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ABSTRACT 
In the realm of machine learning for text classification, TF·IDF is 
the most widely used representation for real-valued feature 
vectors.  However, IDF is oblivious to the training class labels 
and naturally scales some features inappropriately.  We replace 
IDF with Bi-Normal Separation (BNS), which has been 
previously found to be excellent at ranking words for feature 
selection filtering.  Empirical evaluation on a benchmark of 237 
binary text classification tasks shows substantially better accuracy 
and F-measure for a Support Vector Machine (SVM) by using 
BNS scaling. A wide variety of other feature representations were 
later tested and found inferior, as well as binary features with no 
scaling.  Moreover, BNS scaling yielded better performance 
without feature selection, obviating the need for feature selection. 

Categories and Subject Descriptors 
H.3.3 [Information Search & Retrieval]: Information filtering; 
I.5 [Pattern Recognition]: Design methodology, feature 
evaluation and selection. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Text classification, topic identification, machine learning, feature 
selection, Support Vector Machine, TF*IDF text representation. 

1. INTRODUCTION 
Text classification via machine learning is at the heart of effective 
document categorization, personalization, news filtering, and 
information routing.  State-of-the-art classification accuracy can 
be achieved by applying a linear Support Vector Machine (SVM) 
to a ‘bag-of-words’ representation of the text, where each unique 
word in the training corpus becomes a separate feature [1][9][10].  
The numerical feature value for a given word/term is often 
represented by its term frequency TF in the given text multiplied 
by its inverse document frequency (IDF) in the entire corpus—the 
ubiquitous ‘TF·IDF’ representation.  IDF is commonly taken to be 
log( # documents ÷ # documents containing the term). By 
multiplying by IDF, the common functional words such as ‘of’ 

and ‘can’ are devalued relative to the uncommon words that are 
more likely topic-specific indicators. 
Although TF·IDF is widely used in text classification, it is 
oblivious to the class labels in the training set, which can lead to 
inappropriate scaling for some features.  Consider a toy example: 
a word X occurs in 80% of the positive training cases and another 
word Y occurs in only 3% of the positive cases—suppose neither 
occurs among the negative training cases.  IDF gives a super-
linear boost to words with lower frequency of occurrence.  But in 
this case the more common word is a much stronger predictor.  A 
specific, real example is illustrated later in Section 5.1. 
Filter methods for feature selection have developed a variety of 
metrics that do a good job of correctly ranking the predictive 
value of different features, e.g. Bi-Normal Separation (BNS) [4]. 
In this paper we improve on the state-of-the-art by using the BNS 
feature scoring metric in a new way:  to scale the magnitude of 
the feature values. That is, we compute the BNS score for each 
feature and use TF·BNS for each feature value, replacing IDF. 
This increases the effect of important words on the kernel 
distance computations for the SVM.  We show that this simple 
idea substantially improves SVM accuracy and F-measure on a 
benchmark of 237 binary text classification tasks, especially when 
TF is restricted to be binary. For comparison, we also tested a 
dozen other metrics and found that BNS scaling performed best. 
BNS feature selection was previously shown to substantially 
improve text classification [4]. One of the difficulties of feature 
selection, however, is in deciding the optimal number of features 
to use.  The new method of BNS scaling offers to simplify the 
process, because it consistently performed best by using all 
features.  This has an intuitive appeal of not ‘throwing away’ 
information.  For those situations where the volume of data must 
be reduced for computational scalability at the cost of 
classification accuracy, we recommend a hybrid that uses 
Information Gain for feature selection and BNS for feature 
scaling, based on our empirical study. 

