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Abstract
The primary motivation for enterprises to adopt virtual-
ization technologies is the promise of creating a more
agile and dynamic IT infrastructure — with server con-
solidation, high resource utilization, the ability to quickly
add and adjust capacity on demand — while lowering to-
tal cost of ownership and responding more effectively to
changing business conditions. However, effective man-
agement of virtualized IT environments introduces new
and unique requirements such as dynamically resizing
and migrating virtual machines in response to chang-
ing application demands. Such capacity management
methods should work in ensemble with the underlying
resource management mechanisms. Using Xen and its
three different CPU schedulers, we analyze the impact
of the choice of scheduler and its parameters on applica-
tion perfomance and discuss challenges in estimating the
application resource requirements in virtualized environ-
ments.

1 Introduction
Virtualization is emerging as a key mechanism of scaling
the IT infrastructure and enabling enterprises to move
from vertical silos of servers to horizontal pools of re-
sources. Server virtualization provides the ability to slice
larger, underutilized physical servers into smaller, vir-
tual ones. Although virtualization has been around for
more than three decades, it has found its way into the
mainstream only recently, as a consequence of the recent
developments in virtualization software and improved
hardware support. A variety of solutions — both com-
mercial and open source — are now available for com-
modity systems.

The motivation for enterprises to adopt virtualization
technologies is increased flexibility, the ability to quickly
re-purpose server capacity to better meet the needs of ap-
plication workload owners, and to reduce overall costs of
ownership. Virtualization services offer interfaces that
support the life cycle management (e.g., create, destroy,
move, size capacity) of VMs that are provided with ac-
cess to shares of resource capacity (e.g., cpu, memory,
input-output). Furthermore, some virtualization mech-
anisms provide the ability to dynamically migrate VMs

from one physical machine to another without interrupt-
ing application execution. For large enterprises it offers
an ideal solution for server and application consolidation.

Unfortunately, the complexity of these virtualized en-
vironments presents additional management challenges.
Garfunkel and Rosenblum discussed security challenges
in virtualized environments [9]. In this work, we address
resource allocation and capacity management problems
in VM-based environments. There are many workloads,
a finite number can be hosted by each server, and each
workload has capacity requirements that may frequently
change based on business needs. While VMs provide
fault isolation, in an enterprise environment, it is also im-
portant that services receive performance and resource
isolation, meaning that rogue services should not im-
pact the performance of other applications that share the
same infrastructure. Cost effective capacity management
methods are not yet available. Moreover, such capacity
management methods critically depend on the character-
istics of the resource allocation mechanisms of the un-
derlying VM platform.

While our broader premise is that resource allocation
for VMs is in general a hard problem, in this paper we
focus our attention on CPU scheduling. As a concrete
example of the types of challenges involved, we analyze
the CPU schedulers in the Xen VMM [6] in the context
of traditional workload managers. Workload managers
[2, 4] and similar tools were until a few years ago known
only to mainframers and users of large Unix environ-
ments. These technologies have their own requirements
from the underlying resource management mechanisms,
e.g., CPU scheduling of VMs. Using Xen and its evolu-
tion with three different CPU schedulers, we demonstrate
the challenges in choosing the appropriate scheduler fea-
tures and parameters to support desirable application per-
formance, as well as demonstrate the performance im-
pact of these different choices.

2 CPU Schedulers for Virtual Machines
There are compelling reasons to use proportional share
(PS) scheduling for CPU scheduling in VMs. PS
scheduling allocates CPU in proportion to the number
of shares (weights) that VMs have been assigned. Typ-
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ically, PS schedulers are evaluated based on the level of
fairness, i.e., the time interval over which the scheduler
provides fair CPU allocation, and the allocation error
which typically depends on the scheduler algorithm and
its quantum size. An important distinction between fair-
share schedulers and PS schedulers is the time granu-
larity at which they operate. Proportional share sched-
ulers aim to provide an instantaneous form of sharing
among the active clients according to their weights. In
contrast, fair-share schedulers attempt to provide a time-
averaged form of proportional sharing based on the ac-
tual use measured over long time periods.

