

Towards understanding and providing assurance about separation

Daniel Drozdzewski, Adrian Baldwin, Patrick Goldsack
Trusted Systems Laboratory
HP Laboratories Bristol
HPL-2007-3
January 26, 2007*

separation,
containment,
utility computing,
HPUX,
assurance

One of the key aspects of securing a system is to ensure separation and
containment between different concerns. This could be between
processes and communications within a single machine; through to
different applications and network segments in an enterprise to customers
in a shared data centre. Containment is generally achieved through a
variety of often complex mechanisms making it hard to configure and
even harder to assure users that the desired containment relationships are
maintained.

In this paper we present an approach to assuring users about containment
of systems by developing an abstract containment model suitable for
many situations. This model then has detail added, through a series of
refinements, to become closer to the implementing technologies. We
present a refinement for compartments recently added to HPUX. We then
show how we can provide assurance reports to users demonstrating that
the containment properties in the model are being achieved.

* Internal Accession Date Only Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.

Towards understanding and providing assurance about
separation

Daniel Drozdzewski
Hewlett Packard Labs

Bristol, UK

daniel.drozdzewski@hp.com

Adrian Baldwin
Hewlett Packard Labs

Bristol, UK

adrian.baldwin@hp.com

Patrick Goldsack
Hewlett Packard Labs

Bristol, UK

patrick.goldsack@hp.com

ABSTRACT
One of the key aspects of securing a system is to ensure sep-
aration and containment between different concerns. This
could be between processes and communications within a
single machine; through to different applications and net-
work segments in an enterprise to customers in a shared data
centre. Containment is generally achieved through a variety
of often complex mechanisms making it hard to configure
and even harder to assure users that the desired contain-
ment relationships are maintained.

In this paper we present an approach to assuring users about
containment of systems by developing an abstract contain-
ment model suitable for many situations. This model then
has detail added, through a series of refinements, to become
closer to the implementing technologies. We present a refine-
ment for compartments recently added to HPUX. We then
show how we can provide assurance reports to users demon-
strating that the containment properties in the model are
being achieved.

1. INTRODUCTION
Providing barriers that enforce separations is fundamental
to security whether it be physical security with walls and
locks or computer security with logical separation mecha-
nisms. Good system security relies on having a number of
separation mechanisms at different levels within a system
so that defence in depth can be achieved; if one barrier is
broken all need not be lost. However, having strong separa-
tion mechanisms does not guarantee security; they must be
used properly. Troy did not fall due to weak walls but due
to weak processes in managing the import of unauthorised
wooden horses.

Over the years many separation mechanisms have been de-
veloped to support computer security (and fault tolerance)
and these mechanisms work over the full stack from hard-
ware through to applications and management. For exam-

ple:

Ring Architectures within processors ensure there is a
strong separation between user and kernel level code
limiting access to privileged instructions and memory
segments. More recently ring architectures are being
expanded to support multiple layers providing better
segmentation with virtualisation.

VLANs [8] allow multiple separate LANs to be run over
the same physical network by tagging packets at the
network layer according to the logical LAN on which
they reside.

VMM [2] allow different OS images to be run on the same
physical hardware with the VMM acting as a separa-
tion mechanism between the systems.

Kernel imposed separation. As standard the operating
system kernel provides separation between processes
particularly protecting memory access and access con-
trol. Trusted operating systems [5] [11] add in a set
of mandatory access control rules limiting the commu-
nications and accesses between different system com-
partments

Application sandboxing such as that provided in java
provides protection from application code accessing re-
sources to which they are not entitled.

These types of mechanisms are often used in combination
to help secure solutions or even to produce shared flexible
infrastructures such as SoftUDC [16]. The combination of
these techniques can provide very strong security; for exam-
ple, keeping customers sharing a data centre separate. How-
ever, these mechanisms can be hard to manage and config-
ure; thus the strength of the solution is often only as good as
the management. Management is often error prone demon-
strated by studies [23] that have shown up to 80% of firewalls
are incorrectly configured. Thus leads to the two problems
addressed by this paper: firstly, are the desired separation
goals being achieved and secondly how do we convince those
people accountable for the solutions that this is the case.

Understanding a solution often requires the skills of multi-
ple people working at different layers including application
experts, a database administrator, operating system admin-
istrators, and networking experts. Equally responsibility for

security falls into these different domains and as such a clear
vision of the security requirements can be lost. We start this
paper with the development of an abstract model for spec-
ifying containment relationships that should exist within a
solution. Having a simple abstraction for expressing contain-
ment and communications between containers allows solu-
tion architects to think about the required security proper-
ties as well as providing us a set of constraints from which
we can measure and compare a working system. This allows
us to produce assurance reports for customers demonstrat-
ing that the system is maintaining the desired containment
and separation properties.

