

BNS Feature Scaling: An Improved Representation over TF·IDF for SVM
Text Classification

George Forman
HP Laboratories
HPL-2007-32R1

Keyword(s):
Text classification, topic identification, machine learning, feature selection, Support Vector
Machine, TF*IDF text representation.

Abstract:
In the realm of machine learning for text classification, TF·IDF is the most widely used
representation for real-valued feature vectors. However, IDF is oblivious to the training class
labels and naturally scales some features inappropriately. We replace IDF with Bi-Normal
Separation (BNS), which has been previously found to be excellent at ranking words for feature
selection filtering. Empirical evaluation on a benchmark of 237 binary text classification tasks
shows substantially better accuracy and F-measure for a Support Vector Machine (SVM) by
using BNS scaling. A wide variety of other feature representations were later tested and found
inferior, as well as binary features with no scaling. Moreover, BNS scaling yielded better
performance without feature selection, obviating the need for feature selection.

External Posting Date: August 6, 2008 [Fulltext] Approved for External Publication

Internal Posting Date: August 6, 2008 [Fulltext]

To be presented and published in ACM 17th Conference on Information and Knowledge Management. Napa Valley, CA,
October 26-30, 2008

© Copyright ACM 17th Conference on Information and Knowledge Management 2008

BNS Feature Scaling: An Improved Representation
over TF·IDF for SVM Text Classification

George Forman
Hewlett-Packard Labs

Palo Alto, CA, USA
ghforman@hpl.hp.com

ABSTRACT
In the realm of machine learning for text classification, TF·IDF is
the most widely used representation for real-valued feature
vectors. However, IDF is oblivious to the training class labels
and naturally scales some features inappropriately. We replace
IDF with Bi-Normal Separation (BNS), which has been
previously found to be excellent at ranking words for feature
selection filtering. Empirical evaluation on a benchmark of 237
binary text classification tasks shows substantially better accuracy
and F-measure for a Support Vector Machine (SVM) by using
BNS scaling. A wide variety of other feature representations were
later tested and found inferior, as well as binary features with no
scaling. Moreover, BNS scaling yielded better performance
without feature selection, obviating the need for feature selection.

Categories and Subject Descriptors
H.3.3 [Information Search & Retrieval]: Information filtering;
I.5 [Pattern Recognition]: Design methodology, feature
evaluation and selection.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Text classification, topic identification, machine learning, feature
selection, Support Vector Machine, TF*IDF text representation.

1. INTRODUCTION
Text classification via machine learning is at the heart of effective
document categorization, personalization, news filtering, and
information routing. State-of-the-art classification accuracy can
be achieved by applying a linear Support Vector Machine (SVM)
to a ‘bag-of-words’ representation of the text, where each unique
word in the training corpus becomes a separate feature [1][9][10].
The numerical feature value for a given word/term is often
represented by its term frequency TF in the given text multiplied
by its inverse document frequency (IDF) in the entire corpus—the
ubiquitous ‘TF·IDF’ representation. IDF is commonly taken to be
log(# documents ÷ # documents containing the term). By
multiplying by IDF, the common functional words such as ‘of’

and ‘can’ are devalued relative to the uncommon words that are
more likely topic-specific indicators.
Although TF·IDF is widely used in text classification, it is
oblivious to the class labels in the training set, which can lead to
inappropriate scaling for some features. Consider a toy example:
a word X occurs in 80% of the positive training cases and another
word Y occurs in only 3% of the positive cases—suppose neither
occurs among the negative training cases. IDF gives a super-
linear boost to words with lower frequency of occurrence. But in
this case the more common word is a much stronger predictor. A
specific, real example is illustrated later in Section 5.1.
Filter methods for feature selection have developed a variety of
metrics that do a good job of correctly ranking the predictive
value of different features, e.g. Bi-Normal Separation (BNS) [4].
In this paper we improve on the state-of-the-art by using the BNS
feature scoring metric in a new way: to scale the magnitude of
the feature values. That is, we compute the BNS score for each
feature and use TF·BNS for each feature value, replacing IDF.
This increases the effect of important words on the kernel
distance computations for the SVM. We show that this simple
idea substantially improves SVM accuracy and F-measure on a
benchmark of 237 binary text classification tasks, especially when
TF is restricted to be binary. For comparison, we also tested a
dozen other metrics and found that BNS scaling performed best.
BNS feature selection was previously shown to substantially
improve text classification [4]. One of the difficulties of feature
selection, however, is in deciding the optimal number of features
to use. The new method of BNS scaling offers to simplify the
process, because it consistently performed best by using all
features. This has an intuitive appeal of not ‘throwing away’
information. For those situations where the volume of data must
be reduced for computational scalability at the cost of
classification accuracy, we recommend a hybrid that uses
Information Gain for feature selection and BNS for feature
scaling, based on our empirical study.

