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ABSTRACT

A large number of practical coding scenarios deal with sources, for instance transform coefficients that can be well
modeled as Laplacians. In regular practical coding of such sources, samples are often quantized by a family of uniform
quantizers possibly with a deadzone, and then entropy coded. For the Wyner-Ziv coding problem when correlated side-
information is available at the decoder, the side-information can be modeled as obtained by additive Gaussian or
Laplacian noise on the source. This paper deals with optimal choice of parameters for practical coding of such sources
in presence of side-information, using the same quantizer structure as in the regular codec, assuming that the variances
of the source and additive noise are known. We first consider memoryless coding which may be the only option in some
coding scenarios, and then follow up by considering coding using powerful channel codes with soft decoding that
approach the Slepian Wolfe bound. We show that in the latter case, at practical block lengths and code complexities, not
pure channel coding but a hybrid combination of source coding and channel coding provides optimal rate-distortion
performance. A good understanding of the optimal parameter choice mechanism is essential for building practical
codecs that can be used in a variety of scenarios.

1. INTRODUCTION

Drawing inspiration from the foundation laid by Slepian-Wolfe [1] and Wyner-Ziv [2] theorems, a great deal of
attention has been devoted in recent years to practical source coding with side-information problems [3]-[13]. All such
work uses some form of channel coding to convey a source assuming that correlated side-information is available at the
decoder to perform appropriate channel decoding. The challenge is to design the encoder and decoder based on known
statistics. A good review of the area is presented in [11]. In this work, we address a fundamental problem of optimal
parameter choice for various coding options that may be considered in a practical source coding with side-information
scenario, where a range of rate-distortion trade-offs are desired, assuming a model for the data and known statistics.

It has generally been accepted that Wyner-Ziv coding in the transform domain yields superior results due to effective
decorrelation of the data. Transform coefficients are well modeled as Laplacians. Further, the side-information available
only at the decoder in a variety of applications can be well modeled by additive noise on the source where the noise is
either Gaussian or additive Laplacian. In particular, if X denotes the source Laplacian random variable with variance o7,
and Y is the side-information available only at the decoder, then ¥ = X + Z, where Z is either i.i.d. Gaussian or i.i.d.
Laplacian with variance 6, in our model Generally, we will refer to the probability density function of X as fi(x), and Z
as fAz). The paper studies and optimizes various practical Wyner-Ziv coding options for such a source and correlation
model, which we believe would be very useful in many transform-domain Wyner-Ziv coding scenarios.

In any practical codec, X is quantized with a quantizer family ¢ to yield a quantization index random variable QO as
follows: O = (X, OP), where QP is the quantization step-size parameterizing a family of quantizers. The simplest
quantizer family is the uniform quantizer, given by:

Q0 =¢(X,0P) =round (X /QP) )
A variant referred to as the uniform quantizer with deadzone, is actually more commonly used in practical codecs:
0 = ¢(X,0P) = sign(X)x|| x|/ 0P )
While in general QP can be continuous, it is typically taken from a discrete set in a practical codec.
For these quantizers, Q is ideally assumed to take integer values in Q, = {-w,..,~1,0,1,..,} . However, in practice the

finite set O, = {-q,. ;~Gma 1>~ L0Lscss Gy — 1.G 0y, } MAY b used, where g, is large enough so that the probability of

the Laplacian source to take positive and negative values beyond the bins ¢,,,, and —¢,,,, respectively is negligible. While
generally speaking ¢, depends on QP and oy, for simplicity of notation we simply refer to the set of all available
quantization bins as @ o
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Figure 1. Probability mass function of coset indices

In the source coding with side-information scenario under consideration in this work, we assume that the same
quantizer structure as in the regular codec, is used. The problem we address is then broadly stated as follows: Given a
target upper-limit D, on the overall expected distortion, and variances {cy’, o,°} for Laplacian X and Gaussian Z
respectively, how should X be coded based on a given quantizer structure, so that the expected rate is minimized.
Sometimes, it may be convenient to specify the target distortion D, in terms of a target quantization parameter OP,
assuming regular coding (with no side-information) based on the same quantizer family. This criterion will be referred to
as distortion target matching.

2. MEMORYLESS COSET CODES
2.1. Coset Encoding and Decoding
In many source coding with side-information scenarios, it may be inconvenient to use longer channel codes, either
because decoding has to be conducted fast, or simply because there may not be enough data samples available to code in
order to reap the benefits of channel coding. In such cases, memoryless coset codes can be used.
But before defining these codes, we define the circular modulus function mod,. of two integers /, J as follows:

mod, (1,J)=1-J|1/J] (3)
taking values in the set {0, 1, ..., J~1}. A variant mod,, of the function uses zero-centered circular modulus as follows:
mod,(/,J), mod, (/,J)<J/2
mod, (1,J) = 4)
: mod_(/,J)—J, mod.(I,J)=J/2

taking values in the set |- -1)/2]..,-10,1,...[(J~1)/2}-
Once X has been quantized to Q with quantizer ¢ using parameter QP, cosets are computed based on Q to yield a
coset index random variable C: C = y(Q, M) = y(p(X, OP), M), M being the coset modulus, as follows:
C=y(Q,M)=mod (Q,M) (5)
C takes values from the setQ.={0,1,...,M-1}. The zero-centered variant where coset indices are centered on zero may be
preferred if an existing entropy coder for regular coding is used to code the coset indices. In this case,
C=y(Q,M)=mod_(Q,M) (6)
C takes values from the setQ . :{L_(M_ D /QJ,“_,_ 1,0, L---,L(M—l) /QJ}. However if a different entropy coder were designed

for the coset indices, there would be no difference between them.
If quantization bin g corresponds to interval [x/(g), x,(¢)], then the probability of the bing ¢ Q, and the probability of

a coset index ¢ € Q. are given by the probability mass functions:

Po@ =",

Whwd pe@= Ypo@= X [N f (xdr )
q4eQp:y (q,M)=c q4eQp:y (g, M )=c

Examples of both are shown in Figure 1, for M odd in the zero-centered case and Laplacian fy(x). Note that the
entropy coder that exists in the regular coder is optimized for the distribution py(g), and is designed to be particularly
efficient for coding zeros. Because the distribution p(c) is also symmetric for odd M, has zero as its mode and decays
with increasing magnitude, the entropy coder for Q that already exists in the regular code may be reused for C, without
significant loss in efficiency. However, if an entropy coder was designed specifically for coset indices there would be no
difference between use of Eq. 5 and Eq. 6 for the coset modulus function.

For decoding, the minimum MSE reconstruction function X ve(¥,¢) based on unquantized side information y and
received coset index c, is given by:
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Figure 2. Decoding example

x,(q)

2 Ifo/y(X,y)dx S u(d.y)
XYC ()’, c)= E(X/Y =y,C=c)= E(X/Y = y:‘//(¢(X, OP),M)=c)= 9€Q0 (9, M)=c )Zh(?q)) _ 9%y (g M)=c (8)
Z IfX/y(X,y)dx Z”(q,y)

Q1 (q,M )=c
q4€Qpy (4.M)=c x,(q)

where we have introduced the following definitions for convenience in the rest of the paper:
x,(q) x,(q)

(@) =Poy@=q1Y =)= [ [y, o)y, (g, y)= [xfy,y(x,)dx ©)

x(q) x(q)
Note that 7(g,y) is the conditional probability of O given Y.

Figure 2 depicts such a decoding example.

OP and M should be optimally chosen for a given target quantization parameter OP,, and known statistics {oy’, 6,°}.
We study this problem in detail in the rest of this section. Specifically, the rate-distortion function of memoryless coset
codes are characterized in order to obtain the optimal {QP, M} pair that yields reconstruction quality equivalent to a
target quantization step size QP, if regular (non-distributed) coding had been used. The variances of the Laplacian source
(0x) and the additive white Gaussian noise (o), are assumed to be known.
2.2. General Rate-Distortion Characterization

In this sub-section we write down rate-distortion function expressions for various Wyner-Ziv coding scenarios,
without consideration for the source and correlation model. In the next sub-section, we will specialize for the Laplacian X
and Gaussian Z case, with side-information Y=X+Z.

2.2.1. Memoryless coset codes followed by minimum MSE reconstruction with side-information

The probability of each coset index transmitted is known from the probability mass function in Eq. 7. Assuming an
ideal entropy coder for the coset indices, the expected rate would be the entropy of the source C:

E(Rye)=H(C) ==Y pe(@)log, pe(@) == { ¥ ["" f(0dvilog,t Y

ceQ, Qe qeQyiw (g, M)=c (g 4eQyiw (g, M)=c

AC)]

Sy (x)dx} (10)

x,(q)

Defining ;") (x) = J'x”'fX (x")dx', we can rewrite:
ER,)==2{ 2Im(x,(@)-mP (x,(@)log, { D [mE (x,(@)—m (x,(9)}} (11)
ceQe qeQpiyp(q.M)=c q€Qp:y (q,.M)=c
Assuming the minimum mean-squared-error reconstruction function in Eq. 8, the expected distortion Dy given side
information y and coset index c is given by:
E(Dy. 1Y =y,C=¢)= E((X = Xye(3,0) /Y = y,C=¢) = E(X*/Y = y,C =¢) - X, (y,¢) (12)

using X (v, 0)=E(X /Y =y,C=c).Marginalizing over y and c yields:



E(DY(‘) = E(XZ)* I { z)%y(:(%c)zpwy(c =c/Y =)} fy (y)dy

S ceQe

> 13
B > (g, ) (13)
2 qeQ,1y (.M )=c _ _ .
=i [ Ty | Per €=/ Y= 0
9eQy 1y (¢.M)=c
5(@) 2
. 2 [y
=0} - [y |l Pen(C=clY =y} fy(Mdy
S Qe z J'fx/y(x,y)dx
9€Qp 1y (q.M)=c x,(q)
where p.,,(C=c/Y =y) is the conditional probability mass function of C given Y. Noting that:
x,(q)
Pen(C=clY=y)= Y poy@=q/¥=p)=  Ya@n= Y  [ferGaydx (14)
qeQp (.M )=c qeQpy (¢,M)=c 9€Qpy (q,M)=c x,(q)
we can write:
2 x,(q) 2
) [ Zu(q,y)J ) > [ eneydx |
EQQI (q.M)=c EQQZ (q.M)=c X .
E(D ) =0} - [ 13 S My )y =0 = {3 e 1y )y (15)
—oo cEQ —0 ceQe et
[ zzr(q,y)] [ > .fX/y<x,y>de
qeQqy(q,M)=c qeQqy (q.M)=c x,(q)
Defining:
m® () =[x fiy (&, p)dx’ (16)
we have:
x,(4)
2@ )= [ frwCey)de =[m), (x, (@), )= mP)y (x,(9), )]
x(q) (17)
x,(q) ) B
1) = [xfy sy (e Im)y (x, (@), ) = m§)y (3, (9), )]
x(q)
Then we can rewrite Eq. 15 as:
2
) _
[qs%:%g:ﬁl/\;/y(xh (@), y) —my )y (x, (q),y)]J (18)