CPU schedulers can be further distinguished as sup-
porting work-conserving (WC-mode) and/or non work-
conserving (NWC-mode) modes. Under WC-mode, the
shares are merely guarantees, and CPU is idle if and only
if there is no runnable client. It means that in a case of
two clients with equal weights and a situation when one
of these clients is blocked, the other client can consume
the entire CPU. With NWC-mode, the shares are caps,
i.e., each client owns its fraction of the CPU. It means
that in a case of two clients with equal weights, each
client will get up to 50% of CPU, but the client will not
be able to get more than 50% even if the rest of the CPU
is idle.

We also distinguish preemptive and non-preemptive
CPU schedulers. Preemptive schedulers rerun the
scheduling decision whenever a new client becomes
ready. If the new client has “priority” over the running
client, the CPU preempts the running client and executes
the new client. Non-preemptive scheduler only makes
scheduling decisions when the running client voluntar-
ily gives up CPU. Having a preemptive scheduler is im-
portant for achieving good performance of I/O intensive
workloads in shared environment. These workloads are
often blocked waiting for I/O events, and their perfor-
mance could suffer in presence of CPU intensive jobs if
the CPU scheduler is non-preemptive. However, choos-
ing a right quantum size may alleviate this problem.

3 Workload Managers
A core requirement for effective virtualization is work-
load management, i.e., the ability to assign resources
such as CPU, memory, and I/O to applications as pre-
cisely as possible. Workload management enables appli-
cations to provide service levels based on policies driven
by time, price, and performance.

One simple approach for assigning CPU resources to
VMs is static allocation. However, static allocation be-
comes inefficient under varying load: each VM must be
sized to support the application’s peak capacity require-
ments. Yet, most applications rarely need their peak
amount. Workload managers aim to dynamically allo-
cate resources to match application requirements.

The workload manager is layered upon a PS scheduler
used in a NWC-mode. This mode provides performance
isolation among workloads. Each VM receives its par-
ticular service rate regardless of whether any of the other
VMs are using resources. Such isolation can be desirable
in a shared environment for enterprise applications as it
gives the appearance of dedicated access to resources.
Adding new workloads to the pool has little impact on
the performance behavior of workloads already in the
pool.

Each resource container or virtual machine is pre-
allocated specific shares of capacity for short time pe-
riods, e.g., 5 seconds. Then, based on the demands of
the VM and the availability of resources, the allocations
may be adjusted to ensure that each VM gets the capac-
ity it needs. Since the decision of workload manager’s
controller is based on a difference between assigned and
consumed CPU allocation, a scheduler with significant
error in CPU allocation may cause unstable controller
behavior. Thus, a prerequisite requirement to the under-
lying CPU scheduler is a small allocation error (typically,
1%-2%).

4 CPU Schedulers in Xen
Xen is unique among VM platforms because it allows
users to choose among different CPU schedulers. But
this choice comes with the burden of choosing the right
scheduler and configuring it. Over the course of last three
years, three different CPU schedulers were introduced,
all allowing users specify CPU allocation via CPU shares
(weights). Below, we briefly characterize their main fea-
tures that at the time motivated their inclusion in Xen.

Borrowed Virtual Time (BVT) [7] is a fair-share
scheduler based on the concept of virtual time, dispatch-
ing the runnable VM with the smallest virtual time first.
Additionally, BVT provides low-latency support for real-
time and interactive applications by allowing latency-
sensitive client to “warp” back in virtual time to gain
scheduling priority. The client effectively “borrows” vir-
tual time from its future CPU allocation.

The scheduler is configured with a context switch al-
lowance C, which is the real time by which the current
VM is allowed to advance beyond another runnable VM
with equal claim on the CPU (it is the basic time slice
or time quantum of the algorithm). Each runnable do-
main receives a share of CPU in proportion to its weight
weighti. To achieve this, the virtual time of the cur-
rently running Domi is incremented by its running time
divided by weighti.

In summary, BVT has the following features:
• preemptive (if warp is used), WC-mode only;
• optimally-fair: the error between fair share and ac-

tual allocation is never greater than context switch
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allowance C;
• low-overhead implementation on multiprocessors

as well as uni-processors.
The lack of NWC-mode in BVT severely limited its

usage, and led to the introduction of the next scheduler
in Xen.