1.1 Related Work and Scope 
In this space of classification research, some work addresses 
binary classification [4][9][13], as in information filtering, e.g. 
separating spam from good email.  Other work addresses multi-
class classification [17], e.g. routing or classifying a document 
into one of many categories. Our focus here is on binary 
classification, but we expect the results to generalize. Binary tasks 
are an important sub-problem in most multi-class classification 
methods, which decompose the 1-of-n problem by pitting each 
class against the others.  Finally, we note that the problem n-of-m 
multi-class classification, e.g. topic recognition, is addressed by 
m independent binary classifiers. 
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There is a large research literature in feature selection metrics to 
filter words for text classification.  The goal is often to improve 
accuracy, but in some papers it is to preserve accuracy as much as 
possible as the number of features is reduced in order to decrease 
computational workload. In this work our goal is simply to 
maximize classification performance, as measured by accuracy 
and F-measure. However, in the process, we developed a method 
that satisfies both goals. 
As a side note, in non-text domains, there has been a lot of work 
that takes a collection of features with widely disparate ranges 
and normalizes or discretizes them to make them palatable for 
induction algorithms.  These concerns led to the common practice 
of normalizing the feature space for SVMs.  Instead, we modify 
the normalization phase as an additional opportunity to condition 
the data for learning.  Finally, there are many references to 
‘feature scaling’ or ‘feature weighting’ in the literature that 
simply refer to variations on normalization.  For example, word 
counts are sometimes scaled so that long documents appear to 
have a uniform number of words as short documents.  In contrast, 
this work scales the feature ranges based on the supervised labels.   
The closest references to this sort of feature weighting in the 
literature are in lazy learning (case-based learning), where the 
goal is to learn an appropriate distance function so that the nearest 
neighbors of a novel case suggest appropriate class labels [15].  
Such methods constitute iterative wrapper searches to adjust the 
feature weights of a (linear) distance metric.  By contrast, in our 
work, we let the SVM perform the inductive learning, and we 
simply condition the input feature vectors with a single, fast pass 
over the training set.  Any of the feature scoring metrics and IDF 
can be computed in a single linear scan the training corpus. 

2. METHODS 
Here we briefly define the feature scoring metrics and how they 
are used for feature selection and/or for feature scaling. 

2.1 Feature Selection via Filtering 
Filtering methods for feature selection evaluate each feature 
independently via a chosen scoring metric. Then, some number of 
top-scoring features is selected for input to the induction 
algorithm.  One can either specify the number of top-ranked 
features to select, or equivalently, specify a particular score 
threshold, which is particular to the feature scoring metric being 
used. In order to compare different scoring metrics on a common 
x-axis scale, the former is often preferable in research. 

2.2 Feature Scaling 
The key idea of this paper is to use a feature scoring metric to 
make the numeric range greater for more predictive features, just 
as IDF attempts to do in TF·IDF.  This affects the dot-product 
distance between cases as evaluated by the linear SVM kernel [9]. 
For example, if the BNS score is 2.1 for the word feature ‘free’ in 
a spam classification task, then its Boolean presence or absence in 
a document would be represented as either 0 or 2.1, rather than 0 
or 1.  A less predictive word ‘cat’ with a BNS score of 0.3 would 
have the smaller range 0 or 0.3, and therefore have less effect on 
the kernel distance computations.  This basic idea can be applied 
to any scoring metric.  Furthermore, it can also be applied to non-
binary features, e.g. to scale term frequency TF counts:  TF·BNS.   
Additionally, feature scaling may be used in conjunction with 
feature selection.  The scoring metric used for feature selection 

may be different than the metric used for feature scaling.  The 
best method found by our experiments is such a hybrid:  IG used 
for feature selection and BNS for feature scaling. 

2.3 Feature Scoring Metrics 
The primary feature scoring metrics we use in this paper are 
defined as follows. 
  Bi-Normal Separation (BNS): | F-1(tpr)  –  F-1(fpr) | 
  Inverse Document Freq (IDF): log( (pos+neg) ÷ (tp+fp) ) 
  Log Odds Ratio [13]: log( (tp·tn)  ÷  (fp·fn)  ) 
  Information Gain (IG): H(data) – H(data | word) 
         = H(pos,neg)  –  (P(word) H(tp,fp) + (1-P(word)) H(fn,tn) ) 
where  

pos = number of positive training cases, typically minority, 
neg = number of negative training cases, 
tp = number of positive training cases containing word, 
fp = number of negative training cases containing word,  
fn = pos – tp, 
tn = neg – fp, 
true positive rate tpr=P(word | positive class) = tp/pos, 
false positive rate fpr=P(word | negative class) = fp/neg, 
P(word) = (tp+fp) / (pos+neg), 
entropy H(x,y) = –nln(x/(x+y)) – nln(y/(x+y)), 
nln(x) = x log2 x, and 
F-1 is the inverse Normal cumulative distribution function, as 
commonly available from statistical tables. 