E(Dyc) = O'i' - j{ Z
o ceQy
( D Im)y Gea(@), ») = m)y Gy (@), )]

4eQpy (q.M)=c

J Wy (V)dy

2.2.2. Ideal Slepian-Wolf coding followed by minimum MSE reconstruction with side-information
Next, we consider the expected rate and distortion when using ideal Slepian-Wolf coding for the quantization bins.
The ideal Slepian Wolf coder would use a rate no larger than H(Q/Y) to convey the quantization bins error-free. Once the
bins have been conveyed error-free, a minimum MSE reconstruction can be still conducted but only within the decoded
bin. The expected rate is then given by:
E(Ryy) =H(Q/Y)
. - (19)
=-[1 2 Po(Q=q/Y = y)log,po s (Q=q/Y = y)ify(dy =-f¢ 2. (g.y)log, (g, )}y (V)dy
2 gen, e
=-[1 Zn‘,[mgy (4 (@) ) = m5)y (x, (@), »)]log, [mY), (x,(9), ) = miY)y (x,(9), V)T £y (»)dly
2 gen,
The expected Distortion Dyy is the distortion incurred by a minimum MSE reconstruction function within a
quantization bin, given the side information y and bin index ¢. This reconstruction function )?YQ( ¥,q) 18 given by:



Xyo (1) = E(X 1Y =y,0=q)= E(X/Y = y,§(X,0P) = c)
X, (q)

My 1y (%, y)dx (20)
(J) v _1g.y) _ mYy(5,(@) )~ my (x,(q). )

j"j’, () 72(q,y)  m)y(x, (@), y)—m)y (x,(9), )

x(q)
Using this reconstruction, the expected Distortion with noise-free quantization bins (denoted Dyy) is given by:

5() 2
[ fo;/y(x,wdx]

ED) =0}~ [ 1T i o)ty = 0} - [ L2 2D 5 (e @
o ( [ fx/y(x,ymx] ot T
x(q)
© ) )] ?
oo fry @t sl

—o 4eQp (mgf/)y(xz,(Q),)’)—mX/y(xz(Q),)’))
This case will be considered in more detail in the Section 3, but we present the rate-distortion characterization here in
order to make a comparison with memoryless codes.

2.2.3. Regular encoding followed by minimum MSE reconstruction with and without side-information

Next, we consider the rate and distortion if no distributed coding on the quantization bins were done at the encoder. In
this case, the expected rate is just the entropy of Q.

E(Rg) = H(Q) =~ ¥ po(@)log.pe (@) = = X [m{ (x,(9) ~ m (3, (@)log, [m (x, (¢) ~m{ (x,(q)]  (22)
q€Q, qeQ,

The decoder can still use distributed decoding if side-information Y is available. In this case, the reconstruction
function and the corresponding expected distortion are given by Eq. 20 and Eq. 21 respectively. On the other hand, if
there is no side-information available, the expected distortion Dy is the distortion incurred by a minimum MSE
reconstruction function just based on the bin index ¢. This reconstruction function X 0(q) s then given by:

x,(q)

[ofcode . ’
)%Q(C])=E(X/Q=q)=E(X/¢(X,QP)=q)= )Z((qq)) _ m()g)(xh(Q))_mﬁ))(xz(Q)) (23)
',’J‘f (x)dx my’ (x,(q)) —my’ (x,(q))
x(q)
while the expected distortion is given by:
x,(q) 2
[+ (x)dx] 1 1 ,
E(DQ) — CT; _ Z (Ii(") — O_?{ _ Z (m%;)(xh(q))_m%;)(xl(q))) (24)
[j} - dx] &, (@) -m (5, ()
x(q)

The overall objective of the distortion matched parameter choice mechanism can now be expressed in terms of the above
rate-distortion functions: Given a target quantization step size QP, for regular encoding and decoding, the target expected
distortion E(Dy) can be readily computed from Eq. 24. The parameters QP and M for memoryless coset codes should be
chosen such that the lowest rate E(Ryc) given by Eq. 10 is obtained, with the expected distortion E(Dyc) given by Eq. 18
being equivalent to the target distortion.

2.2.4. Zero rate encoder with minimum MSE reconstruction with side-information

The final case is when no information is transmitted corresponding to X, so that the rate is 0. The decoder performs the
minimum MSE reconstruction function X, (y):

X, ()= E(X /Y = p) = [xfyy(r, 0)dx = mi), (0, ) (23)

—o0

The expected zero-rate distortion Dy is given by:

—oo\ —0

E(Dy) =0} - | [ [ (x y)dx] fy 0y =0y = [m), (0, 0)" 1, (»)dy (26)



2.3. Laplacian Source Specifics

While the expressions in the previous sub-section are generic, we now specialize for the case of Laplacian X and for
two particular cases for Z, Gaussian and Laplacian. While the results presented in the rest of the paper correspond only to

these models, the methodology presented applies to any other viable model, including a mixture of Gaussians.
2.3.1. Expressions for Gaussian noise Z
We first specialize for the case of Laplacian X and Gaussian Z, i.e.:

=t et
X)=——e"|oy |, z)= e 2loz
* \/EUX ‘ \/EO-Z
In the following, we assume:
erf (x) = ij e dr
T o
Then, defining
Vax
px)=e”
we have
ﬂ(x)’ $<0 \(/x_)(\/—x oy), x<0
mP@ =1 2 ) (x) = 5
1- , x>0 W2x+0,), x>0
2B(x) 2f 25(x) '
Further defining:
o x 207 o-Xx+\/_az
x) =erf (————%), X) =
n(x) = erf( 2o, ) 72(%) \/_GXUZ —F=)
and using Y=X+Z, we have:
fon =2
w3 2\/;0)(02 ¢
T 1 (fz/(f2 2
(y) = Y)dx =——— /% 10— -1.0
L oy S OO AT (=10

s3]

Tx

1 y—x. 5}(
— (X gy

2 o, o

ey = LGy V28 e
o L) Nro, n()H0=-BG) (0,31 —1.0)]
Given fyy(x, v), the moments can now be computed:

1 ) oy (y-x)+20}
1- — )], <0
N e E T D R I T A o
my )y (x,y) = 1 o (y—x)—ﬁgz
- 1 ZxT T T NTE), 0
O+ 10- 01 G-t ¢ V20,0, oo
Loy -]
By +2Z l] e GO TG VD s
\EO-XO-Z \F x<0
mQ)y (x,) = () +1= B (2 (») = D] ](’ o B
2 2 _ 7\50_; ‘/E w
BTy V2 T2, () - D+ V2 T2 () - erf (XY =D TNz N2 e
Oy Oy \/EO'XO'Z \/; >0
() +1= B (7,(») - D] '

@27

(28)

(29)

(30)

€2))

(32)

(33)

A special case used for the optimal reconstruction and distortion functions in the zero-rate case is when x—oo. In this

case,



- B y+~F 10, -1 +[y-v2Z ‘](y]<y)+1) , )
m)y (0,y) = :y_ﬁg[yl(y)ﬂﬂf(y) () -D] (34)

[, (y)+1 B (,(»)=D] ox M +1=B) (0, (»)-D]
The erf() function used in the above expressions for moments and fy(y) can be evaluated based on a 9™ order polynomial
approximation provided in Numerical Recipes [14]. All the expected rate and distortion functions in Section 5.1 then can
be evaluated based on these moments in conjunction with numerical integration with f(y), given the quantization function
¢ and the coset modulus functiony .

2.3.2. Expressions for Laplacian noise Z

We next specialize for the case of Laplacian X and Laplacian Z, i.e.:
Nen

1 REX
(x) = el fz2(2)= o (33)
fX \/EO' X ’ \/_ O'Z
Defining:
a()=e, f)=e, 7(x) = (oxa(x)-0B(x) (36)
Eq. 30 still applies for m'’(x) and m{’(x) . Further, using Y=X+Z, we have
S ) = e T
20y0,
Valy| Ly 3 e
rppe T R G s S (37
fr(¥)= \F(O—X o%) ] S (x,3) = \/EO-XGZ}/(M)
(O'X +I‘y‘)e J'X . . \E@"E‘W) .o
— Y = = e z —PVx
ZIO'X ’ ‘ (ox +\/E‘y‘)
The partial moments can now be calculated as follows:
(ox —07) B+ ax) <0 ox (%) +<0
27(y) Aox +V2ph
o) _
myy(xy) y<0o _ B (ox +o2)ax)/ fx)-207) ox +22x
iy )= { MOy y>0 i ()= 27()) < 2Aox +2) <M
| (ox —on)2(WAD) x> - ox (3 x>
270 (x) O R Jor
) O (o
mgp,y(x y):{mx/n( x(lg’) My () <0 whee:
My, (%.Y) >0
(2x(ox +07)-0v07) (o8 —07)a(x) ) B(3) +<0
22p(ox +07) B
B {Ex +022(2x(0x —07)-0x07)a(x) ] flx) +403 03} x<p
2\/7}’qy‘)(o'x -03) (38)
2
2‘/§y/8(M)UX(U)2( ~03)+40}a3 (B~ M) ~(ox ~oz)2(ox0r +V2x(ox ‘*'O_Z))%
>
)y (5,9) = 2r(sh) b por
Porpo@-an
8(ox +42]s)
R(@4x2-02) <<l
8(ox +2]y))
lM_GXﬂZQﬁ)(ﬁGXﬁ—M) .
2 8ox +\E\y\)ﬂ2(x) for

ox=07

Also note:
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Figure 3. R-D curves obtained by changing QP and M for Laplacian X and Gaussian Z.

mg})/y(oo, y)= sgn(y).mg})/y+ (o0, y), where:

Ma(shor (03 -o3) V20303 (Bl -a(y)) (39)
o _ > > , Ox #0z7
m)(/y+(oo7y) 7(‘}/‘)(0)( -03)
v)/2, ox =0z

Q)

for use in m}/), (x,y) in Eq. 38, and also for optimal reconstruction and distortion functions in the zero-rate case.

