes to synchronize models to
external environment.

Service Access
Point

Hosts models on behalf of
services and provides
communication capabilities
between services based on
model-exchanges. An automated
system role.

Maintains service model representations on
behalf of services. Supports secure
communications and distributed SOA
services. Supports events and messaging
between services.

Service Client Requests service functionality
and/or state from other services.
May be an automated system
role or a human role.

Requests model changes to perform specific
tasks. Request model operations to be
performed by other services.

Note that any specific implementation of Picasso is likely to extend these roles as needed. Furthermore,
if automation capabilities extend up to the business level, additional roles (e.g., business manager) may
be necessary. Thus this list of roles should not be considered exhaustive.

Hewlett Packard Laboratories

 25

4 Use Cases

This section defines basic interaction patterns between services within a domain as a set of use cases.
Note that in the use cases that follow, many interactions with foundation services are not explicitly
shown to simplify the interaction diagrams. Depending on the foundation services used within a given
domain, additional interactions will be necessary beyond shown in the use cases below.

4.1 Domain Creation

<<includes>>

<<includes>>

<<includes>>

<<includes>>

Figure 6: Use cases for creating domain SOA

Figure 6 shows the use cases necessary to create a domain and start the foundation services36
necessary for the SOA. Note that all use cases start with the definition of the domain provided by the
Domain Architect. The SAP and each foundation service [See 3.2: SOA Foundation Services] defined
within the domain needs to be developed by the Service Architect and the Service Developer. Once the

36 Note that in case of the foundation services, the domain administrator (an extension of the service administrator role) is
responsible for the services, because the privileges associated with the foundation services are likely to be different from those
associated with other services that use the SOA. However, in the subsequent discussion, the service administrator role is used
within the detailed discussion of the individual use cases, because that role is more generic.

Hewlett Packard Laboratories

 26

services have been created, the appropriate foundation services can be started. These use cases are
defined in more detail below.

4.1.1 DO01 – Create Domain and Start Foundation Services

This use case specifies how the Domain is defined and Foundation Services within it are created and
started.

Actors Domain Architect, Service Architect, Service Developer, Domain
Administrator, Foundation Services, SAP

Preconditions None

Input None

 1. Domain Architect defines domain information (ontology, meta-
model).

2. Domain Architect provides domain information to Service Architect.

3. Service Architect defines the SAP and foundation service models and
determines their dependencies, as well as the service logic [See
 4.1.2: SD01 – Service Development].

4. Service Architect provides the service models to the Service

Hewlett Packard Laboratories

 27

Developer.

5. Service Developer develops service packages for the SAP and other
foundation services based on information from Step 3

6. Service Developer provides the service packages to the Domain
Administrator.

7. Domain Administrator starts up one or more SAPs to host foundation
service models [See 4.1.3: SA01 – Start a Service Access Point].

8. Domain Administrator registers foundation services with the SAPs
[See 4.1.4: SR01 – Service Model Registration].

9. Domain Administrator starts the foundation services [See 4.1.5:
SS01 – Start a Service].

Post-conditions Case success: Domain has been defined, one or more SAP(s) that host
Foundation Services are up and running, Foundation Service Models are up
and running.

Case Failure: Errors in foundation service definition, initial service bring up
caused failures. Foundation Services within the domain may only be partially
working.

Notes Order of starting SAPs and foundation services in Steps 8 and 9 depends on
the dependencies between them. To avoid circular dependencies, the names,
addresses, identities, and credentials for the name service, the identity
service, the directory service, and the certificate authority service, and at least
one SAP may need to be “baked in” to the foundation service models to
allow resolution/binding during bring-up.

Steps 3-9 provide a variant of this use case that is usable for any service
within the domain (not just the foundation services).

Issues This is a bootstrap case. Need to understand how the bring-up of domain
services can be automated. Currently, the process for creation and startup of
domain services is assumed to be manual. Therefore failure cases are
handled on a case by case basis by interactions among the Domain
Architect, the Service Developer, and the Service Administrator.

4.1.2 SD01 – Service Development

This use case specifies how a service is developed.

Actors Service Architect, Service Developer

Preconditions Domain must have been defined by Domain Administrator

Input Domain information [See Steps 1, 2 in 4.1.1: DO01 – Create Domain and
Start Foundation Services]. Service definitions for existing services within the
SOA [e.g., see 3.2.1.6 Dictionary Service]

Hewlett Packard Laboratories

 28

Actions 1. Service Architect defines the service Model Type compliant with the
Domain information. The service Model Type includes:

a. All externally visible attributes of the service (including
models of managed elements which are part of the exposed
state)

b. Service operations defined on any element within the service
model

c. Any triggers and filter definitions required to interact with the
SAP

d. Dependencies on other services required for this service to
operate

2. Service Architect defines the service logic necessary to implement the
service.

3. Service Architect provides the service model and service logic
definitions to the Service Developer

4. Service Developer writes service logic that is compliant with the
service Model Type, along with logic/scripts necessary to start/stop
the service.

