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ABSTRACT 
A large number of practical coding scenarios deal with sources, for instance transform coefficients that can be well 
modeled as Laplacians. In regular practical coding of such sources, samples are often quantized by a family of uniform 
quantizers possibly with a deadzone, and then entropy coded. For the Wyner-Ziv coding problem when correlated side-
information is available at the decoder, the side-information can be modeled as obtained by additive Gaussian or 
Laplacian noise on the source. This paper deals with optimal choice of parameters for practical coding of such sources 
in presence of side-information, using the same quantizer structure as in the regular codec, assuming that the variances 
of the source and additive noise are known. We first consider memoryless coding which may be the only option in some 
coding scenarios, and then follow up by considering coding using powerful channel codes with soft decoding that 
approach the Slepian Wolfe bound. We show that in the latter case, at practical block lengths and code complexities, not 
pure channel coding but a hybrid combination of source coding and channel coding provides optimal rate-distortion 
performance. A good understanding of the optimal parameter choice mechanism is essential for building practical 
codecs that can be used in a variety of scenarios. 

1. INTRODUCTION 
Drawing inspiration from the foundation laid by Slepian-Wolfe [1] and Wyner-Ziv [2] theorems, a great deal of 

attention has been devoted in recent years to practical source coding with side-information problems [3]-[13]. All such 
work uses some form of channel coding to convey a source assuming that correlated side-information is available at the 
decoder to perform appropriate channel decoding. The challenge is to design the encoder and decoder based on known 
statistics. A good review of the area is presented in [11].  In this work, we address a fundamental problem of optimal 
parameter choice for various coding options that may be considered in a practical source coding with side-information 
scenario, where a range of rate-distortion trade-offs are desired, assuming a model for the data and known statistics. 

It has generally been accepted that Wyner-Ziv coding in the transform domain yields superior results due to effective 
decorrelation of the data. Transform coefficients are well modeled as Laplacians. Further, the side-information available 
only at the decoder in a variety of applications can be well modeled by additive noise on the source where the noise is 
either Gaussian or additive Laplacian. In particular, if X denotes the source Laplacian random variable with variance σX

2, 
and Y is the side-information available only at the decoder, then Y = X + Z, where Z is either i.i.d. Gaussian or i.i.d. 
Laplacian with variance σZ

2 in our model Generally, we will refer to the probability density function of X as fX(x), and Z 
as fZ(z). The paper studies and optimizes various practical Wyner-Ziv coding options for such a source and correlation 
model, which we believe would be very useful in many transform-domain Wyner-Ziv coding scenarios. 

In any practical codec, X is quantized with a quantizer family ф to yield a quantization index random variable Q as 
follows: Q = ф(X, QP), where QP is the quantization step-size parameterizing a family of quantizers. The simplest 
quantizer family is the uniform quantizer, given by: 

)/(),( QPXroundQPXQ == φ                                                                    (1) 
A variant referred to as the uniform quantizer with deadzone, is actually more commonly used in practical codecs: 

 QPXXsignQPXQ /)(),( ×==φ                                                                 (2) 
While in general QP can be continuous, it is typically taken from a discrete set in a practical codec.  

For these quantizers, Q is ideally assumed to take integer values in },...,1,0,1,...,{ ∞−−∞=ΩQ . However, in practice the 
finite set },1,...,1,0,1,...,,{ maxmax1maxmax qqqqQ −−−−=Ω + may be used, where qmax is large enough so that the probability of 
the Laplacian source to take positive and negative values beyond the bins qmax and –qmax respectively is negligible. While 
generally speaking qmax depends on QP and σX

2, for simplicity of notation we simply refer to the set of all available 
quantization bins as 

QΩ . 



In the source coding with side-information scenario under consideration in this work, we assume that the same 
quantizer structure as in the regular codec, is used. The problem we address is then broadly stated as follows: Given a 
target upper-limit Dt on the overall expected distortion, and variances {σX

2, σz
2} for Laplacian X and Gaussian Z 

respectively, how should X be coded based on a given quantizer structure, so that the expected rate is minimized. 
Sometimes, it may be convenient to specify the target distortion Dt in terms of a target quantization parameter QPt 
assuming regular coding (with no side-information) based on the same quantizer family. This criterion will be referred to 
as distortion target matching. 

2. MEMORYLESS COSET CODES 
2.1. Coset Encoding and Decoding 

In many source coding with side-information scenarios, it may be inconvenient to use longer channel codes, either 
because decoding has to be conducted fast, or simply because there may not be enough data samples available to code in 
order to reap the benefits of channel coding. In such cases, memoryless coset codes can be used.  

But before defining these codes, we define the circular modulus function modc of two integers I, J as follows: 
 JIJIJIc /),(mod −=                                                                          (3) 

taking values in the set {0, 1, …, J–1}. A variant modcz of the function uses zero-centered circular modulus as follows: 
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taking values in the set    }2/)1( ..., ,1 ,0 ,1 ..., ,2/)1({ −−−− JJ . 
Once X has been quantized to Q with quantizer ф using parameter QP, cosets are computed based on Q to yield a 

coset index random variable C: C = ψ(Q, M) = ψ(ф(X, QP), M), M being the coset modulus, as follows: 
    ),(mod),( MQMQC c==ψ                                                                                   (5) 

C takes values from the set }1- ..., ,1 ,0 { MC =Ω . The zero-centered variant where coset indices are centered on zero may be 
preferred if an existing entropy coder for regular coding is used to code the coset indices. In this case, 

),(mod),( MQMQC cz==ψ                                                                                   (6) 
C takes values from the set    }2/)1( ..., ,1 ,0 ,1 ..., ,2/)1({ −−−−=Ω MMC

. However if a different entropy coder were designed 
for the coset indices, there would be no difference between them. 

If quantization bin q corresponds to interval [xl(q), xh(q)], then the probability of the bin
Qq Ω∈ , and the probability of 

a coset index Cc Ω∈  are given by the probability mass functions: 
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Examples of both are shown in Figure 1, for M odd in the zero-centered case and Laplacian fX(x). Note that the 
entropy coder that exists in the regular coder is optimized for the distribution pQ(q), and is designed to be particularly 
efficient for coding zeros. Because the distribution pC(c) is also symmetric for odd M, has zero as its mode and decays 
with increasing magnitude, the entropy coder for Q that already exists in the regular code may be reused for C, without 
significant loss in efficiency. However, if an entropy coder was designed specifically for coset indices there would be no 
difference between use of Eq. 5 and Eq. 6 for the coset modulus function. 

For decoding, the minimum MSE reconstruction function ),(ˆ cyXYC  based on unquantized side information y and 
received coset index c, is given by:  
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Figure 1. Probability mass function of coset indices 
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where we have introduced the following definitions for convenience in the rest of the paper: 
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Note that ),( yqπ  is the conditional probability of Q given Y. 
Figure 2 depicts such a decoding example.  

QP and M should be optimally chosen for a given target quantization parameter QPt, and known statistics {σX
2, σZ

2}. 
We study this problem in detail in the rest of this section. Specifically, the rate-distortion function of memoryless coset 
codes are characterized in order to obtain the optimal {QP, M} pair that yields reconstruction quality equivalent to a 
target quantization step size QPt if regular (non-distributed) coding had been used. The variances of the Laplacian source 
(σX

2) and the additive white Gaussian noise (σZ
2), are assumed to be known. 

2.2. General Rate-Distortion Characterization 
In this sub-section we write down rate-distortion function expressions for various Wyner-Ziv coding scenarios, 

without consideration for the source and correlation model. In the next sub-section, we will specialize for the Laplacian X 
and Gaussian Z case, with side-information Y=X+Z.  

2.2.1. Memoryless coset codes followed by minimum MSE reconstruction with side-information 
The probability of each coset index transmitted is known from the probability mass function in Eq. 7. Assuming an 

ideal entropy coder for the coset indices, the expected rate would be the entropy of the source C: 
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Defining xdxfxxm
x

X
ii

X
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Assuming the minimum mean-squared-error reconstruction function in Eq. 8, the expected distortion DYC given side 
information y and coset index c is given by: 

222 ),(ˆ),/(),/)],(ˆ([),/( cyXcCyYXEcCyYcyXXEcCyYDE YCYCYC −=====−===                        (12) 

using ),/(),(ˆ cCyYXEcyXYC === . Marginalizing over y and c yields: 
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Figure 2. Decoding example 
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where )/(/ yYcCp YC ==  is the conditional probability mass function of C given Y. Noting that: 
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we can write: 
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Defining: 
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we have: 
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Then we can rewrite Eq. 15 as: 
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2.2.2. Ideal Slepian-Wolf coding followed by minimum MSE reconstruction with side-information 
Next, we consider the expected rate and distortion when using ideal Slepian-Wolf coding for the quantization bins. 

The ideal Slepian Wolf coder would use a rate no larger than H(Q/Y) to convey the quantization bins error-free. Once the 
bins have been conveyed error-free, a minimum MSE reconstruction can be still conducted but only within the decoded 
bin. The expected rate is then given by: 
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The expected Distortion DYQ is the distortion incurred by a minimum MSE reconstruction function within a 
quantization bin, given the side information y and bin index q. This reconstruction function ),(ˆ qyX YQ  is given by: 
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Using this reconstruction, the expected Distortion with noise-free quantization bins (denoted DYQ) is given by: 
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This case will be considered in more detail in the Section 3, but we present the rate-distortion characterization here in 
order to make a comparison with memoryless codes. 

