

Practical Conforming Datatype Groups♦

David Turner, Jeremy Carroll
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2007-37
March 14, 2007*

datatype group,
decidability, OWL

Datatype groups are an extension to certain Description Logics (DLs) that
permit the user to reason about n-tuples of data, where n ≥ 1, and thus to
express complex constraints on multiple properties of objects. A
conforming datatype group has the appropriate computational properties
to preserve the soundness, completeness, and compactness of the
reasoning procedure of the underlying DL. We consider examples of
datatype groups that appear useful in practice, and illustrate the care that
must be taken to ensure that datatype groups are both conforming and
practical.

* Internal Accession Date Only
♦ 20th International Workshop on Description Logics (DL-2007) 8-10 June 2007, Brixen-Bressanone, Italy
 Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.

Practical Conforming Datatype Groups

Id: DL-2007.tex 31 2007-02-28 09:14:59Z turdavid

Dave Turner and Jeremy Carroll

{DavidT,Jeremy.Carroll}@hp.com
HP Labs Bristol

Filton Road
Stoke Gifford

Bristol BS34 8QZ

Abstract. Datatype groups are an extension to certain Description Log-
ics (DLs) that permit the user to reason about n-tuples of data, where
n ≥ 1, and thus to express complex constraints on multiple properties of
objects. A conforming datatype group has the appropriate computational
properties to preserve the soundness, completeness, and compactness of
the reasoning procedure of the underlying DL. We consider examples of
datatype groups that appear useful in practice, and illustrate the care
that must be taken to ensure that datatype groups are both conforming
and practical.

Keywords: Datatype Group, Decidability, OWL

1 Introduction

OWL 1.0 [1] is a standardised ontology language for machine interpretability of
Web content, with strong theoretical foundations in Description Logics (DLs).
Currently under development is a proposal for an improved language, OWL 1.1,
with extensions over OWL 1.0 that reflect both the theoretical state-of-the-art
in DLs and end-user experiences of OWL 1.0.

The proposed OWL 1.1 language is based on the DLs SROIQ [2] and
SHOQ(Dn) [3]. The DL name fragment ‘(Dn)’ represents datatype groups, which
are essentially collections of predicates over n-tuples of data where n ≥ 1 [4].
To ensure satisfactory computational properties, attention is restricted to con-
forming datatype groups: a datatype group G is conforming if it satisfies some
closure properties and, importantly, the appropriate satisfiability problem over
G is decidable. The actual solution of this satisfiability problem is performed by
a black-box decision procedure known as a type-checker.

This modular approach to datatype groups makes for a smooth theoretical
presentation. Indeed, the word ‘conforming’ appears just once in all the dis-
cussions of SHOQ(Dn) [3] and SROIQ [2], and does not appear at all in the
current OWL 1.1 proposal. We will consider examples of datatype groups that
appear useful in practice, and illustrate the care that must be taken to ensure
that one does not introduce an unconforming system.

2 Definitions

A datatype group G is [4] a tuple (∆D,DG , Φ1
G , ΦG), where ∆D is the datatype

domain covering all datatypes, and DG , Φ1
G and ΦG are (presumably) disjoint

sets of names of base datatypes, derived datatypes, and predicates respectively.
A base datatype name d ∈ DG is interpreted as dD ⊆ ∆D; a datatype d′ ∈ Φ1

G
derived from d is interpreted as d′D ⊆ dD. Each predicate P ∈ ΦG is given an
arity n > 1 and interpreted as PD ⊆ dD

1 × . . . × dD
n ⊆ ∆n

D. A finite predicate
conjunction over G is a statement C of the form

k∧
j=1

pj(v
(j)
1 , . . . , v(j)

nj
) (1)

where pj is an nj-ary predicate in DG ∪ Φ1
G ∪ ΦG and the v

(j)
i are variables. A

solution for C is a function mapping the variables to elements of ∆D such that
〈δ(v(j)

1 , . . . , δ(v(j)
nj)〉 ∈ pD

j for each j. C is said to be satisfiable if it has a solution.
The datatype group G is said to be conforming if

1. DG , Φ1
G and ΦG are closed under negation,

2. a binary inequality predicate 6=d ∈ ΦG is defined for each datatype d ∈ DG ,
and importantly

3. the satisfiability of finite predicate conjunctions over G is decidable.