Note that these are computed using binary word features, i.e. 
many occurrences of a word in a single document only count 
toward one tp or fp count.  Information Gain and BNS are 
naturally symmetric with respect to positively and negatively 
correlated features.  Log Odds Ratio, however, assigns a very low 
score to a strongly predictive feature that occurs in almost all 
negative cases but in none of the positive cases.  To rectify this, 
for any negatively correlated features we reverse the meaning of a 
word occurrence to be a word non-occurrence, i.e. tp ↔ fn and 
fp ↔ tn.  This solution improves a number of feature selection 
metrics that otherwise ignore strong negative features [4]. 
As usual, there are some nuances to converting these 
straightforward mathematical definitions to robust code. For 
example, Log Odds Ratio is undefined if tp, tn, fp, or fn is zero. 
To avoid this, we substitute 0.5 for any zero count, which has the 
desirable property that even if some of the variables are zero, the 
function remains responsive to the magnitude of the other 
variables. Likewise, for IG we define nln(x) = 0, whenever x = 0.  
Finally, in the BNS function, the inverse Normal goes to infinity 
at zero or one; hence, we limit tpr and fpr to the range [0.0005, 
1-0.0005]. Laplace smoothing is a more common method to avoid 
these extreme probabilities, but it damages the maximum 
likelihood estimate, and it loses the good performance of BNS by 
devaluing many valuable negative features in favor of very rare 
positive features [4]. Alternately and perhaps preferably, one 
could substitute a fractional count if tp or fp is exactly zero; this 
may work better for extremely large training sets. We used a fixed 
limit because we used a finite size lookup table for the inverse 
Normal function, generated by Gnuplot’s invnorm() function and 
transferred to our Java code, since this standard statistical 
function is not available in the Java math libraries.  
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3. EXPERIMENT DESIGN 
Our experiments consider a wide variety of text feature 
representations.  For each potential feature scoring metric, we 
consider using it as a scale factor on TF feature counts and 
separately as a scale factor on binary features.  We also consider 
plain binary features, as well as raw, unscaled TF features.  In 
Section 4.6, we also combine scaling with feature selection.  

3.1 Benchmark Datasets 
The benchmark text classification tasks we use are drawn from 
Reuters-21578 (re), OHSUMED abstracts (oh), the Los Angeles 
Times (la), the Foreign Broadcast Information Service (fbis), the 
Web ACE project (wap), and various TREC competitions (tr, 
new3), originally compiled by Han and Karypis [7].  See Table 1, 
which includes the total vocabulary size and the average number 
of words present per document.  There are 19 multi-class datasets 
and their class sizes vary widely.  For these experiments we 
consider each class vs. all others within that dataset, yielding 237 
binary text classification tasks, which are representative of the 
size and difficulty of many of the industrial text classification 
tasks we face at HP Labs.   
Although the tasks are not entirely independent of each other 
because of some overlap in their negative classes, they are much 
more independent than studies that consider only a single source 
of documents with a common negative class, e.g. using just 
Reuters.  We have made the processed TF feature vectors 
available for other researchers at the WEKA web site [16]. 