2.2.3. Regular encoding followed by minimum MSE reconstruction with and without side-information 
Next, we consider the rate and distortion if no distributed coding on the quantization bins were done at the encoder. In 

this case, the expected rate is just the entropy of Q.  
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The decoder can still use distributed decoding if side-information Y is available. In this case, the reconstruction 
function and the corresponding expected distortion are given by Eq. 20 and Eq. 21 respectively. On the other hand, if 
there is no side-information available, the expected distortion DQ is the distortion incurred by a minimum MSE 
reconstruction function just based on the bin index q. This reconstruction function )(ˆ qX Q is then given by: 
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while the expected distortion is given by: 
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The overall objective of the distortion matched parameter choice mechanism can now be expressed in terms of the above 
rate-distortion functions: Given a target quantization step size QPt for regular encoding and decoding, the target expected 
distortion E(DQ) can be readily computed from Eq. 24. The parameters QP and M for memoryless coset codes should be 
chosen such that the lowest rate E(RYC) given by Eq. 10 is obtained, with the expected distortion E(DYC) given by Eq. 18 
being equivalent to the target distortion. 

2.2.4. Zero rate encoder with minimum MSE reconstruction with side-information 
The final case is when no information is transmitted corresponding to X, so that the rate is 0. The decoder performs the 

minimum MSE reconstruction function )(ˆ yXY : 
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The expected zero-rate distortion DY is given by: 

∫∫ ∫
∞

∞−

∞

∞−

∞

∞−

∞−=







−= dyyfymdyyfdxyxxfDE YYXXYYXXY )(),()(),()( 2)1(

/
2

2

/
2 σσ                                    (26) 



 
2.3. Laplacian Source Specifics 

While the expressions in the previous sub-section are generic, we now specialize for the case of Laplacian X and for 
two particular cases for Z, Gaussian and Laplacian. While the results presented in the rest of the paper correspond only to 
these models, the methodology presented applies to any other viable model, including a mixture of Gaussians. 

2.3.1. Expressions for Gaussian noise Z 
We first specialize for the case of Laplacian X and Gaussian Z, i.e.: 
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Further defining: 
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and using Y=X+Z, we have: 
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Given fX/Y(x, y), the moments can now be computed:  
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A special case used for the optimal reconstruction and distortion functions in the zero-rate case is when x→∞. In this 
case,  
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The erf() function used in the above expressions for moments and fY(y) can be evaluated based on a 9th order polynomial 
approximation provided in Numerical Recipes [14]. All the expected rate and distortion functions in Section 5.1 then can 
be evaluated based on these moments in conjunction with numerical integration with fY(y), given the quantization function 
φ  and the coset modulus functionψ .  

2.3.2. Expressions for Laplacian noise Z 
We next specialize for the case of Laplacian X and Laplacian Z, i.e.: 
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Defining: 
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Eq. 30 still applies for )()0( xmX  and )()1( xmX . Further, using Y=X+Z, we have 
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The partial moments can now be calculated as follows: 
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Also note: 
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for use in ),()1(
/ yxm YX  in Eq. 38, and also for optimal reconstruction and distortion functions in the zero-rate case. 

2.4. R-D curves for deadzone quantizer and optimal parameter choice 
We next present the R-D curves for a deadzone quantizer given by Eq. 2 and the coset modulus function given by Eq. 

5, obtained by changing the parameters QP and M for the Laplacian-Gaussian model. Note that while M is always 
discrete, QP is in general continuous. However we have sampled it at regular intervals in the R-D curves presented 
below, and the sampling interval can be arbitrarily small to approximate the continuous case. On the other hand, for most 
real codecs, the QP is indeed discrete. 

2.4.1. Constant M and Constant QP R-D curves 
Figure 3(a) and (b) shows two ways of presenting the curves for the specific case of Laplacian X (σX=1), and Gaussian 

Z (σZ=0.5), while Figure 4(a) and (b) shows the corresponding results for the same Laplacian X (σX=1) and Laplacian Z 
(σZ=0.3). In Figure 3(a) and Figure 4(a) each R-D curve is generated by fixing M and changing QP at finely sampled 
intervals of 0.05 between 0.05 and 3.15. The following discussion assumes QP to be continuous. The case QP→∞ for 
any M corresponds to the zero-rate case, and yields the R-D point {0, E(DY)} where all the curves start, with E(DY) given 
by Eq. 26. Alternatively, this point can also be viewed as the M=1 curve which degenerates to a point. The other extreme 
is the case where QP→0+. In this case, for any M, each coset index has equal probability and so the entropy converges to 
log2M. However, the distortion then becomes the same as the zero-rate case E(DY), since the coset indices do not provide 
any useful information. For the purpose of comparison, the line with ‘*’s correspond to the non-distributed coding case 

  
(a) Constant M curves                                                         (b) Constant QP curves 

   
                             (c) Pareto Optimal Set and Convex Hull                                        (d) Convex Hulls for varying σZ 

Figure 3. R-D curves obtained by changing QP and M for Laplacian X and Gaussian Z. 



with minimum MSE reconstruction using side-information given by Eq. 22 and Eq. 21 respectively, while the line with 
diamonds correspond to ideal Slepian-Wolfe coding followed by minimum MSE reconstruction. Figure 3(b) and Figure 
4(b) shows the same results but now using constant QP curves. Each curve in this figure are generated by fixing QP and 
increasing M starting from 1 upwards. All the curves start from the zero-rate point {0, E(DY)} corresponding to M = 1. 
This point is also the QP→∞ curve that degenerates to a point. As M→∞ however, the coder becomes the same as a 
regular encoder not using cosets. Consequently, each constant QP curve ends on a point on the curve corresponding to 
non-distributed coding with minimum MSE reconstruction using side-information. The line with ‘diamonds’ correspond 
to the ideal Slepian Wolfe coding case followed by minimum MSE reconstruction. 

2.4.2. Pareto Optimal Set and Convex Hull 
From the curves it is obvious that not all choices for QP and M are necessarily better than regular coding followed by 

minimum MSE reconstruction using side-information. The sub-optimal choices for {QP, M} combination can be pruned 
out by finding the Pareto-Optimal set P, wherein each point is such that no other point is superior to it, i.e. yields a lower 
or equal distortion at a lower or equal rate (assuming that the rate-distortion points are all distinct). These points are 
marked as ‘+’ in Figure 3(c) and Figure 4(c). Now, given a target distortion Dt in terms of the quantization parameter QPt 
for regular coding with no side-information using Eq. 24, one can search the Pareto Optimal set P for the point that yields 
the closest distortion to Dt, and choose that.  

 However, a strategy yielding superior rate-distortion performance is to operate on the convex hull of the set of R-D 
points generated by all {QP, M} combinations. The convex hull is a piecewise linear function generated from the Pareto 
optimal set of points P by generating an ordered subset of points called the convex hull set H in descending order of 
distortion, and joining these points by straight line segments. The procedure is explained below, assuming zero-based 
indexing for ordered P and H: 

1. Sort the points in P in descending order of distortion.  

  
(a) Constant M curves                                                         (b) Constant QP curves 

   
                             (c) Pareto Optimal Set and Convex Hull                                        (d) Convex Hulls for varying σZ 

Figure 4. R-D curves obtained by changing QP and M for Laplacian X and Laplacian Z. 



2. Include first (highest distortion) point of P corresponding to zero-rate in H: H[0]=P[0], nP= 1, nH= 1 
3. While nP <|P| (the total number of points in P) 

Compute the gradient to the last point included in H to other points in P with lower distortion. Choose the 
point that yields the steepest negative gradient, and include that point in the convex hull set: 

**
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1||,...,1
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            (40) 

where DH[i] (DP[i]) and RH[i] (RP[i]) are the distortion and rate values corresponding to the ith point in the set H 
(P). 

End. 
4. Join the resultant nH ordered points in H by straight line segments. 
Note that when QP is indeed continuous, the convex hull actually becomes a curve which has small continuous 

sections lying on a constant M curve, followed by linear sections joining another constant M curve (for a different M). 
However, in a practical codec usually a discrete set of QPt or QP values are allowed, and hence we stay within this set for 
our chosen QP. 

Figure 3(c) and Figure 4(c) shows the points included in the convex hull set H as ‘o’. The convex hull is obtained by 
joining them with straight line segments. Note that this piecewise linear convex hull is not guaranteed to have points that 
are obtained with a specific {QP, M} combination, except at the points in the convex hull set. However, the following 
method can be used to probabilistically operate at any intermediate point. Given a target QPt and corresponding 
distortion Dt, search the decreasing distortion ordered set H to find where Dt lies. If Dt is higher than the zero-rate point 
distortion, i.e.  Dt  > DH[0], use zero-rate encoding. Otherwise, if Dt lies between the ith and (i+1)th points, i.e. DH[i]  ≥ Dt  > 
DH[i+1], calculate α = (DH[i]–Dt)/(DH[i]– DH[i+1]); then use a uniform pseudo random number generator in the encoder to 
choose parameters {QPH[i], MH[i]} with probability 1–α and {QPH[i+1], MH[i+1]} with probability α, for each sample 
encoded. The decoder is assumed to use a synchronized pseudorandom number generator with the same seed to obtain 
the right parameters for decoding each sample. Thus, all points on the convex hull are in fact achievable, and the convex 
hull should be chosen as the optimal operational R-D curve. 

To summarize, given the statistics {σX, σZ}, each target QPt (and consequently Dt) would map to a 5-tuple {QP1, M1, 
QP2, M2, α} where parameters {QP1, M1} and {QP2, M2} are chosen with probabilities (1– α) and α respectively. This 
mapping would typically be obtained offline for each class based on known class statistics {σX, σZ} using training data, 
and stored in the form of a table in the encoder and decoder to perform the encoding and decoding accordingly. An 
example of such a table generated for Laplacian X (σX=1), and Gaussian Z (σZ=0.5) is shown in Table 1, where the QP 
are taken from a discrete set of values sampled at intervals of 0.05. Here all entries with QP = ∞, M=1 correspond to zero 
rate. Any entry with M = ∞ correspond to coding without cosets but using side-information based minimum MSE 
reconstruction. Note that as the target QPt increases it becomes optimal to just use zero-rate encoding. 