1.1 Related Work and Scope
In this space of classification research, some work addresses
binary classification [4][9][13], as in information filtering, e.g.
separating spam from good email. Other work addresses multi-
class classification [17], e.g. routing or classifying a document
into one of many categories. Our focus here is on binary
classification, but we expect the results to generalize. Binary tasks
are an important sub-problem in most multi-class classification
methods, which decompose the 1-of-n problem by pitting each
class against the others. Finally, we note that the problem n-of-m
multi-class classification, e.g. topic recognition, is addressed by
m independent binary classifiers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10...$5.00.

 2

There is a large research literature in feature selection metrics to
filter words for text classification. The goal is often to improve
accuracy, but in some papers it is to preserve accuracy as much as
possible as the number of features is reduced in order to decrease
computational workload. In this work our goal is simply to
maximize classification performance, as measured by accuracy
and F-measure. However, in the process, we developed a method
that satisfies both goals.
As a side note, in non-text domains, there has been a lot of work
that takes a collection of features with widely disparate ranges
and normalizes or discretizes them to make them palatable for
induction algorithms. These concerns led to the common practice
of normalizing the feature space for SVMs. Instead, we modify
the normalization phase as an additional opportunity to condition
the data for learning. Finally, there are many references to
‘feature scaling’ or ‘feature weighting’ in the literature that
simply refer to variations on normalization. For example, word
counts are sometimes scaled so that long documents appear to
have a uniform number of words as short documents. In contrast,
this work scales the feature ranges based on the supervised labels.
The closest references to this sort of feature weighting in the
literature are in lazy learning (case-based learning), where the
goal is to learn an appropriate distance function so that the nearest
neighbors of a novel case suggest appropriate class labels [15].
Such methods constitute iterative wrapper searches to adjust the
feature weights of a (linear) distance metric. By contrast, in our
work, we let the SVM perform the inductive learning, and we
simply condition the input feature vectors with a single, fast pass
over the training set. Any of the feature scoring metrics and IDF
can be computed in a single linear scan the training corpus.

2. METHODS
Here we briefly define the feature scoring metrics and how they
are used for feature selection and/or for feature scaling.

2.1 Feature Selection via Filtering
Filtering methods for feature selection evaluate each feature
independently via a chosen scoring metric. Then, some number of
top-scoring features is selected for input to the induction
algorithm. One can either specify the number of top-ranked
features to select, or equivalently, specify a particular score
threshold, which is particular to the feature scoring metric being
used. In order to compare different scoring metrics on a common
x-axis scale, the former is often preferable in research.

2.2 Feature Scaling
The key idea of this paper is to use a feature scoring metric to
make the numeric range greater for more predictive features, just
as IDF attempts to do in TF·IDF. This affects the dot-product
distance between cases as evaluated by the linear SVM kernel [9].
For example, if the BNS score is 2.1 for the word feature ‘free’ in
a spam classification task, then its Boolean presence or absence in
a document would be represented as either 0 or 2.1, rather than 0
or 1. A less predictive word ‘cat’ with a BNS score of 0.3 would
have the smaller range 0 or 0.3, and therefore have less effect on
the kernel distance computations. This basic idea can be applied
to any scoring metric. Furthermore, it can also be applied to non-
binary features, e.g. to scale term frequency TF counts: TF·BNS.
Additionally, feature scaling may be used in conjunction with
feature selection. The scoring metric used for feature selection

may be different than the metric used for feature scaling. The
best method found by our experiments is such a hybrid: IG used
for feature selection and BNS for feature scaling.

2.3 Feature Scoring Metrics
The primary feature scoring metrics we use in this paper are
defined as follows.
 Bi-Normal Separation (BNS): | F-1(tpr) – F-1(fpr) |
 Inverse Document Freq (IDF): log((pos+neg) ÷ (tp+fp))
 Log Odds Ratio [13]: log((tp·tn) ÷ (fp·fn))
 Information Gain (IG): H(data) – H(data | word)
 = H(pos,neg) – (P(word) H(tp,fp) + (1-P(word)) H(fn,tn))
where

pos = number of positive training cases, typically minority,
neg = number of negative training cases,
tp = number of positive training cases containing word,
fp = number of negative training cases containing word,
fn = pos – tp,
tn = neg – fp,
true positive rate tpr=P(word | positive class) = tp/pos,
false positive rate fpr=P(word | negative class) = fp/neg,
P(word) = (tp+fp) / (pos+neg),
entropy H(x,y) = –nln(x/(x+y)) – nln(y/(x+y)),
nln(x) = x log2 x, and
F-1 is the inverse Normal cumulative distribution function, as
commonly available from statistical tables.