      Table 1. Benchmark text classification datasets 
Dataset Classes Docs Words Words/Doc 
fbis 17  2463 2000 160  
la1 6  3204 31472 151  
la2 6  3075 31472 148  
new3 44  9558 26833 235  
oh0 10  1003 3182 53  
oh10 10  918 3012 56  
oh15 10  1050 3238 59  
oh5 10  913 3100 54  
ohscal 10  11162 11465 60  
re0 13  1504 2886 52  
re1 25  1657 3758 53  
tr11 9  414 6429 282  
tr12 8  313 5804 274  
tr21 6  336 7902 470  
tr23 6  204 5832 385  
tr31 7  927 10128 269  
tr41 10  878 7454 195  
tr45 10  690 8261 281  
wap 20  1560 8460 141  

 

3.2 Evaluation Measures 
We evaluate performance based on two standard performance 
measures: accuracy for its historical standard in machine learning 
research and F-measure for its improved sensitivity in the 
common information retrieval situation where positives are rare.  
F-measure is the harmonic average of precision & recall, where 
precision = true positives ÷ predicted positives, and recall = 
true positives ÷ all positives in ground truth. To achieve good 

F-measure requires the classifier have good precision and good 
recall on the positive class, whereas good accuracy can be 
achieved simply by predicting all test cases as negative, if the 
positive class is rare. 
For each of the 237 binary text classification tasks, the 
performance of the learning algorithm is measured via standard 
4-fold stratified cross-validation, repeated with eight different 
random split seeds (kept consistent for each representation tested).  
Note that all feature selection and scaling is determined from only 
the training folds within cross-validation, to avoid leaking 
information from the test set. 
For any given feature representation under study, we obtain 237 x 
8 performance measurements.  To distill these into one summary 
number, we use macro-averaging, weighting each of the 
measurements equally (as opposed to micro-averaging, which 
would weight them according to the number of documents that 
happen be available in each task). 

3.3 Induction Algorithms 
We use the linear SVM implementation provided by the WEKA 
library v3.4 [16].  In this experiment, we use its default behavior, 
rather than attempting to optimize each of its many parameters. In 
particular, its default complexity constant is one. We had to 
disable its feature space normalization feature, otherwise it re-
scales all feature values to the range [0,1].  Thus, BNS feature 
scaling causes the more important features to have a greater effect 
on the SVM kernel dot product than less predictive features.   
This kernel-centric explanation of the effect is specific to kernel-
based classifiers such as the SVM, but we found that the BNS 
scaling also helps some other classification models that are not 
based on kernels.  We repeated the experiment protocol with the 
multinomial Naïve Bayes classifier, which has been shown 
superior to its simple binomial form for text classification [11].  
(Note that feature scaling would have no effect on the classic 
binomial formulation, which converts each feature to binary 
nominal values. The multinomial formulation uses word counts, 
which BNS scaling effectively increases for the more important 
features.)  We found that while BNS scaling does benefit the 
multinomial Naïve Bayes classifier, its best performance came 
from using plain binary features with BNS feature selection, and 
even then it had substantially worse accuracy than SVM—
consistent with much of the literature. Thus, we report the Naïve 
Bayes results only in a tech report [2].  Henceforth we just 
consider SVM models. 

4. EMPIRICAL RESULTS 
Initially we focus on the BNS feature scoring metric (the initial 
impetus for this work) and contrast it with IDF or no scaling, 
since they are most common.  Later in Section 4.5 we compare 
against many other feature scoring metrics that we considered 
later. 

4.1 Accuracy & F-measure 
Figure 1 shows the average accuracy and F-measure for six 
different text representations, including error bars which extend 
above and below each point by one standard error, stdev÷sqrt(N).  
Binary features and term frequency (TF) counts are considered for 
each of three feature scaling methods: IDF, BNS, and no scaling.  
The two most common text representations, TF·IDF and binary 
features, both performed significantly worse than BNS scaling of 
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binary features (labeled just ‘BNS’).  We expected this from the 
intuitive motivation in the introduction.  BNS scaling leverages 
the class labels to improve the distance evaluations of the SVM 
kernel.  Using binary features, as opposed to term frequencies, 
consistently improves accuracy; binary features do not appear to 
have a consistent effect on F-measure, but we elucidate this next. 
Overall, the BNS-scaled binary features provided a 1% 
improvement over TF·IDF for accuracy and 7% for F-measure, 
both with no question of statistical significance by their small 
error bars in proportion to the differences. 