Table 1. Look-up table from target QPt to 5-tuple parameters for Laplacian σX=1, Gaussian σZ=0.5 

QPt QP1 M1 QP2 M2 α 
0.05 0.05 ∞ 0.05 ∞ 0.00000 
0.10 0.15 27 0.10 ∞ 0.99557 
0.15 0.15 27 0.10 ∞ 0.02017 
0.20 0.20 19 0.15 25 0.01849 
0.25 0.25 14 0.20 18 0.05705 
0.30 0.30 11 0.25 14 0.06097 
0.35 0.35 9 0.30 11 0.02897 
0.40 0.45 7 0.40 8 0.73945 
0.45 0.50 6 0.45 7 0.55446 
0.50 0.60 5 0.50 6 0.63447 
0.55 0.70 4 0.60 5 0.89844 
0.60 0.70 4 0.60 5 0.21118 
0.65 0.90 3 0.70 4 0.68756 
0.70 0.90 3 0.70 4 0.21994 
0.75 ∞ 1 0.90 3 0.91249 
0.80 ∞ 1 0.90 3 0.74701 
0.85 ∞ 1 0.90 3 0.57388 



0.90 ∞ 1 0.90 3 0.39387 
0.95 ∞ 1 0.90 3 0.20779 
1.00 ∞ 1 0.90 3 0.01642 
1.05 ∞ 1 ∞ 1 0.00000 
1.10 ∞ 1 ∞ 1 0.00000 
1.15 ∞ 1 ∞ 1 0.00000 
1.20 ∞ 1 ∞ 1 0.00000 

 
Figure 3(d) and Figure 4(d) shows the convex hulls obtained using the above procedure for differing values of σZ 

while fixing σX = 1. As expected, the curve shifts up with increasing σZ. The figure also includes the R-D curve for 
regular non-distributed coding   using minimum MSE reconstruction without side-information, generated by varying QPt 
with σX = 1 (Eq. 22 and Eq. 24). The corresponding distortion Dt on this curve for each QPt is to be matched to the 
convex hulls for the given statistics. Note for smaller values of σZ, a significant amount of the distortion range is covered 
simply by using zero-rate encoding with side-information based decoding. 

For both Gaussian and Laplacian Z, it can be observed that as σZ increases, the convex hull comes closer to the type of 
coding where no cosets are used but only minimum MSE reconstruction is conducted within the unambiguously conveyed 
quantization bin. However, for the Laplacian Z case, the difference becomes insignificant at smaller values of σZ than in 
the Gaussian Z case. This result is not surprising intuitively speaking, given the fatter tail of the Laplacian distribution 
that makes coset based coding less efficient at smaller values of σZ. Figure 5 illustrates the situation for two different 
values of σZ for both Gaussian and Laplacian noise cases.  

Figure 6 shows how the R-D characteristics change with the shape of the Z distribution (Laplacian vs. Gaussian), for 

        
(a) Gaussian Noise                                                                   (b) Laplacian Noise 

Figure 5. Comparing memoryless coding with and without cosets 

 
Figure 6. Comparing R-D curves for memoryless codes for Laplacian and Gaussian Z 



the same Laplacian X with the same variance σX = 1 and the same variance of Z σZ = 0.4. We observe that the ideal 
Slepian-Wolfe bound gets worse from Laplacian to Gaussian, but the efficiency of memoryless codes get better. In other 
words, as the tail of the distribution gets fatter, memoryless codes get increasingly less efficient, which is not surprising.  

One final point is that in some coding scenarios such as video coding for reversed complexity, the statistics (σX, σZ) 
may itself depend on the target QPt for the non-Wyner-Ziv frames. In that case, each line in parameter table as in Table 1 
stored in the encoder and decoder could be obtained by a different statistics (σX, σZ). The decoder additionally needs to 
store the actual (σX, σZ) pair for each QPt  for appropriate decoding. 

2.4.3. Optimal parameter choice for a set of variables with different variances and correlation statistics 
We next address the problem of optimal parameter choice for a set of N random variables: X0, X1, ..., XN–1, where Xi is 

assumed to have variance σ2
Xi and the corresponding side information Yi is obtained by: Yi = Xi + Zi, where Zi is i.i.d. 

additive Gaussian with variance σ2
Zi

. This is exactly the situation that would arise in a typical (orthogonal) transform 
coding scenario, where each frequency can be modeled to have different statistics. The expected distortion is then the 
average (sum/N) of the distortions for each Xi and the expected rate is the sum of the rates for each Xi. In order to make 
the optimal parameter choice, first the individual convex hull R-D curves must be generated for each i. Using typical 
Lagrangian optimization techniques, the optimal solution for a given total rate or distortion target should be such that 
points from the individual convex hull R-D curves are chosen to have the same local slope λ. The exact value of λ should 
be searched by bisection search or a similar method to yield the exact distortion target or the rate target. Note that since 
the convex hulls are piecewise linear, the slopes are decreasing piecewise constants in most parts. Therefore, 
interpolation of the slopes is necessary under the assumption that the virtual slope function holds its value as the true 
slope of a straight segment only at its mid-point. 

3. APPROACHING THE SLEPIAN-WOLF BOUND 
In Section 2.2.2 we have seen that the ideal rate required to transmit the quantization indices Q is no larger than 

H(Q/Y), as given by Eq. 19. In this section we will consider practical approaches to getting close to this bound, under the 
assumption of our Laplacian source and additive Gaussian noise correlation model with known parameters {σX

2, σZ
2}. 

Further, we will show how proper rate-allocation and soft decoding should be performed within this context.  
Since the goal in this family of approaches is to achieve essentially noise-free transmission of the quantization indices 

with minimum possible rate, the expected distortion can be computed based on minimum MSE reconstruction within the 
quantization bin given by Eq. 21. Thus, for a given target distortion Dt corresponding to quantization parameter QPt for 
regular coding using Eq. 24, the quantization parameter QP chosen for coding with side-information should be such that 
the expected distortion by Eq. 21 is equal to Dt. If the target distortion is more than the zero rate distortion given by Eq. 
26, then just zero-rate coding should be used.  

Table 2 shows successive values of QPt and corresponding values for Dt and QP, and actual distortion D, which is the 
better of Slepian Wolfe coding or zero-rate coding, Laplacian X (σX=1) and Gaussian Z (σZ=0.5). Two scenarios – 
continuous and discrete QP – are considered. Continuous values correspond to the case where an arbitrary precision for 
QP is allowed up to a maximum of 3.15. The discrete values correspond to the case where QP is restricted to the discrete 
set of values from 0.05 to 3.15 at intervals of 0.05. Note that both scenarios also include zero-rate coding corresponding 
to QP=∞, which is chosen when the target distortion Dt is less than the zero-rate distortion. Also, note that in the 
continuous case at QPt=1.0, Dt is less than the zero-rate distortion but more than the distortion for the largest possible QP 
(in this case 3.15). Consequently this is value is chosen as QP. In the discrete case, in order to satisfy the practical 
constraint that all QP values must be taken from a discrete set, the continuous QP values should be moved down to the 
nearest allowable discrete point such that the distortion D<Dt. In this case, however, the achieved distortion will be less 
than Dt.  

Table 2. Mapping from QPt to QP for ideal Slepian Wolfe Coding, along with target Dt, and actual distortion D for the 
case Laplacian σX=1, Gaussian σZ=0.5. Both continuous QP and discrete QP cases are considered.  

QPt Dt QP (continuous) D (continuous) QP (discrete) D (discrete) 
0.05 0.00025 0.05002 0.00025 0.05 0.00025 
0.10 0.00115 0.10023 0.00115 0.10 0.00114 
0.15 0.00287 0.15095 0.00287 0.15 0.00282 
0.20 0.00556 0.20257 0.00556 0.20 0.00538 
0.25 0.00930 0.25553 0.00930 0.25 0.00882 
0.30 0.01415 0.31034 0.01415 0.30 0.01311 
0.35 0.02016 0.36758 0.02016 0.35 0.01816 



0.40 0.02731 0.42790 0.02731 0.40 0.02385 
0.45 0.03562 0.49208 0.03562 0.45 0.03006 
0.50 0.04503 0.56072 0.04503 0.55 0.04353 
0.55 0.05553 0.63525 0.05553 0.60 0.05054 
0.60 0.06704 0.71737 0.06704 0.70 0.06464 
0.65 0.07953 0.80919 0.07953 0.80 0.07832 
0.70 0.09292 0.91409 0.09292 0.90 0.09121 
0.75 0.10715 1.03678 0.10715 1.00 0.10308 
0.80 0.12214 1.18524 0.12214 1.15 0.11883 
0.85 0.13783 1.37415 0.13783 1.35 0.13605 
0.90 0.15413 1.63595 0.15413 1.60 0.15224 
0.95 0.17099 2.07343 0.17099 2.05 0.17035 
1.00 0.18833 3.15000 0.18586 3.15 0.18586 
1.05 0.20608 ∞ 0.18982 ∞ 0.18982 
1.10 0.22418 ∞ 0.18982 ∞ 0.18982 
1.15 0.24255 ∞ 0.18982 ∞ 0.18982 
1.20 0.26115 ∞ 0.18982 ∞ 0.18982 

The rest of this Section deals only with the range of QPt values for which the target distortion Dt is less than the zero-
rate distortion, and therefore a non-zero rate needs to be transmitted to achieve at least equivalent distortion. The 
quantization parameter used must be QP, which is larger than QPt.  
3.1. Symbol-plane by symbol-plane coding 

The approach that has been typically considered in prior art is the use of bit-plane by bit-plane channel coding using 
powerful systematic channel codes that span long sample sequences, for instance, Turbo, Low-delay Parity Check 
(LDPC) codes and Repeat-Accumulate (RA) codes. Specifically, the quantization index Q using quantization parameter 
QP for each sample is binarized up to a certain number of bit-planes. The binarized Q values of a typically long sequence 
of samples are stacked up, and for each bit-plane a systematic channel code of a certain rate is used to yield a set of parity 
bits that are transmitted in the bit-stream. The systematic bits are not sent, and left to be recovered from the side-
information at the decoder, in conjunction with the parity bits. The rate allocation and corresponding decoding for each 
bit-plane should not only consider the source and correlation model, but also the order in which the bit-planes are to be 
decoded at the decoder – a consideration that is often ignored in many current systems.  