Simple Earliest Deadline First (SEDF) [11] uses real
time-algorithms to ensure time guarantees. Each do-
main Domi specifies its CPU requirements by a tuple
(si, pi, xi), where the slice si and the period pi together
represent the CPU share that Domi requests: Domi will
receive at least si units of time in each period of length
pi. The boolean flag xi indicates whether Domi is eli-
gible to receive extra CPU time (WC-mode). This slack
time is distributed in a fair manner after all the runnable
domains received their CPU share. One can allocate 30%
CPU to a domain by assigning either (3 ms, 10 ms, 0) or
(30 ms, 100 ms, 0). The time granularity in the definition
of the period impacts the scheduler fairness.

For each domain Domi, the scheduler keeps track of
two additional values (di, ri):
• di - time at which Domi’s current period ends, also

called the deadline. The runnable domain with ear-
liest deadline is picked to be scheduled next;

• ri - remaining CPU time of Domi in the current
period.

In summary, SEDF has the following features:
• preemptive, WC and NWC modes;
• fairness depends on a value of the period.
• implements per CPU queue: this implementation

lacks global load balancing on multiprocessors.

Credit Scheduler [1] is the latest PS scheduler in
Xen featuring automatic load balancing of virtual CPUs
across physical CPUs on an SMP host. Before a
CPU goes idle, it will consider other CPUs to find any
runnable VCPU. This approach guarantees that no CPU
idles when there is runnable work in the system.

Each VM is assigned a weight and a cap. If the cap is 0
then VM can receive extra CPU (WC-mode). A non-zero
cap (expressed as a percentage) limits the amount of CPU
a VM receives (NWC-mode). The Credit scheduler uses
30 ms time slices for CPU allocation. A VM (VCPU) re-
ceives 30 ms before being preempted to run another VM.
Once every 30 ms, the priorities (credits) of all runnable
VMs are recalculated. The scheduler monitors resource
usage every 10 ms. To some degree, Credit’s compu-
tation of credits resembles virtual time computation in
BVT. However, BVT has a context switch allowance
C for defining a different size of the basic time slice
(time quantum), and an additional low-latency support
(via warp) for real-time applications.

In summary, Credit has the following features:

• non-preemptive, WC and NWC modes;
• global load balancing on multiprocessors.
In the next section, we present results of a performance

study comparing these schedulers and their features in
more detail.

5 Performance of CPU Schedulers in Xen
There are two popular I/O models for VMs, as demon-
strated in the evolution of the I/O architecture of Xen. In
its original design [6], the Xen VMM itself contained de-
vice driver code and provided safe, shared access for I/O
hardware. Later, the Xen team proposed a new architec-
ture [8] to allow unmodified device drivers to be hosted
and executed in isolated “driver domains”. Typically,
the management domain Dom0 hosts unmodified Linux
device drivers and plays the role of the driver domain.
This new I/O model results in a more complex CPU us-
age model. For I/O intensive applications, CPU usage
has two components: CPU consumed by the guest vir-
tual machine (VM) and CPU consumed by Dom0 which
hosts the device drivers and performs I/O processing on
behalf of the guest domain.

Finding a satisfactory solution to the CPU allocation
problem for applications executing in VMs requires an-
swering several questions. How does one estimate the
application CPU requirements and project them into two
components: Dom0 and guest domain’s shares? How
sensitive are I/O intensive applications to the amount of
CPU allocated to Dom0? Does allocation of a higher
CPU share to Dom0 mean a better performance for I/O
intensive applications? How significant is the impact of
scheduler parameters on application performance, e.g.,
context switch allowance C in BVT and period Pi in
SEDF?

Further, additional functionality was the main motiva-
tion behind introducing new Xen schedulers. For exam-
ple, SEDF added the NWC-mode missing in BVT, and
Credit added automatic, transparent load balancing of
VCPUs, missing in both BVT and SEDF. To the best of
our knowledge, no one has done a thorough comparative
performance evaluation of the different schedulers, so it
is not immediately clear if configuring different sched-
ulers with the same CPU allocation would result in sim-
ilar application performance.

Our performance study aims to answer some of these
questions. We performed experiments with three appli-
cations:

• web server: We measure web server throughput. In
our workload, we request fixed size (10 KB) files
using httperf [3].

• iperf: We measure maximum achievable network
throughput using iperf [5].