4.2 Precision vs. Recall Analysis 
Good F-measure requires a balance between precision and recall.  
It can be informative to see the tradeoffs these different methods 
make between precision and recall at the classifier’s natural 
classification threshold. (Alternately, one could consider full 
precision-recall curves by sweeping through all decision 
thresholds, but this considers many decision points for which the 
classification algorithm was not attempting to optimize and makes 
it difficult to compare six methods.)  Figure 2 shows Precision vs. 
Recall for the six methods considered in the previous figure, 
including standard error bars in both dimensions. The x- and y-

axis ranges are identical to make it clear that the SVM precision 
typically exceeded its recall. 
Here we can see consistent effects.  Using binary features yields a 
large improvement in precision compared with TF features.  
Likewise, BNS scaling results in a large improvement in recall 
compared with IDF or no scaling.  (We will explain the 
underlying cause of this in the discussion section, as well as the 
additional data point labeled ‘hBNS.’)  Together, these two 
effects make for a substantial increase in F-measure.  The dotted 
curved lines in the background show points of equal F-measure, 
indicating the gradient to obtain better F-measure performance. 
Since the positive class is typically small for text classification, 
the best improvement in accuracy is by improving precision, not 
recall—hence, the consistent benefit of binary features on 
accuracy we observed in Figure 1.  (Note: for applications where 
the best precision is sought regardless of recall, one may prefer 
instead to optimize the precision in the top N predicted positives.) 

4.3 The Effect of Class Distribution 
The importance of BNS scaling increases as the class distribution 
becomes more skewed. To illustrate this, we have binned together 
those benchmark tasks that have between 0% and 5% positive 
cases, 5%—10% positives, and so forth.  See Figure 3, which 
shows macro-average F-measure for each bin and again includes 
standard error bars.  When the minority class is relatively 

 97

 98

A
cc

ur
ac

y

T
F

.I
D

F
  

ID
F

  

T
F

  

bi
na

ry
  

T
F

.B
N

S 
 

B
N

S 
 

         

0.70

0.75

0.80

F
-m

ea
su

re

T
F

.I
D

F
  

ID
F

  

T
F

  

bi
na

ry
  

T
F

.B
N

S 
 

B
N

S 
 

 

Figure 1.  SVM accuracy (left) and F-measure (right) for six different text feature representations, including standard error bars. 
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Figure 2.  Precision & Recall for six text representations. 
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Figure 3.  The benefit of BNS feature scaling grows as the 
percentage of positive cases becomes small.  
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balanced (20%–25%), the benefit of BNS scaling vs. no scaling or 
IDF scaling of binary features is small.  As the percentage of 
positives decreases to a small minority, the classification 
performance naturally drops for all methods, but the decline is 
substantially less if BNS scaling is used.  In other words, the 
benefit of BNS scaling is greater for highly imbalanced 
classification problems.  Each successive bin contains roughly 
half as many benchmark tasks, indicating that the performance 
under high skew is the more common operating range for text 
classification problems. 

4.4 Per-Dataset Views 
Next we show the macro-average F-measure for each of the 19 
datasets separately.  Although the graph is cluttered, Figure 4 
shows clearly the near-complete dominance of BNS scaling of 
binary features (labeled ‘BNS’).  To aid the visualization, we 
have sorted the classes by their BNS performance.  BNS did not 
dominate for three of the most difficult datasets, where instead 
TF·BNS performed best.  Note that the performance of some of 
the methods can be quite erratic, e.g. for datasets tr21 and tr23 the 
methods IDF and binary performed extraordinarily poorly. 