Note that these are computed using binary word features, i.e.
many occurrences of a word in a single document only count
toward one tp or fp count. Information Gain and BNS are
naturally symmetric with respect to positively and negatively
correlated features. Log Odds Ratio, however, assigns a very low
score to a strongly predictive feature that occurs in almost all
negative cases but in none of the positive cases. To rectify this,
for any negatively correlated features we reverse the meaning of a
word occurrence to be a word non-occurrence, i.e. tp ↔ fn and
fp ↔ tn. This solution improves a number of feature selection
metrics that otherwise ignore strong negative features [4].
As usual, there are some nuances to converting these
straightforward mathematical definitions to robust code. For
example, Log Odds Ratio is undefined if tp, tn, fp, or fn is zero.
To avoid this, we substitute 0.5 for any zero count, which has the
desirable property that even if some of the variables are zero, the
function remains responsive to the magnitude of the other
variables. Likewise, for IG we define nln(x) = 0, whenever x = 0.
Finally, in the BNS function, the inverse Normal goes to infinity
at zero or one; hence, we limit tpr and fpr to the range [0.0005,
1-0.0005]. Laplace smoothing is a more common method to avoid
these extreme probabilities, but it damages the maximum
likelihood estimate, and it loses the good performance of BNS by
devaluing many valuable negative features in favor of very rare
positive features [4]. Alternately and perhaps preferably, one
could substitute a fractional count if tp or fp is exactly zero; this
may work better for extremely large training sets. We used a fixed
limit because we used a finite size lookup table for the inverse
Normal function, generated by Gnuplot’s invnorm() function and
transferred to our Java code, since this standard statistical
function is not available in the Java math libraries.

 3

3. EXPERIMENT DESIGN
Our experiments consider a wide variety of text feature
representations. For each potential feature scoring metric, we
consider using it as a scale factor on TF feature counts and
separately as a scale factor on binary features. We also consider
plain binary features, as well as raw, unscaled TF features. In
Section 4.6, we also combine scaling with feature selection.

3.1 Benchmark Datasets
The benchmark text classification tasks we use are drawn from
Reuters-21578 (re), OHSUMED abstracts (oh), the Los Angeles
Times (la), the Foreign Broadcast Information Service (fbis), the
Web ACE project (wap), and various TREC competitions (tr,
new3), originally compiled by Han and Karypis [7]. See Table 1,
which includes the total vocabulary size and the average number
of words present per document. There are 19 multi-class datasets
and their class sizes vary widely. For these experiments we
consider each class vs. all others within that dataset, yielding 237
binary text classification tasks, which are representative of the
size and difficulty of many of the industrial text classification
tasks we face at HP Labs.
Although the tasks are not entirely independent of each other
because of some overlap in their negative classes, they are much
more independent than studies that consider only a single source
of documents with a common negative class, e.g. using just
Reuters. We have made the processed TF feature vectors
available for other researchers at the WEKA web site [16].

 Table 1. Benchmark text classification datasets
Dataset Classes Docs Words Words/Doc
fbis 17 2463 2000 160
la1 6 3204 31472 151
la2 6 3075 31472 148
new3 44 9558 26833 235
oh0 10 1003 3182 53
oh10 10 918 3012 56
oh15 10 1050 3238 59
oh5 10 913 3100 54
ohscal 10 11162 11465 60
re0 13 1504 2886 52
re1 25 1657 3758 53
tr11 9 414 6429 282
tr12 8 313 5804 274
tr21 6 336 7902 470
tr23 6 204 5832 385
tr31 7 927 10128 269
tr41 10 878 7454 195
tr45 10 690 8261 281
wap 20 1560 8460 141

3.2 Evaluation Measures
We evaluate performance based on two standard performance
measures: accuracy for its historical standard in machine learning
research and F-measure for its improved sensitivity in the
common information retrieval situation where positives are rare.
F-measure is the harmonic average of precision & recall, where
precision = true positives ÷ predicted positives, and recall =
true positives ÷ all positives in ground truth. To achieve good

F-measure requires the classifier have good precision and good
recall on the positive class, whereas good accuracy can be
achieved simply by predicting all test cases as negative, if the
positive class is rare.
For each of the 237 binary text classification tasks, the
performance of the learning algorithm is measured via standard
4-fold stratified cross-validation, repeated with eight different
random split seeds (kept consistent for each representation tested).
Note that all feature selection and scaling is determined from only
the training folds within cross-validation, to avoid leaking
information from the test set.
For any given feature representation under study, we obtain 237 x
8 performance measurements. To distill these into one summary
number, we use macro-averaging, weighting each of the
measurements equally (as opposed to micro-averaging, which
would weight them according to the number of documents that
happen be available in each task).