2.4. R-D curves for deadzone quantizer and optimal parameter choice

We next present the R-D curves for a deadzone quantizer given by Eq. 2 and the coset modulus function given by Eq.
5, obtained by changing the parameters QP and M for the Laplacian-Gaussian model. Note that while M is always
discrete, QP is in general continuous. However we have sampled it at regular intervals in the R-D curves presented
below, and the sampling interval can be arbitrarily small to approximate the continuous case. On the other hand, for most
real codecs, the QP is indeed discrete.

2.4.1. Constant M and Constant QP R-D curves

Figure 3(a) and (b) shows two ways of presenting the curves for the specific case of Laplacian X (cx=1), and Gaussian
Z (6;=0.5), while Figure 4(a) and (b) shows the corresponding results for the same Laplacian X (cx=1) and Laplacian Z
(67=0.3). In Figure 3(a) and Figure 4(a) each R-D curve is generated by fixing M and changing QP at finely sampled
intervals of 0.05 between 0.05 and 3.15. The following discussion assumes QP to be continuous. The case QP— for
any M corresponds to the zero-rate case, and yields the R-D point {0, E(Dy)} where all the curves start, with £(Dy) given
by Eq. 26. Alternatively, this point can also be viewed as the M=1 curve which degenerates to a point. The other extreme
is the case where OP—0+. In this case, for any M, each coset index has equal probability and so the entropy converges to
log,M. However, the distortion then becomes the same as the zero-rate case E(Dy), since the coset indices do not provide
any useful information. For the purpose of comparison, the line with ‘*’s correspond to the non-distributed coding case
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Figure 4. R-D curves obtained by changing QP and M for Laplacian X and Laplacian Z.

with minimum MSE reconstruction using side-information given by Eq. 22 and Eq. 21 respectively, while the line with
diamonds correspond to ideal Slepian-Wolfe coding followed by minimum MSE reconstruction. Figure 3(b) and Figure
4(b) shows the same results but now using constant QP curves. Each curve in this figure are generated by fixing QP and
increasing M starting from 1 upwards. All the curves start from the zero-rate point {0, E(Dy)} corresponding to M = 1.
This point is also the OP— curve that degenerates to a point. As M—oo however, the coder becomes the same as a
regular encoder not using cosets. Consequently, each constant OP curve ends on a point on the curve corresponding to
non-distributed coding with minimum MSE reconstruction using side-information. The line with ‘diamonds’ correspond
to the ideal Slepian Wolfe coding case followed by minimum MSE reconstruction.

2.4.2. Pareto Optimal Set and Convex Hull

From the curves it is obvious that not all choices for OP and M are necessarily better than regular coding followed by
minimum MSE reconstruction using side-information. The sub-optimal choices for {OP, M} combination can be pruned
out by finding the Pareto-Optimal set P, wherein each point is such that no other point is superior to it, i.e. yields a lower
or equal distortion at a lower or equal rate (assuming that the rate-distortion points are all distinct). These points are
marked as ‘+’ in Figure 3(c) and Figure 4(c). Now, given a target distortion D, in terms of the quantization parameter QP,
for regular coding with no side-information using Eq. 24, one can search the Pareto Optimal set P for the point that yields
the closest distortion to D,, and choose that.

However, a strategy yielding superior rate-distortion performance is to operate on the convex hull of the set of R-D
points generated by all {OP, M} combinations. The convex hull is a piecewise linear function generated from the Pareto
optimal set of points P by generating an ordered subset of points called the convex hull set H in descending order of
distortion, and joining these points by straight line segments. The procedure is explained below, assuming zero-based
indexing for ordered P and H:

1. Sort the points in P in descending order of distortion.



2. Include first (highest distortion) point of P corresponding to zero-rate in H: H[0]=P[0], np= 1, n;= 1

3. While np <|P| (the total number of points in P)
Compute the gradient to the last point included in H to other points in P with lower distortion. Choose the
point that yields the steepest negative gradient, and include that point in the convex hull set:

k= karglmfﬂl {Dsgs, = Do) Rt = Ry} Hny ) = Pk'], n,=n, +1, n,=k’ (40)
=np+l,...,|P|-
where Dyp;) (Dppp) and Ryyp;y (Rppp) are the distortion and rate values corresponding to the ith point in the set A
(P).
End.

4. Join the resultant n;; ordered points in H by straight line segments.

Note that when QP is indeed continuous, the convex hull actually becomes a curve which has small continuous
sections lying on a constant M curve, followed by linear sections joining another constant M curve (for a different M).
However, in a practical codec usually a discrete set of QP; or QP values are allowed, and hence we stay within this set for
our chosen OP.

Figure 3(c) and Figure 4(c) shows the points included in the convex hull set H as ‘0’. The convex hull is obtained by
joining them with straight line segments. Note that this piecewise linear convex hull is not guaranteed to have points that
are obtained with a specific {OP, M} combination, except at the points in the convex hull set. However, the following
method can be used to probabilistically operate at any intermediate point. Given a target QP, and corresponding
distortion D,, search the decreasing distortion ordered set A to find where D, lies. If D, is higher than the zero-rate point
distortion, i.e. D, > Dy, use zero-rate encoding. Otherwise, if D lies between the i and (i+1)th points, i.e. Dy > D, >
Dy, caleulate o = (Dppi=D)/(Dppii— Dppiviy); then use a uniform pseudo random number generator in the encoder to
choose parameters {QPpy;, Myt with probability 1-a and {OPpgp11), Mp+)) with probability a, for each sample
encoded. The decoder is assumed to use a synchronized pseudorandom number generator with the same seed to obtain
the right parameters for decoding each sample. Thus, all points on the convex hull are in fact achievable, and the convex
hull should be chosen as the optimal operational R-D curve.

To summarize, given the statistics {oy, 6}, each target QP; (and consequently D,) would map to a 5-tuple {QP;, M,
OP,, M,, o} where parameters {QP;, M;} and {QP,, M,} are chosen with probabilities (1— ) and o respectively. This
mapping would typically be obtained offline for each class based on known class statistics {cy, o} using training data,
and stored in the form of a table in the encoder and decoder to perform the encoding and decoding accordingly. An
example of such a table generated for Laplacian X (cy=1), and Gaussian Z (c,=0.5) is shown in Table 1, where the QP
are taken from a discrete set of values sampled at intervals of 0.05. Here all entries with QP = c, M=1 correspond to zero
rate. Any entry with M = oo correspond to coding without cosets but using side-information based minimum MSE
reconstruction. Note that as the target OP; increases it becomes optimal to just use zero-rate encoding.

Table 1. Look-up table from target OP; to 5-tuple parameters for Laplacian 6y=1, Gaussian 6,=0.5

QPt QP] M1 QP2 Mz [V

0.05 0.05 ) 0.05 ) 0.00000
0.10 0.15 27 0.10 ) 0.99557
0.15 0.15 27 0.10 ) 0.02017
0.20 0.20 19 0.15 25 0.01849
0.25 0.25 14 0.20 18 0.05705
0.30 0.30 11 0.25 14 0.06097
0.35 0.35 9 0.30 11 0.02897
0.40 0.45 7 0.40 8 0.73945
0.45 0.50 6 0.45 7 0.55446
0.50 0.60 5 0.50 6 0.63447
0.55 0.70 4 0.60 5 0.89844
0.60 0.70 4 0.60 5 0.21118
0.65 0.90 3 0.70 4 0.68756
0.70 0.90 3 0.70 4 0.21994
0.75 o0 1 0.90 3 0.91249
0.80 ) 1 0.90 3 0.74701
0.85 o0 1 0.90 3 0.57388
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0.90 ) 1 0.90 3 0.39387
0.95 ) 1 0.90 3 0.20779
1.00 ) 1 0.90 3 0.01642
1.05 ) 1 ) 1 0.00000
1.10 ) 1 ) 1 0.00000
1.15 ) 1 ) 1 0.00000
1.20 e 1 e) 1 0.00000

Figure 3(d) and Figure 4(d) shows the convex hulls obtained using the above procedure for differing values of oy
while fixing ox = 1. As expected, the curve shifts up with increasing oz. The figure also includes the R-D curve for
regular non-distributed coding using minimum MSE reconstruction without side-information, generated by varying QP
with ox = 1 (Eq. 22 and Eq. 24). The corresponding distortion D, on this curve for each QOP, is to be matched to the
convex hulls for the given statistics. Note for smaller values of 67, a significant amount of the distortion range is covered
simply by using zero-rate encoding with side-information based decoding.

For both Gaussian and Laplacian Z, it can be observed that as ¢, increases, the convex hull comes closer to the type of
coding where no cosets are used but only minimum MSE reconstruction is conducted within the unambiguously conveyed
quantization bin. However, for the Laplacian Z case, the difference becomes insignificant at smaller values of 6, than in
the Gaussian Z case. This result is not surprising intuitively speaking, given the fatter tail of the Laplacian distribution
that makes coset based coding less efficient at smaller values of o,. Figure 5 illustrates the situation for two different
values of 67 for both Gaussian and Laplacian noise cases.

Figure 6 shows how the R-D characteristics change with the shape of the Z distribution (Laplacian vs. Gaussian), for
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Figure 6. Comparing R-D curves for memoryless codes for Laplacian and Gaussian Z



the same Laplacian X with the same variance ox = 1 and the same variance of Z 6; = 0.4. We observe that the ideal
Slepian-Wolfe bound gets worse from Laplacian to Gaussian, but the efficiency of memoryless codes get better. In other
words, as the tail of the distribution gets fatter, memoryless codes get increasingly less efficient, which is not surprising.