In the next section we describe the abstract modelling ap-
proach for expressing containment that we have developed.
This is followed by a description of the containment and
associated role based privilege mechanisms recently intro-
duced into HPUX and on which we demonstrate the ap-
proach. We then show how we refined the abstract model to
more closely fit the technology whilst maintaining the ab-
stract properties. Finally we show how we used the model
as part of an assurance framework to help demonstrate that
the system is secure and that the containment relationships
are being maintained. This is followed by a discussion of the
wider issues surrounding containment modelling and assur-
ance.

2. CONTAINMENT MODEL
At the abstract level we took an approach to modelling con-
tainment defining things in terms of generic concepts of con-
tainment and communication channels. The modelling con-
sisted of a way of representing the containment state, a set
of invariants that must be true for all models and functions
for modifying the state of the model. In this way the model
can be changed as the solution changes whilst maintaining
a fixed set of properties.

2.1 Model elements
The abstract model was formed from five main concepts that
allowed us to express containment; communications between
containers and ownership of the containers.

Elements. The concept of an element was used to describe
things that are being contained. In a shared data cen-
tre scenario this would include physical or virtual ma-
chines. Where containment is being enforced at a finer
gained level this can include processes.

Container A container is defined as a collection of elements
whose communication within the container is not con-
strained but whose communications outside of the con-
tainer are constrained to only those whose permission
to communicate is defined within the model.

Communication channel A communication channel is the
definition that entities in two different containers can
in some (unspecified way) communicate. We purposely
kept this at a very abstract level with the intent of
refining it further once technology choices have been
made (see section 5).

Owner The owner is the person or entity who is in some-
way responsible or accountable for the container. The

type Entity;

type Conatiner;

type Owner;

syntype Permission == Conatiner * Container;

syntype State==(Owner -m> set Permission) *

(Owner-m> (container -m> set Entity));

Figure 1: The basic types for the containment model

concept of ownership can vary according to the level
of abstraction. At the shared data centre model it is
the company using the contained entities. Within an
enterprise it may be the business (defined by the en-
terprising architecture) as owning the application.

Permission Permissions go along with the communication
channels and are the definition that allows communi-
cation channels to be used. The approach we used to
modelling did not explicitly create or define communi-
cation channels but inferred their existance from the
appropriate set of permissions.

2.2 Model Definition
The containment model was build using HPSL [3] [13] [10]
(HP Specification Language) and started by defining the ba-
sic types of Entity, Container and Ownership. Permissions
are defined as a relationship between two containers. The
overall state is defined in terms of relationships. Firstly,
that between the owner and the sets of permissions that
they define and secondly between owners and a container to
entity set relationship. The first element defines communi-
cation channels between containers and the second defines
the entities within a container along with the owner of the
container. Along with the state definition we created a set
of basic functions allowing definition of the individual ele-
ments.

The basic definition of a state allows invalid states to be
created and so a further type of a ValidState was created
which includes a number of invariants that must always be
true for the containment description to be acceptable. These
included:

• All entities can only exist within a single container (see
example)

• Each container is only owned by a single owner.

• Entities within containers can talk. That is, there is
permission for the container to talk to itself.

• The owner of the permission must be the owner of the
container at the lefthand side of the permission.

From the valid state definition we then have a series of func-
tions for changing the state and ensuring that the state
maintains the invariants. These functions (See Figure 3 for
an example) take a valid state type and define how it is
changed based on the new state change information. Each
function is defined with pre and post conditions defining the

syntype ValidState == State inv s as (p,o) .

//permissions and owners are

mappings from the same domain

dom p = dom o

and

//each entity exists in exactly one container

//which is owned by exactly one owner

(forall e IN allEntities s .

(exists1 oe:Owner, ce:Container .

e in ((o oe) ce)

)

)

and

...

Figure 2: Example invariant in the valid state defi-
nition

fn addPermission:

ValidState * Owner * Permission

-> ValidState is

addPermission (s as (per, own), oa, pa)

pre pa not in allPermissions s and

oa in allOwners s

return s’ as (per’, own’)

post per’ oa = per oa union {pa} and

own’ = own and

(forall o in dom per. per o = per’ o)

Figure 3: Functions for adapting the model

fn canCommunicate: ValidState X Container X Container -> Boolean is

canCommunicate (s as (per, own), ca, cb)

pre ca in allContainers s and

cb in allContainers s

== (ca * cb) in allPermissions s and (cb * ca) in allPermissions s

Figure 4: The function defining the communication
channel from the permissions

states and being a valid state type the invariants must also
be preserved.