3.1.1. Symbol Decomposition 
Before discussing this in further detail, we consider a somewhat more generic version of this bit-plane coding 

approach by allowing decomposition of Q into an arbitrary number of symbols each with an arbitrary alphabet size. We 
consider decomposing Q into S symbols {Q0, Q1, …, QS–1} each associated with a finite alphabet, and one symbol XS 
associated with an infinite alphabet. Here Qi, i=0,1,…,S–1 is the (i+1)th least significant symbol (i.e. Q0 is the least 
significant symbol, Q1 is the second least significant symbol, and so on) associated with a finite li-ary alphabet, while XS 
is the most significant symbol associated with an infinte alphabet which is the set of all integers. The following recursion 
may be used to obtain the symbols Qi and XS from Q, given the S-ary alphabet-size vector L={l0, l1, …, lS–1}: 

  1,...,1,0for  ,/  ),,(mod : 
:
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                                        (41) 

In this case, }1,..,1,0{ −=Ω∈ iQi lQ
i

 for 1,...,1,0 −= Si , and },...,1,0,1,...{ ∞−−∞∈SX . A variant that is identical in terms 
of entropy but may be preferred when an existing entropy coder for regular coding is reused for coding the symbols, uses 
the zero-centered circular modulus function: 
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:
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where    }2/)1( ..., ,1 ,0 ,1 ..., ,2/)1({ −−−−=Ω∈ iiQi llQ
i

 for 1,...,1,0 −= Si  and },...,1,0,1,...{ ∞−−∞∈SX  as before. Note 
that the (S+1)-tuple {Q0, Q1, …, QS–1, XS} carries exactly the same information as Q. On the other hand, there is always 
some information loss, when the finite S-tuple {Q0, Q1, …, QS–1} is used to represent Q rather than {Q0, Q1, …, QS–1, XS}, 
due to the fact that multiple quantization bins map to the same S-tuple. In practice however, if qmax is the maximum 
magnitude quantization index Q beyond which the probabilities of the bins are trivial, and the following is satisfied: 

12 max +≥∏ qli ,                                                                                (43) 



then the conditional entropy 0),...,,/( 110 ≈−SS QQQXH , implying that there is no information in XS given the S-tuple {Q0, 
Q1, …, QS–1}. In other words, ),...,,()( 110 −≈ SQQQHQH .  

The strategy to be followed for transmitting Q, is to assume an S-ary finite decomposition of Q into {Q0, Q1, …, QS–1} 
given an alphabet size vector L={l0, l1, …, lS–1}, and ignore symbol XS. Correspondingly, QS–1 is regarded as the most 
significant symbol rather than XS. Thereafter, the symbols {Q0, Q1, …, QS–1} are transmitted but no rate is ever 
transmitted for XS. The possibility of 0),...,,/( 110 >−SS QQQXH , i.e. multiple quantization bins with non-trivial probability 
mapping to the same S-tuple, is however taken into account during the minimum MSE reconstruction procedure. Figure 7 
illustrates the symbol-plane decomposition mechanism. Henceforth, for simplicity we will use the following notation: 

)(QQ L
ii ξ=                                                                                    (44) 

to denote the mapping function from Q to the ith symbol Qi, given the alphabet-size vector L={l0, l1, …, lS–1}. 
3.1.2. Ideal rate allocation for ordered symbol coding 
In the ideal case, we assume a symbol decomposition mechanism where Eq. 43 is satisfied. Since the information in Q 

is identical to that in {Q0, Q1, …, QS–1} under this assumption, i.e. 0),...,,/( 110 ≈−SS QQQXH , the ideal Slepian-Wolfe rate 
can be approximated as: )/,...,,()/( 110 YQQQHYQH S−≈ . If the coding for the individual symbols are conducted from least 
to most significant symbols, then we could decompose as follows: 
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Here each term corresponds to the ideal rate to be allocated for noiseless transmission of each symbol. However, to be 
able to achieve the rate needed for each symbol, the decoding of the symbols should be conducted also in the same order 
– from the least to the most significant symbol; and furthermore, decoding each symbol should be based not only on the 
side information Y, but also on prior decoded symbols. Likewise, if the coding order of the symbols is from the most to 
the least significant symbol, we would decompose as follows: 
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In general, coding of the symbols can be conducted in any order, but for each order the rate allocation per symbol would 
differ, and so also the decoding. 

In order to exactly compute the rate allocation for a symbol i, given a subset of symbols already transmitted, we would 
need to compute in general the conditional entropy )},:/{( YGkQQH iki ∈ , where Gi is the set of indices corresponding 
to symbols that are to be transmitted prior to symbol Qi. For instance, if the coding order is from the least significant 
symbol to the most significant symbol, we will have: }2,...,1,0{},...,1,0{},0{{}, 1210 −==== − SGGGG S .  

This conditional entropy can be written as: 

 

Q 

x 

fX(x) 

0-1-2-4 -3 1 2 3 4 5 6-6 -5 7 8 9 10 11 12 -7 -8 -10 -9-12 -11 

0212 0 1 2 0 1 2 00 1 1 2 0 1 2 0 2 1 2 00 1 Q0 

0110 1 0 0 1 1 1 00 0 0 0 1 1 1 0 1 1 0 10 0 Q1 

0333 3 0 0 0 0 0 13 3 1 1 1 1 1 2 2 2 2 22 2 Q2 

0 -1 1 -1 0 1 -1 0 1 -1 0 0 1 1 -1 0 1 -1 0 -1 1 -1 0 0 1 Q0 

0-1-10 -1 0 0 -1 -1 -1 00 0 0 0 -1 -1 -1 0 -1 -1 0 -10 0 Q1 

0 -1 -1 -1 -1 0 0 0 0 0 1 -1 -1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 -2 Q2 

Symbol planes with modc() function 

Symbol planes with modcz() function 

L = {3, 2, 4} 

 
Figure 7. Illustrating symbol-plane decomposition. The example assumes L={3,2,4}. 
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Noting that the conditional probability can be expressed as: 
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the conditional entropy is given by: 
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This entropy can be readily calculated based on the expressions for the partial moments presented earlier, in conjunction 
with numerical integration over y. Note that even though the expressions look formidable, they are fairly straight-forward 
to compute. 

We present examples of the ideal bit-plane by bit-plane rate allocation for the case σX=1 (Laplacian), σZ=0.5 
(Gaussian), for various coding orders orders below. We consider 11 bit-planes, so that the condition of Eq. 43 is easily 
satisfied. Table 3 shows the allocation for LSB to MSB coding. Table 4 shows the allocation for MSB to LSB coding, 
while Table 5 shows the allocation for an arbitrary coding order (first MSB followed by LSB, second LSB, and so on). In 
each table, the columns are ordered according to the order of coding of the bit-planes. The tables also provide the total 
conditional entropy or the ideal Slepian-Wolfe rate in the Sum column, which is the sum of the rates for the individual 
bit-planes. Note that this value across different tables for the same QP is the same, irrespective of the coding order. 

Table 3. Ideal rate in bits for LSB to MSB coding for various QP values, for σX=1 (Laplacian), σZ=0.5 (Gaussian). 

QP BP 0 BP 1 BP 2 BP 3 BP 4 BP 5 BP 6 BP 7 BP 8 BP 9 BP 10 Sum 
0.1 0.99478 0.98908 0.97379 0.83909 0.22108 0.00135 0.00000 0.00000 0.00000 0.00000 0.00000 4.01917 
0.2 0.97904 0.95173 0.79178 0.19708 0.00112 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2.92076 
0.3 0.95249 0.85900 0.42585 0.01856 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2.26589 
0.4 0.91460 0.72130 0.17029 0.00097 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.80718 
0.5 0.86475 0.54184 0.05772 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.46434 
0.6 0.80324 0.37860 0.01758 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.19942 



0.7 0.73266 0.25288 0.00495 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99048 
0.8 0.65743 0.16459 0.00130 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82332 
0.9 0.58216 0.10563 0.00033 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.68814 
1.0 0.51042 0.06730 0.00008 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.57779 

Table 4. Ideal rate in bits for MSB to LSB coding for various QP values, for σX=1 (Laplacian), σZ=0.5 (Gaussian). 