4.5 Comparing Many Other Scoring Metrics 
At first, we tested the feature scaling idea with only the BNS 
metric and the Information Gain metric, because these two were 
the leaders for feature selection in our prior study [4]. But this 
begs the question of whether some other feature scoring metric 
might perform yet better.  To resolve this question, we tested all 
the feature selection metrics of our prior study, where their many 
formulae can be found. Note that asymmetric functions, such as 
the Probability Ratio [13], have been adjusted to symmetrically 
value strong features that happen to be correlated with word 
absence rather than word presence.  To these we added Pearson 
Correlation and Pointwise Mutual Information [10].  Altogether, 
fifteen choices for feature scaling (all supervised except for IDF 
and ‘no scaling’) are paired both with TF counts and separately 
with binary features in Figure 5.  Although some future metric 
may be devised that exceeds BNS, the present evidence indicates 
that BNS with binary features is statistically significantly better—
it passes a paired two-tailed t-test against the runner-up with 
p<1% (even at N=75 trials, for readers who may not consider the 

benchmark problems as independent).  Many of the methods, 
including IDF, performed worse than using no scaling. 
We note that the runner up was Log Odds Ratio. (We included its 
formula in Section 2.3, partly because it is extremely easy for 
researchers and practitioners to adopt in their code, whereas BNS 
requires statistical tables not available in common software 
libraries.)  Our prior study showed that Odds Ratio has a 
preference surface that is similar to BNS.  For feature selection, 
the dynamic range of the scoring metric is immaterial—only the 
relative ranking of features is important.  But here, we find that 
the logarithm of Odds Ratio did a better job of conditioning the 
feature vectors for the linear SVM kernel than using raw Odds 
Ratio, which has a very large range. Similarly for Chi-Squared 
and Probability Ratio.1 

4.6 Feature Selection & Scaling Combined 
Finally, we consider the question of whether performance might 
further be improved by its use in conjunction with feature 
selection, since feature selection has been shown beneficial, esp. 
with BNS and IG [4].  In Figure 6 we vary the number of features 
selected, with and without BNS scaling on binary features (all 
performance figures were worse for TF features, so they are not 
shown in order to reduce visual clutter).  The rightmost point on 
the logarithmic x-axis is not to scale, but indicates that all features 
were used within each dataset, i.e. no feature selection.  The 
overall best performance for both accuracy and F-measure is 
obtained using BNS scaling with all features.  Without BNS 
scaling, the best available performance is obtained by selecting a 
subset of features via BNS.  (The lack of improvement with IG 
feature selection and certain other methods has led some 
researchers in the past to conclude that SVM does not benefit 
from feature selection.) 
                                                                 
1 Whereas most experiment points were evaluated in seconds or 

minutes, an occasional classification task paired with Odds 
Ratio, Probability Ratio or Chi-Squared (each without the 
logarithm) took many hours to train.  We eventually terminated 
these, and exclude them from the average. We suppose their 
huge dynamic range made a highly discontinuous search space 
for the SVM optimization. 
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Figure 4.  BNS feature scaling typically dominated other methods 
for the 19 datasets. 
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With the improvement of BNS feature scaling, we observe that 
feature selection by either method only produced a degradation in 
accuracy and F-measure.  Interestingly, the least degradation 
occurs with a hybrid where BNS is used for scaling the features 
but IG is used for selecting the features.  These results also prove 
that the reason feature scaling works is not because it simply 
forces the worst features to zero scaling; if it were so, then BNS 
feature selection would show similar behavior with and without 
BNS scaling. 
Note that this is an average result—it may certainly be that for 
some datasets a smaller number of features can improve 
performance.  Nonetheless, for a data miner looking to simplify 
their process or the number of knobs that have to be set on their 
software, simply using all features with BNS scaling is likely to 
be a good choice.  This is also important when the size of the 
available training set is small.  Trying to determine the best 
number of features to select by many trials of cross-validation on 
a very small dataset is likely to result in overfitting to the training 
set, rather than truly tuning the parameter to reduce the 
generalization error on unseen cases. 