5. Service Developer writes test cases, tests the service, and documents
it.

6. Service Developer packages items from Steps 1-5 in a form that can
be used by the Service Administrator to register and start the service.

Post-conditions Case success: Service logic has been developed and packaged in a form
ready to be registered and started. Service models have been defined and
provided as part of the package.

Case Failure: It may not be possible to develop the service logic to comply
with the domain information provided.

Notes In case of failure, the Domain Architect, the Service Architect, Service
Developer and the Service Administrator may have to iteratively adjust both
the service model as well as the domain information. Dependencies may also
require adjustment to other services impacted by the changes.

Issues This use case contains a very large code development and test process in
Steps 2-5. It is also likely that Step 1 will require interaction between the
Domain Architect and the Service Architect.

4.1.3 SA01 – Start a Service Access Point

This use case specifies how a Service Access Point is started.

Hewlett Packard Laboratories

 29

Note: The Service Access Point requires access to the foundation services when it starts up. At the time
the SAP is started, the following cases may apply:

1. The SAP is intended to host service models for some foundation services, and cannot assume the
presence of the foundation services.

2. The SAP is intended to host service models for some service, and other foundation services necessary
are already available.

This use case provides the interactions necessary for the second case above. The first case is a
bootstrap case, and is described in the Notes section of the use case below.

Actors Service Administrator, Service Access Point, Certificate Authority Service,
Identity Service, Directory Service

Preconditions: The Service Administrator has credentials registered with the Certificate
Authority Service, and has authority to start a SAP. The required services are
up and running and the Service Administrator can communicate with them.
The service package for the SAP has been developed [4.1.2: SD01 – Service
Development].

input: Addresses of foundation services.

Actions 1. Service Administrator obtains an identity value from the identity
service for the SAP.

2. Service Administrator starts SAP code using SAP service package,
and passes the identity to it, along with addresses of the Directory
Service.

3. Service Administrator requests that the Certificate Authority generate
a certificate for the SAP using his credentials.

4. The Certificate Authority returns a token to the Service Administrator.

5. The Service Administrator provides the token and the address of the
Certificate Authority to the SAP.

6. The SAP uses the token to obtain its credentials from the Certificate
Authority.

7. The SAP registers itself with the Directory Service.

Post-
conditions

Case success: Service Access point has been started, and is ready to host
models for other services.

Case failure: The Certificate Authority or the Identity service may reject the
request from the Service Administrator if the Service Administrator is not
authorized to start a SAP.

Notes 1. This use case assumes that the Certificate Authority and the Identity
Service can be reached by the Service Administrator independent of
whether the SOA services have been started.

2. If the Certificate Authority and the Identity Service have not been

Hewlett Packard Laboratories

 30

started, then the Service Administrator (or the Domain administrator)
has to manually generate the identity and the credentials, and
provide them to the SAP in step 2.

Issues A variety of three-way handshakes are possible to avoid spoofing attacks in
steps 1-7 depending on the level of security desired. For example, rather than
returning a single token to the Service Administrator in Step 4, the Certificate
Authority can send separate tokens to the Service Administrator and the SAP,
and require the Service Administrator to give his token to the SAP before the
SAP can request a certificate.

4.1.4 SR01 – Service Model Registration

This use case specifies how a Service Administrator registers a service model at the SAP.

Note: There are three common options for registering a service model at the SAP.

1. The service administrator manually registers the model at the SAP.

2. The Service Developer packages the service executables and includes instructions/logic that
enable the SAP to register the model (and possibly start the service ala cgi-bin executables) as
necessary. This presumes a “create a transient instance” capability or dynamic loading capability
within the SAP.

3. The Service Developer points to a “factory service” that knows how to register the service model
with the SAP.

This use case provides the interactions necessary for the first case above. Other cases37 may be defined
in a similar manner, but are omitted below for brevity.

37 Note that in addition to the SAP, the model may also need to be registered with the dictionary service. If a dictionary service is
present as a foundation service, the following additional choices are available:

1. The SAP registers the model with the dictionary service (as part of registering the model with itself). This may make use
of type level triggers at the SAP that communicate the model insertion information to the dictionary service.

2. The model is registered with the dictionary service, and contains references to the SAP. Type level triggers may then be
used to inform the SAP that a new model that it is required to host has been registered with the dictionary service.

3. The Service Administrator independently registers the model at the SAP and the dictionary service. This is a
straightforward extension of the use case described here.