QP BP 10 BP 9 BP 8 BP 7 BP 6 BP 5 BP 4 BP 3 BP 2 BP 1 BP 0 Sum 
0.1 0.46158 0.00000 0.00000 0.00000 0.00022 0.02023 0.19565 0.56927 0.84519 0.95069 0.97625 4.01917 
0.2 0.35694 0.00000 0.00000 0.00000 0.00000 0.00022 0.02033 0.19590 0.57018 0.83897 0.93823 2.92076 
0.3 0.26471 0.00000 0.00000 0.00000 0.00000 0.00000 0.00212 0.06306 0.34260 0.70554 0.88787 2.26589 
0.4 0.18882 0.00000 0.00000 0.00000 0.00000 0.00000 0.00022 0.02033 0.19611 0.57150 0.83018 1.80718 
0.5 0.12976 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00656 0.11119 0.44789 0.76892 1.46434 
0.6 0.08596 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00212 0.06306 0.34335 0.70493 1.19942 
0.7 0.05492 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00068 0.03579 0.26018 0.63890 0.99048 
0.8 0.03384 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00022 0.02033 0.19619 0.57274 0.82332 
0.9 0.02011 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00007 0.01154 0.14772 0.50868 0.68814 
1.0 0.01152 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00656 0.11120 0.44850 0.57779 

Table 5. Ideal rate in bits for arbitrary coding order for various QP values, for σX=1 (Laplacian), σZ=0.5 (Gaussian). 

QP BP 10 BP 0 BP 1 BP 2 BP 3 BP 4 BP 5 BP 6 BP 7 BP 8 BP 9 Sum 
0.1 0.46158 0.98295 0.95823 0.88148 0.61574 0.11867 0.00052 0.00000 0.00000 0.00000 0.00000 4.01917 
0.2 0.35694 0.94740 0.87388 0.62082 0.12117 0.00054 0.00000 0.00000 0.00000 0.00000 0.00000 2.92076 
0.3 0.26471 0.90629 0.76701 0.31648 0.01141 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2.26589 
0.4 0.18882 0.86409 0.62661 0.12699 0.00065 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.80718 
0.5 0.12976 0.81904 0.47112 0.04439 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.46434 
0.6 0.08596 0.76696 0.33234 0.01416 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.19942 
0.7 0.05492 0.70641 0.22495 0.00420 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99048 
0.8 0.03384 0.63972 0.14860 0.00116 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82332 
0.9 0.02011 0.57087 0.09684 0.00030 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.68814 
1.0 0.01152 0.50365 0.06264 0.00007 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.57779 
We next present similar results for symbol-based coding, assuming only 4 symbols, with the alphabet-size vector 

being given by {3, 2, 4, 100}. Note that l3=100 is chosen to be large enough so that the assumption of Eq. 43 holds. The 
source and correlation model is given by σX=1 (Laplacian), σZ=0.5 (Gaussian). Table 6 shows the ideal rate for LSS (least 
significant symbol) to MSS (most significant symbol) coding. Table 7 shows the ideal rate for MSS to LSS coding. Table 8 
shows the ideal rates for an arbitrary order. In all cases, the Sum column shows the ideal Slepian-Wolfe rate, which is the 
sum of the rates for the corresponding row. 

Table 6. Ideal rate in bits for LSS to MSS coding with 4 symbols and L={3, 2, 4, 100}, for various QP values,  for σX=1(Laplacian), 
σZ=0.5 (Gaussian). 

QP SP 0 SP 1 SP 2 SP 3 Sum 
0.1 1.57438 0.98245 1.43832 0.02402 4.01917 
0.2 1.54134 0.90082 0.47860 0.00000 2.92076 
0.3 1.48154 0.67519 0.10917 0.00000 2.26589 
0.4 1.38654 0.40307 0.01755 0.00000 1.80716 
0.5 1.25431 0.20790 0.00213 0.00000 1.46434 
0.6 1.10054 0.09868 0.00021 0.00000 1.19942 
0.7 0.94590 0.04457 0.00002 0.00000 0.99048 
0.8 0.80385 0.01947 0.00000 0.00000 0.82332 
0.9 0.67982 0.00829 0.00000 0.00000 0.68814 
1.0 0.57433 0.00346 0.00000 0.00000 0.57779 

Table 7. Ideal rate in bits for MSS to LSS coding with 4 symbols and L={3, 2, 4, 100}, for various QP values, for σX=1(Laplacian), 
σZ=0.5 (Gaussian). 

QP SP 3 SP 2 SP 1 SP 0 Sum 
0.1 0.52676 1.04918 0.90455 1.53869 4.01917 
0.2 0.35906 0.40504 0.70661 1.45005 2.92076 
0.3 0.26478 0.15920 0.50676 1.33516 2.26589 
0.4 0.18882 0.06518 0.34298 1.21018 1.80716 
0.5 0.12976 0.02736 0.22595 1.08127 1.46434 
0.6 0.08596 0.01161 0.14771 0.95414 1.19942 



0.7 0.05492 0.00495 0.09649 0.83412 0.99048 
0.8 0.03384 0.00212 0.06306 0.72430 0.82332 
0.9 0.02011 0.00091 0.04124 0.62587 0.68814 
1.0 0.01152 0.00039 0.02697 0.53891 0.57779 

Table 8. Ideal rate in bits for MSS to LSS coding with 4 symbols and L={3, 2, 4, 100}, for various QP values, for σX=1(Laplacian), 
σZ=0.5 (Gaussian). 

QP SP 3 SP 0 SP 1 SP 2 Sum 
0.1 0.52676 1.54750 0.92144 1.02347 4.01917 
0.2 0.35906 1.47325 0.76677 0.32168 2.92076 
0.3 0.26478 1.38561 0.54323 0.07228 2.26589 
0.4 0.18882 1.28536 0.32088 0.01210 1.80716 
0.5 0.12976 1.16532 0.16767 0.00159 1.46434 
0.6 0.08596 1.03172 0.08157 0.00017 1.19942 
0.7 0.05492 0.89755 0.03799 0.00001 0.99048 
0.8 0.03384 0.77232 0.01715 0.00000 0.82332 
0.9 0.02011 0.66047 0.00754 0.00000 0.68814 
1.0 0.01152 0.56304 0.00323 0.00000 0.57779 

 
3.1.3. Practical rate allocation and coding 
While the conditional entropy results have been presented for arbitrary symbol decomposition, in a practical scenario, 

it would be convenient to choose alphabet-sizes for each symbol to be 2, or at most small powers of 2. The case where 
each li = 2 corresponds to the popular bit-plane by bit-plane coding case, where extensive prior knowledge on behavior 
and performance of binary error-correction codes can be brought to bear.  

Coding of each symbol plane in the pre-determined order is conducted by use of a systematic channel code, where 
only the parity information is transmitted. The amount of parity information sent should be at least as much as the 
conditional entropy given by Eq. (47) and Eq. (49), in order to ensure noise-free decoding. However, since noise-free 
transmission is achievable only for very large block lengths, it is necessary to add a margin to the computed ideal rate. 
The margin may depend on the expected length of a block specific to a given application, the complexity of the code, as 
well as the impact of an error in decoding a symbol to the overall distortion. The margin can be a multiplicative factor, 
denoted iγ  for the symbol Qi, of the ideal rate. The rate allocated for channel coding CC

ir  (CC stands for channel coding) 
is then given by: 

)},:/{()1( YGkQQHr ikii
CC

i ∈+= γ                                                                   (50) 
where 0>iγ . 

We next consider the rate needed to transmit a symbol plane noise-free with only source coding (i.e. no channel 
coding) conditioned on previously transmitted symbol planes. This rate denoted SC

ir  (SC stands for source coding) is 
given by the conditional entropy }):/{( iki GkQQH ∈  as follows: 
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This rate can be practically achieved by context-adaptive entropy (for instance, arithmetic) coding.  
Even though }):/{()},:/{( ikiiki GkQQHYGkQQH ∈≤∈ , the margin requirement for the practical channel coding 

case, may make it possible that CC
i

SC
i rr ≤ . In this case, just source coding should be used instead of channel coding.  



The overall symbol plane by symbol plane coding strategy for a given order can now be outlined as follows: 
1. Fix encoding order for symbol planes. 
2. While not all symbol planes are done,  

a. Get next symbol plane Qi in pre-determined order. 
b. Obtain )},:/{()1( YGkQQHr ikii

CC
i ∈+= γ  and }):/{( iki

SC
i GkQQHr ∈=  for symbol plane Qi, given previously 

transmitted symbol planes, by computing or reading/interpolating from pre-computed tables of 
conditional entropies, and adding pre-determined margins. 

c. If CC
i

SC
i rr ≤ , use source coding with conditional entropy coding, using the previously transmitted symbol 

planes as context, 
Else use channel coding with rate CC

ir . 
3. Done Encoding 
There is one caveat in the use of conditional source coding for symbol planes other than the first. In order to enable 

correct decoding of a source coded symbol plane, it must be assumed that the channel coded symbol planes transmitted 
prior to this plane have been decoded noise-free. While this can be ensured by having big enough margins, a more robust 
alternative would be to use as context for source coding only the previously transmitted source coded planes but not the 
channel coded planes. In this case, the source coding rate is given by Eq. 51, where Gi represents the set of indices of 
previously transmitted source coded symbol planes, rather than the set of indices of all previously transmitted symbol 
planes. Naturally, this leads to loss of compression efficiency. Only for the first symbol plane transmitted, there is no 
difference in the two approaches. The source coding rate in this case is given by the unconditional entropy of the symbol: 
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Finally, we note that since the rates required for channel coded planes are arbitrary, it is inconvenient to design 
different codes for every possible rate. Furthermore, in many applications, the number of samples to be transmitted is 
variable and not known a priori. In such cases, puncturing should be used. Only certain systematic codes at fixed rates 
should be designed, and the intermediate rate codes are derived from the next higher rate code by removing an 
appropriate number of parity bits. The total number of parity bits to be transmitted for symbol plane Qi, is given by 

CC
isamples rN × . If the number of parity bits with the next higher rate code is parityN , then CC

isamplesparity rNN ×−  parity bits 

must be removed. Usually removing parity bits at regular intervals so that there are CC
isamples rN ×  bits are eventually 

transmitted works reasonably well.  
Finally, we note that even though we assume an i.i.d. model in this work which makes sense for block transform 

coefficients, for correlated sources, the actual source coding rate can be much less than that given by Eq. 51 or Eq. 52. 
Sophisticated modeling is often used in source coding to reduce bit-rate even when the residual correlation is limited. On 
the other hand, for channel coding, the correlation between neighboring samples is much harder to exploit. While there 
exists a framework to exploit these correlations using decoding on graphs, such decoders can be quite complicated to 
implement in practice with robust enough convergence characteristics. Therefore, in the general case, instead of using Eq. 
51 or Eq. 52 to estimate the source coding rate, an actual source coder may be used, and the actual rate used by it may be 
considered to decide whether to use source coding or channel coding. In other words, if the rate required for channel 
coding to reliably decode a plane is less than the rate required with an actual source coder, only then channel coding 
should be used.  