• disk read: Finally, we benchmark disk read
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Figure 1: Impact of schedulers’ parameters on web server performance
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(b) SEDF (WC-mode)
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Figure 2: Dom0’s CPU usage under different schedulers’ parameters
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Figure 3: Dom1’s CPU usage under different schedulers’ parameters

throughput with the dd utility for reading 1000 1-
KB blocks.

Our testbed consists of dual CPU HP workstations
LP200R, with 1-GHz PIII processors, 2-GB RAM and
1-Gbit/s NICs running Xen 3.0.3. In this work, we
present the results for single CPU configurations to sep-
arate comparison of the basic CPU scheduler properties
from the load balancing issues for SMP configurations.
We considered 5 different configurations where we var-
ied the CPU allocated to Dom0 relative to Dom1, e.g., in
Conf 0.25, Dom0 is allocated 0.25 of the CPU allocated
to Dom1.

5.1 Impact of Different Scheduler Parame-
ters and Dom0 Weight

In this section, we aim to answer the following questions:
• How sensitive are I/O intensive applications to the

amount of CPU allocated to Dom0? Does alloca-
tion of a higher CPU share to Dom0 mean a better
performance for I/O intensive applications?

• How significant is the impact of scheduler pa-
rameters on application performance, e.g., context
switch allowance C in BVT and period Pi in SEDF?

Figure 1(a) shows web server throughput for BVT
with context allowance C set to 1 ms, 5 ms, and 50 ms.
The X-axis presents the results of experiments for 5 dif-
ferent configurations where the CPU weights allocated
to Dom0 relative to Dom1 are 0.25, 0.5, 1, 2, and 4.

We first note that the web server throughput is quite
sensitive to Dom0 weight for all three schedulers. Sec-
ond, BVT with larger values for C supports higher web
server throughput. The difference in performance is sig-
nificant: when Dom0 and Dom1 have equal weights
(Conf 1) web server throughput with context allowance
C = 1 ms is 85% lower than for C = 50 ms. Why?
With a larger context allowance, the currently running
domain is allowed to execute longer before it is pre-
empted by another runnable domain. When Dom0 is
assigned a higher weight, it gets a higher priority when it
unblocks. Intuitively, it leads to a situation where Dom0
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preempts the running guest domain on each incoming
interrupt and ends up processing fewer I/O events per
execution period at a higher cost (due to context switch
overhead). Increasing C alleviates this problem because
it lets the guest VM execute for slightly longer before
being preempted by Dom0, and as a result, Dom0 can
more efficiently process multiple I/O events accumulated
over time.

Figures 1(b) and 1(c) show web server throughput for
SEDF in WC and NWC-mode respectively with differ-
ent granularity for periods Pi of 10 ms, 100 ms, and
1000 ms. SEDF with a smaller time period makes a
fair share allocation at smaller time granularity, while
with a larger time period the algorithm may result in
“burstier” CPU allocation. When Dom0 and Dom1

have equal weights (Conf 1) SEDF scheduler in WC-
mode with 10 ms period supports almost 40% higher web
server throughput compared to 1000 ms period (50%
throughput improvement in the NWC-mode).

To get additional system performance metrics and to
gain some insight into the schedulers’ behavior we an-
alyzed monitoring results from XenMon tool [10] that
reports resource usage of different domains and some
scheduling information such as how often a domain has
been scheduled, its average waiting time for CPU alloca-
tion (i.e., being in the run queue), etc.

Figures 2 and 3 show CPU usage by Dom0 and Dom1

for web server experiments performed with BVT and
SEDF under different scheduler’s parameters.

First, we see that Dom0 (which performs I/O process-
ing on behalf of the guest domains) consumes a signif-
icant share of CPU. Second, while the Dom0 weight
is varied in a significant range (from 0.5 to 4 relative
to Dom1 weight) the CPU usage by Dom0 varies in a
rather limited range between 33% to 45% for BVT and
SEDF in WC-mode. Third, that the limited variation in
CPU usage might lead to a drastic difference in applica-
tion performance.

Since we observe the most significant difference in
web server performance under BVT and SEDF sched-
ulers with different parameters for the configuration
where Dom0 and Dom1 have equal weights (Conf 1),
we first analyze and compare resource usage by Dom0

and Dom1 in this configuration. The results are shown
in Table 1 below.