The concept of a communication channel is important within
the containment model. It is not directly represented instead
it is implied by permissions. Communication channels can
now be defined by a function (see figure 4) that given a valid
state and two containers returns true or false depending on
whether there is a direct communication path. We define the
existence of such a path as meaning there are a matching
pair of permissions (one from each owner).

Further functions can be defined to explore paths between
the various containers. As a more practical way to animate
the model we produced a PROLOG [22] translation that
allows the model to be animated and queried. This model
includes predicates that find all paths between two given
containers (or all pairs of containers). This PROLOG model
also forms the basis of state validation work described in
section 6.3.

3. HPUX COMPARTMENTS
Before discussing refinements of the model and how it is used
to check and report on the state of containment we describe
the main features. This section starts with a background on
compartmentalisation within unix which contrasts having
fixed but inflexible containment models with having more
flexible managable models but which need to be properly
managed. We then provide more details of the HPUX model
[14]. As well as building on containment, ownership is an
important aspect and as such we describe the role based
privilige system that we use as a basis for ownership.

3.1 Background
Compartmentalised UNIX systems [7] were developed to
meet the needs of the military security and are based on
the Bell-LaPadula [5] [4] multi-level security systems with
fixed write up and read down rules. These rigid policies form
Mandatory Access Control rules that are enforced within the
OS kernel. Having such a fixed model supported within the
OS kernel means that assurance that the correct contain-
ment model is being achieved is not an issue. The model is
effectively built into the mechanism and cannot be changed.

Whilst the mandatory access control model met the needs
of the military they proved too inflexible for many commer-
cial applications. New solutions such as a trusted Linux
system [11] provided more flexible approach to containment
where compartments can be defined along with communica-
tion channels between them. These rules or compartment

Compartment Name: webserver : sealed

Disallowed Privileges: POLICY

Network Communication Rules:

ACCESS PROTOCOLSRCPORT DESPORT DESCMPT

grant client tcp 0 3306 dbserver

grant client udp 0 0 dbserver

Figure 5: Communiction rules within HPUX com-
partments

policies can be configured according to the needs of a given
solution and are then enforced by the kernel. With flexibility
comes the problem of ensuring that the correct containment
model is being maintained and assuring those reliant on the
system that separations are being maintained.

The use of compartments within UNIX systems provides
mechanisms that ensure that if one application or network
service is compromised then the attackers access to the un-
derlying system is limited. For example, if a web server were
to be subverted giving an attacker root access to that com-
partment then they would only be able to gain read access
to a file system and very limited communications with other
applications based on the given rule set.

3.2 HPUX
An application can be configured to run in a given com-
partment where it has limited access to resources such as
other processes, files and communication channels outside
of its compartment. Policies are specified within a config-
uration file defining the resource accesses that are allowed.
The compartments are configured and reconfigured using a
priviliged command.

Processes can be labelled so that they always run within a
gvien compartment or they can be started from a given com-
partment. Rules can be set so that processes forked within
one compartment start in another compartment. The defini-
tion of a compartment also includes a set of rules specifying
the communication channels available to processes. These
may be IPC channels within the machine or network rules
limiting how processes within the compartment can talk via
specified network cards. Examples of such rules are shown
in figure 5 where the initiation direction of the rule is speci-
fied along with the ports over which it can run; ports can be
tightly specified or wild cards can be used for example spec-
ifying that incoming connections can be received on port
3306 (MySql default port) from any source port.

3.3 Privilige Management
Clark and Wilson [9] worked on an integrity model to help
overcome some of the short comings of the Bell-LaPadula
model. This has an access control model based on an access
triple user; op; data to state that a user has the rights to
perform a given operation on a given set of data. HPUX
uses this type of triple model to manage access to privileges
and the systems over which they can apply. However the
management of them can become complex and as such an
RBAC privilege management system has been implemented.

Role based access control (RBAC) was initially proposed by
Sandhu [20] as a way of simplifying the administration of
access control rights. In the RBAC model permissions are
formed from the ability to perform a given operation on a
resource or data set. Roles are created to correspond to job
functions or tasks that require a set of privileges. Users are
then allocated rights to perform a role hence simplifying the
association between users and permissions. RBAC usually
includes the concept of a role hierarchy so that a role gains
all the permissions of its child roles; although this can aid
administration, care should be taken that it doesnt create
powerful individuals; and break separation of duty policies
[12].

HPUX supports the creation of permissions over sets of re-
sources by allowing a privilige to apply to a resource or set
of resources as specified by a wild card. Roles are associated
with these permissions in a way that allows role hierarchies
to be created. Users can then be associated with a role.
Each time a user attempts to execute a privileged command
the kernel checks the permission set for the roles that the
user holds (including child roles in the RBAC hierarchy) and
the command is only executed if a match is found.