3.3 Induction Algorithms
We use the linear SVM implementation provided by the WEKA
library v3.4 [16]. In this experiment, we use its default behavior,
rather than attempting to optimize each of its many parameters. In
particular, its default complexity constant is one. We had to
disable its feature space normalization feature, otherwise it re-
scales all feature values to the range [0,1]. Thus, BNS feature
scaling causes the more important features to have a greater effect
on the SVM kernel dot product than less predictive features.
This kernel-centric explanation of the effect is specific to kernel-
based classifiers such as the SVM, but we found that the BNS
scaling also helps some other classification models that are not
based on kernels. We repeated the experiment protocol with the
multinomial Naïve Bayes classifier, which has been shown
superior to its simple binomial form for text classification [11].
(Note that feature scaling would have no effect on the classic
binomial formulation, which converts each feature to binary
nominal values. The multinomial formulation uses word counts,
which BNS scaling effectively increases for the more important
features.) We found that while BNS scaling does benefit the
multinomial Naïve Bayes classifier, its best performance came
from using plain binary features with BNS feature selection, and
even then it had substantially worse accuracy than SVM—
consistent with much of the literature. Thus, we report the Naïve
Bayes results only in a tech report [2]. Henceforth we just
consider SVM models.

4. EMPIRICAL RESULTS
Initially we focus on the BNS feature scoring metric (the initial
impetus for this work) and contrast it with IDF or no scaling,
since they are most common. Later in Section 4.5 we compare
against many other feature scoring metrics that we considered
later.

4.1 Accuracy & F-measure
Figure 1 shows the average accuracy and F-measure for six
different text representations, including error bars which extend
above and below each point by one standard error, stdev÷sqrt(N).
Binary features and term frequency (TF) counts are considered for
each of three feature scaling methods: IDF, BNS, and no scaling.
The two most common text representations, TF·IDF and binary
features, both performed significantly worse than BNS scaling of

 4

binary features (labeled just ‘BNS’). We expected this from the
intuitive motivation in the introduction. BNS scaling leverages
the class labels to improve the distance evaluations of the SVM
kernel. Using binary features, as opposed to term frequencies,
consistently improves accuracy; binary features do not appear to
have a consistent effect on F-measure, but we elucidate this next.
Overall, the BNS-scaled binary features provided a 1%
improvement over TF·IDF for accuracy and 7% for F-measure,
both with no question of statistical significance by their small
error bars in proportion to the differences.

4.2 Precision vs. Recall Analysis
Good F-measure requires a balance between precision and recall.
It can be informative to see the tradeoffs these different methods
make between precision and recall at the classifier’s natural
classification threshold. (Alternately, one could consider full
precision-recall curves by sweeping through all decision
thresholds, but this considers many decision points for which the
classification algorithm was not attempting to optimize and makes
it difficult to compare six methods.) Figure 2 shows Precision vs.
Recall for the six methods considered in the previous figure,
including standard error bars in both dimensions. The x- and y-

axis ranges are identical to make it clear that the SVM precision
typically exceeded its recall.
Here we can see consistent effects. Using binary features yields a
large improvement in precision compared with TF features.
Likewise, BNS scaling results in a large improvement in recall
compared with IDF or no scaling. (We will explain the
underlying cause of this in the discussion section, as well as the
additional data point labeled ‘hBNS.’) Together, these two
effects make for a substantial increase in F-measure. The dotted
curved lines in the background show points of equal F-measure,
indicating the gradient to obtain better F-measure performance.
Since the positive class is typically small for text classification,
the best improvement in accuracy is by improving precision, not
recall—hence, the consistent benefit of binary features on
accuracy we observed in Figure 1. (Note: for applications where
the best precision is sought regardless of recall, one may prefer
instead to optimize the precision in the top N predicted positives.)

4.3 The Effect of Class Distribution
The importance of BNS scaling increases as the class distribution
becomes more skewed. To illustrate this, we have binned together
those benchmark tasks that have between 0% and 5% positive
cases, 5%—10% positives, and so forth. See Figure 3, which
shows macro-average F-measure for each bin and again includes
standard error bars. When the minority class is relatively

 97

 98

A
cc

ur
ac

y

T
F

.I
D

F

ID
F

T
F

bi
na

ry

T
F

.B
N

S

B
N

S

0.70

0.75

0.80

F
-m

ea
su

re

T
F

.I
D

F

ID
F

T
F

bi
na

ry

T
F

.B
N

S

B
N

S

Figure 1. SVM accuracy (left) and F-measure (right) for six different text feature representations, including standard error bars.

0.70

0.80

0.90

0.70 0.80 0.90

P
re

ci
si

on

Recall

 TF.IDF

 IDF

 TF

 binary

 TF.BNS

 BNS
 hBNS

Figure 2. Precision & Recall for six text representations.
The thin dotted lines show isoclines of equal F-measure.