Table 1 shows that different scheduler parameters such
as decreased context switch allowance C in BVT and in-
creased period in SEDF lead to a relatively small increase
in CPU usage by Dom0 while causing a drastic change
in the application performance. In case of WC-mode, one
can say that, additionally, there is also a small decrease
in CPU usage by Dom1, and this smaller CPU allocation
to the application can explain worse web server perfor-
mance and its lower throughput.

CPU Scheduler Type Dom0 Dom1 Tput
Util (%) Util (%) req/sec

BVT, context allow.= 50 ms 35 64 934
BVT, context allow.= 5 ms 38 61 817
BVT, context allow.= 1 ms 43 56 510
SEDF, wc, period=10 ms 35 59 696
SEDF, wc, period=100 ms 41 59 632
SEDF, wc, period=1000 ms 43 53 499
SEDF, nwc, period=10 ms 27 50 615
SEDF, nwc, period=100 ms 35 50 504
SEDF, nwc, period=1000 ms 40 50 419

Table 1: CPU usage by Dom0 and Dom1 and web server
throughput.

However, in case of SEDF scheduler in NWC-mode,
it is not true. For all the three values of period (10 ms,
100 ms, and 1000 ms) the CPU usage by Dom1 is the
same: it is at its maximum value of 50% (note that in
NWC-mode, when Dom0 and Dom1 have equal weights
they are entitled to the maximum of 50% CPU usage).

As for CPU usage by Dom0, we observe that with
larger time periods, SEDF allocates higher CPU share
to Dom0. For example, a period of 10 ms results in
27% of CPU allocation to Dom0, and with period of
1000 ms, the CPU allocation to Dom0 is increased to
40%, while in contrary, web server throughput, drops
from 615 req/sec to 419 req/sec, causing the 33% de-
crease in web server throughput.

At first glance, the lower web server throughput
achieved by the configuration with higher CPU share to
Dom0 seems like a contradiction. To clarify and explain
this phenomenon, we analyze some additional, low level
scheduling and system metrics. XenMon reports an exe-
cution count metric that reflects how often a domain has
been scheduled on a CPU during the measurement period
(e.g., 1 second). XenMon also provides I/O count metric
that is a rough measure of I/O requested by the domain.

Table 2 below shows the number of execution periods
per second and the I/O count per execution period for
BVT and SEDF as discussed above and the configuration
with Dom0 and Dom1 having equal weights (Conf 1).

CPU Scheduler Type ex/sec i/o count/ex
BVT, context allow.= 50 ms 1127 27.3
BVT, context allow.= 5 ms 3080 8.6
BVT, context allow.= 1 ms 6409 2.6
SEDF, wc, period=10 ms 2478 6.9
SEDF, wc, period=100 ms 5124 3
SEDF, wc, period=1000 ms 6859 1.9
SEDF, nwc, period=10 ms 451 34.6
SEDF, nwc, period=100 ms 4635 2.8
SEDF, nwc, period=1000 ms 7292 1.5

Table 2: The number of execution periods per second of
Dom0 and I/O count per execution period in Dom0.
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Figure 4: Evaluating the three schedulers (WC-mode) for different workloads.
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Figure 5: Evaluating the three schedulers (NWC-mode) for different workloads.

Indeed, in case of a smaller context switch allowance
C in BVT or a larger time period in SEDF, both sched-
ulers exhibit a similar behavior: they schedule Dom0

much more often (see the increased number of execution
periods). However, frequently scheduled Dom0 is pro-
cessing fewer I/O events that are accumulated in between
the Dom0 execution periods. This type of scheduling
leads to a higher context switch overhead and to a worse
web server performance. In such a way, while the ob-
served CPU usage by Dom0 is higher, in fact, it performs
less useful work which manifests itself as degraded ap-
plication performance.