One final point is that in some coding scenarios such as video coding for reversed complexity, the statistics (ox, 67)
may itself depend on the target QP, for the non-Wyner-Ziv frames. In that case, each line in parameter table as in Table 1
stored in the encoder and decoder could be obtained by a different statistics (ox, 67). The decoder additionally needs to
store the actual (ox, 67) pair for each QP, for appropriate decoding.

2.4.3. Optimal parameter choice for a set of variables with different variances and correlation statistics

We next address the problem of optimal parameter choice for a set of N random variables: X, X, ..., Xy_1, where X; is
assumed to have variance GZXI_ and the corresponding side information Y; is obtained by: Y; = X; + Z,, where Z; is i.i.d.
additive Gaussian with variance GZZI_. This is exactly the situation that would arise in a typical (orthogonal) transform
coding scenario, where each frequency can be modeled to have different statistics. The expected distortion is then the
average (sum/N) of the distortions for each X; and the expected rate is the sum of the rates for each X;. In order to make
the optimal parameter choice, first the individual convex hull R-D curves must be generated for each i. Using typical
Lagrangian optimization techniques, the optimal solution for a given total rate or distortion target should be such that
points from the individual convex hull R-D curves are chosen to have the same local slope A. The exact value of A should
be searched by bisection search or a similar method to yield the exact distortion target or the rate target. Note that since
the convex hulls are piecewise linear, the slopes are decreasing piecewise constants in most parts. Therefore,
interpolation of the slopes is necessary under the assumption that the virtual slope function holds its value as the true
slope of a straight segment only at its mid-point.

3. APPROACHING THE SLEPIAN-WOLF BOUND

In Section 2.2.2 we have seen that the ideal rate required to transmit the quantization indices Q is no larger than
H(Q/Y), as given by Eq. 19. In this section we will consider practical approaches to getting close to this bound, under the
assumption of our Laplacian source and additive Gaussian noise correlation model with known parameters {cy’, 6,°}.
Further, we will show how proper rate-allocation and soft decoding should be performed within this context.

Since the goal in this family of approaches is to achieve essentially noise-free transmission of the quantization indices
with minimum possible rate, the expected distortion can be computed based on minimum MSE reconstruction within the
quantization bin given by Eq. 21. Thus, for a given target distortion D, corresponding to quantization parameter OP, for
regular coding using Eq. 24, the quantization parameter QP chosen for coding with side-information should be such that
the expected distortion by Eq. 21 is equal to D,. If the target distortion is more than the zero rate distortion given by Eq.
26, then just zero-rate coding should be used.

Table 2 shows successive values of QP; and corresponding values for D, and OP, and actual distortion D, which is the
better of Slepian Wolfe coding or zero-rate coding, Laplacian X (ox=1) and Gaussian Z (6,=0.5). Two scenarios —
continuous and discrete QP — are considered. Continuous values correspond to the case where an arbitrary precision for
QP is allowed up to a maximum of 3.15. The discrete values correspond to the case where QP is restricted to the discrete
set of values from 0.05 to 3.15 at intervals of 0.05. Note that both scenarios also include zero-rate coding corresponding
to QP=oo, which is chosen when the target distortion D, is less than the zero-rate distortion. Also, note that in the
continuous case at OP~=1.0, D, is less than the zero-rate distortion but more than the distortion for the largest possible OP
(in this case 3.15). Consequently this is value is chosen as OP. In the discrete case, in order to satisfy the practical
constraint that all QP values must be taken from a discrete set, the continuous QP values should be moved down to the
nearest allowable discrete point such that the distortion D<D,. In this case, however, the achieved distortion will be less
than D,.

Table 2. Mapping from QP, to QP for ideal Slepian Wolfe Coding, along with target D,, and actual distortion D for the
case Laplacian ox=1, Gaussian ¢,=0.5. Both continuous QP and discrete QP cases are considered.

0P, D, QP (continuous) | D (continuous) QP (discrete) D (discrete)
0.05 0.00025 0.05002 0.00025 0.05 0.00025
0.10 0.00115 0.10023 0.00115 0.10 0.00114
0.15 0.00287 0.15095 0.00287 0.15 0.00282
0.20 0.00556 0.20257 0.00556 0.20 0.00538
0.25 0.00930 0.25553 0.00930 0.25 0.00882
0.30 0.01415 0.31034 0.01415 0.30 0.01311
0.35 0.02016 0.36758 0.02016 0.35 0.01816




0.40 0.02731 0.42790 0.02731 0.40 0.02385
0.45 0.03562 0.49208 0.03562 0.45 0.03006
0.50 0.04503 0.56072 0.04503 0.55 0.04353
0.55 0.05553 0.63525 0.05553 0.60 0.05054
0.60 0.06704 0.71737 0.06704 0.70 0.06464
0.65 0.07953 0.80919 0.07953 0.80 0.07832
0.70 0.09292 0.91409 0.09292 0.90 0.09121
0.75 0.10715 1.03678 0.10715 1.00 0.10308
0.80 0.12214 1.18524 0.12214 1.15 0.11883
0.85 0.13783 1.37415 0.13783 1.35 0.13605
0.90 0.15413 1.63595 0.15413 1.60 0.15224
0.95 0.17099 2.07343 0.17099 2.05 0.17035
1.00 0.18833 3.15000 0.18586 3.15 0.18586
1.05 0.20608 ) 0.18982 ) 0.18982
1.10 0.22418 ) 0.18982 ) 0.18982
1.15 0.24255 ) 0.18982 ) 0.18982
1.20 0.26115 ) 0.18982 ) 0.18982

The rest of this Section deals only with the range of OP, values for which the target distortion D; is less than the zero-
rate distortion, and therefore a non-zero rate needs to be transmitted to achieve at least equivalent distortion. The
quantization parameter used must be QP, which is larger than QP,.

3.1. Symbol-plane by symbol-plane coding

The approach that has been typically considered in prior art is the use of bit-plane by bit-plane channel coding using
powerful systematic channel codes that span long sample sequences, for instance, Turbo, Low-delay Parity Check
(LDPC) codes and Repeat-Accumulate (RA) codes. Specifically, the quantization index Q using quantization parameter
QP for each sample is binarized up to a certain number of bit-planes. The binarized Q values of a typically long sequence
of samples are stacked up, and for each bit-plane a systematic channel code of a certain rate is used to yield a set of parity
bits that are transmitted in the bit-stream. The systematic bits are not sent, and left to be recovered from the side-
information at the decoder, in conjunction with the parity bits. The rate allocation and corresponding decoding for each
bit-plane should not only consider the source and correlation model, but also the order in which the bit-planes are to be
decoded at the decoder — a consideration that is often ignored in many current systems.

3.1.1. Symbol Decomposition

Before discussing this in further detail, we consider a somewhat more generic version of this bit-plane coding
approach by allowing decomposition of Q into an arbitrary number of symbols each with an arbitrary alphabet size. We
consider decomposing Q into S symbols {Q,, O, ..., Os 1} each associated with a finite alphabet, and one symbol Xg
associated with an infinite alphabet. Here Q,, i=0,1,...,5-1 is the (i+1)th least significant symbol (i.e. O is the least
significant symbol, O, is the second least significant symbol, and so on) associated with a finite /,-ary alphabet, while X
is the most significant symbol associated with an infinte alphabet which is the set of all integers. The following recursion
may be used to obtain the symbols Q; and X from Q, given the S-ary alphabet-size vector L={/, /, ..., Is1}:

Initialize : X, = Q
Compute:Q, =mod,(X,,1,), X,., =| X, /1, | fori=0,1,..5-1
In this case, Q, € QQ’ ={0,1,..,/

i

(41)

-1} for i=0,1,..,5—1,and X € {-oo,...—10,L,...,00} . A variant that is identical in terms

of entropy but may be preferred when an existing entropy coder for regular coding is reused for coding the symbols, uses
the zero-centered circular modulus function:

Initialize : X, = Q

Compute:Q, =mod_(X,.,l,), X,., =| X,/ | fori=0]1,..,5 -1
where 0, €Q, ={~(,~1)/2}...~1,0,1L,...[(,=1)/2} for i=0],..,8-1 and X €{-o0,...=1,0,l,...,} as before. Note

that the (S+1)-tuple {Qy, O, ..., Os 1, Xs} carries exactly the same information as Q. On the other hand, there is always
some information loss, when the finite S-tuple {Qy, O, ..., Os_1} is used to represent Q rather than {Q,, Oy, ..., Os 1, Xs},
due to the fact that multiple quantization bins map to the same S-tuple. In practice however, if gy, is the maximum
magnitude quantization index Q beyond which the probabilities of the bins are trivial, and the following is satisfied:

Hl,. 22q,...+1, (43)

(42)
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Figure 7. Illustrating symbol-plane decomposition. The example assumes L={3,2,4}.

then the conditional entropy H(X;/Q,,0;,....0s.) =0, implying that there is no information in Xg given the S-tuple {Q,,

O, ..., Os.1}. In other words, H(Q)~ H(Q,,0,,....0s ) -

The strategy to be followed for transmitting Q, is to assume an S-ary finite decomposition of Q into {Qo, Oy, ..., Os 1}
given an alphabet size vector L={ly, /|, ..., Is1}, and ignore symbol Xs. Correspondingly, Oy | is regarded as the most
significant symbol rather than Xs. Thereafter, the symbols {Q,, Qi, ..., Os} are transmitted but no rate is ever
transmitted for Xs. The possibility of H(X;/0,,0.....0s) >0, i.e. multiple quantization bins with non-trivial probability

mapping to the same S-tuple, is however taken into account during the minimum MSE reconstruction procedure. Figure 7
illustrates the symbol-plane decomposition mechanism. Henceforth, for simplicity we will use the following notation:
0,=¢M0) (44)
to denote the mapping function from Q to the ith symbol Q;, given the alphabet-size vector L={/y, [}, ..., Is1}.
3.1.2. Ideal rate allocation for ordered symbol coding
In the ideal case, we assume a symbol decomposition mechanism where Eq. 43 is satisfied. Since the information in Q
is identical to that in {Qy, Oy, ..., Os 1} under this assumption, i.e. H(Xs/Q,,0,,...,0s.1) = 0, the ideal Slepian-Wolfe rate

can be approximated as: H(Q/Y)~ H(Q,,0:,....0s. /Y) . If the coding for the individual symbols are conducted from least
to most significant symbols, then we could decompose as follows:

H(Q/Y)= H(Qo,05.-,0s1 1Y) (45)
=H(Qo/Y)+H(O/0,Y)+H(Q:/ 00,01, Y)+...+ H(Os51/ D0, 0r5.,052,Y)
Here each term corresponds to the ideal rate to be allocated for noiseless transmission of each symbol. However, to be
able to achieve the rate needed for each symbol, the decoding of the symbols should be conducted also in the same order
— from the least to the most significant symbol; and furthermore, decoding each symbol should be based not only on the
side information Y, but also on prior decoded symbols. Likewise, if the coding order of the symbols is from the most to
the least significant symbol, we would decompose as follows:
H(Q/Y)= H(Qo,0 5,051 /Y) (46)
=H(Qs1/Y)+H(Qs-2/Os1,Y)+ H(Qs-3/ Os5-1,05-2,Y)+... 4+« H(Qo/ O5-1,O05-25.-,O1,Y)
In general, coding of the symbols can be conducted in any order, but for each order the rate allocation per symbol would
differ, and so also the decoding.