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 0 5 10 15 20 25

F
-m

ea
su

re

% positives

BNS
binary

IDF

Figure 3. The benefit of BNS feature scaling grows as the
percentage of positive cases becomes small.

 5

balanced (20%–25%), the benefit of BNS scaling vs. no scaling or
IDF scaling of binary features is small. As the percentage of
positives decreases to a small minority, the classification
performance naturally drops for all methods, but the decline is
substantially less if BNS scaling is used. In other words, the
benefit of BNS scaling is greater for highly imbalanced
classification problems. Each successive bin contains roughly
half as many benchmark tasks, indicating that the performance
under high skew is the more common operating range for text
classification problems.

4.4 Per-Dataset Views
Next we show the macro-average F-measure for each of the 19
datasets separately. Although the graph is cluttered, Figure 4
shows clearly the near-complete dominance of BNS scaling of
binary features (labeled ‘BNS’). To aid the visualization, we
have sorted the classes by their BNS performance. BNS did not
dominate for three of the most difficult datasets, where instead
TF·BNS performed best. Note that the performance of some of
the methods can be quite erratic, e.g. for datasets tr21 and tr23 the
methods IDF and binary performed extraordinarily poorly.

4.5 Comparing Many Other Scoring Metrics
At first, we tested the feature scaling idea with only the BNS
metric and the Information Gain metric, because these two were
the leaders for feature selection in our prior study [4]. But this
begs the question of whether some other feature scoring metric
might perform yet better. To resolve this question, we tested all
the feature selection metrics of our prior study, where their many
formulae can be found. Note that asymmetric functions, such as
the Probability Ratio [13], have been adjusted to symmetrically
value strong features that happen to be correlated with word
absence rather than word presence. To these we added Pearson
Correlation and Pointwise Mutual Information [10]. Altogether,
fifteen choices for feature scaling (all supervised except for IDF
and ‘no scaling’) are paired both with TF counts and separately
with binary features in Figure 5. Although some future metric
may be devised that exceeds BNS, the present evidence indicates
that BNS with binary features is statistically significantly better—
it passes a paired two-tailed t-test against the runner-up with
p<1% (even at N=75 trials, for readers who may not consider the

benchmark problems as independent). Many of the methods,
including IDF, performed worse than using no scaling.
We note that the runner up was Log Odds Ratio. (We included its
formula in Section 2.3, partly because it is extremely easy for
researchers and practitioners to adopt in their code, whereas BNS
requires statistical tables not available in common software
libraries.) Our prior study showed that Odds Ratio has a
preference surface that is similar to BNS. For feature selection,
the dynamic range of the scoring metric is immaterial—only the
relative ranking of features is important. But here, we find that
the logarithm of Odds Ratio did a better job of conditioning the
feature vectors for the linear SVM kernel than using raw Odds
Ratio, which has a very large range. Similarly for Chi-Squared
and Probability Ratio.1

4.6 Feature Selection & Scaling Combined
Finally, we consider the question of whether performance might
further be improved by its use in conjunction with feature
selection, since feature selection has been shown beneficial, esp.
with BNS and IG [4]. In Figure 6 we vary the number of features
selected, with and without BNS scaling on binary features (all
performance figures were worse for TF features, so they are not
shown in order to reduce visual clutter). The rightmost point on
the logarithmic x-axis is not to scale, but indicates that all features
were used within each dataset, i.e. no feature selection. The
overall best performance for both accuracy and F-measure is
obtained using BNS scaling with all features. Without BNS
scaling, the best available performance is obtained by selecting a
subset of features via BNS. (The lack of improvement with IG
feature selection and certain other methods has led some
researchers in the past to conclude that SVM does not benefit
from feature selection.)

1 Whereas most experiment points were evaluated in seconds or

minutes, an occasional classification task paired with Odds
Ratio, Probability Ratio or Chi-Squared (each without the
logarithm) took many hours to train. We eventually terminated
these, and exclude them from the average. We suppose their
huge dynamic range made a highly discontinuous search space
for the SVM optimization.

0.65

0.70

0.75

0.80

0.85

0.90

0.95

w
ap tr1
1

re
1

oh
sc

a
fb

is
oh

10 re
0

oh
15 tr3
1

tr2
1

la
1s tr1
2

la
2s oh
5

ne
w

3s oh
0

tr2
3

tr4
5

tr4
1

F-
m

ea
su

re

BNS
TF.BNS
binary
TF
IDF
TF.IDF

Figure 4. BNS feature scaling typically dominated other methods
for the 19 datasets.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

Information Gain
Accuracy of word (tp–fp)

Prob. Ratio (tp/pos ÷ fp/neg)
Pearson Correlation

Log Probability Ratio
Pointwise Mutual Information

IDF
Balanced Accuracy (tpr–fpr)

F-measure of word
no scaling

Chi Squared
Odds Ratio

Log Chi Squared
Log Odds Ratio

BNS

F-measure

TF counts binary features (sort key)

Figure 5. F-measure for 30 different text representations.