5. Discussion 
Given that there are so many papers on feature selection that 
attempt to discard ‘useless’ features that are unpredictive, 
extremely rare, or redundant, why do we find the best 
performance uses all the features?  We offer this intuition for text 
classification, at least for topic identification.  Given a topic of 
interest, it is highly improbable that a random word from the 
dictionary, say ‘fee,’ is equally common within the topic as well 
as in the negative class—this would happen only for a relatively 
small set of stopwords or functional words.  As for redundancy, 
only if a set of words are perfectly correlated—always appearing 
together or not at all—do they add no information beyond a single 
member of the set. We know that many uncorrelated weak 
predictors can combine to form a strong predictor, e.g. boosting. 

Although we advocate using BNS scaling with all features in 
general, there are certainly classification tasks that are best 
performed with only a few.  For example, Gabilovich and 
Markovitch [6] studied a set of tasks where the topic is defined by 
only a few keywords, such as ‘Denver, Colorado.’ For such tasks, 
there are many words in the dictionary that are equally likely in 
and out of the topic.  Such words truly add nothing, and they find 
a benefit in accuracy by removing them. 
We acknowledge there are situations where training with the 
complete vocabulary is out of the question with respect to modern 
computational resources. In these cases, the hybrid method may 
do nicely in cutting computational cost while minimizing loss in 
performance. That said, we suspect the need arises rarely in actual 
practice.  Even for a corpus with a huge vocabulary, the words 
appearing in the training set are likely not too great—the more 
common problem is that the training set is small.  And for a 
classification task of economic worth, one can often afford to 
train for a week if the improved accuracy pays for the relatively 
inexpensive machine cycles.  The greatest need to trim 
computation may be in bioinformatics, or perhaps in machine 
learning research, where we perform hundreds of analyses and 
cross-validations under conference deadlines.  

5.1 An Example Task Illustrated 
Let’s consider a specific binary classification task: oh10 class 6 
(OHSUMED class ‘Italy’), which has 60 positives against 990 
negatives—5.7% positives.  On this task, BNS scaling with binary 
features obtains 0.77 F-measure, whereas TF·IDF gets 0.54 on 
average.  From Table 1, we see that the oh10 documents tend to 
be short, so term frequencies will tend to be small and unlikely 
better than just binary feature values. 
Figure 7 shows the distribution of the specific words in the tp vs. 
fp space. As is common in text classification, there are a few 
words that occur commonly in both classes (e.g. ‘patient’ and 
‘result’), and many words that occur rarely (unlabeled and 
overlapping points near the origin).  Observe that the positive 
class has two highly predictive words: ‘italy’ and ‘italian.’ 
The diagonal grid lines show the isoclines of equal IDF value, 
with the points nearest the origin being weighted highest. 
Unfortunately, such points are valued by IDF much more highly 
than ‘italy’ or ‘italian.’ These essential words are ranked equally 
with a plethora of non-predictive words that occur in ~3% of 
positive cases as well as ~3% of negative cases. 
Figure 8 shows the same, but here the curved grid lines show the 
isoclines of equal BNS value, with the greatest values given to the 
top left and bottom right corners, naturally.  As desired, the words 
‘italy’ and ‘italian’ are given the highest BNS weights. Likewise, 
a fairly high weight is given to the word ‘cost’ on the x-axis, 
which occurred in 130 negative cases (13% fpr) and zero positive 
cases.  Our previous study on feature selection showed that BNS’s 
strength is in leveraging many frequent words in this region to 
improve recall, especially when positives are scarce. Referring 
back to Figure 7, we see that IDF gives a much lower weight to 
these negative features, precisely because they do occur more 
frequently.  Now, consider what happens when the positive class 
becomes increasingly rarer: IDF will further prefer positive 
features because they are rare, and the region of good ‘recall’ 
features along the x-axis is downplayed.  Thus, we can see why 
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BNS is increasingly better than IDF for greater class imbalance, 
as observed in Section 4.3. 
With this understanding about positively and negatively 
correlated features, we consider again Figure 2 where we saw that 
binary features improved precision and BNS scaling improved 
recall.  The best F-measure was obtained by using binary features 
with BNS scaling.  But since recall was slightly better with 
TF.BNS features, perhaps we could further improve performance 
by developing a hybrid method that uses TF.BNS for negatively 
correlated features and binary features with BNS scaling for 
positive features.  That is, for each word of the training set, we 
determine whether it is positively or negatively correlated with 
the positive class, and we select a binary representation for 
positively correlated features, otherwise its term frequency TF 
count is used; this integer is then scaled via the BNS evaluation of 
the feature.  This hybrid method, labeled ‘hBNS’ in Figure 2, 
shows recall as good as the best method, but a slight decrease in 
precision from BNS.  Overall, its F-measure was insignificantly 
better than just using binary features with BNS scaling.  Of 
course, when the goal is accuracy, or when precision is preferred 
to recall, then it is better to simply use all binary features. 