In order to exactly compute the rate allocation for a symbol i, given a subset of symbols already transmitted, we would
need to compute in general the conditional entropy H(Q, /{Q, : k € G,},Y) , where G; is the set of indices corresponding
to symbols that are to be transmitted prior to symbol Q;. For instance, if the coding order is from the least significant
symbol to the most significant symbol, we will have: G, = {},G, ={0},G, ={0,1},...,G,_, ={0.1,...,§ -2} .

This conditional entropy can be written as:
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This entropy can be readily calculated based on the expressions for the partial moments presented earlier, in conjunction
with numerical integration over y. Note that even though the expressions look formidable, they are fairly straight-forward
to compute.
We present examples of the ideal bit-plane by bit-plane rate allocation for the case oy=1 (Laplacian), 6,=0.5
(Gaussian), for various coding orders orders below. We consider 11 bit-planes, so that the condition of Eq. 43 is easily
satisfied. Table 3 shows the allocation for LSB to MSB coding. Table 4 shows the allocation for MSB to LSB coding,
while Table 5 shows the allocation for an arbitrary coding order (first MSB followed by LSB, second LSB, and so on). In
each table, the columns are ordered according to the order of coding of the bit-planes. The tables also provide the total
conditional entropy or the ideal Slepian-Wolfe rate in the Sum column, which is the sum of the rates for the individual
bit-planes. Note that this value across different tables for the same QP is the same, irrespective of the coding order.

Table 3. Ideal rate in bits for LSB to MSB coding for various QP values, for 6y=1 (Laplacian), 6,=0.5 (Gaussian).

oP BP0 BP1 BP2 BP3 BP4 BPS5 BP 6 BP7 BP8 BP9 BP 10 Sum

0.1 0.99478 | 0.98908 | 0.97379 | 0.83909 | 0.22108 | 0.00135 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 4.01917
0.2 ] 0.97904 | 0.95173 | 0.79178 | 0.19708 | 0.00112 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 2.92076
0.3 0.95249 | 0.85900 | 0.42585 | 0.01856 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 2.26589
0.4 ] 0.91460 | 0.72130 | 0.17029 | 0.00097 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.80718
0.5 0.86475 | 0.54184 | 0.05772 | 0.00003 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.46434
0.6 | 0.80324 | 0.37860 | 0.01758 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.19942




0.7 0.73266 | 0.25288 | 0.00495 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.99048
0.8 0.65743 | 0.16459 | 0.00130 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.82332
0.9 0.58216 | 0.10563 | 0.00033 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.68814
1.0 0.51042 | 0.06730 | 0.00008 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.57779
Table 4. Ideal rate in bits for MSB to LSB coding for various QP values, for 6y=1 (Laplacian), 6,=0.5 (Gaussian).

OP | BP10 BP9 BP 8 BP7 BP6 BPS5 BP4 BP3 BP2 BP 1 BP0 Sum

0.1 0.46158 | 0.00000 | 0.00000 [ 0.00000 | 0.00022 | 0.02023 | 0.19565 | 0.56927 | 0.84519 | 0.95069 | 0.97625 | 4.01917
0.2 0.35694 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00022 | 0.02033 | 0.19590 | 0.57018 | 0.83897 | 0.93823 | 2.92076
0.3 0.26471 | 0.00000 | 0.00000 [ 0.00000 | 0.00000 | 0.00000 | 0.00212 | 0.06306 | 0.34260 | 0.70554 | 0.88787 | 2.26589
0.4 0.18882 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00022 | 0.02033 | 0.19611 | 0.57150 | 0.83018 | 1.80718
0.5 0.12976 | 0.00000 | 0.00000 [ 0.00000 | 0.00000 | 0.00000 | 0.00002 | 0.00656 | 0.11119 | 0.44789 | 0.76892 | 1.46434
0.6 0.08596 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00212 | 0.06306 | 0.34335 | 0.70493 | 1.19942
0.7 | 0.05492 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00068 | 0.03579 | 0.26018 | 0.63890 | 0.99048
0.8 0.03384 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00022 | 0.02033 | 0.19619 | 0.57274 | 0.82332
0.9 | 0.02011 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00007 | 0.01154 | 0.14772 | 0.50868 | 0.68814
1.0 0.01152 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00002 | 0.00656 | 0.11120 | 0.44850 | 0.57779

Table 5. Ideal rate in bits for arbitrary coding order for various QP values, for 6x=1 (Laplacian), 6,=0.5 (Gaussian).

QP | BP10 BP0 BP1 BP2 BP3 BP 4 BPS5 BP 6 BP7 BP 8 BP9 Sum

0.1 0.46158 | 0.98295 | 0.95823 | 0.88148 | 0.61574 | 0.11867 | 0.00052 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 4.01917
0.2 | 0.35694 | 0.94740 | 0.87388 | 0.62082 | 0.12117 | 0.00054 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 2.92076
0.3 0.26471 | 0.90629 | 0.76701 | 0.31648 | 0.01141 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 2.26589
0.4 | 0.18882 | 0.86409 | 0.62661 | 0.12699 | 0.00065 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.80718
0.5 0.12976 | 0.81904 | 0.47112 | 0.04439 | 0.00002 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.46434
0.6 | 0.08596 | 0.76696 | 0.33234 | 0.01416 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.19942
0.7 0.05492 | 0.70641 | 0.22495 | 0.00420 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.99048
0.8 | 0.03384 | 0.63972 | 0.14860 | 0.00116 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.82332
0.9 0.02011 | 0.57087 | 0.09684 | 0.00030 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.68814
1.0 [ 0.01152 | 0.50365 | 0.06264 | 0.00007 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.57779

We next present similar results for symbol-based coding, assuming only 4 symbols, with the alphabet-size vector
being given by {3, 2, 4, 100}. Note that /5=100 is chosen to be large enough so that the assumption of Eq. 43 holds. The
source and correlation model is given by oy=1 (Laplacian), 6,=0.5 (Gaussian). Table 6 shows the ideal rate for LSS (least

significant symbol) to MSS (most significant symbol) coding. Table 7 shows the ideal rate for MSS to LSS coding. Table 8

shows the ideal rates for an arbitrary order. In all cases, the Sum column shows the ideal Slepian-Wolfe rate, which is the

sum of the rates for the corresponding row.

Table 6. Ideal rate in bits for LSS to MSS coding with 4 symbols and L={3, 2, 4, 100}, for various QP values, for cy=1(Laplacian),
6,~0.5 (Gaussian).

orP SP O SP1 SP2 SP3 Sum

0.1 1.57438 0.98245 1.43832 0.02402 4.01917
0.2 1.54134 0.90082 0.47860 0.00000 2.92076
0.3 1.48154 0.67519 0.10917 0.00000 2.26589
0.4 1.38654 0.40307 0.01755 0.00000 1.80716
0.5 1.25431 0.20790 0.00213 0.00000 1.46434
0.6 1.10054 0.09868 0.00021 0.00000 1.19942
0.7 0.94590 0.04457 0.00002 0.00000 0.99048
0.8 0.80385 0.01947 0.00000 0.00000 0.82332
0.9 0.67982 0.00829 0.00000 0.00000 0.68814
1.0 0.57433 0.00346 0.00000 0.00000 0.57779

Table 7. Ideal rate in bits for MSS to LSS coding with 4 symbols and L={3, 2, 4, 100}, for various QP values, for oy=1(Laplacian),
6,~0.5 (Gaussian).

orP SP3 SP2 SP 1 SP 0 Sum

0.1 0.52676 1.04918 0.90455 1.53869 4.01917
0.2 0.35906 0.40504 0.70661 1.45005 2.92076
0.3 0.26478 0.15920 0.50676 1.33516 2.26589
0.4 0.18882 0.06518 0.34298 1.21018 1.80716
0.5 0.12976 0.02736 0.22595 1.08127 1.46434
0.6 0.08596 0.01161 0.14771 0.95414 1.19942




0.7 0.05492 0.00495 0.09649 0.83412 0.99048
0.8 0.03384 0.00212 0.06306 0.72430 0.82332
0.9 0.02011 0.00091 0.04124 0.62587 0.68814
1.0 0.01152 0.00039 0.02697 0.53891 0.57779

Table 8. Ideal rate in bits for MSS to LSS coding with 4 symbols and L={3, 2, 4, 100}, for various QP values, for 6y=1(Laplacian),
6,~0.5 (Gaussian).

orP SP3 SP 0 SP 1 SP2 Sum

0.1 0.52676 1.54750 0.92144 1.02347 4.01917
0.2 0.35906 1.47325 0.76677 0.32168 2.92076
0.3 0.26478 1.38561 0.54323 0.07228 2.26589
0.4 0.18882 1.28536 0.32088 0.01210 1.80716
0.5 0.12976 1.16532 0.16767 0.00159 1.46434
0.6 0.08596 1.03172 0.08157 0.00017 1.19942
0.7 0.05492 0.89755 0.03799 0.00001 0.99048
0.8 0.03384 0.77232 0.01715 0.00000 0.82332
0.9 0.02011 0.66047 0.00754 0.00000 0.68814
1.0 0.01152 0.56304 0.00323 0.00000 0.57779

3.1.3. Practical rate allocation and coding

While the conditional entropy results have been presented for arbitrary symbol decomposition, in a practical scenario,
it would be convenient to choose alphabet-sizes for each symbol to be 2, or at most small powers of 2. The case where
each [; = 2 corresponds to the popular bit-plane by bit-plane coding case, where extensive prior knowledge on behavior
and performance of binary error-correction codes can be brought to bear.