 6

With the improvement of BNS feature scaling, we observe that
feature selection by either method only produced a degradation in
accuracy and F-measure. Interestingly, the least degradation
occurs with a hybrid where BNS is used for scaling the features
but IG is used for selecting the features. These results also prove
that the reason feature scaling works is not because it simply
forces the worst features to zero scaling; if it were so, then BNS
feature selection would show similar behavior with and without
BNS scaling.
Note that this is an average result—it may certainly be that for
some datasets a smaller number of features can improve
performance. Nonetheless, for a data miner looking to simplify
their process or the number of knobs that have to be set on their
software, simply using all features with BNS scaling is likely to
be a good choice. This is also important when the size of the
available training set is small. Trying to determine the best
number of features to select by many trials of cross-validation on
a very small dataset is likely to result in overfitting to the training
set, rather than truly tuning the parameter to reduce the
generalization error on unseen cases.

5. Discussion
Given that there are so many papers on feature selection that
attempt to discard ‘useless’ features that are unpredictive,
extremely rare, or redundant, why do we find the best
performance uses all the features? We offer this intuition for text
classification, at least for topic identification. Given a topic of
interest, it is highly improbable that a random word from the
dictionary, say ‘fee,’ is equally common within the topic as well
as in the negative class—this would happen only for a relatively
small set of stopwords or functional words. As for redundancy,
only if a set of words are perfectly correlated—always appearing
together or not at all—do they add no information beyond a single
member of the set. We know that many uncorrelated weak
predictors can combine to form a strong predictor, e.g. boosting.

Although we advocate using BNS scaling with all features in
general, there are certainly classification tasks that are best
performed with only a few. For example, Gabilovich and
Markovitch [6] studied a set of tasks where the topic is defined by
only a few keywords, such as ‘Denver, Colorado.’ For such tasks,
there are many words in the dictionary that are equally likely in
and out of the topic. Such words truly add nothing, and they find
a benefit in accuracy by removing them.
We acknowledge there are situations where training with the
complete vocabulary is out of the question with respect to modern
computational resources. In these cases, the hybrid method may
do nicely in cutting computational cost while minimizing loss in
performance. That said, we suspect the need arises rarely in actual
practice. Even for a corpus with a huge vocabulary, the words
appearing in the training set are likely not too great—the more
common problem is that the training set is small. And for a
classification task of economic worth, one can often afford to
train for a week if the improved accuracy pays for the relatively
inexpensive machine cycles. The greatest need to trim
computation may be in bioinformatics, or perhaps in machine
learning research, where we perform hundreds of analyses and
cross-validations under conference deadlines.

5.1 An Example Task Illustrated
Let’s consider a specific binary classification task: oh10 class 6
(OHSUMED class ‘Italy’), which has 60 positives against 990
negatives—5.7% positives. On this task, BNS scaling with binary
features obtains 0.77 F-measure, whereas TF·IDF gets 0.54 on
average. From Table 1, we see that the oh10 documents tend to
be short, so term frequencies will tend to be small and unlikely
better than just binary feature values.
Figure 7 shows the distribution of the specific words in the tp vs.
fp space. As is common in text classification, there are a few
words that occur commonly in both classes (e.g. ‘patient’ and
‘result’), and many words that occur rarely (unlabeled and
overlapping points near the origin). Observe that the positive
class has two highly predictive words: ‘italy’ and ‘italian.’
The diagonal grid lines show the isoclines of equal IDF value,
with the points nearest the origin being weighted highest.
Unfortunately, such points are valued by IDF much more highly
than ‘italy’ or ‘italian.’ These essential words are ranked equally
with a plethora of non-predictive words that occur in ~3% of
positive cases as well as ~3% of negative cases.
Figure 8 shows the same, but here the curved grid lines show the
isoclines of equal BNS value, with the greatest values given to the
top left and bottom right corners, naturally. As desired, the words
‘italy’ and ‘italian’ are given the highest BNS weights. Likewise,
a fairly high weight is given to the word ‘cost’ on the x-axis,
which occurred in 130 negative cases (13% fpr) and zero positive
cases. Our previous study on feature selection showed that BNS’s
strength is in leveraging many frequent words in this region to
improve recall, especially when positives are scarce. Referring
back to Figure 7, we see that IDF gives a much lower weight to
these negative features, precisely because they do occur more
frequently. Now, consider what happens when the positive class
becomes increasingly rarer: IDF will further prefer positive
features because they are rare, and the region of good ‘recall’
features along the x-axis is downplayed. Thus, we can see why

97%

98%

all 2000 500 200 100

A
cc

ur
ac

y

0.75

0.80

all 2000 500 200 100

F
-m

ea
su

re

Number of Features Selected

IG selection, BNS scaling
BNS selection, BNS scaling

BNS selection, no scaling
IG selection, no scaling

Figure 6. Accuracy (top) and F-measure (bottom) as we vary
the number of features selected by BNS or IG. Binary fx.