5.2 Non-Language Features 
The techniques that have been developed for text classification 
are used for all sorts of unstructured domain problems, not just 
natural language text.  Hence, for some tasks, there will be 

features that occur with very high probability in one class or the 
other, making the IDF assumption even less pertinent.  For 
example, in classifying technical support documents, sometimes 
there are unique strings or identifiers that can be a substantial aid 
to the classifier, e.g. the word or n-gram term ‘OS=WinXP’ 
appearing in a technical document is an extremely strong 
indicator for an MSWindows category.  
Furthermore, even traditional natural language topic identification 
tasks are beginning to have additional features included that do 
not follow the Zipfian properties of regular words.  For example, 
Gabrilovich and Markovitch augment the feature vector with the 
opinion of many topical classifiers previously trained on freely 
available training sets [5].  Likewise, we have developed a 
technique to cope with concept drift that augments the feature 
vector with the opinions of many previous classifiers for the same 
source of data [3].  In fact, it was this purpose that originally 
motivated BNS scaling, since otherwise strongly predictive TIX 
features were not highly influential on the final classifier. In the 
extreme, when the true class label was revealed as a pseudo-word 
feature in an experiment on Reuters2000 ECAT classification, an 
SVM with binary features achieved only 0.22 F-measure, but 0.78 
with BNS scaling of those features. 

5.3 Practical Implementation 
On a practical note for implementers, we find the inverse Normal 
function is not available in standard math libraries for Java or 
C++.  It is available in Gnuplot as invnorm(), and in Microsoft 
Excel as NORMINV(), so we easily constructed a large lookup 
table to evaluate the function in Java.  We included the formula 
for the runner-up method, Log Odds Ratio, because it is 
extremely simple to program without statistical tables. 
For our research harness using WEKA, each feature is represented 
by a floating-point double, which occupies 8 bytes of memory.  
This is flexible and allows each feature to be scaled 
independently.  But since the best results reported indicate that 
binary features are optimal, each feature can be reduced to a 
single bit of storage (64x savings), and the feature scaling 
parameters can be kept in a array of floating-point numbers that 
grows only with the number of features, not with the number of 
cases in the dataset. These scaling factors would be taken into 
account when computing the SVM kernel. This memory savings 
could be important for unusually large problems, such as training 
on all 800,000 cases of Reuters 2000 with all features.  Such a 
feat is made practical by Joachim’s new SVM training algorithm 
whose runtime scales linearly for sparse datasets [8]. 

6. CONCLUSION 
We have presented a new method that showed a substantial gain 
in performance for SVM on a large—albeit specific—benchmark 
of text classification problems.  Data mining practitioners may 
welcome it because it showed consistent, nontrivial gains, and 
moreover because it is very easy to implement compared to many 
reported machine learning advances, such as boosting or iterative 
SVM feature elimination.  
Future work potentially includes searching for superior scaling 
functions besides BNS, combining scaling with other induction 
algorithms, applying scaling for 1-of-m multi-class classification, 
and testing on other benchmark datasets, such as the new Reuters 
corpus or genomic data.  In particular, it would be interesting to 
test and extend these ideas on a benchmark corpus of long 
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Figure 7.  IDF evaluation of word features for oh10 class 6. 
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documents, where word counts may play a more significant role. 
Finally, given enough computer time, one could also optimize the 
SVM parameters to maximize F-measure under each test 
condition.  
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