Given two datatype groups G1, G2, one can merge them to form a datatype
group

G1 ⊕ G2 = (∆D,DG1 ∪DG2 , Φ
1
G1
∪ Φ1

G2
, ΦG1 ∪ ΦG2). (2)

3 Examples

3.1 Miles and Kilometers

Pan and Horrocks [4] present a datatype group containing a predicate for con-
verting between kilometers and miles as follows.

G1 = (∆D,
{float, float},
{lengthInMile, lengthInMile, lengthInKMtr, lengthInKMtr},
{kmtrsPerMile, kmtrsPerMile,=float, 6=float})

(3)

The datatype float is a standard part of XML Schema Part 2 [5]; the derived
datatypes lengthInMile and lengthInKmtr consist of nonnegative floats and
these may be declared using XML Schema syntax too. The following is their
suggested XML syntax for declaring the kmtrsPerMile predicate.

<predicate name="kmtrsPerMile" arity="2">
<par var="i" base="lengthInKmtr" />
<par var="j" base="lengthInMile" />
<constraint val="i=1.6*j" />

</predicate>

For clarity, we will abbreviate declarations of this kind as follows.

kmtrsPerMile = D(i, j, "i=1.6*j") (4)

3.2 Small Objects

Pan and Horrocks [3] present an alternative motivating example, where an object
is classified as ‘small’ for postal purposes if its height is less than 5cm and the
sum of its length and width is less than 10cm. No datatype group is explicitly
given for this example, so we suggest the following.

G2 = (∆D,
{float, float},
{heightInCm, widthInCm, lengthInCm, heightLessThan5cm,
heightInCm, widthInCm, lengthInCm, heightLessThan5cm},

{sumLengthAndWidthLessThan10cm,=float,
sumLengthAndWidthLessThan10cm, 6=float})

(5)

As before, it is possible to declare all of the unary parts of this datatype group
using the existing tools of XML Schema. These tools do not extend to the decla-
ration of the binary predicate sumLengthAndWidthLessThan10cm. Adapting the
syntax of the previous example might result in the following.

sumLengthAndWidthLessThan10cm = D(i, j, "i+j<10") (6)

4 Discussion

That datatype groups are conforming is important to ensure the decidability
of reasoning in Description Logics such as SHOQ(Dn) [3] and by extension in
SROIQ [2] and hence in the proposed OWL 1.1 standard. There has been
only limited discussion regarding how to construct and deal with conforming
datatype groups in practice. In particular, the permitted syntax of the arithmetic
expressions in the declarations above is unspecified. While small expressions
of the form i=1.6*j and i+j<10 may seem innocuous, one does not have to
work much harder to construct non-conforming datatype groups. For example,
consider a datatype group with the following ternary predicates,

integerAddition = D(i, j, k, "i=j+k") (7)

and
integerMultiplication = D(i, j, k, "i=j*k") (8)

viewed as predicates over
(
integerD

)3. With this datatype group one can ask
for integer solutions to the polynomial equation 3x2 + 5y− 11 = 0 using the DL

concept
∃〈n0, c1, n1〉.integerAddition u
∃〈n1, n2, n3〉.integerAddition u
∃〈n2, c2, n4〉.integerMultiplication u
∃〈n3, c3, y〉.integerMultiplication u
∃〈n4, x, x〉.integerMultiplication u
∃c1.=−11 u ∃c2.=3 u ∃c3.=5 u ∃n0.=0

(9)

A type-checker for this datatype group must therefore be able to find integer
roots of arbitrary integer polynomials; unfortunately, this problem is known to
be undecidable [6]. Notice that the datatype groups

G3 = (∆D,
{decimal, decimal},
{integer, integer},
{integerAddition,=decimal,
integerAddition, 6=decimal})

(10)

and
G4 = (∆D,

{decimal, decimal},
{integer, integer},
{integerMultiplication,=decimal,
integerMultiplication, 6=decimal})

(11)

are conforming, but their merge G3 ⊕ G4 is not, which demonstrates that con-
formingness is not preserved by merging in general.