 7

BNS is increasingly better than IDF for greater class imbalance,
as observed in Section 4.3.
With this understanding about positively and negatively
correlated features, we consider again Figure 2 where we saw that
binary features improved precision and BNS scaling improved
recall. The best F-measure was obtained by using binary features
with BNS scaling. But since recall was slightly better with
TF.BNS features, perhaps we could further improve performance
by developing a hybrid method that uses TF.BNS for negatively
correlated features and binary features with BNS scaling for
positive features. That is, for each word of the training set, we
determine whether it is positively or negatively correlated with
the positive class, and we select a binary representation for
positively correlated features, otherwise its term frequency TF
count is used; this integer is then scaled via the BNS evaluation of
the feature. This hybrid method, labeled ‘hBNS’ in Figure 2,
shows recall as good as the best method, but a slight decrease in
precision from BNS. Overall, its F-measure was insignificantly
better than just using binary features with BNS scaling. Of
course, when the goal is accuracy, or when precision is preferred
to recall, then it is better to simply use all binary features.

5.2 Non-Language Features
The techniques that have been developed for text classification
are used for all sorts of unstructured domain problems, not just
natural language text. Hence, for some tasks, there will be

features that occur with very high probability in one class or the
other, making the IDF assumption even less pertinent. For
example, in classifying technical support documents, sometimes
there are unique strings or identifiers that can be a substantial aid
to the classifier, e.g. the word or n-gram term ‘OS=WinXP’
appearing in a technical document is an extremely strong
indicator for an MSWindows category.
Furthermore, even traditional natural language topic identification
tasks are beginning to have additional features included that do
not follow the Zipfian properties of regular words. For example,
Gabrilovich and Markovitch augment the feature vector with the
opinion of many topical classifiers previously trained on freely
available training sets [5]. Likewise, we have developed a
technique to cope with concept drift that augments the feature
vector with the opinions of many previous classifiers for the same
source of data [3]. In fact, it was this purpose that originally
motivated BNS scaling, since otherwise strongly predictive TIX
features were not highly influential on the final classifier. In the
extreme, when the true class label was revealed as a pseudo-word
feature in an experiment on Reuters2000 ECAT classification, an
SVM with binary features achieved only 0.22 F-measure, but 0.78
with BNS scaling of those features.

5.3 Practical Implementation
On a practical note for implementers, we find the inverse Normal
function is not available in standard math libraries for Java or
C++. It is available in Gnuplot as invnorm(), and in Microsoft
Excel as NORMINV(), so we easily constructed a large lookup
table to evaluate the function in Java. We included the formula
for the runner-up method, Log Odds Ratio, because it is
extremely simple to program without statistical tables.
For our research harness using WEKA, each feature is represented
by a floating-point double, which occupies 8 bytes of memory.
This is flexible and allows each feature to be scaled
independently. But since the best results reported indicate that
binary features are optimal, each feature can be reduced to a
single bit of storage (64x savings), and the feature scaling
parameters can be kept in a array of floating-point numbers that
grows only with the number of features, not with the number of
cases in the dataset. These scaling factors would be taken into
account when computing the SVM kernel. This memory savings
could be important for unusually large problems, such as training
on all 800,000 cases of Reuters 2000 with all features. Such a
feat is made practical by Joachim’s new SVM training algorithm
whose runtime scales linearly for sparse datasets [8].

6. CONCLUSION
We have presented a new method that showed a substantial gain
in performance for SVM on a large—albeit specific—benchmark
of text classification problems. Data mining practitioners may
welcome it because it showed consistent, nontrivial gains, and
moreover because it is very easy to implement compared to many
reported machine learning advances, such as boosting or iterative
SVM feature elimination.
Future work potentially includes searching for superior scaling
functions besides BNS, combining scaling with other induction
algorithms, applying scaling for 1-of-m multi-class classification,
and testing on other benchmark datasets, such as the new Reuters
corpus or genomic data. In particular, it would be interesting to
test and extend these ideas on a benchmark corpus of long

 0

 10

 20

 30

 0 100 200 300 400

po

si
ti

ve
 d

oc
um

en
ts

 w
it

h
w

or
d

negative documents with word

 italian

 italy

 disease
 associate

 result

 suggest

 significantly

 compare

 rate
 result

 increase

 patient

 effect

cost

Figure 7. IDF evaluation of word features for oh10 class 6.