4. MAPPING HPUX TO THE MODEL
Our containment model has the concepts of containers, per-
missions, owner and entities and when applying it to the
HPUX system we need to map these concepts to the un-
derlying technology concepts described in the previous sec-
tion. Clearly the containers map to HPUX compartments
as these form the basic units of containment. Processes are
the things that are being contained and hence they become
the entities. The rules specified within the compartment
communication channels map on to the permissions within
our model although clearly the HPUX rules are much richer
than our simple bidirectional communications.

Ownership, as a more abstract and less well defined concept,
was a harder concept to map and here we chose to map roles
to owners (assuming a flat role model). This was done as
roles represent the grouping of permissions responsible for a
given task. The mapping of a user to multiple roles could
in some way break our ownership invariants which imply
there should be additional checks within an assurance sys-
tem. The continued existence of a root account also proves
problematic for the ownership model in that it effectively
holds all roles and if not removed or locked down provides
a weak point in the containment model.

Mapping of processes to entities is again not a clean map-
ping as processes can be dynamically started and they do not
have clear identities. Instead we mapped entities to appli-
cations (or commands) that are configured to start within a
specified compartment. This information is readily available
within configuration files and reflects how a server would be
set up and managed. As with the user accounts an assurance
report could be created that looks for other (unknown) pro-
cesses running within a compartment hence demonstrating
the risk of unknown entities is being mitigated.

5. REFINING THE MODEL
From the above description it is clear the initial approach
to modelling has abstracted away too many details from the

type Machine;

type ContainerName;

syntype Container == Machine * ContainerName;

fn allMachines: State -> set Machine is

allMachines (s as (per,own))

== { left c | c in allContainers };

fn containersOnMachine: State, Machine->

set Containers is

containersOnMachine(s as (per, own), m)

==

{ right c| c in allContainers(s)

and left s==m}

Figure 6: Functions for adapting the model

technology being modelled. Having said this, the highly ab-
stract nature helps in producing a broad containment model
which then needs further refinement to bring it closer to the
particular technology being used. If the underlying technol-
ogy were to be changed the first abstract model of contain-
ment would not change but this refinement may need to take
account of different details.

Here we looked at two simple refinements to the original
model that provide detail on the original model. Firstly
we refined the notion of a container to better identify it as a
compartment on a given machine and secondly we expanded
the notion of communications to deal with different types of
IP connections. In refining this latter element we concen-
trated on IP rules rather that IPC rules. The IP rules pro-
vided the richest refinements and the model could easily be
further refined to deal with the simpler IPC communication
channels.

5.1 Container Identity
Containers now take on a more concrete view in that they
are compartments on given machines and this description
provides a way of identifying any given container. We now
define two new types of a ContainerName and a Machine
and change the previous Container type to be a composite
type formed from these two types (see figure 6).

The impact of this change on the model is then minimal;
however, it does allow us to add further functions that al-
low us to look at containers that exist on particular ma-
chines. We considered adding an additional invariant to
specify that all containers on the same machine must have
the same owner; such an invariant would be necessary where
the root privilege cannot be separated and shared out be-
tween the different container owners.

5.2 Communications
Communication channels within the original model were mod-
elled by having duel permissions between two containers and
in refining the model we retain this concept but introduce
a further definition of the communication channel being au-
thorised on each side. The communications function is no
longer as simple as specifying that there are permissions on

both sides; the permissions must now in someway match.

Permissions were modified from simply being a mapping be-
tween two containers to being a type defined by a mapping
between the two containers and a connection type. The
connection type is itself quite complex in that it describes
an IP connection; hence it is constructed as a mapping be-
tween direction, protocol, source port and destination ports
(see figure 7).

The previous model has a specification that a container must
be allowed to talk to itself and this invariant had to be up-
dated to take account of the connection within the permis-
sion type.

The canCommunicate function has an increase in complex-
ity to deal with the additional complexity of the permis-
sion which involved introducing a new function to deal with
matching rules. Here the rules have to be matched so that a
client communicates with a server (or either being bidirec-
tional) and source and destination ports need to be made to
match.

6. ASSURANCE AND REPORTING
The purpose of the containment model is to be able to
demonstrate to those relying on the systems that certain
separation properties are being maintained. Providing as-
surance about containment is unlikely to be sufficient to
assure those relying on the ICT systems that risks are prop-
erly managed and mitigated. As such we have taken the
approach of using the containment model to perform tests
within the context of an overall assurance framework which
analyses and reports on risks and mitigations over many as-
pects of a system. The next subsection briefly describes this
assurance framework with the remaining three subsections
addressing how the containment model was used to report
on the HPUX system.