Lemma 6 of [4] says that G3 ⊕ G4 is conforming if both G3 and G4 are con-
forming, and DG3 ∩ DG4 = ∅, but in this case decimal ∈ DG3 ∩ DG4 . This is
not an artificial situation: in the context of XML Schema Part 2 [5] there are
a small, finite number of base datatypes and in practice one would expect to
have to merge datatype groups over intersecting sets of base datatypes reason-
ably often. It would not be possible to completely forbid intersecting merges
of this kind without compromising the open-world assumption of the Semantic
Web. Furthermore, without both multiplication and addition, end-users would
not even be able to convert between ◦F and ◦C:

farenheitToCelsius = D(f, c, "f=1.8*c+32.0") (12)

A suggested practical alternative to arithmetic expressions is to use URIs to
refer to a fixed collection of predicates. Sirin [7] suggests

http://www.w3.org/2003/11/swrlb#greaterThan = swrlb:greaterThan

or

http://www.w3.org/TR/xpath-functions/#func-numeric-greater-than

instead of
D(i, j, "i>j") (13)

However, swrlb:add and swrlb:multiply (and their XPath equivalents) are
URIs for addition and multiplication predicates that can be restricted to the
problematic integerAddition and integerMultiplication above. Therefore
datatype groups built from too much of the swrlb or XPath function namespaces
cannot be conforming.

4.1 Conforming, but Impractical, Datatype Groups

There are a number of known decidability results about arithmetic that have
less practical impact than they might appear to have on first inspection. Firstly,
in contrast with integer arithmetic, arithmetic over (the existential theory of)
R is known to be decidable [8]. However, XML Schema does not attempt to
implement a real type, only decimal, and the status of arithmetic over decimal
is unknown. Secondly, the satisfiability of finite predicate conjunctions over a
datatype group which only uses the XML Schema datatypes float, double, long
(and its derived types int, short and byte) and unsignedLong (and its derived
types unsignedInt, unsignedShort and unsignedByte) is trivially decidable
since each of those datatypes is finite. In practice this result does not give rise to
a usable decision procedure: an exhaustive search for a solution is not feasible.

4.2 XML Schema-specific Implementation Constraints

An example from [4] declares that the Yangtze river is 3937.5 miles long and uses
the kmtrsPerMile predicate to deduce that it is also 6300.0km long. In other
words,

〈6300.0, 3937.5〉 ∈ [[kmtrsPerMile]]. (14)

This example uses the XML Schema datatype float to represent lengths. Sup-
pose that the Yangtze was declared instead to be 3937.501 miles long, then

〈6300.0015, 3937.501〉 ∈ [[kmtrsPerMile]] (15)

so the Yangtze river may be deduced to be 6300.0015km long. However,

〈6300.0015, 3937.5007〉 ∈ [[kmtrsPerMile]], (16)

so that the Yangtze river may also be deduced to be 3937.5007 miles long. This
would be inconsistent with the user’s expectation that a river has only one length.

As pointed out in [4], there are well over a hundred length units, and rounding
errors caused by round-tripping values through all of the associated conversions
can accumulate into significant errors. We implemented a system to do conver-
sions between floats representing lengths in kilometers, meters, centimeters,
millimeters, micrometers, inches, feet, yards, fathoms, poles, chains, furlongs,
statute miles, leagues and nautical miles and deduced the length of the Yangtze

to be both 6335.3584km and 6361.8555km1, and nearly 800, 000 other values,
starting from a declaration that its length in miles is 3937.5. These rounding
errors were highly dependent on the structure of the definitions of the units, as
multiplication in float is not associative so scalar multiplication operators on
float do not commute. This lack of associativity also demonstrates that the
(necessarily associative) composition of two datatypes like kmtrsPerMile and,
say, milesPerLeague cannot be the same as the composition of the underlying
arithmetic operations; again, this is likely to be inconsistent with a user’s expec-
tations. In short, the behaviour of fixed-precision floating-point datatypes with
arithmetic in OWL is likely to be a source of confusion amongst users.