4. The model is registered with the SAP, but not the dictionary service. The SAP permits this as long as the model does not
conflict with other definitions within the dictionary service. The advantage of this approach is that it permits services to
expose models to one another without burdening the dictionary service with unnecessarily detailed models that are
only of interest to small set of services. The disadvantage is that the definition may become invalid at a later stage as a
result of something else being added to the dictionary service.

Hewlett Packard Laboratories

 31

Actors Service Administrator, Service Access Point

Preconditions: The service has been developed [4.1.2: SD01 – Service Development] and
the service access point to be used is alive [4.1.3: SA01 – Start a Service
Access Point].

input: Model Types defining the service, as well as Filter instances required for
handling Triggers on Model Types.

Actions 1. Service Administrator adds Service Model Type definition to the SAP

2. Service Administrator adds Models Type definitions for any
additional Managed Elements necessary for service operation (if SAP
does not already contain those definitions)

3. Service Administrator adds Filter instances to register any event
triggers (type level) necessary.

Post-
conditions

Case success: Service model has been registered at the service access point.

Case failure: Errors on service registration have been communicated back to
the service administrator. The SAP has rolled back state to before registration
was attempted by the service administrator38.

Notes If any type level triggers are desired (e.g., for modification/changes in the
type, then an indication listener must be present in the eco-system somewhere
and information about it must be included during the registration.

Issues “Private” information needed for service start-up is also required at the SAP.
However, since that information (by definition) is not part of the model,
additional configuration information needs to be provided to the SAP if it is
required to start the service.

38 Note that this will happen implicitly as a result of rollback defined for model operations [See 4.2.2: SI02 – Invoke Service
Operation] when the operation to create the model type fails.

Hewlett Packard Laboratories

 32

4.1.5 SS01 – Start a Service

This use case specifies how a service administrator starts a service at an SAP.

Actors Service Administrator, Service Access Point, Service Instance, Managed
Element(s)

Preconditions The service model has been registered at the SAP [See 4.1.4: SR01 – Service
Model Registration] and the SAP to be used is alive [See 4.1.3: SA01 – Start
a Service Access Point].

input: Reference to the hosting SAP. Service package and service configuration
information necessary for starting the service, and creating a model instance
for the service within the SAP.

Actions 1. Service Administrator configures and starts the service instance and
provides it with the SAP reference as part of the configuration.

2. The service instance discovers (or creates or binds) the managed
elements, if any, that it wishes to expose as part of its model.

3. The service instance creates a model instance of itself at the SAP.

4. The service instance creates instances of filters that define triggers that
the service instance should receive from the SAP.

5. The service instance optionally creates instances of models for the
managed elements that it wants to expose to the domain, as well as
filters that define triggers on them.

Hewlett Packard Laboratories

 33

6. The service instance acknowledges successful startup to the service
Administrator.

Post-
conditions

Case success: Service instance has been registered at the service access
point, is accessible for use by clients, and service administrator has been
notified of successful startup.

Case failure: Errors on service startup have been communicated back to the
service administrator.

Notes It is also possible for the service administrator to perform steps 2-5 instead of
the service instance. In that case an acknowledgement in step 6 is not
needed, because the ack from steps 2-5 will go directly to the service
administrator.

The Filters created by the service instance in step 4 and 5 define triggers that
are specific to this instance of the service. This allows multiple instances of the
same service type to co-exist at the same SAP.

Issues A “commit” step should be required at the end of this use case to ensure that
unstable model instances are not left at the SAP in case the service instance
fails during startup (steps 4, 5). This should not be done as part of the model
(e.g., state=running) because that requires the SAP to understand the model
semantics for arbitrary services. This is a more generic problem and points to
the need for a “service died and left model state behind in SAP” use case.

4.2 Service Operations

The following use cases define how a client service invokes operations on another service.

Hewlett Packard Laboratories

 34

Figure 7: Use cases for service operation

In case the service is a transient service39, the service needs to be instantiated before it can perform
operations on behalf of the client. The client may invoke one or more operations on the service, and
then request that it be stopped. The operations themselves may either be synchronous (the client waits
for the operation to finish) or asynchronous (the client continues to do other tasks after requesting the
operation, and is notified when the operation is finished.

These use cases are described in more detail below.

4.2.1 SI01 – Invoke Transient Service

This use case specifies how a service access point instantiates a service to perform some operations,
and stops the service at the request of a client.

39 By transient service, we mean a service instance whose lifetime is determined by the client. In order to use a transient service,
the client must first request that it be instantiated, and after invoking the operations necessary, the client must request that it be
stopped. There are no architectural assumptions about how long the client makes use of the service.

Hewlett Packard Laboratories

 35

Actors Client Service, Service Access Point, Service Instance

Preconditions: The service access point to be used is alive [4.1.3: SA01 – Start a Service
Access Point], the service has been packaged [See 4.1.2 - SD01 – Service
Development] so that it can be started.

input: model operations by requested client

Actions 1. Service client attempts to create a model instance of the service at the
service access point.