6.1 Assurance Framework
An assurance framework [1] has been developed to support
automation of audit and security testing along with report-
ing of risks to various stakeholders within an enterprise. At
a high-level the framework allows elements within the en-
terprise architecture to be represented along with the en-
terprise control framework. This control framework consists
of identified risks along with policies and controls that help
mitigate these risks. At the lower level the framework sup-
ports the creation of tests to check that controls are properly
enforced. A series of test mechanisms for comparing data
in different ways are built into the framework and an API
allows the test set to be easily extended.

The assurance framework collects data into an audit database
and the assurance description is then used analyse the data
to find cases where controls or polcies have not been prop-
erly followed. A hierarchical report is created with traffic
light indicators at the top level showing the overall status
of different areas of risk. Where these indicate a problem a
user can then dig down through the report to identify which
controls or policies are not being followed. Detailed tests
then show the cases where they fail and allow for further
investigation. The assurance reports are produced at reg-
ular weekly or monthly intervals and report on the overall

type Direction = client | serv | bidir;

type Protocol = udp | tcp | raw;

syntype Port = Nat0 inv n . n < 2**16;

syntype Connection==Direction*Protocol*Port*Port;

syntype ValidState ...

...

and

//entities within container are allowed

to communicate anyway required

(forall c IN allContainers s.

(forall p1, p2: Port, dir:

Direction, proto: Protocol.

(c , (dir, proto, p1, p2) , c)

in allPermisions s

)

)

and

...

fn canCommunicate: ValidState X Container

X Container -> Boolean is

canCommunicate (s as (per, own), ca, cb)

pre ca in allContainers s and

cb in allContainers s

==(

exists ab_connection, ba_connection:

Connection .

(ca, ab_connection, cb) in

allPermissions s

and

(cb, ba_connection, ca) in

allPermissions s

and

ruleMatch(ab_connection, ba_connection)

)

fn ruleMatch: Connection X Connection ->

Boolean is

ruleMatch(cA as (directionA, protocolA,

portAa, portBa),

cB as (directionB, protocolB,

portBb, portAb))

==

{

(

{directionA, directionB} =

{client, serv}) or

bidir in {directionA, directionB}

) and

portAa = portBa and

portAb = portBb and

protocolA = protocolB

}

Figure 7: Adding to the permissions within the re-
fined model including refinements of the invariants
and communciation functions

approach to operational risk in contrast to real time threat
analysis.

As such the assurance framework provides an aid to audi-
tors who would typically perform manual audits on samples
of data as well as providing reports for various stakehold-
ers within the enterprise demonstrating how well risks are
being mitigated. Pilots carried out with auditors and secu-
rity officers have demonstrated the value of the approach in
demonstrating appliaction and IT infrastructure are under
control.

6.2 Pulling data
Prior to producing plug in tests for the assurance framework
it is necessary to be able to pull data from the unix systems
into the audit database. This was done using java agents
that ran the appropriate commands on the unix machine
to pull the configuration state from the compartmentation
system and the configuration of the RBAC privilige system.
The output of these commands is parsed and stored in tables
in the database that mirror the model structure as described
in section 4.

We took the approach of pulling a consistent snapshot of the
state of the unix system since this gives us a state that can
be compared to the desired state. There are issues about
how this snap shot should be triggered; this could be done
via monitoring the syslog for changes but this may fail where
logging is turned off. Alternatively regular snapshots could
be taken and validated against the model.

6.3 Testing the model state
The containment models we developed are logical models
that we have translated into PROLOG to explore the model
whilst maintaining the logical relationships. In validating
the state of the system against the logical model we decided
to uses these PROLOG versions of the model. To achieve
this we integrated JLOG [15] (a java based PROLOG) into
the assurance framework allowing the containment model to
be used directly.

The assurance framework manages getting data within a
given reporting time period from the audit database and this
data was converted into a state representation that follows
the model. Using the model we performed two types of
testing:

Invariants Here we took the state as derived from a HPUX
system and validated the invariants.

Communication path checks Here we used the model to
compare the actual state of the system to a desired
state described within the model. Both these types
of testing were performed using the PROLOG model
along with the actual state from the system. Results
are passed back into the assurance system where they
are stored in a database ready for reporting.

6.3.1 Invarient Checking
The simplest form of invariant checking is to simply return
a Boolean value resulting from testing all the invariants.
Whilst this is useful, ideally the assurance system helps

isolate the problem. To do this each invariant was writ-
ten as a separate predicate with an overall invariant being
constructed as the conjunction of the individual predicates.
This allows us to write an invariant checking predicate that
checks each individual invariant predicate and lists those
that fail.