Coding of each symbol plane in the pre-determined order is conducted by use of a systematic channel code, where
only the parity information is transmitted. The amount of parity information sent should be at least as much as the
conditional entropy given by Eq. (47) and Eq. (49), in order to ensure noise-free decoding. However, since noise-free
transmission is achievable only for very large block lengths, it is necessary to add a margin to the computed ideal rate.
The margin may depend on the expected length of a block specific to a given application, the complexity of the code, as
well as the impact of an error in decoding a symbol to the overall distortion. The margin can be a multiplicative factor,
denoted y, for the symbol O;, of the ideal rate. The rate allocated for channel coding . (CC stands for channel coding)

is then given by:
i = +DH(Q H{Q, 1k € GLY) (50)
where y, >0.

We next consider the rate needed to transmit a symbol plane noise-free with only source coding (i.e. no channel
coding) conditioned on previously transmitted symbol planes. This rate denoted 5 (SC stands for source coding) is

given by the conditional entropy H(Q, /{Q, :k € G,}) as follows:
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This rate can be practically achieved by c;)ntext—adaptive entropy (for instance, arithmetic) coding.
Even though H(Q, /{0, :k € G,},Y)< H(Q,/{Q, :k €G,}), the margin requirement for the practical channel coding

case, may make it possible that % < . In this case, just source coding should be used instead of channel coding.



The overall symbol plane by symbol plane coding strategy for a given order can now be outlined as follows:
1. Fix encoding order for symbol planes.
2. While not all symbol planes are done,

a. Get next symbol plane Q; in pre-determined order.

b Obtain /= (5, +)H(Q, 1O, :k € G,},Y) andr* = H(Q, /{0, :k G,}) for symbol plane Q;, given previously
transmitted symbol planes, by computing or reading/interpolating from pre-computed tables of
conditional entropies, and adding pre-determined margins.

c. If 5¢ < ,C¢, use source coding with conditional entropy coding, using the previously transmitted symbol

planes as context,
Else use channel coding with rate .cc.

3. Done Encoding
There is one caveat in the use of conditional source coding for symbol planes other than the first. In order to enable
correct decoding of a source coded symbol plane, it must be assumed that the channel coded symbol planes transmitted
prior to this plane have been decoded noise-free. While this can be ensured by having big enough margins, a more robust
alternative would be to use as context for source coding only the previously transmitted source coded planes but not the
channel coded planes. In this case, the source coding rate is given by Eq. 51, where G; represents the set of indices of
previously transmitted source coded symbol planes, rather than the set of indices of all previously transmitted symbol
planes. Naturally, this leads to loss of compression efficiency. Only for the first symbol plane transmitted, there is no
difference in the two approaches. The source coding rate in this case is given by the unconditional entropy of the symbol:
sC (0) (0) (0) (0) (52)
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Finally, we note that since the rates required for channel coded planes are arbitrary, it is inconvenient to design
different codes for every possible rate. Furthermore, in many applications, the number of samples to be transmitted is
variable and not known a priori. In such cases, puncturing should be used. Only certain systematic codes at fixed rates
should be designed, and the intermediate rate codes are derived from the next higher rate code by removing an
appropriate number of parity bits. The total number of parity bits to be transmitted for symbol plane Q,, is given by

N ypies X 1€ . If the number of parity bits with the next higher rate code is N, , then N .. =N, . xr parity bits

xr“ bits are eventually

must be removed. Usually removing parity bits at regular intervals so that there are N, ., X,
transmitted works reasonably well.

Finally, we note that even though we assume an i.i.d. model in this work which makes sense for block transform
coefficients, for correlated sources, the actual source coding rate can be much less than that given by Eq. 51 or Eq. 52.
Sophisticated modeling is often used in source coding to reduce bit-rate even when the residual correlation is limited. On
the other hand, for channel coding, the correlation between neighboring samples is much harder to exploit. While there
exists a framework to exploit these correlations using decoding on graphs, such decoders can be quite complicated to
implement in practice with robust enough convergence characteristics. Therefore, in the general case, instead of using Eq.
51 or Eq. 52 to estimate the source coding rate, an actual source coder may be used, and the actual rate used by it may be
considered to decide whether to use source coding or channel coding. In other words, if the rate required for channel
coding to reliably decode a plane is less than the rate required with an actual source coder, only then channel coding
should be used.

3.1.4. Decoding strategies

For decoding, a soft input decoder must be used. Such a decoder takes in as input a priori soft probabilities of
systematic and parity symbols for a block in order to perform the decoding, and outputs either a hard-decision about the
symbols (for instance using the Viterbi algorithm) or a soft-decision yielding the posteriori probability mass function of
each symbol (for instance using the BCJR algorithm). Both cases are discussed below.

We first focus on the soft-input hard-output case. In this case, the prior probabilities for the systematic symbols in any
plane are obtained based on the side information y, and knowledge of previously hard-decoded symbol planes. Thus, for
decoding the symbol plane Q,, given previously decoded symbols {Q, =g, :k € G,} and side-information Y=y, the prior

probability of O, = g, € Q, , denoted {p"""(Q, =¢,): ¢, €Q,} would be given by:
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Figure 8. Decoding mechanism using Soft-Input Hard-Output symbol plane decoders
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Since the parity symbols are assumed to be transmitted noise-free, their prior probabilities are taken as unity for the
received symbol and zero otherwise. Figure 8 illustrates the mechanism. A drawback of this approach is that if an error
has been made in decoding a symbol in one plane, the error would propagate to the rest of the symbol planes to be
decoded. However, if the margin has been conservative enough, the probability of such errors should be very small.

The soft-input decoder may also make a sofi-decision about the symbol transmitted. In this case, the decoder for each
plane returns the soft posteriori probability mass functions for the decoded symbols, denoted (0. = ¢.),q, e Q, -

Ability to use this soft information effectively for decoding the rest of the symbol planes, can potentially lead to better
decoding performance. Assuming that soft joint posteriori probability mass functions of previously decoded symbol
planes denoted p*)({Q, = ¢, : k € G,}) are available, the prior probabilities comprising the soft input for
decoding next plane Q;, may be obtained as:
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Once the decoder produces the soft outputs ") (Q. = 4.), it must be combined with the existing joint probabilities
PP ({0, = q, :k € G })to obtain the updated joint probability distribution ({0 =g :keG U{}}) that includes the

newly decoded symbol plane. Under the assumption of independence of the symbol planes, the joint posteriori
probability distribution is simply the product of the distributions of the constituent symbol planes. The new joint
distribution is then simply:

PO =g, ke G U = p ({0, =g, ke GH)x p(Q, =¢q,) = HP(WSI)(QIC =q), Vg, €Q, keG Ui} (55)

keG, Ui}
This is next used to obtain the priors for decoding the next symbol plane. Once all symbol planes have been decoded, the
soft posteriori probabilities for each quantization bin can be obtained, and a hard decision can be made. The approach is
illustrated in Figure 9(a).

While this approach mitigates the propagation of errors from symbol plane to symbol plane, it still does not enable
correcting errors that have been made in a symbol plane. In order to enable that, the following iterative decoding strategy
may be used. When all the symbol planes have been decoded once in order with the above strategy, we would have
obtained the posteriori probabilities of the individual symbol planes. Now, we can refine the decoding of each symbol
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Figure 9. Decoding mechanism using Soft-Input Soft-Output symbol plane decoders

plane in any order where the prior is assumed to be computed based on the joint distribution of all symbol planes other
than the one being decoded. The joint distribution is simply the product of the individual symbols under the
independence assumption.
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The new decoded posteriori probabilities update the posteriori distribution of the symbol plane concerned. The process is
repeated over all symbol planes, multiple times until the posteriori distributions converge. The mechanism is illustrated in
Figure 9(b).Obviously, this procedure is very demanding computationally, but decoding should in general be better.

Various combinations of the above two decoding strategies can be considered. For example, the early symbol planes
in encoding order may be channel coded with a big margin or source coded, to ensure virtually noise-free transmission,
while the trailing ones may be channel coded with a smaller margin. In this case, the early channel coded symbol planes
can be hard-decoded, while the trailing symbol planes may use soft-output based decoding.

3.1.5. Skipped symbol planes

In some cases it will be convenient to just not transmit anything for certain symbol-planes. Typically, these symbol
planes are chosen as ones for which the ideal rate (conditional entropy) is very small. Furthermore, if that is indeed the
case, it is better that these symbol planes be the trailing ones in coding order, so that the decoding for the other symbol
planes may be conducted without any impreciseness. The modified coding strategy can now be described as:

1. Fix encoding order for symbol planes.

2. While not all symbol planes are done,

a. Get next symbol plane Q; in pre-determined order.

b. Obtain - =(y, +YH(Q, /{0, :k € G,},Y) and 5 = H(Q, /{0, :k « G,}) for symbol plane Q;, given previously
transmitted symbol planes, by computing or reading/interpolating from pre-computed tables of
conditional entropies, and adding pre-determined margins.

c. If H(Q, /{0, :keG 1Y) <& (where ¢ is a small threshold) for all j where O; has not already been
transmitted, go to step 3 (i.e. terminate encoding). In other words, do not transmit anything for the

symbol plane Q;, and all other succeeding symbol planes if the ideal rates for all of them are smaller than
the threshold ¢ .



Else if,5¢ < ., use source coding with conditional entropy coding, using the previously transmitted

symbol planes as context,
Else use channel coding with rate »“.