2. The service access point instantiates the service and binds it to the
model instance [See 4.1.5 - SS01 – Start a Service].

3. The Service access point acknowledges model creation to the service
client.

4. The service is now available for use by the client, which can perform
model operations on the service model (4a). Operations on the
model are tracked by the service, which performs the corresponding
service operations (4b). [See 4.2.2: SI02 – Invoke Service
Operation].

5. The service client requests deletion of the service model instance.

6. The service access point acknowledges the deletion to the client.

7. The service access point stops the service instance and deletes the
service model instance [See 4.2.3: SS02 – Stop a Service].

Hewlett Packard Laboratories

 36

Post-
conditions

Case success: Service was brought up, made available to the client for use,
and terminated after the client was finished with it.

Case failure: See embedded use cases.

Notes Note that in Steps 2 (and 7), the SAP will notify the Service Administrator that
the service needs to be instantiated (and stopped), or may take on the role of
the Service Administrator for that purpose.

Issues The deletion Ack to the client currently happens before the instance is actually
deleted (the client rarely cares what happens to the service after it requests
deletion). This Ack can also be moved to after the service has been stopped
at Step 7.

4.2.2 SI02 – Invoke Service Operation

This use case specifies how a service client accesses a service capability using model operations. This
use case corresponds to Step 7a in the model exchange pattern [See 3.1: Model Exchange Pattern].

Actors Service Client, Service Access Point, Service Instance

Preconditions: The service instance has been started [See 4.1.5 - SS01 – Start a Service, or
Steps 1-3 in 4.2.1 - SI01 – Invoke Transient Service], and the service access
point to be used is alive [4.1.3: SA01 – Start a Service Access Point].

Hewlett Packard Laboratories

 37

input: Service Model operation (create/read/update/delete/invoke) desired by
client along with any parameters necessary for the operation

Actions 1. Service client invokes the model operation on the model exposed
from the service access point using any model parameters necessary.

2. Service access point validates the operation and obtains any
necessary approvals [See Steps 1-6 in 3.1: Model Exchange Pattern]
and sends an indication to the service instance containing pending
operations to be performed on the model.

3. The service (a) performs any necessary operations and makes
corresponding changes in the model (b) at the SAP

4. Case: The service operations succeed

a. The service returns status = succeed to the SAP.

b. The SAP commits the operation

5. Case: The service operations fail

a. The service attempts rollback of operations performed before
failure in an attempt to recover.

b. The service unrolls model changes in an attempt to maintain
synchrony between its state and the model

c. If rollback succeeds, the service returns status = failure to the
SAP

d. If rollback fails, the service returns status = exception to the
SAP

6. Optionally, in case of rollback failure, the SAP may handle the
exception by notifying incident management service or taking other
actions if the appropriate triggers are defined.

7. The SAP returns the operation status (success, failure, exception) to
the service client.

Post-
conditions

Case success: Service operation has been completed. Models exposed by
the SAP reflect the new state, and all operations have been committed.

Case failure: Service operation failed. However, all state has been
recovered back to the point before the operation was invoked.

Case exception: Service operation and recovery failed. Error handling
procedures may be in progress. The model state at the SAP is unreliable and
may be incorrect.

Notes None

Issues None

Hewlett Packard Laboratories

 38

4.2.3 SS02 – Stop a Service

This use case specifies how a service administrator stops (deletes) a service at an SAP.

Actors Service Administrator, Service Access Point, Service Instance

Preconditions: The service access point to be used is alive [4.1.3: SA01 – Start a Service
Access Point], the service has been started [See 4.1.5: SS01 – Start a
Service].

input: Model operation by service administrator

Actions 1. Service Administrator instructs the SAP to delete the service model
instance.

2. The SAP deactivates the service model instance by removing it from
the service model instances visible to clients at the SAP. This prevents
any clients from accessing the model instance.

3. The SAP sends an indication to the service indicating the pending
delete.

4. The service performs pre-delete activities. This may include putting the
service in stand-by mode (or preparing for shut down)

5. The service acknowledges the pending delete

6. The SAP sends an indication to the service administrator that the
service can be destroyed (or deleted).

7. The service administrator destroys the service instance.

Hewlett Packard Laboratories

 39

8. The service administrator acknowledges the service deletion to the
Service access point.

9. The service access point deletes the model instance.

Post-
conditions

Case success: All interested clients have been notified, and the service
instance has been deleted from the SAP. Service Administrator has
terminated the service.

Case failure: It may not be possible to delete the service instance if
permission is not granted (based on AAA constraints defined by the Service
Developer at creation time, or by the administrator at service start time).