6.3.2 Path Checking
The main aim of modelling is to ensure that a containment
model is being achieved within a system. To do this we have
a desired state of the containment and need to compare this
to the actual state derived from the systems. The testing
needs to highlight the differences between the desired state
and actual state.

There are a number of different facets that we could ex-
plore within the differences and here we have concentrated
on checking that additional communication channels that
emerge in the actual state but that are not specified in the
desired state.

Firstly we performed a simple test to find additional com-
partments that exist within the actual state but not within
the desired state. This is done using an allContainers pred-
icate within the model that returns a set of all containers
and then performing a simple comparison finding additional
elements not in the desired state. These additional com-
partments were returned to the assurance system.

More importantly we looked for additional communication
channels that exist between compartments. We can list all
direct communication channels between compartments us-
ing the canCommunicate predicate (see figure 7) and this
can be done for both the actual and desired states. The two
sets of communication channels can now be compared; this
is not quite as simple as just looking for the difference be-
tween the two lists. Communication channels are described
in terms of a source, destination, and a connection and we
also check that connections match the specification report-
ing on either more permissive or less permissive connections.

Where there are additional containers within the actual state
and they talk to containers within the desired state they
may help form unintended indirect communication channels.
When this is the case we use a findPaths predicate in the
model to find any of these indirect channels between our
known containers. These indirect paths are also returned to
the assurance framework.

6.4 Containment reporting
An assurance description can now be given for the HPUX
system that includes the invariant and the path checking
tests. This allows the assurance system to construct a re-
port showing that the HPUX system is in someway well run.
Here we have concentrated purely on testing containment
properties but the assurance report should include other in-
formation useful for those assessing the system. For example
in section 4 we raise the need to look at root account usage;
other elements in the report should look at how many users
have priviliges; failed logins; changes to ip filter rules; new
accounts added and so on.

Within this report we would include the results from the

model testing. This would include a good/bad status for
the invariants along with a list of any that have failed. The
path testing checks list the three aspects tested:

1. A list of any additional compartments

2. A list of direct communication channels that do not
match the desired state. Each entry in the list contains
fields listing the source compartment, the destination
compartment, the connunication rule for each and a
flag stating the rule is more permissive, less permissive,
an additional rule, or a missing rule.

3. A list of additional indirect communications due to ad-
ditional compartments. This list includes the source
and destination compartments along with the com-
partments forming the path.

The report for the path testing also includes counts of these
different attributes allowing the results to be interpreted
within the assurance description. For example a threshold
may be set to report the state as being bad if there are
additional communication channels but warnings would be
given where there are additional compartmenst; such judg-
ments would of course depend on the percieved risk from
the different failures.

6.5 Deriving the model
One of the issues with the approach as described is that the
containment model is in someway contained within the as-
surance description. This implies that it is thought about
up-front and is only changed as part of a review of the con-
trol framework. This should not be the case, particularly in
the context of a shared dynamic data centre which would
add and remove compartments as required. From this per-
spective the desired state model should be contained within
a database and maintained through a portal that allows the
customer to describe the systems they require. Such a setup
allows the containment model to be used to demonstrate
that the service provider is meeting the customers separa-
tion requirements. From the testing perspective achieving
this is simply manipulating the place where the model is
picked up from. However, this leaves the harder problem of
how the customer selects and manipulates their system and
therefore the containment requirements through the portal.
The modelling approach we have taken does support the
model being manipulated and changed through a number of
functions.

7. DISCUSSION
7.1 Meeting assurance goals
As outlined in the introduction there are many strong mech-
anisms to enforce separation in shared systems, the point of
this work is not to describe or promote the compartment or
RBAC mechanisms used by HP-UX. Rather it has been to
focus on how stakeholders can gain assurance that separa-
tion mechanisms are managed and configured correctly. The
abstract and refined models provide a basis for collecting, fil-
tering and analysing the large amount of system information
available. As such the questions for discussion are:

1. Who would use these reports for assurance and how
useful are they?

2. Do the models or the modelling process bring more
confidence to the resultant reports?

3. How representative are the HP-UX environment and
mechanisms studied, e.g. how well will refinement
work for other mechanisms?