Figures 4 and 5 show the performance of the three
workloads for the three schedulers in the WC and NWC
modes respectively. For brevity, we omit detailed analy-
sis of these experiments and summarize below:

• I/O intensive applications are highly sensitive to the
amount of CPU allocated to Dom0. The problem
of adequate CPU allocation to Dom0 and efficient
CPU scheduling becomes even harder when multi-
ple VMs with diverse set of applications are com-
peting for I/O processing in Dom0;

• Application performance varies significantly under
different schedulers even when the schedulers are
configured with the same CPU allocation shares;

• Application performance is significantly worse un-
der NWC-mode when compared to WC-mode (when
using similar shares). NWC-mode is an operational
requirement for workload managers (it is used to
support performance isolation and to deliver re-
source guarantees between applications). Optimiz-

ing CPU schedulers to support a more efficient CPU
allocation under NWC-mode is an often overlooked
problem.

Thus the choice of the CPU scheduler and its configu-
ration can significantly impact application performance
despite supporting similar resource allocation models.
In an environment where different servers may poten-
tially run different CPU schedulers with varying config-
urations, the job of the workload manager becomes even
more complex: migrating a VM to a different node with
more resources does not necessarily result in better appli-
cation performance. Hence, one interesting open ques-
tion is whether virtualization environments must employ
a single CPU scheduler with fixed parameters to success-
fully manage heterogeneous workloads.

5.2 Scheduler CPU Allocation Accuracy
A traditional metric used in scheduler’s analysis and
comparison is the error of CPU allocation.

This metric is also important in practice as we dis-
cussed in Section 3. Since the decision of workload
manager’s controller is based on a difference between as-
signed and consumed CPU allocation, a scheduler with
significant error in CPU allocation may cause unstable
controller behavior and as a corollary, lead to a poor ap-
plication performance.

To evaluate the CPU allocation error in NWC-mode
for SEDF and Credit schedulers, we designed a simple
benchmark, called ALERT (ALlocation ERror Test):
• Dom0 is allocated a fixed, 6% CPU share during
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Figure 6: Benchmarking with ALERT: CPU allocation error under SEDF versus Credit schedulers in Xen.

the all benchmark experiments; it is more than suf-
ficient to run XenMon monitoring tool;

• the guest domain Dom1 executes a cpu-hungry
loop;

• for each benchmark point i the CPU allocation to
Dom1 is fixed to Ai, and each experiment i contin-
ues for 3 min;

• the experiments are performed with Ai = 1%, 2%,
3%, ..., 10%, 20%, ... , 90%.

Note that under this benchmark there are no any con-
tention for resources, i.e., there are always enough CPU
resources for Dom1 to receive its CPU share. ALERT is
truly the simplest test to verify the accuracy of a schedul-
ing algorithm. While it does not guarantee the same CPU
allocation accuracy when there are competing VM’s, one
can easily extend ALERT to test the CPU allocation er-
ror for multiple VMs, as well as for a case with multiple
VCPUs per VM.

Let Uk

i
denote CPU usage of Dom1 measured during

the k-th time interval in benchmark experiment i, e.g.,
we sample CPU usage of Dom1 at the second time scale
in the ALERT experiments.

If a CPU scheduler works accurately we should see
that for X% of CPU allocation to Dom1 it should con-
sume X % of CPU, i.e., ideally, Uk

i
= Ai for any k-th

time interval in benchmark experiment i.
Let Erk

i
denote a normalized relative error of CPU

allocation defined as follows:

Erk

i = (Ai − Uk

i )/Ai

We execute ALERT benchmark under SEDF and
Credit schedulers in Xen. The Credit scheduler uses
30 ms as a time slice for CPU allocation as described
in Section 4. To match the CPU allocation time granu-
larity we use 10 ms period in SEDF in our comparison
experiments.

Figures 6 a) and b) show the normalized relative er-
rors of CPU allocation with ALERT for SEDF and Credit

schedulers respectively at 1 second time granularity, i.e.,
we compare the CPU usage Uk

i
of Dom1 measured at

each second during experiment i with the assigned CPU
allocation value Ai. X-axes represent the targeted CPU
allocation, Y-axes show the normalized relative error.