Notes

Issues The System administrator can terminate the service without notifying the SAP.
This is a more generic problem and points to the need for a “service died
and left model state behind in SAP” use case.

4.3 Service Event Triggers

This section describes how event triggers are handled within the SOA. This requires a service to register
interest in some model exposed by a different service. If that model is changed for some reason, the
SAP generates the appropriate triggers to propagate the change information to the appropriate listener
using indications [See 3.1: Model Exchange Pattern]. These patterns are described in the following use
cases.

Figure 8: Event handling within the SOA

A Client Service may register for some model event at a Service Access Point by creating an instance of
a model event filter at that SAP. Note that the client may delegate the responsibility for handling the
resulting event triggers to a different service (the Indication Listener). When a change is made to the
model by some service (the Change Requestor), the SAP sends the appropriate indications to the
Indication Listener.

Hewlett Packard Laboratories

 40

4.3.1 EH01 – Register Event Trigger

This use case specifies how a service client registers for an event trigger for a model change.

Client Service
Service Access

Point
Event Listener

1. Create Filter

3. Indication

4. Ack

6. Ack

2. Cache Filter

5. Commit Change

Actors Client Service, Service Access Point, Incident Listener

Preconditions: The indication listener40 has been started [See 4.1.5 - SS01 – Start a
Service], and the service access point to be used is alive [4.1.3: SA01 – Start
a Service Access Point].

input: Filter definition for the trigger desired by client along with reference for the
indication listener

Actions 1. Client Service attempts to create a filter at the SAP.

2. The SAP caches the filter.

3. The SAP generates an approval trigger and sends an indication to
the Indication Listener

4. The Indication Listener approves the addition of the filter.

5. The SAP commits addition of the filter and starts generating triggers
based on it.

6. The SAP acknowledges creation of the filter to the client.

Post-
conditions

Case success: Client has successfully registered for a model trigger at the
SAP. The Indication Listener has accepted responsibility for handling any
subsequent indications sent by the SAP [4.3.2: EH02 –Send Indication].

Case failure: Operation failed. However, all state has been rolled back to
the point before the operation was invoked.

Notes Note that this use case is a variant on the model exchange pattern because
the approval trigger at Step 3 goes to someone other than the “model
owner.” Step 3 is explicitly necessary to ensure that a client cannot designate

40 Note that the indication listener can be a SAP (or a service hosted at an SAP).

Hewlett Packard Laboratories

 41

indication listeners that are not prepared to handle indications generated.

Issues Is the interaction at step 3 necessary, or is it overkill? We need to understand
what action is appropriate if the event delivery fails at step 6.

4.3.2 EH02 –Send Indication

This use case specifies how an indication is sent as a result of a model change made by some change
requestor to some indication listener. In this use case we assume that the indication listener exists at a
different SAP than the SAP and the change results in a notification trigger.

Actors Change requestor, Service Access Point1, Service Access Point2, Indication
Listener

Preconditions: Instances of the indication listener [4.1.5: SS01 – Start a Service] and the
service access points to be used [4.1.3: SA01 – Start a Service Access Point]
are alive. The listener has registered an interest in the trigger [4.3.1: EH01 –
Register Event Trigger].

input: none.

Actions 1. The change requestor invokes an operation on the model held at the
service access point (SAP1).

2. The operation is performed; SAP1 commits the model change, and
acknowledges the success of the operation to the change requestor.

3. SAP1 applies filters and generates a notification trigger containing
information about the indication listener, and generates a local
instance of the indication to the sent.

4. SAP1 creates an instance of the indication at remote service access
point (SAP2).

5. Remote service access point acknowledges correct creation of
indication.

Hewlett Packard Laboratories

 42

6. Local service access point deletes the local copy of the indication.

7. Remote service access point triggers the indication listener and gives
it a reference to the indication.

Post-
conditions

Case success: Indication has successfully been created at the remote service
access point, deleted from the local service access point, and the indication
listener has been notified of the indication.

Case failure: Failure cases include:

1. Create fails in step 1. The Local SAP will return failure. State is as it
was before indication was created.

2. Create fails in step 4. Indication is held at local SAP. TODO: need to
decide if indication creator needs to be informed. Also need to
decide the disposition of the indication.

3. Trigger fails at step 7. The indication is held at Remote SAP. TODO:
need to decide if indication creator needs to be informed, and
disposition of the indication.

case exception: None identified so far

Notes This use case is assumed in all other use cases described when indications
are sent, and may not be explicitly shown as such.

Issues See TODO items in Results. Can we just assume reliable message delivery?

Hewlett Packard Laboratories

 43

5 Model Operations

This section provides the model operations available at SAP. These operations are listed as guidelines
based on use cases defined in Section 4, and it is assumed that the domain architect will refine or
augment these operations based on the actual domain definition. Thus information in this section should
be considered as advisory within the Picasso architecture.