Taking these in turn, there are multiple assurance stake-
holders involved in shared environments. The simplest sce-
nario might be the need to control the communications (con-
cerns) between an external facing website, and the back end
database it is relying on. Looking more to the future, we
envision shared data centres operated by a service provider.
In this case the service provider will want the reports to con-
vince them that the way the environment is being operated
is keeping their customers appropriately separated. In both
these cases there will be multiple assurance stakeholders
including: system/application owners, the customers, ad-
ministrators and even the customers’ auditors who, prior to
checking the controls are working, need to be assured that
the isolation is effective. The resultant reports show graph-
ically and intuitively whether the recently grabbed state of
the system conforms to the abstract desired properties of
the model, and where it does not, provides simple naviga-
tion to interpret the problem; a red light, or highlighted
metric quickly leads to the user to the invariant, or part
of the state with a problem. For example, a report may
highlight that an additional communication path has been
added between the backend container and the application
server container allowing say web traffic (port 80) as well as
the specified JDBC traffic (port 3306).

Intuitively this feels useful, especially if it is compared with
current state of the art where multiple scripts are written
and run as required along with the collection of vast amounts
of log information. From a security perspective this informa-
tion is sometimes fed into security event correlation mech-
anisms to detect immediate threats but sifting through the
data to validate the way the system has been run and man-
aged is usually a human process. Here the having a con-
tainment model helps document and provide a basis from
which assurance can work effectively. That said, this work
did not go as far as testing the usefulness or usability of
these reports with auditors, system/application owners or
other assurance stakeholders. This kind of validation has
been done for similarly structured reports with models for
testing standard IT process controls [1].

For the second question, the modelling process clearly brings
more rigor to the analysis process, and it is easy to relate
reports back to the orginal modelling done. As such if the
model makes intuitive sense, the results should be compre-
hendable and thus increase confidence. A natural question
to ask is on what basis can we trust the validity of the model
and its refinements. The goal of this paper is to explore the
model-reporting loop and make judgements about the use-
fulness of the approach. Interesting, but slightly orthogonal
issues such as proving the validity of the model or that cer-
tain operations do not affect invariants have been left as
further work.

For the third question, clearly the compartment mechanisms
mapped nicely to the containment abstraction. Another well
conforming example could have been to model the mecha-
nisms for isolating virtual infrastructures sharing the same
physical infrastructure such as that described in the Soft-
UDC paper [16]. In this case containers would be virtual
subnets, entities would be virtual machines, and the sepa-
ration (mechanism) would be enforced by the configuration
of the virtual networking. So this shows the approach is
not overly specific, however it remains as further work to
look into the feasibility to use the model on very different
mechansism such as multi level security systems described
in section 3.1, and also to look into shared storage environ-
ments such as SANs.

The reason it is not enough to focus on the mechanism is
that the IT environment is always changing. As such the
link between the models and the reality of the environment
may also be subject to change. IT departments are moving
much more to standard processes for change management,
i.e. ITIL [17], which amongst other things ensure good plan-
ning and scheduling of all changes. In such an environment
all changes (i.e. deviations from the model defined state)
should be explainable by planned changes, so it should be
possible not only to report deviances, but also whether such
changes were planned. If the changes really break the model
then this should have been realised in the planning process,
and either the model will need to be changed or there should
be a wider review of the required change. As mentioned the
modelling approach has been applied on process checks, such
as change control so it should be possible to model and check
that events and deviations correspond to planned changes.
So whilst some of the above should be possible, further work
is needed to understand how the model could be maintained
as part of a wider change process, where ultimately changes
are all expressed through the model, and this automates
both the change and assurance reporting associated with it.

7.2 Policy based management
Clearly this work relates to ideas within policy based man-
agement [21] where polices are constructed and used to help
manage the systems. These approaches often try to control
the system via policies, for example, trying to use policy
statements to configure or maintain the configuration of a
system. This can lead to systems with a proliferation of
low-level policies that lose the high level abstraction that
made high level policies desirable in the first place. This can
be contrasted by the use of a model to validate aspects of
the system. This is very much a simpler and more tractable
task now detailed configurations need not be considered just
those related to the aspects being modelled and hence the
model retains a degree of abstraction ensuring it clearly ex-
presses useful concepts without getting lost in detail.

7.3 Data Security
Currently assurance is a manual process where data is peri-
odically pulled from a system and samples are examined and
analysed manually by auditors. Clearly bringing automation
to these manual processes brings benifits in reducing errors
both through removing the need to sample, the reduction in
human error and by having more regular assurance reports.
Currently there is little concern over the security of the ac-
tual audit data being analysed. However we believe in the

longer term and particularly with the emergance of dynamic
and shared data centres there will be a need to demonstrate
the integrity of the data. There are two main issues within
this problem: the first is the trust in the logging mechanism
or commands that produce the data and the second is in the
integrity of the audit trail.