3. Done Encoding

3.1.6. Optimal reconstruction for soft-output decoding

A decoder that eventually returns soft posteriori probabilities of quantization bins must be appropriately represented in
obtaining the final reconstruction. Assume that the decoder obtains the soft posteriori probabilities of a set of symbol
planes in index set G: p({Q, =q, :k e G}) Vq, €Q,, - Note that the planes in set G may not include all the symbol

planes, if there are skipped symbol planes. Also, if there are planes in G that are source coded or channel coded with a
big margin and subsequently hard decoded, the corresponding marginal probability is taken as 1 for the decoded value,
and 0 for the rest.

Generally speaking, we will assume a form of the a posteriori conditional distribution 77", ) which has the same

shape as the a priori distribution £, (x,y)within each bin, but scaled appropriately to satisfy the posteriori

probabilities p " ({0, =g, 1k € G}) Vg, € Q, - The minimum MSE reconstruction function is then given by:
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Specifically, for the case where there are some hard-decoded planes (source coded or channel coded with a big

margin), and some soft decoded planes, we can denote: G =G,,, UG,,, , where G, and G,,,, are disjoint subsets of G

soft

with the hard and soft-decoded symbol indices respectively. Further, if the hard decoded values are O, = ¢;Vk € G4

the optimal reconstruction can be rewritten as:
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which is similar to Eq. 8. The expression reduces to Eq. 20 when there are no skipped planes.

When there are skipped symbol-planes, or when the channel coded planes have not been coded with a sufficiently
large margin, usually a certain probability of erroneous decoding is tolerated. In such cases, (partial) soft-decoding
followed by the above form for the reconstruction function yields somewhat better reconstruction in practice.

3.2. A Practical Code family

3.2.1. Source-channel combo codes

Based on the background laid above, we now present a practical but generic Wyner-Ziv codec. We consider a symbol-
plane by symbol-plane coder with S=K+1 symbols, where the alphabet-size vector is given by {M, 2, 2, ..., (K 2s)},
where {M, K} are parameters for the code. The coding order is LSS to MSS. The M-ary LSS, which is the first symbol in
coding order is source coded, while the remaining binary planes are each channel coded with powerful binary channel
codes. Note that as observed from the pattern in Table 3 and Table 6, for LSS to MSS coding the conditional entropy
decays very fast at the higher symbol planes. The source coding rate is given by the unconditional entropy in Eq. 52.



Since this is the first symbol plane, there are no complications in implementing context adaptive source codes and no
possibility of error propagation to subsequent channel coded planes,. The channel coded binary planes in low to high
significance order are coded with punctured binary error correction codes with rates given by adding a margin to the ideal
rate. The case of K=1 is particularly convenient since there is only one channel coded plane preceded by a noise free
source coded plane, and consequently there are no complications due to the possibility of error propagation. Optimal
reconstruction can be then conducted based on Eq. 20 for hard decoding or Eq. 57-58 for full or partial soft-output
decoding. The case M=1 for this code is a degenerate case, where the source coded symbol plane is non-existent, so that
the code essentially becomes a bit-plane by bit-plane LSB to MSB channel coder with K bit-planes. Further, the case
K=0, corresponds to the memoryless codes considered before in Section 2. In this case, there is only one source coded
plane, and no channel coded planes.

The goal of parameter choice for this code is to obtain the appropriate values of {M, K} and also the ideal rates to be
used for the binary channel coded planes, given the source and correlation statistics {c,’, c.’}. The following algorithm
may be used to find the optimal value of {M, K}, based on the fact that the conditional entropy of the un-transmitted true
MSS X must be below a small threshold &.

1. For each k in a set of allowable values: {1, 2, .., Ky.x}

a. Initialize m=1.
b. Obtain conditional entropy H(Qs.i/00,0....0s,Y) Wwith k+2-ary L={m, 2, 2,...(k 2’s), p}, with

2 =[(2qumx +1)/(2km)] to satisfy Eq.43. Note this is equivalent to computing H(X,.,/Q,,0,...0,Y) for a

(k+1)-ary decomposition. (If m=1, there is no information in Q).
If H(Qv /Oy, 0,....,0r,Y) > ¢ do m=m+1 and go to Step 1b, else assign M(k)=m and go to step 1d.
Obtain source coding rate r5¢(k)=H(Q,) for code parameters {M(k), k}. (If M(k)=1, H(Q,)=0).
Obtain ideal rate for binary planes: H(Q,/Qy,Y),H(Q5/ 00,051 ,Y)seccy H(Oi / O, Ot 5ei Qi1, Y) -
If &1, check if: H(Qiii/ Q0,Q15es O, V) + H(O1 / Q0,01 Ok, Y) < If SO, assign
Poraciical (K) =VERY_LARGE_VALUE and go to Step 1 and continue for next k. (In this case, a lower value
of k should be used rather than the one tested).
g.  Compute practical channel coding rates: € (k)= (1+y)H(Q,/Qy,Y), rE(k)=+y)H(Q:/Q0,01,Y) .-,
1€ (kY= A+ y)H(Ox / 0, 0r,... Ort,Y)  for code parameters {M(k), k}.
h.  Obtain total practical rate: #,,ueica (k) = 8¢ (k) + 1€ (k) + € (k) +...+ 1€ (k).
2. Find K =argmin Fovacrical (K) - The optimal code parameters are then {M(K), K}, with the channel coding rates as
k

;oo oA o

computed in Step le for this combination.

Table 9 tabulates the parameters chosen for the above algorithm for the case of Laplacian X (cx=1), and Gaussian Z
(6,=0.5), for varying values of QP,, with ¢=0.001. Further K,.,=1, i.e. only K=I is the allowed configuration for practical
convenience, corresponding to a 3-symbol code with L={M, 2, «}. The ideal rates for coding, as well as the practical rate
with the first symbol source coded and second symbol channel coded with a margin are provided. The margin factor,
yi =y =0.5 is assumed to be appropriate for the expected number of samples to be coded as a block, and the code
complexity, and is assumed to be the same y for each symbol plane. Note that this factor may be decided on the fly

depending on the block size, if the number of samples in a block is not known beforehand.

Table 9. Parameters for K,,,,=1 code with L={M, 2, «o} for Laplacian oy=1, Gaussian 6,=0.5, €=0.001, y= 0.5.

oP | M Ideal Ideal Ideal Source Channel | Practical All All
channel channel Sum coded coded rate for channel source
coded coded (Slepian- SP 0 BP1 code coded coded
SP O BP1 Wolfe) »=0.5) »=0.5)
0.1 17 3.84449 0.17408 4.01917 4.00022 0.26112 4.26134 6.02876 5.13395
0.2 9 2.80101 0.11949 2.92076 3.02188 0.17924 3.20111 4.38114 4.02306
0.3 6 2.15673 0.10898 2.26589 2.39719 0.16347 2.56066 3.39884 3.34468
0.4 4 1.63590 0.17029 1.80716 1.81791 0.25544 2.07334 2.71074 2.85168
0.5 4 1.40658 0.05777 1.46434 1.72294 0.08666 1.80959 2.19651 2.46545
0.6 3 1.10005 0.09868 1.19942 1.33697 0.14802 1.48499 1.79913 2.15022
0.7 3 0.94590 0.04457 0.99048 1.26012 0.06686 1.32698 1.48572 1.88637




0.8 3 0.80385 0.01947 0.82332 1.17920 0.02921 1.20841 1.23498 1.66178
0.9 2 0.58216 0.10563 0.68814 0.75793 0.15845 0.91637 1.03221 1.46835
1.0 2 0.51042 0.06730 0.57779 0.71298 0.10095 0.81393 0.86669 1.30033
1.1 2 0.44437 0.04271 0.48710 0.66739 0.06407 0.73146 0.73065 1.15345
1.2 2 0.38502 0.02705 0.41208 0.62185 0.04058 0.66243 0.61812 1.02442
1.3 2 0.33258 0.01711 0.34968 0.57694 0.02567 0.60261 0.52453 0.91066
1.4 2 0.28674 0.01080 0.29754 0.53317 0.01620 0.54937 0.44631 0.81007
1.5 2 0.24698 0.00680 0.25379 0.49093 0.01020 0.50113 0.38068 0.72092
1.6 2 0.21266 0.00427 0.21693 0.45052 0.00641 0.45693 0.32540 0.64177
1.7 2 0.18310 0.00267 0.18577 0.41216 0.00401 0.41617 0.27866 0.57141
1.8 2 0.15770 0.00166 0.15936 0.37601 0.00250 0.37850 0.23905 0.50879
1.9 2 0.13588 0.00103 0.13691 0.34213 0.00155 0.34368 0.20537 0.45303
2.0 1 0.00000 0.11715 0.11778 0.00000 0.17572 0.17572 0.17667 0.40334

As we can see from the table, the practical rate with this code diverges substantially from the ideal Slepian Wolfe rate.
However note, if only channel coding were used for this code with the same margin requirement, the rate would be (1+ y)
times as much as the Ideal Slepian-Wolfe rate shown in the second rightmost column, which is actually larger than the rate
with the 3-symbol source-channel code at higher rates. At lower rates (OP>1) however, the channel-only code rate is
lower. Also shown for comparison in the rightmost column is the rate if pure source coding were used.

If we allowed up to 2 channel coded bit-planes (K.x=2), the inefficiency at the lower rates can be largely removed
since the coding option with two channel coded planes but no source coding can now be chosen. Table 10 shows the
parameters chosen when we allow both K=1 (3-symbol) and K=2 (4-symbol) codes for Laplacian X (cx=1) and Gaussian
Z (6,=0.5). Any entry with ‘=" indicates that the symbol plane is not coded. As we see that for certain mid-QOP values,
namely OP=0.5, 0.6, 0.7, 0.8, it becomes optimal to use K=2 channel coded bit-planes. At the lower rates OP>1, it again
becomes optimal to use K=2 channel coded bit-planes, but the source coded symbol plane becomes degenerate at these
rates (M=1). In other words, only two channel coded bit-planes are used, and use of source coded symbol plane is no
longer optimal. At very low rates, QP>2.0, it becomes sufficient to use a single channel coded bit-plane. The practical
rates in Table 10 are by far the best ones that can be obtained by a practical code under the assumption of y =0.5.