The SAP provides the following Type-level (M1) operations41:

Operation createType

Parameters Type Definition

Result Success/Failure

Description Creates a new model type definition (locally) within the SAP. The SAP ensures that the
type definition does not conflict with any existing definitions in the domain dictionary,
and that it obeys the meta-model and ontology defined for the domain.

Operation getType

Parameters Type name (and version)

Result Type definition

Description Returns the type definition known locally to the SAP. The SAP implementation MAY
choose to query the domain dictionary for the type definition if it does not hold the
definition locally.

Operation modifyType

Parameters Type Definition

Result Success/Failure

Description Modifies the type definition locally. Changes that are not backward compatible
require the ability to maintain both the previous and the new definition within the SAP
(for example, by changing version numbers on model types).

41 All model operations follow the restrictions defined in the model exchange pattern (see Section 3.1). It is currently open how
the local model type definitions are reconciled with those in the domain dictionary. The architecture requires the SAP to ensure
that local definitions are not in conflict with those in the domain dictionary, but leaves open what happens if a local definition is
either an extension of a definition in the dictionary, or is not present in the dictionary. A number of choices were enumerated as
part of Footnote 37 earlier.

Hewlett Packard Laboratories

 44

Operation deleteType

Parameters Type Name (and version)

Result Success/Failure

Description Deletes the local type definition for a model with the SAP. Note that this may not be
permitted by the implementation if the SAP has model instances for that type, or may
require the type for some other service.

Operation enumerateType

Parameters Selection Criteria

Result Names (and versions) of model types that match selection criteria

Description Enumerates the model types that match the selection criteria specified. Note that the
SAP implementation MAY choose to also query the domain dictionary to extend the
scope of the query.

The following instance level (M0) operations42 are provided at each SAP:

Operation createInstance

Parameters Instance definition

Result Reference to model instance (or null reference if unsuccessful)

Description Creates a new model instance (locally) within the SAP. The corresponding type
definition must already exist within the SAP. The SAP implementation MAY choose to
fetch the type definition form the domain dictionary if necessary.

Operation getInstance

Parameters Reference to model instance

Result Instance definition

Description Returns the instance definition known locally to the SAP.

Operation modifyInstance

Parameters Reference to model instance, new definition

Result Success/Failure

Description Modifies the instance definition locally. Note only a fragment may be present in the
new definition provided to limit the scope of the change.

Operation deleteInstance

Parameters Reference to model instance

42 As with model types, local model instances may need to be reconciled with the domain directory service. See previous note
relating to model types for how this may be handled.

Hewlett Packard Laboratories

 45

Result Success/Failure

Description Deletes the model instance at the SAP. Note that this may not be permitted by the
implementation if other services are also using the model instance

Operation enumerateInstances

Parameters Selection Criteria

Result References to model instances that match selection criteria

Description Enumerates the model instances that match the selection criteria specified. Note that
the SAP implementation MAY choose to also query the domain directory to extend the
scope of the query.

The following operation provides “pass-through” capability at the SAP for service operations.

Operation InvokeModelOperation

Parameters Model Reference, Operation parameters

Result Operation results

Description This operation provides a mechanism for the SAP to invoke operations defined within
model instances held within it. Note that because this operation is dependent on the
domain meta-model (which is defined by the domain architect), it may take a variety
of forms necessary to support model operations.

It is likely that additional operations may be required based on the exact domain definition. In
particular, additional operations may be needed to support “bulk” operations that can treat a number
of model types or instances in an atomic operation.

Hewlett Packard Laboratories

 46

6 Frequently Asked Questions

1. It would be easy to argue here that you have just pushed the problem up a layer by saying that
the interoperability problem is now one of model consistency rather than interface consistency.
Why do you think models are a better way of specifying the service-specific behavior? This is
perhaps THE fundamental question you need to answer in this work.

We agree. This is a hypothesis to be tested. We will be creating a reference implementation of
this architecture to validate this hypothesis, and hopefully can show side-by-side comparison of
the two ways to handle interoperability.

2. You have not defined other concepts which are usually provided by the foundation services.
That is, who provides definitions for things like identity and name in the SOA? Such definitions
are critical for interoperability.

At the moment, only top-level entities are defined precisely within the architecture, but not
attributes such as identity and name. The architecture document provides definitions that are
applicable regardless of the meta-model selected for a specific instantiation of Picasso. As we
gain more experience with what can be generalized across domains, we may provide
additional definitions. These things also depend heavily on the meta-model selected, and the
architecture currently expects these to be defined by the domain architect as part of the domain
definition.