3.1.4. Decoding strategies 
For decoding, a soft input decoder must be used. Such a decoder takes in as input a priori soft probabilities of 

systematic and parity symbols for a block in order to perform the decoding, and outputs either a hard-decision about the 
symbols (for instance using the Viterbi algorithm) or a soft-decision yielding the posteriori probability mass function of 
each symbol (for instance using the BCJR algorithm). Both cases are discussed below. 

We first focus on the soft-input hard-output case. In this case, the prior probabilities for the systematic symbols in any 
plane are obtained based on the side information y, and knowledge of previously hard-decoded symbol planes. Thus, for 
decoding the symbol plane Qi, given previously decoded symbols }:{ ikk GkqQ ∈=  and side-information Y=y, the prior 
probability of

iQii qQ Ω∈= , denoted }:)({ )(
iQiii

prior qqQp Ω∈=  would be given by: 
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Since the parity symbols are assumed to be transmitted noise-free, their prior probabilities are taken as unity for the 
received symbol and zero otherwise. Figure 8 illustrates the mechanism. A drawback of this approach is that if an error 
has been made in decoding a symbol in one plane, the error would propagate to the rest of the symbol planes to be 
decoded. However, if the margin has been conservative enough, the probability of such errors should be very small.  

The soft-input decoder may also make a soft-decision about the symbol transmitted. In this case, the decoder for each 
plane returns the soft posteriori probability mass functions for the decoded symbols, denoted

iQiii
post qqQp Ω∈= ),()( . 

Ability to use this soft information effectively for decoding the rest of the symbol planes, can potentially lead to better 
decoding performance. Assuming that soft joint posteriori probability mass functions of previously decoded symbol 
planes denoted }):({)(

ikk
post GkqQp ∈=  are available, the prior probabilities comprising the soft input for 

decoding next plane Qi, may be obtained as: 
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Once the decoder produces the soft outputs )()(
ii

post qQp = , it must be combined with the existing joint probabilities 

}):({)(
ikk

post GkqQp ∈= to obtain the updated joint probability distribution }}){:({)( iGkqQp ikk
post ∪∈=  that includes the 

newly decoded symbol plane. Under the assumption of independence of the symbol planes, the joint posteriori 
probability distribution is simply the product of the distributions of the constituent symbol planes. The new joint 
distribution is then simply: 

}{,     ,)()(}):({}}){:({
}{

)()()()( iGkqqQpqQpGkqQpiGkqQp iQk
iGk

kk
post

ii
post

ikk
post

ikk
post

k

i

∪∈Ω∈∀===×∈==∪∈= ∏
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   (55) 

This is next used to obtain the priors for decoding the next symbol plane. Once all symbol planes have been decoded, the 
soft posteriori probabilities for each quantization bin can be obtained, and a hard decision can be made. The approach is 
illustrated in Figure 9(a). 

While this approach mitigates the propagation of errors from symbol plane to symbol plane, it still does not enable 
correcting errors that have been made in a symbol plane. In order to enable that, the following iterative decoding strategy 
may be used. When all the symbol planes have been decoded once in order with the above strategy, we would have 
obtained the posteriori probabilities of the individual symbol planes. Now, we can refine the decoding of each symbol 
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Eq. 53 
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Y 

 
Figure 8. Decoding mechanism using Soft-Input Hard-Output symbol plane decoders 



plane in any order where the prior is assumed to be computed based on the joint distribution of all symbol planes other 
than the one being decoded. The joint distribution is simply the product of the individual symbols under the 
independence assumption.  
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The new decoded posteriori probabilities update the posteriori distribution of the symbol plane concerned. The process is 
repeated over all symbol planes, multiple times until the posteriori distributions converge. The mechanism is illustrated in 
Figure 9(b).Obviously, this procedure is very demanding computationally, but decoding should in general be better. 

Various combinations of the above two decoding strategies can be considered. For example, the early symbol planes 
in encoding order may be channel coded with a big margin or source coded, to ensure virtually noise-free transmission, 
while the trailing ones may be channel coded with a smaller margin. In this case, the early channel coded symbol planes 
can be hard-decoded, while the trailing symbol planes may use soft-output based decoding.  

3.1.5. Skipped symbol planes 
In some cases it will be convenient to just not transmit anything for certain symbol-planes. Typically, these symbol 

planes are chosen as ones for which the ideal rate (conditional entropy) is very small. Furthermore, if that is indeed the 
case, it is better that these symbol planes be the trailing ones in coding order, so that the decoding for the other symbol 
planes may be conducted without any impreciseness. The modified coding strategy can now be described as:  

1. Fix encoding order for symbol planes. 
2. While not all symbol planes are done,  

a. Get next symbol plane Qi in pre-determined order. 
b. Obtain )},:/{()1( YGkQQHr ikii

CC
i ∈+= γ  and }):/{( iki

SC
i GkQQHr ∈=  for symbol plane Qi, given previously 

transmitted symbol planes, by computing or reading/interpolating from pre-computed tables of 
conditional entropies, and adding pre-determined margins. 

c. If ε≤∈ )},:/{( YGkQQH ikj
 (where ε  is a small threshold) for all j where Qj has not already been 

transmitted, go to step 3 (i.e. terminate encoding). In other words, do not transmit anything for the 
symbol plane Qi, and all other succeeding symbol planes if the ideal rates for all of them are smaller than 
the threshold ε . 
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Figure 9. Decoding mechanism using Soft-Input Soft-Output symbol plane decoders 



Else if CC
i

SC
i rr ≤ , use source coding with conditional entropy coding, using the previously transmitted 

symbol planes as context, 
Else use channel coding with rate CC

ir . 
3. Done Encoding 
3.1.6. Optimal reconstruction for soft-output decoding 
A decoder that eventually returns soft posteriori probabilities of quantization bins must be appropriately represented in 

obtaining the final reconstruction. Assume that the decoder obtains the soft posteriori probabilities of a set of symbol 
planes in index set G:

kQkkk
post qGkqQp Ω∈∀∈=   }):({)( . Note that the planes in set G may not include all the symbol 

planes, if there are skipped symbol planes. Also, if there are planes in G that are source coded or channel coded with a 
big margin and subsequently hard decoded, the corresponding marginal probability is taken as 1 for the decoded value, 
and 0 for the rest. 

Generally speaking, we will assume a form of the a posteriori conditional distribution ),()(
/ yxf post
YX

 which has the same 
shape as the a priori distribution ),(/ yxf YX

within each bin, but scaled appropriately to satisfy the posteriori 
probabilities

kQkkk
post qGkqQp Ω∈∀∈=   }):({)( . The minimum MSE reconstruction function is then given by: 
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Specifically, for the case where there are some hard-decoded planes (source coded or channel coded with a big 
margin), and some soft decoded planes, we can denote: hardsoft GGG ∪= , where softG  and hardG  are disjoint subsets of G 
with the hard and soft-decoded symbol indices respectively. Further, if the hard decoded values are hardkk GkqQ ∈∀= , 
the optimal reconstruction can be rewritten as: 

∑ ∑∑ ∑
∈∀=

Ω∈

∈∀=′
∈∀=′

Ω∈′∈∀=
Ω∈

∈∀=′
∈∀=′

Ω∈′























′−′
−×∈=

=























′
×∈=

=

hardk
L
k

Q

soft
L
k

L
k

hardk
L
k

Qhardk
L
k

Q

soft
L
k

L
k

hardk
L
k

Q Gkqq
q

Gkqq
Gkqq

q
lYXhYX

lYXhYXsoft
L
kkpost

Gkqq
q

Gkqq
Gkqq

q

soft
L
kkpost

yqxmyqxm
yqxmyqxmGkqQp

yq
yqGkqQp

X
)(

:           

)()(
  )(   

:              

)0(
/

)0(
/

)1(
/

)1(
/)(

)(
:           

)()(
  )(   

:              

)(

)]),(()),(([
)]),(()),(([}):)(({

),(
),(}):)(({ˆ

ξ

ξξ
ξ

ξ

ξξ
ξ

ξ
π

µξ    (58) 

When all coded planes are hard-decoded, we have: 
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which is similar to Eq. 8. The expression reduces to Eq. 20 when there are no skipped planes.  
When there are skipped symbol-planes, or when the channel coded planes have not been coded with a sufficiently 

large margin, usually a certain probability of erroneous decoding is tolerated. In such cases, (partial) soft-decoding 
followed by the above form for the reconstruction function yields somewhat better reconstruction in practice. 
3.2. A Practical Code family 

3.2.1. Source-channel combo codes 
Based on the background laid above, we now present a practical but generic Wyner-Ziv codec. We consider a symbol-

plane by symbol-plane coder with S=K+1 symbols, where the alphabet-size vector is given by {M, 2, 2, …, (K 2s)}, 
where {M, K} are parameters for the code. The coding order is LSS to MSS. The M-ary LSS, which is the first symbol in 
coding order is source coded, while the remaining binary planes are each channel coded with powerful binary channel 
codes. Note that as observed from the pattern in Table 3 and Table 6, for LSS to MSS coding the conditional entropy 
decays very fast at the higher symbol planes. The source coding rate is given by the unconditional entropy in Eq. 52. 