 0

 10

 20

 30

 0 100 200 300 400

po

si
ti

ve
 d

oc
um

en
ts

 w
it

h
w

or
d

negative documents with word

 italian

 italy

 disease
 associate

 result

 suggest

 significantly

 compare

 rate
 result

 increase

 patient

 effect

cost

Figure 8. BNS evaluation of same.

 8

documents, where word counts may play a more significant role.
Finally, given enough computer time, one could also optimize the
SVM parameters to maximize F-measure under each test
condition.

7. ACKNOWLEDGMENTS
This work benefited from discussions with Bin Zhang and Ira
Cohen. We appreciate the large number of compute cycles made
available by Eric Anderson and the HP Labs Utility Datacenter.
We are grateful also to Ian Witten and his team for the WEKA
machine learning library [16], which greatly facilitates research.

8. REFERENCES
[1] Dumais, S., Platt, J., Heckerman, D. and Sahami, M.

Inductive Learning Algorithms and Representations for Text
Categorization. In Proc. of the 17th Intl. Conf. on
Information and Knowledge Management (CIKM,
Maryland):148-155, 1998.

[2] Forman, G. BNS Scaling: A Complement to Feature
Selection for SVM Text Classification. Hewlett-Packard
Labs Tech Report HPL-2006-19, 2006.

[3] Forman, G. Tackling concept drift by temporal inductive
transfer. In Proc. of the 29th Int’l ACM Conf. on Research
and Development in Information Retrieval (SIGIR,
Seattle):252-259, 2006.

[4] Forman, G. An Extensive Empirical Study of Feature
Selection Metrics for Text Classification. Special Issue on
Variable and Feature Selection, Journal of Machine
Learning Research, 3(Mar):1289-1305, 2003.

[5] Gabrilovich, E., and Markovitch, S. Feature Generation for
Text Categorization Using World Knowledge. In Proc. of the
19th Intl. Joint Conference for Artificial Intelligence (IJCAI,
Edinburgh), 2005.

[6] Gabilovich, E. and Markovitch, S. Text Categorization with
Many Redundant Features: Using Aggressive Feature
Selection to Make SVMs Competitive with C4.5. In Proc. of
the 21st Intl. Conf. on Machine Learning (ICML), 2004.

[7] Han, E. and Karypis, G. Centroid-Based Document
Classification: Analysis & Experimental Results. In Proc. of

the 4th European Conf. on the Principles of Data Mining and
Knowledge Discovery (PKDD): 424-431, 2000.

[8] Joachims, T. Training Linear SVMs in Linear Time. In
Proc. of the 12th ACM SIGKDD Int’l Conf. on Knowledge
Discovery and Data Mining (KDD, Philly):217–226, 2006.

[9] Joachims, T. Text Categorization with Support Vector
Machines: Learning with Many Relevant Features. In Proc.
of the 10th European Conf. on Machine Learning (ECML,
Berlin):137-142, 1998.

[10] Manning, C. and Schütze, H. Foundations of Statistical
Natural Language Processing. MIT Press, 1999.

[11] McCallum, A. and Nigam, K. A Comparison of Event
Models for Naive Bayes Text Classification. Workshop on
Learning for Text Categorization, In the 15th National Conf.
on Artificial Intelligence (AAAI), 1998.

[12] Mladenic, D., Brank, J., Grobelnik, M. and Milic-Frayling,
N. Feature selection using linear classifier weights:
interaction with classification models. In Proc. of the 27th
ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR,Sheffield):234-241, 2004.

[13] Mladenic, D. and Grobelnik, M. Feature Selection for
Unbalanced Class Distribution and Naïve Bayes. In Proc. of
the 16th Intl. Conf. on Machine Learning (ICML):258-267,
1999.

[14] Rogati, M. and Yang, Y. High-performing feature selection
for text classification. In Proc. of the 11th Intl. Conf. on
Information and Knowledge Management (CIKM,
Virginia):659-661, 2002.

[15] Wettschereck, D., Aha, D. W., and Mohri, T. A Review and
Empirical Evaluation of Feature Weighting Methods for a
Class of Lazy Learning Algorithms. Artificial Intelligence
Review 11, 1-5, 273-314, 1997.

[16] Witten, I. and Frank, E., Data mining: Practical machine
learning tools and techniques (2nd edition), Morgan
Kaufmann, 2005. http://www.cs.waikato.ac.nz/~ml/weka

[17] Yang, Y. and Pedersen, J. A Comparative Study on Feature
Selection in Text Categorization. In Proc. of the Intl. Conf.
on Machine Learning (ICML):412-420, 1997.