3. Is it the case that models only represent services? This seems to mean that the only thing you
can represent in the system is services of one sort or another. This may be ok, but it implies
there can never be a “free” entity that’s not part of a service of one sort or another. This may
not hold up at the end.

Yes, that is the intent. The model is the external representation of the service, which includes its
behavior, state, and operations (see definition of model in section 2). It will be possible to
represent things other than services (for example, managed elements), but only as long as those
things are part of the exposed state from some service. If no triggers are generated when you
create a model at the SAP (which will be the case if no service cares about that model), then
the current semantics in the model exchange pattern allows that creation to succeed. Again,
assuming nothing cares about changes, any client can make any changes in that model,
because the SAP will also allow that to succeed. Thus, in the worst case, any “free” entities
have to become a part of the exposed state from the SAP (which represents a service).

4. While foundation services are mentioned in the document, you do not provide any definitions
or implementation guidelines for them.

Hewlett Packard Laboratories

 47

That is correct. We expect to provide more detailed models and guidelines for foundation
services as we create a reference implementation. Those details are expected to be part of a
separate document.

5. I do not see a service mentioned here that I believe is critical to SOAs.

The list of foundation services only includes some services that are frequently mentioned.
Omission from the list does not mean that the service is not necessary. We expect the domain
architect to define the necessary foundation services based on the needs of the domain under
consideration.

6. You do not provide any specific mechanisms for cross-domain communication.

Cross domain communication is expected to happen through entities that are visible in both
domains (see definition for domain). Since it is possible that the SOA protocols will differ in the
two domains, the implementation of the shared entities is expected to provide any translation
capabilities necessary.

7. Is it just the service instances that have identity, or also the model instances?

Only the service instances have identity. Model instances are distinguished by using model
references. Note that models will contain things like state, so service identity or name is not the
same as a model reference. Clearly a model reference will be used to access the service
identity, but model references provide separation between model elements, while identity is a
service level notion.

8. You have not provided use cases for service update and versioning.

Many other use cases are possible, and the list is evolving. We may add other use cases if
they represent common patterns that are useful across architecture instances. Feel free to send
suggestions (or better yet, actual use case definitions) for inclusion in the document.

9. The model operations defined do not provide operations to create triggers.

Note that triggers do not have an implementation-independent representation. Triggers are
generated by the SAP based on the presence of Filter instances (which are model elements) at
the SAP. Filters can be defined using the type and instance operations defined in Section 5.
The exact form for filters depends on the domain meta-model (and SAP models) selected by the
domain and service architect.

10. This document is too abstract. It would be helpful to have example mappings of the architecture
(for example using WS-Management standards).

We considered that. However, given the number of such “standards,” it is difficult to include
them all. We will provide some of these mappings in separate documents as we create a
reference implementation, and will probably include references to those documents in the near
future.

Hewlett Packard Laboratories

 48

11. You label this as an SOA for model-based automation. I don’t see anything in the document
about automation.

That is true ☺. Automation in IT environments was the driver for the architecture, and we
anticipate that we will use it for that purpose. Many of the definitions (e.g., model events) and
communication constructs (e.g., model exchange pattern) within are present precisely because
we have observed automation environments fail because of lack of such constructs in other
SOAs. As we gain more experience with implementation, we expect to document (separately)
automation-specific guidelines when using this architecture.

12. There is a concept of a domain, but no distinction between managed and management
domains. I assume I can define a domain as a management domain and only have
management services as part of it. Then I could define a managed domain with all the
managed services in it. Are cross-domain service interactions allowed?

Cross domain interactions are allowed by using entities (most likely services) that participate in
multiple domains (see definition of domain in Section 2 and paragraph right under it). The
reason for doing it this way (as opposed to explicitly modeling cross domain interactions) is
that the SOA protocols, the modeling language and the meta-models may well be different in
the two domains. While the initial thinking within the document deals with the management
domain, it is possible to do the same thing within the managed domain. The domain architect
is free to define domains and service scope within domains based on need (it is part of domain
definition in use case DO01).

13. I see that the document primarily describes the management domain. The management services
are entities in the management domain. Entities from the managed domain need to be modeled
as well and eventually be passed on as arguments to management services (e.g.,
ServerBootService.start(server234); ServerBootService is from the management domain,
server234 an entity from the managed domain (assuming that the managed domain contains
models about managed elements, and not the elements themselves); Alternatively, one could
say: server234.start().

Managed entities are modeled as part of the exposed state from services and operations can
be defined on those elements (see Footnote 14 and Steps 1a and 1b in use case 4.1.2: SD01
– Service Development). However, if a service does not expose a managed element directly to
other services, then there is no obligation to represent it in the model. Whether the first or the
second form of method invocation is used depends on the meta-model defined for the domain.