Table 10. Parameters for K,,,,=2 code for Laplacian =1, Gaussian 6,=0.5, €=0.001, y = 0.5

OP | K| M Ideal Ideal Ideal Ideal Source Channel | Practical All All
SP 0 channel channel Sum coded coded rate for channel source
coded coded (Slepian- SP 0 BPs code coded coded

BPI1 BP2 Wolfe) y=0.5) »=0.5)
0.1 1 17 3.84449 0.17408 - 4.01917 4.00022 0.26112 4.26134 6.02876 5.13395
02 |1 9 2.80101 0.11949 - 2.92076 3.02188 0.17924 3.20111 4.38114 4.02306
0.3 1 6 2.15673 0.10898 - 2.26589 2.39719 0.16347 2.56066 3.39884 3.34468
04 |1 4 1.63590 0.17029 - 1.80716 1.81791 0.25544 2.07334 2.71074 2.85168
0.5 2 2 0.86475 0.54184 0.05772 1.46434 0.91517 0.89934 1.81451 2.19651 2.46545
06 | 2 2 0.80324 0.37860 0.01758 1.19942 0.88098 0.59427 1.47525 1.79913 2.15022
0.7 | 2 2 0.73266 0.25288 0.00495 0.99048 0.84278 0.38675 1.22953 1.48572 1.88637
0.8 | 2 2 0.65743 0.16459 0.00130 0.82332 0.80148 0.24883 1.05031 1.23498 1.66178
0.9 1 2 0.58216 0.10563 - 0.68814 0.75793 0.15845 0.91637 1.03221 1.46835
1.0 | 1 2 0.51042 0.06730 - 0.57779 0.71298 0.10095 0.81393 0.86669 1.30033
1.1 2 1 - 0.44437 0.04271 0.48710 - 0.73062 0.73062 0.73065 1.15345
12 | 2 1 - 0.38502 0.02705 0.41208 - 0.61811 0.61811 0.61812 1.02442
1.3 2 1 - 0.33258 0.01711 0.34968 - 0.52453 0.52453 0.52453 0.91066
14 | 2 1 - 0.28674 0.01080 0.29754 - 0.44631 0.44631 0.44631 0.81007
1.5 2 1 - 0.24698 0.00680 0.25379 - 0.38068 0.38068 0.38068 0.72092
1.6 | 2 1 - 0.21266 0.00427 0.21693 - 0.32540 0.32540 0.32540 0.64177
1.7 | 2 1 - 0.18310 0.00267 0.18577 - 0.27866 0.27866 0.27866 0.57141
1.8 | 2 1 - 0.15770 0.00166 0.15936 - 0.23905 0.23905 0.23905 0.50879
1.9 | 2 1 - 0.13588 0.00103 0.13691 - 0.20537 0.20537 0.20537 0.45303
2.0 1 1 - 0.11715 - 0.11778 - 0.17572 0.17572 0.17667 0.40334
Table 11 shows the K,,,=2 code table for the case of Laplacian X (cy=1) and Laplacian Z (5,=0.3).
Table 11. Parameters for K,,,,=2 code for Laplacian ox=1, Laplacian 6,=0.3, €=0.001, y = 0.5
OP | K| M Ideal Ideal Ideal Ideal Source Channel | Practical All All

SP 0 channel channel Sum coded coded rate for channel source
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Figure 10. R-D curves of ideal Slepian-Wolfe coding vs. memoryless coding and practical finite memory coding
with source and channel combo codes, for (a) Laplacian source X with cy=1, and Gaussian noise Z with 6,=0.5;
(b) Laplacian source X with ox=1, and Laplacian noise Z with 5,=0.3.

coded coded (Slepian- SP 0 BPs code coded coded

BPI BP2 Wolfe) »=0.5) »=0.5)
0.1 2 8 2.81797 0.44170 0.05996 3.32030 2.97132 0.75248 3.72380 4.98044 5.13395
02 | 2 4 1.79082 0.41552 0.05396 2.26088 1.95408 0.70422 2.65830 3.39132 4.02306
0.3 2 3 1.31460 0.31964 0.02886 1.66327 1.51863 0.52276 2.04139 2.49490 3.34468
04 | 2 2 0.81938 0.40118 0.04909 1.27013 0.94452 0.67540 1.61993 1.90519 2.85168
0.5 2 2 0.72611 0.25195 0.01564 0.99374 0.91517 0.40138 1.31655 1.49061 2.46545
0.6 | 2 2 0.63191 0.15469 0.00496 0.79156 0.88097 0.23947 1.12045 1.18734 2.15022
0.7 2 2 0.54364 0.09422 0.00158 0.63945 0.84279 0.14370 0.98649 0.95917 1.88637
0.8 | 2 1 - 0.46460 0.05736 0.52246 - 0.78293 0.78293 0.78369 1.66178
0.9 2 1 - 0.39570 0.03501 0.43088 — 0.64607 0.64607 0.64632 1.46835
1.0 | 2 1 - 0.33660 0.02146 0.35811 - 0.53709 0.53709 0.53717 1.30033
1.1 2 1 - 0.28633 0.01322 0.29956 — 0.44932 0.44932 0.44934 1.15345
12 | 2 1 - 0.24377 0.00818 0.25195 - 0.37792 0.37792 0.37793 1.02442
1.3 2 1 - 0.20780 0.00508 0.21288 — 0.31932 0.31932 0.31932 0.91066
14 | 2 1 - 0.17741 0.00316 0.18057 — 0.27086 0.27086 0.27086 0.81007
1.5 2 1 - 0.15169 0.00198 0.15367 — 0.23050 0.23050 0.23050 0.72092
1.6 | 2 1 - 0.12990 0.00124 0.13114 — 0.19671 0.19671 0.19671 0.64177
1.7 1 1 - 0.11140 — 0.11219 — 0.16711 0.16711 0.16828 0.57141
1.8 1 1 - 0.09567 - 0.09617 — 0.14351 0.14351 0.14425 0.50879
1.9 1 1 - 0.08227 — 0.08258 — 0.12340 0.12340 0.12387 0.45303
2.0 1 1 - 0.07082 - 0.07101 - 0.10623 0.10623 0.10652 0.40334

Figure 10 compares the R-D curves for ideal Slepian-Wolfe coding followed by optimal reconstruction, with that of
various practical codes including memoryless codes without cosets, the convex hull for memoryless codes with cosets
and the above source-channel combo code, for both the Laplacian-Gaussian and Laplacian-Laplacian models. As
expected, the last curve with memory enables getting closer to the ideal bound. Figure 11 compares R-D curves for
source-channel combo codes for Laplacian and Gaussian Z with the same variance. As we see, the inefficiency with
memoryless codes due to the heavier tail of the Laplacian Z has largely been eliminated.

One final point is that in certain coding scenarios the statistics (ox, 07) may itself depend on the target OP; for the non-
Wyner-Ziv frames. In that case, each line in parameter tables above stored in the encoder and decoder could be obtained
by a different statistics (ox, 67). The decoder additionally needs to store the (o, 67) pair corresponding to each QP, for
appropriate decoding.

3.2.2. Practical coding architecture

The overall practical coding scheme can now be shown in Figure 12. Given a target OP;, a pre-computed table yields
the parameters QP, K, M as well as the ideal rates for the channel coded bit-planes. The least significant M-ary symbol is
source coded with an entropy coder, for instance an arithmetic encoder. Ideally, each possible M should correspond to a
different entropy coder, but alternatively an adaptive arithmetic encoder with an M-ary alphabet that automatically learns
the distribution may be used.



Ioeal ve. Wyner-Ziv codes with memory for Laplacian X (DX:U Lapacian/Gaussian £ (Uzdld)

014 T T T T T T T T T
: : : —&— Iosal Slepian Walfs - 7 Lapkcian
—#&— Source-channel combo codes - Z Laplacian
0123 —— |deal Slepian Wolfe - Z Gaussian q
—4+— Sourcechannel combo codes - Z Gaussian

01 f--
ooz
006]-----f- 4 SRR R NN SURI PN N —

004 i e i i : : i : g

Figure 11. Comparing R-D curves for source channel combo codes for Laplacian and Gaussian Z

For actual channel coding of the bit-planes, powerful systematic codes such as LDPC codes or punctured Turbo codes
may be used. However, if the number of samples is variable for each block, and not known beforehand, punctured Turbo
codes will be found to be particularly advantageous for fast encoding. With LDPC codes, for every block of samples of
unknown length to be coded, a new parity check matrix for a pseudo-random code with the specified rate would have to
be instantiated. This set-up time during encoding can be too complex, even though once the set up is done encoding
would be very simple. For punctured Turbo codes however, encoding with two constituent convolutional codes, followed
by puncturing to obtain the required rate can all be done very fast in a straight-forward manner.

Decoding is conducted based on knowledge of the source decoded LSS (Qy=¢q,) if used, and the side information Y in
order from the lower to higher significance. Any of the decoding strategies outlined above may be employed in the
general case. However, if K=1, then there is a single channel coded bit-plane preceded by a source coded symbol-plane,
and a soft-input soft-output decoder may be used very conveniently. In this case, the soft input prior probabilities are

assumed to be obtained by computing: p"""(0, =¢,) = p(Q, =¢,/Q, =¢,,Y = y) using Eq. 53, while the soft-output

posteriori probabilities p”*”(Q, =¢,) may be used in conjunction with Eq. 58 for the eventual reconstruction.

Alternatively, Eq. 59 may be used after hard-thresholding the posteriori probabilities.
When an ensemble of samples with different statistics are coded, as is typical in a block transform coding scenario,
one strategy is to code all the source coded Least Significant Symbols jointly within a block, even though they may be

Pre-computed Table
X Maps target P, M, K, hy, ...
Quantizer Q Symbol or > OP; to _,Q e
» oP) ’ Decomposition coding
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“.gymbol
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Figure 12. Illustrating Wyner-Ziv coding with source channel combo codes



associated with different size alphabets. This enables exploiting the higher order statistics of the data better to achieve
better compression than our memoryless assumption yields. In addition, the channel coded bit-planes can be coded jointly
for all coefficients across different source coded blocks to enable use of larger channel coding block lengths. Note that in
this case, each sample may contribute a different channel coding rate for a given bit-plane to the overall the overall
channel coding rate based on its statistics. The overall channel coding rate should then be taken as the average of the rate
contribution for the concerned bit-plane over all the samples. The decoder, which is expected to know the statistics for
each sample, computes the priors accordingly and decodes the channel code.
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