Since this is the first symbol plane, there are no complications in implementing context adaptive source codes and no 
possibility of error propagation to subsequent channel coded planes,. The channel coded binary planes in low to high 
significance order are coded with punctured binary error correction codes with rates given by adding a margin to the ideal 
rate. The case of K=1 is particularly convenient since there is only one channel coded plane preceded by a noise free 
source coded plane, and consequently there are no complications due to the possibility of error propagation. Optimal 
reconstruction can be then conducted based on Eq. 20 for hard decoding or Eq. 57–58 for full or partial soft-output 
decoding. The case M=1 for this code is a degenerate case, where the source coded symbol plane is non-existent, so that 
the code essentially becomes a bit-plane by bit-plane LSB to MSB channel coder with K bit-planes. Further, the case 
K=0, corresponds to the memoryless codes considered before in Section 2. In this case, there is only one source coded 
plane, and no channel coded planes.  

The goal of parameter choice for this code is to obtain the appropriate values of {M, K} and also the ideal rates to be 
used for the binary channel coded planes, given the source and correlation statistics {σX

2, σz
2}. The following algorithm 

may be used to find the optimal value of {M, K}, based on the fact that the conditional entropy of the un-transmitted true 
MSS XS must be below a small threshold .ε  

1. For each k in a set of allowable values: {1, 2, .., Kmax} 
a. Initialize m=1. 
b. Obtain conditional entropy ),,...,,/( 101 YQQQQH kk+  with k+2-ary L={m, 2, 2,…(k 2’s), p}, with 

 )2/()12( max mqp k+=  to satisfy Eq.43. Note this is equivalent to computing ),,...,,/( 101 YQQQXH kk+  for a 
(k+1)-ary decomposition. (If m=1, there is no information in Q0). 

c. If  ε>+ ),,...,,/( 101 YQQQQH kk  do m=m+1 and go to Step 1b, else assign M(k)=m and go to step 1d. 
d. Obtain source coding rate )()( 00 QHkrSC =  for code parameters {M(k), k}. (If M(k)=1,  H(Q0)=0). 
e. Obtain ideal rate for binary planes: ),,...,,,/(),...,,,,/(),,/( 11010201 YQQQQHYQQQHYQQH kk − .  
f. If k>1, check if: ε<+ −+ ),,...,,/(),,...,,/( 110101 YQQQQHYQQQQH kkkk . If so, assign 

)(krpractical =VERY_LARGE_VALUE and go to Step 1 and continue for next k. (In this case, a lower value 
of k should be used rather than the one tested).  

g. Compute practical channel coding rates: ),/()1()( 0111 YQQHkrCC γ+= , ),,/()1()( 10222 YQQQHkr CC γ+= ,…,  
 ),,...,,/()1()( 110 YQQQQHkr kkk

CC
k −+= γ  for code parameters {M(k), k}. 

h. Obtain total practical rate: )(...)()()()( 210 krkrkrkrkr CC
k

CCCCSC
practical ++++= . 

2. Find )(minarg krK practical
k

= . The optimal code parameters are then {M(K), K}, with the channel coding rates as 

computed in Step 1e for this combination.  
 
Table 9 tabulates the parameters chosen for the above algorithm for the case of Laplacian X (σX=1), and Gaussian Z 

(σZ=0.5), for varying values of QPt, with ε=0.001. Further Kmax=1, i.e. only K=1 is the allowed configuration for practical 
convenience, corresponding to a 3-symbol code with L={M, 2, ∞}. The ideal rates for coding, as well as the practical rate 
with the first symbol source coded and second symbol channel coded with a margin are provided.  The margin factor, 

5.0== γγ i  is assumed to be appropriate for the expected number of samples to be coded as a block, and the code 
complexity, and is assumed to be the same γ  for each symbol plane. Note that this factor may be decided on the fly 
depending on the block size, if the number of samples in a block is not known beforehand.  

Table 9. Parameters for Kmax=1 code with L={M, 2, ∞} for Laplacian σX=1, Gaussian σZ=0.5, ε=0.001, γ= 0.5. 

QP M Ideal 
channel 
coded 
SP 0 

Ideal  
channel 
coded  
BP 1 

Ideal 
Sum  

(Slepian-
Wolfe) 

Source 
coded  
SP 0  

Channel 
coded  
BP 1 

(γ= 0.5) 

Practical 
rate for 

code 

All 
channel 
coded  

(γ= 0.5) 

All  
source 
coded 

0.1 17 3.84449 0.17408 4.01917 4.00022 0.26112 4.26134 6.02876 5.13395 
0.2 9 2.80101 0.11949 2.92076 3.02188 0.17924 3.20111 4.38114 4.02306 
0.3 6 2.15673 0.10898 2.26589 2.39719 0.16347 2.56066 3.39884 3.34468 
0.4 4 1.63590 0.17029 1.80716 1.81791 0.25544 2.07334 2.71074 2.85168 
0.5 4 1.40658 0.05777 1.46434 1.72294 0.08666 1.80959 2.19651 2.46545 
0.6 3 1.10005 0.09868 1.19942 1.33697 0.14802 1.48499 1.79913 2.15022 
0.7 3 0.94590 0.04457 0.99048 1.26012 0.06686 1.32698 1.48572 1.88637 



0.8 3 0.80385 0.01947 0.82332 1.17920 0.02921 1.20841 1.23498 1.66178 
0.9 2 0.58216 0.10563 0.68814 0.75793 0.15845 0.91637 1.03221 1.46835 
1.0 2 0.51042 0.06730 0.57779 0.71298 0.10095 0.81393 0.86669 1.30033 
1.1 2 0.44437 0.04271 0.48710 0.66739 0.06407 0.73146 0.73065 1.15345 
1.2 2 0.38502 0.02705 0.41208 0.62185 0.04058 0.66243 0.61812 1.02442 
1.3 2 0.33258 0.01711 0.34968 0.57694 0.02567 0.60261 0.52453 0.91066 
1.4 2 0.28674 0.01080 0.29754 0.53317 0.01620 0.54937 0.44631 0.81007 
1.5 2 0.24698 0.00680 0.25379 0.49093 0.01020 0.50113 0.38068 0.72092 
1.6 2 0.21266 0.00427 0.21693 0.45052 0.00641 0.45693 0.32540 0.64177 
1.7 2 0.18310 0.00267 0.18577 0.41216 0.00401 0.41617 0.27866 0.57141 
1.8 2 0.15770 0.00166 0.15936 0.37601 0.00250 0.37850 0.23905 0.50879 
1.9 2 0.13588 0.00103 0.13691 0.34213 0.00155 0.34368 0.20537 0.45303 
2.0 1 0.00000 0.11715 0.11778 0.00000 0.17572 0.17572 0.17667 0.40334 

As we can see from the table, the practical rate with this code diverges substantially from the ideal Slepian Wolfe rate. 
However note, if only channel coding were used for this code with the same margin requirement, the rate would be (1+ γ) 
times as much as the Ideal Slepian-Wolfe rate shown in the second rightmost column, which is actually larger than the rate 
with the 3-symbol source-channel code at higher rates. At lower rates (QP>1) however, the channel-only code rate is 
lower. Also shown for comparison in the rightmost column is the rate if pure source coding were used. 

If we allowed up to 2 channel coded bit-planes (Kmax=2), the inefficiency at the lower rates can be largely removed 
since the coding option with two channel coded planes but no source coding can now be chosen. Table 10 shows the 
parameters chosen when we allow both K=1 (3-symbol) and K=2 (4-symbol) codes for Laplacian X (σX=1) and Gaussian 
Z (σZ=0.5). Any entry with ‘–’ indicates that the symbol plane is not coded. As we see that for certain mid-QP values, 
namely QP=0.5, 0.6, 0.7, 0.8, it becomes optimal to use K=2 channel coded bit-planes.  At the lower rates QP>1, it again 
becomes optimal to use K=2 channel coded bit-planes, but the source coded symbol plane becomes degenerate at these 
rates (M=1). In other words, only two channel coded bit-planes are used, and use of source coded symbol plane is no 
longer optimal. At very low rates, QP≥2.0, it becomes sufficient to use a single channel coded bit-plane. The practical 
rates in Table 10 are by far the best ones that can be obtained by a practical code under the assumption of 5.0=γ . 