A very sophisticated attacker will try to cover their tracks
and install or change the system so that it fails to report
their presence. In our HPUX example this would involve
changing or patching the underlying OS so that commands
do not show the presence to their communication channels
or the kernel does not block the channels. The trusted com-
puting group [19] provides mechanisms for measuring the
OS systems as they boot and based on these measurements
further auditing agents can be measured hence reducing the
possibility of an attacker going unnoticed.

On the data integrity side an attacker could try to attack
system log files or audit files before they are relayed to the
central database. In the case of a shared service utility there
needs to be trust in the audit trail itself demonstrating that
the service provider has not changed it to support their case
in any dispute. There are a number of secure audit mech-
anisms for both securing audit data whilst in a hostile en-
vironment using forward integrity mechanisms [6] and then
securing the overall audit trail as a whole even from inter-
ference from the service provider [18].

8. CONCLUSION
This paper starts by discussing the problems with relying
on security based on flexible but strong security separation
mechanisms when the management of these mechanisms is
not properly checked and validated. We have presented an
approach of capturing the separation requirements within
an abstract model that can be further refined to ensure it
meets the needs of the given seperation technologies. We
have shown how such a model can be used to check that
compartment based separations are being correctly main-
tained in an HPUX system. We have also shown how such
containment testing can be used as part of an overall as-
surance report demonstrating that risks are being mitigated
appropriately.

9. REFERENCES
[1] A. Baldwin, Y. Beres, and S. Shiu. Using assurance

models to aid the risk and governance lifecycle. BT
Technical Journal, in press.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages
164–177, New York, NY, USA, 2003. ACM Press.

[3] S. Bear. An Overview of HP-SL. HP Labolatories,
Bristol, March 1991.

[4] D. E. Bell. Looking Back at the Bell-La Padula Model.
Proceedings of the 21st Annual Computer Security
Applications Conference. Reston, VA, 2005.

[5] D. E. Bell and L. J. L. Padula. Secure Computer
Systems: Mathematical Foundations, volume 1 of
MTR-2547. The MITRE Corporation, Bedford, MA,
1973.

[6] M. Bellare and B. Yee. Forward integrity for audit
logs. Technical report, UCSD tech report, 1997.

[7] J. L. Berger, J. Picciotto, J. P. L. Woodward, and
P. T. Cummings. Compartmented Mode Workstation:
Prototype Highlights, volume 16 of IEEE Transactions
on Software Engineering. June 1990.

[8] N. G. Chan Wai Kok, M. Salim Beg. Inter Bridge
VLAN Registration Protocol for IP Subnet VLAN.
Proceedings of the 25th Annual IEEE Conference on
Local Computer Networks. November 2000.

[9] D. Clark and D. Wilson. Comparision of comercial
and military security policies. IEEE Symposium on
Security and Privacy. Oakland, April 1987.

[10] J. L. Cyrus, D. Bledsoe, and P. Harry. Formal
specification and structured design in software
development. Hewlett Packard Journal, 1991.

[11] C. Dalton and T. H. Choo. An operating system
approach to securing e-services, volume 44 of
Communications of the ACM. 2001.

[12] C. Goh and A. Baldwin. Towards a more complete
model of role, 1998.

[13] P. Goldsack and T. Rush. Specifying an electronic mail
system with hp-sl. Hewlett Packard Journal, 1991.

[14] HP. HP-UX 11i Security Containment Administrator’s
Guide. Hewlett-Packard Development Company L.P.,
¡http://docs.hp.com/en/5991-1821/index.html¿, 2005.
[Online; accessed August-2006].

[15] ”JLog”. Jlog - prolog in java, 2006.

[16] M. Kallahalla, M. Uysal, R. Swaminathan, D. E.
Lowell, M. Wray, T. Christian, N. Edwards, C. I.
Dalton, and F. Gittler. Softudc: A software-based
data center for utility computing. Computer,
37(11):38–46, 2004.

[17] V. LLoyd. Planning to implement service management
(IT Infrastructure library). HM Stationary Office,
2000.

[18] N. Murison and A. Baldwin. Secure distributed audit
for shared customer environments. Technical report,
Hewlett Packard Labs, 2006.

[19] S. Pearson, editor. Trusted Computing Platforms:
TCPA technology in context. HP Books, Prentice Hall,
2002.

[20] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, 1996.

[21] M. Sloman. Policy driven management for distributed
systems. Journal of Network and Systems
Management, 2:333–360, 1994.

[22] L. Sterling and E. Shapiro. The Art of Prolog,
Advanced Programming Techniques. The MIT Press,
Cambridge, Massachusetts, 1986.

[23] A. Wool. A quantitative study of firewall configuration
errors. IEEE Computer, 37:62–67, 2004.