Each experiment is represented by 180 measurements
(3 min = 180 sec). Thus, each “bar” in Figures 6 a) and b)
has 180 points and the bar’s density somewhat reflects
the error distribution. As Figure 6 a) shows the CPU al-
location errors under SEDF are consistent and relatively
small across all of the tested CPU allocation values. The
Credit scheduler has overall much higher allocation error
as shown in Figure 6 b). The errors are especially high
for smaller CPU allocation targets, i.e., below 30%. 1

Figure 7 presents the distribution of all the errors mea-
sured during the ALERT’s experiments for SEDF and
Credit relatively. We plot the normalized relative errors
measured at 1 second time scale for all the performed
experiments in ALERT (18 × 180 = 3240 data points).
It is a special version of the CDF (cumulative distribu-
tion function), where we plot the CDF of the negative
errors (with errors ordered in decreasing order) normal-
ized with respect to all the errors as well as the comple-
mentary CDF of positive errors (with errors ordered in
increasing order). We call it CDF +

−

.
Figure 7 presents CDF +

−

of both positive and negative
errors with respect to all the errors. This way, we can see
that the Credit scheduler is over-allocating the CPU share
more often than under-allocating one, while for SEDF
the under-allocating is a more typical error. As apparent
from Figure 7 the Credit scheduler has a much higher
CPU allocation error compared to SEDF scheduler:
• for Credit, 10% of the points have the negative er-

rors worse than -9.9% while for SEDF only 0.03%
of points have the error in this range;

1We had to limit the shown error in Figure 6 b) to the range of
[−50%, 100%] for visibility: the actual range of the observed errors is
[−100%, 370%].
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of CPU allocation errors.

• for Credit, 10% of the points have the positive errors
larger than 36.3% while for SEDF there are no error
in this range: the maximum positive error is 9.52%.

Figure 8 shows the normalized relative errors of CPU
allocation at 3 min time scale, i.e., we compare the tar-
geted CPU allocation with average CPU utilization mea-
sured at the end of each ALERT experiment (each exper-
iment runs for 3 min).
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Figure 8: Normalized relative error at a longer time scale
of 3 min.

Overall, SEDF and Credit show comparable CPU al-
location averages over longer time scale. However, the
Credit’s errors are still significantly higher than SEDF’s
errors for CPU allocation in the range [1%, 30%] as
shown in Figure 8.

Since many advanced management tools like work-
load manager controllers (see Section 3) rely and depend
on accurate CPU allocation at a fine time granularity, it
is important to optimize the CPU scheduler behavior and
minimize the allocation error as well as to augment the
provided CPU schedulers with measured allocation error
results.

6 Discussion
As VM technologies evolve, their I/O model will cer-
tainly undergo some changes. However, it is unlikely that
resource allocation problems (such as those described in
this paper) will disappear anytime soon. For instance,
for fully virtualized guests, Xen is considering moving
the I/O emulation out of Dom0 and into per-VM “stub
domains” [12]. In this case, the problem becomes even
more challenging because resources must now be clev-
erly allocated across twice the number of schedulable
entities. Similarly, virtualization-aware I/O devices (with
multiplexing capabilities in hardware) will ease the prob-
lem slightly, however the CPU might still remain on the
critical path for most I/O operations. It is conceivable,
however, that a combination of better I/O hardware and
multi-core processors will alleviate the problem to some
extent in the case where the number of available cores
exceeds the required level of inherent parallelism in the
workload.

Thus far all our experiments have focused on one par-
ticular virtualization platform — Xen. Our motivation
for using Xen, among others, was the availability of its
source code and the freedom to modify it. However, we
stress that as long as the I/O model involves services be-
ing provided by an entity external to the VM, resource
allocation problems will remain. The only difference is
that in Xen’s case (where we have a split device driver
model and a choice of CPU schedulers), the problems are
exposed to the end user and in platforms where the de-
vice drivers are in the hypervisor and there is no choice
in CPU schedulers, the end user is not directly concerned
with these issues. However, the developers of the hyper-
visor will most certainly need to address the problem of
allocating resources to the hypervisor for providing ser-
vices while making decisions on the choice of scheduler
and scheduler parameters.

At first glance, it may seem that the choice of VM
scheduler and parameter configuration is not relevant to
most users because they are often shielded from such
decisions. However, our experience suggests that “rea-
sonable defaults” are not very useful beyond toy exper-
iments. For any serious VM deployment, the platform
will need to give users control over the scheduling pa-
rameters and provide flexible mechanisms that allow a
wide variety of resource allocation policies. Our experi-
ences with Xen’s CPU schedulers suggests that our un-
derstanding of VM resource allocation issues is far from
complete, and opens several interesting avenues for fu-
ture research.
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