Additionally, suppose the Volga river were declared to be 3668.8003km long,
then it would have no value for its lengthInMile property at all, since

〈3668.8000, 2293.0000〉 ∈ [[kmtrsPerMile]]
〈3668.8005, 2293.0002〉 ∈ [[kmtrsPerMile]]
and @x ∈ float. 2293.0 < x < 2293.0002

(17)

Again, this situation would be contrary to the user’s expectation that one can
always convert freely (albeit possibly inaccurately) between miles and kilometers.
Notice that this cannot be remedied by using the arbitrary-precision decimal
instead of the fixed-precision float: for example the temperature 75.0◦F has no
corresponding decimal representation in ◦C.

In practice, many applications do not require the declarative style of arith-
metic that datatypes like kmtrsPerMile would allow. Instead, a procedural ap-
proach is adequate. For example, a user may be happy that the Volga can be
deduced to be 2293.0km long, and may be equally happy with 2293.0002km,
as long as only one of the options is chosen. One method that has been used
to achieve this would be to embed conversion instructions as literals in an on-
tology[9], which makes it clear to a user that the semantics of arithmetic is
separated from that of the DL.

5 Conclusion

The extension of a DL with conforming datatype groups extends its expressive
power whilst preserving its decidability and the efficacy of known reasoning
techniques. Datatype groups are motivated by the requirements of DL users to
be able to express complex constraints simultaneously on multiple data values.

However, there has been little discussion regarding instances of datatype
groups that may be capable of satisfying these user requirements whilst also be-
ing conforming and computationally feasible. We have shown that this question
is far from trivial, and that care is also necessary to keep within the open-world
assumption of the Semantic Web by allowing these datatype groups to freely
merge with each other. Furthermore although the proposed OWL 1.1 standard

1 These figures are different from the 6300km quoted previously because the conversion
factor from miles to kilometers is not quite 1.6.

includes support for datatype groups, it offers no suitable syntax and we have
shown that some ‘obvious’ choices turn out to be undecidable or otherwise un-
suitable.

Finally we have demonstrated that (XML Schema-based) datatypes that rep-
resent notionally bijective functions are in general neither injective nor surjective
because of implementation constraints. In a procedural context, such functions
are ‘sufficiently’ bijective for many applications, but in a declarative context like
that of DLs this imprecision manifests itself more seriously. We have shown that,
for example, it may lead to serious rounding errors, and may cause properties
to fail to satisfy expected cardinality constraints and exhibit other unexpected
behaviour.

References

1. McGuinness, D.L., van Harmelen, F.: OWL web ontology language overview. W3C
recommendation, W3C (2004) http://www.w3.org/TR/2004/REC-owl-features-
20040210/.

2. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.
of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2006), AAAI Press (2006) 57–67

3. Pan, J.Z.: Web Ontology Reasoning in the SHOQ(Dn) Description Logic. In: Carlos
Areces and Maartin de Rijke, editors,Proceedings of the Methods for Modalities 2
(M4M-2). (2001) ILLC, University of Amsterdam.

4. Pan, J.Z., Horrocks, I.: Web Ontology Reasoning with Datatype Groups. In Fensel,
D., Sycara, K., Mylopoulos, J., eds.: Proc. of the 2nd International Semantic Web
Conference (ISWC2003). (2003)

5. Malhotra, A., Biron, P.V.: XML schema part 2: Datatypes second edition. W3C
recommendation, W3C (2004) http://www.w3.org/TR/2004/REC-xmlschema-2-
20041028/.

6. Davis, M.: Hilbert’s tenth problem is unsolvable. American Mathematical Monthly
80 (1973) 233–269

7. Sirin, E.: Re: n-ary datatypes (2007) http://lists.w3.org/Archives/Public/public-
owl-dev/2007JanMar/0106.html.

8. Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Oriented
Matroids (Second Edition). Cambridge University Press (2006)

9. van der Veen, M., Reynolds, D., Seaborne, A.: Re: Mathematics (2006-7)
http://tech.groups.yahoo.com/group/jena-dev/messages/25376.