Table 10. Parameters for Kmax=2 code for Laplacian σX=1, Gaussian σZ=0.5, ε=0.001, γ = 0.5 

QP K M Ideal  
SP 0 

 

Ideal 
channel 
coded 
BP1 

Ideal  
channel 
coded 
BP2 

Ideal 
Sum  

(Slepian-
Wolfe) 

Source 
coded  
SP 0  

Channel 
coded  
BPs 

(γ= 0.5) 

Practical  
rate for 

code 

All 
channel 
coded  

(γ= 0.5) 

All  
source 
coded 

0.1 1 17 3.84449 0.17408 – 4.01917 4.00022 0.26112 4.26134 6.02876 5.13395 
0.2 1 9 2.80101 0.11949 – 2.92076 3.02188 0.17924 3.20111 4.38114 4.02306 
0.3 1 6 2.15673 0.10898 – 2.26589 2.39719 0.16347 2.56066 3.39884 3.34468 
0.4 1 4 1.63590 0.17029 – 1.80716 1.81791 0.25544 2.07334 2.71074 2.85168 
0.5 2 2 0.86475 0.54184 0.05772 1.46434 0.91517 0.89934 1.81451 2.19651 2.46545 
0.6 2 2 0.80324 0.37860 0.01758 1.19942 0.88098 0.59427 1.47525 1.79913 2.15022 
0.7 2 2 0.73266 0.25288 0.00495 0.99048 0.84278 0.38675 1.22953 1.48572 1.88637 
0.8 2 2 0.65743 0.16459 0.00130 0.82332 0.80148 0.24883 1.05031 1.23498 1.66178 
0.9 1 2 0.58216 0.10563 – 0.68814 0.75793 0.15845 0.91637 1.03221 1.46835 
1.0 1 2 0.51042 0.06730 – 0.57779 0.71298 0.10095 0.81393 0.86669 1.30033 
1.1 2 1 – 0.44437 0.04271 0.48710 – 0.73062 0.73062 0.73065 1.15345 
1.2 2 1 – 0.38502 0.02705 0.41208 – 0.61811 0.61811 0.61812 1.02442 
1.3 2 1 – 0.33258 0.01711 0.34968 – 0.52453 0.52453 0.52453 0.91066 
1.4 2 1 – 0.28674 0.01080 0.29754 – 0.44631 0.44631 0.44631 0.81007 
1.5 2 1 – 0.24698 0.00680 0.25379 – 0.38068 0.38068 0.38068 0.72092 
1.6 2 1 – 0.21266 0.00427 0.21693 – 0.32540 0.32540 0.32540 0.64177 
1.7 2 1 – 0.18310 0.00267 0.18577 – 0.27866 0.27866 0.27866 0.57141 
1.8 2 1 – 0.15770 0.00166 0.15936 – 0.23905 0.23905 0.23905 0.50879 
1.9 2 1 – 0.13588 0.00103 0.13691 – 0.20537 0.20537 0.20537 0.45303 
2.0 1 1 – 0.11715 – 0.11778 – 0.17572 0.17572 0.17667 0.40334 
 

Table 11 shows the Kmax=2 code table for the case of Laplacian X (σX=1) and Laplacian Z (σZ=0.3). 

Table 11. Parameters for Kmax=2 code for Laplacian σX=1, Laplacian σZ=0.3, ε=0.001, γ = 0.5 

QP K M Ideal  
SP 0 

Ideal 
channel 

Ideal  
channel 

Ideal 
Sum  

Source 
coded  

Channel 
coded  

Practical  
rate for 

All 
channel 

All  
source 



 coded 
BP1 

coded 
BP2 

(Slepian-
Wolfe) 

SP 0  BPs 
(γ= 0.5) 

code coded  
(γ= 0.5) 

coded 

0.1 2 8 2.81797 0.44170 0.05996 3.32030 2.97132 0.75248 3.72380 4.98044 5.13395 
0.2 2 4 1.79082 0.41552 0.05396 2.26088 1.95408 0.70422 2.65830 3.39132 4.02306 
0.3 2 3 1.31460 0.31964 0.02886 1.66327 1.51863 0.52276 2.04139 2.49490 3.34468 
0.4 2 2 0.81938 0.40118 0.04909 1.27013 0.94452 0.67540 1.61993 1.90519 2.85168 
0.5 2 2 0.72611 0.25195 0.01564 0.99374 0.91517 0.40138 1.31655 1.49061 2.46545 
0.6 2 2 0.63191 0.15469 0.00496 0.79156 0.88097 0.23947 1.12045 1.18734 2.15022 
0.7 2 2 0.54364 0.09422 0.00158 0.63945 0.84279 0.14370 0.98649 0.95917 1.88637 
0.8 2 1 – 0.46460 0.05736 0.52246 – 0.78293 0.78293 0.78369 1.66178 
0.9 2 1 – 0.39570 0.03501 0.43088 – 0.64607 0.64607 0.64632 1.46835 
1.0 2 1 – 0.33660 0.02146 0.35811 – 0.53709 0.53709 0.53717 1.30033 
1.1 2 1 – 0.28633 0.01322 0.29956 – 0.44932 0.44932 0.44934 1.15345 
1.2 2 1 – 0.24377 0.00818 0.25195 – 0.37792 0.37792 0.37793 1.02442 
1.3 2 1 – 0.20780 0.00508 0.21288 – 0.31932 0.31932 0.31932 0.91066 
1.4 2 1 – 0.17741 0.00316 0.18057 – 0.27086 0.27086 0.27086 0.81007 
1.5 2 1 – 0.15169 0.00198 0.15367 – 0.23050 0.23050 0.23050 0.72092 
1.6 2 1 – 0.12990 0.00124 0.13114 – 0.19671 0.19671 0.19671 0.64177 
1.7 1 1 – 0.11140 – 0.11219 – 0.16711 0.16711 0.16828 0.57141 
1.8 1 1 – 0.09567 – 0.09617 – 0.14351 0.14351 0.14425 0.50879 
1.9 1 1 – 0.08227 – 0.08258 – 0.12340 0.12340 0.12387 0.45303 
2.0 1 1 – 0.07082 – 0.07101 – 0.10623 0.10623 0.10652 0.40334 
Figure 10 compares the R-D curves for ideal Slepian-Wolfe coding followed by optimal reconstruction, with that of 

various practical codes including memoryless codes without cosets, the convex hull for memoryless codes with cosets 
and the above source-channel combo code, for both the Laplacian-Gaussian and Laplacian-Laplacian models. As 
expected, the last curve with memory enables getting closer to the ideal bound. Figure 11 compares R-D curves for 
source-channel combo codes for Laplacian and Gaussian Z with the same variance. As we see, the inefficiency with 
memoryless codes due to the heavier tail of the Laplacian Z has largely been eliminated.  

One final point is that in certain coding scenarios the statistics (σX, σZ) may itself depend on the target QPt for the non-
Wyner-Ziv frames. In that case, each line in parameter tables above stored in the encoder and decoder could be obtained 
by a different statistics (σX, σZ). The decoder additionally needs to store the (σX, σZ) pair corresponding to each QPt  for 
appropriate decoding. 

3.2.2. Practical coding architecture 
The overall practical coding scheme can now be shown in Figure 12. Given a target QPt, a pre-computed table yields 

the parameters QP, K, M as well as the ideal rates for the channel coded bit-planes. The least significant M-ary symbol is 
source coded with an entropy coder, for instance an arithmetic encoder. Ideally, each possible M should correspond to a 
different entropy coder, but alternatively an adaptive arithmetic encoder with an M-ary alphabet that automatically learns 
the distribution may be used.  

     
(a) Laplacian source (σX=1) Gaussian noise (σZ=0.5)              (b) Laplacian source (σX=1) Laplacian noise (σZ=0.3)  

Figure 10. R-D curves of ideal Slepian-Wolfe coding vs. memoryless coding and practical finite memory coding 
with source and channel combo codes, for (a) Laplacian source X with σX=1, and Gaussian noise Z with σZ=0.5; 
(b) Laplacian source X with σX=1, and Laplacian noise Z with σZ=0.3. 



For actual channel coding of the bit-planes, powerful systematic codes such as LDPC codes or punctured Turbo codes 
may be used. However, if the number of samples is variable for each block, and not known beforehand, punctured Turbo 
codes will be found to be particularly advantageous for fast encoding. With LDPC codes, for every block of samples of 
unknown length to be coded, a new parity check matrix for a pseudo-random code with the specified rate would have to 
be instantiated. This set-up time during encoding can be too complex, even though once the set up is done encoding 
would be very simple. For punctured Turbo codes however, encoding with two constituent convolutional codes, followed 
by puncturing to obtain the required rate can all be done very fast in a straight-forward manner.  

Decoding is conducted based on knowledge of the source decoded LSS (Q0=q0) if used, and the side information Y in 
order from the lower to higher significance. Any of the decoding strategies outlined above may be employed in the 
general case. However, if K=1, then there is a single channel coded bit-plane preceded by a source coded symbol-plane, 
and a soft-input soft-output decoder may be used very conveniently. In this case, the soft input prior probabilities are 
assumed to be obtained by computing: ),/()( 001111

)( yYqQqQpqQp prior =====  using Eq. 53, while the soft-output 

posteriori probabilities )( 11
)( qQp post =  may be used in conjunction with Eq. 58 for the eventual reconstruction. 

Alternatively, Eq. 59 may be used after hard-thresholding the posteriori probabilities.   
When an ensemble of samples with different statistics are coded, as is typical in a block transform coding scenario, 

one strategy is to code all the source coded Least Significant Symbols jointly within a block, even though they may be 

 
Figure 11. Comparing R-D curves for source channel combo codes for Laplacian and Gaussian Z 
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Figure 12. Illustrating Wyner-Ziv coding with source channel combo codes 



associated with different size alphabets. This enables exploiting the higher order statistics of the data better to achieve 
better compression than our memoryless assumption yields. In addition, the channel coded bit-planes can be coded jointly 
for all coefficients across different source coded blocks to enable use of larger channel coding block lengths. Note that in 
this case, each sample may contribute a different channel coding rate for a given bit-plane to the overall the overall 
channel coding rate based on its statistics. The overall channel coding rate should then be taken as the average of the rate 
contribution for the concerned bit-plane over all the samples. The decoder, which is expected to know the statistics for 
each sample, computes the priors accordingly and decodes the channel code. 
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