14. Does the architecture encompass services that may be provided by humans, or is it restricted to
automated services?

Humans are explicitly part of the ecosystem. However, since human actions are not easy to
model, they are part of the external environment that can cause spontaneous changes in state
of services (see definition of service in section 2, and paragraph right under it). The same view
is represented in Figure 3 where humans interact directly with services. How that interaction
takes place is left service dependent and the underlying SOA makes no assumptions about it.
The important part is not who performs a service, how it is performed or how it communicates
with humans, but the corresponding model that is exposed to the SOA. Thus you can represent

Hewlett Packard Laboratories

 49

a person/role as a proxy object (a service) which exposes the corresponding state. It is left up
to the proxy object implementation to decide how it would interact with the humans it
represents.

15. You are allowing state to be encapsulated as part of the services. This causes problems in
maintaining state coherence. Why do you not restrict services to be stateless?

The architecture does not prohibit stateless services—a service can be stateless. However, in
any large environment, state has to be maintained somewhere, and providing access to that
state still requires a service within a SOA context. For example, an inventory service that can
be queried for number of inventory items available is exposing state. Thus at least some of the
services will need to encapsulate state. The domain and service architects decide based on the
domain requirements whether a few services carry the majority of the state, or whether state
can be distributed across a large number of services.

If by state, you mean session state (i.e., a particular message sent to a service does not assume
that the service retains information contained in previous messages), that decision is an
implementation choice made by the service architect, and the architecture neither requires nor
precludes that choice.

16. You state that multiple versions of the same model may be present in the domain. How are the
different versions differentiated?

The versioning conventions are determined by the underlying meta-model chosen for
representing domains. The architecture recognizes that multiple versions may need to co-exist
for evolution of services with the domain; however it leaves open the exact form that are used
within the domain as a choice to be made by the domain architect.

17. The model exchange pattern does not provide any “atomicity” guarantees. I can see how a
single operation can be rolled back if it does not succeed—what happens if my operation
requires changes to multiple operations or if it cannot be rolled back?

Without more understanding of the exact domain models, it is difficult to make atomicity claims
because a change in one model may lead to changes in other models elsewhere. In practical
scenarios, it may not be possible to roll back operations. The model exchange pattern attempts
to insure that operations are rolled back when possible, but more importantly, that the clients
become aware of state corruption as soon as possible to avoid propagating errors because of
state corruption. Within a given instance of this architecture, it may be possible to make
stronger

Hewlett Packard Laboratories

 50

Glossary

Term Page Definition

Approval Request 13 An approval request is a trigger that requires approval from some
listener (the change approver) before the pending change can be
committed.

Change
Notification

13 A change notification is a trigger that that simply informs the listener
of a model change that has been committed at the SAP.

Domain 8 A Domain is the set of related entities that interact with one another to
accomplish some purpose. Domains define the scope of discourse
between related entities, and hence the types of entities necessary,
the vocabulary (ontology) used to describe the entities, and the
syntactic constructs that are understood by all entities within the
domain. A given entity may participate in multiple domains.

Entity 7 An entity is a thing or a concept that is relevant for the operation of
the system and thus needs representation inside the system.

Indication 13 An Indication is a model element that is passed to a service (or
service client) as result of a model event trigger. Indications provide
sufficient information to the recipient to allow it to obtain the model
state as proposed by the change

Indication Listener 13 A service that is capable of receiving indications is an indication
listener.

Model 9 See “Service Model”

Model Event 12 A Model Event is a pending change of some service model element
caused by a model operation performed by some service at a service
access point. The model operation may target either the model type
or the model instance at the SAP. Model operations or changes in
external state that cannot cause in changes in models hosted by an
SAP do not represent model events.

Model Event Filter 14 A Model Event Filter is a model element that defines a query on
service models held at a service access point. The query specifies
model operations (create/ update/ delete/ invoke) on specified
model elements, as well as references to one or more indication
listeners that need to be notified if the corresponding query succeeds

Model Event
Trigger

13 A Model Event Trigger is a model event that requires the service

Hewlett Packard Laboratories

 51

access point to notify some service (or service client) of a pending
change in some model element

Role 14 A Role represents the expectation that a certain service (or human)
entity within a domain is assigned or required to perform a given task
or activity

Service 9 A Service is an entity that represents an encapsulation of functionality
and state useful to other entities within a domain

Service Access
Point (SAP)

11 A Service Access Point is a service end-point that provides a standard
interface for interaction between services using a model exchange
pattern. A service access point represents a distributed proxy service
that provides the ability to utilize other services through a restricted
set of model operations.

Service Model 9 A Service Model is the representation of a service within the SOA. It
defines the externally visible description, behavior, state, and
operations available from a service to other services. Within a
domain, each service defines its own service model and is
responsible for exposing it to other services within that domain.

