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Abstract
We revisit the method of Tsai, Huang, and Zhu for the computation of camera motion pa-

rameters in computer vision. We elucidate some spectral properties of the homography matrices
that arise, which are rank-one perturbations of rotation matrices. We show how to correct for
noise by finding the rank-one perturbation of a rotation closest to a give matrix. We illustrate
some of the inaccuracies and computational failures that can arise when using the formulas given
by Tsai, and we propose new formulas that avoid these pitfalls. A computational experiment
shows that the new methods are indeed quite robust.

1 Introduction

A 3× 3 homography matrix H maps the image of a plane taken by one camera to the image of the
same plane taken by a second camera. The relative position of these two cameras can be described
by a three dimensional rotation and a translation that takes the position of one of the cameras to
the position of the other. The rotation may be described by a 3× 3 rotation matrix, an orthogonal
matrix whose determinant is +1. A suitably scaled homography H satisfies

H = R− xyT (1)

where R is a rotation matrix, x is a scaling of the translation, the difference between the coordinates
of the camera centers, and y is a scaling of the normal of the imaged plane. (Clearly x and y are
determined by their outer product xyT only up to a mutual scaling.) We call any matrix of the
form (1) a rank-one perturbation of a rotation or ROPR. The basic problem that we consider is,
given the ROPR matrix H, to compute a triple R, x, and y, which are the motion parameters,
so that (1) holds. In all discussions of ROPRs we shall normalize y so that ||y|| = 1, where || · ||
denotes the 2-norm, so as to pin down the mutual rescaling. This still leaves open the signs, since
changing the signs of both x and y changes nothing, but we won’t specify the sign. A unit vector
is a vector z satisfying zT z = ||z||2 = 1.

The basic problem was solved by Tsai, Huang, and Zhu [5]. They explained the mathematics
using geometric arguments, and derived formulas for the computation of the motion parameters.
Some things, however, were left for us to consider. In this paper we shall state and solve three
problems that, in their solution and in the context of the Tsai paper, complete a full theory of the
computation of the motion parameters. First we prove properties, relevant to the computation, of
a ROPR. We discuss the existence and uniqueness of solutions of (1) and derive some new results.
Second, based on a theorem of Nievergelt, we show how to find the ROPR closest to a given matrix.
Finally, we discuss inaccuracies in the computed results that can arise from roundoff error when the
formulas of Tsai are used, and we present alternatives that are at once simpler and more accurate.
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2 Properties of a rank-one perturbation of a rotation

In this section we shall determine the existence and uniqueness of solutions to the basic problem.
Our discussion hinges on the multiplicity of the singular values of H. We shall prove that the
second singular value of any ROPR is one. The first singular value may be greater than or equal
to one and the third may be less than or equal to one. In the general case all three of the singular
values are different; the special cases can arise when the rotation of the image-plane normal vector
is colinear with the translation vector, in other words when x is a scalar multiple of Ry. We shall
show that the basic problem has infinitely many solutions when H has three singular values equal
to one, has a unique solution when two of the singular values of H are equal to one, and has exactly
two solutions when the singular values of H are distinct.

Every matrix H has a singular value decomposition

H = UΣV T . (2)

Here U and V are orthogonal matrices, UT U = V T V = I, and

Σ =

 σ1 0 0
0 σ2 0
0 0 σ3

 (3)

is a diagonal matrix whose diagonal elements, the singular values of H, are given in nonincreasing
order: σ1 ≥ σ2 ≥ σ3. We will use the notation D(a, b, c) for the diagonal matrix of order 3 having
a, b,, and c on the diagonal; so Σ = D(σ1, σ2, σ3). The singular values of H are the positive square
roots of the eigenvalues of HHT , the columns of U are eigenvectors of HHT and the columns of V
eigenvectors of HT H.

We introduce the vector w = Ry and the matrix B ≡ HHT − I. It is elementary that the
matrix H is orthogonal if and only if B = 0, if and only if Σ = I.

If H is a ROPR, then

B = xxT − wxT − xwT

= (x− w)(x− w)T − wwT . (4)

We shall also make reference to C ≡ HT H − I, which when H is a ROPR satisfies

C = (xT x)yyT − (RT x)yT − y(RT x)T . (5)

As addition of I does not change eigenvectors, we see that U consists of eigenvectors of B and V of
eigenvectors of C. If H is a ROPR then because the columns of B are all linear combinations of x
and Ry, it cannot have full rank: rank(B) ≤ 2. Moreover, rank(C) = rank(B), since the columns
of C are linear combinations of RT x and RT Ry. We deal in turn with the three possibilities,
rank(B) = 0, 1, or 2, below.

Lemma 1 If z is a unit vector then the matrix X ≡ I − 2zzT is symmetric and orthogonal, and
det(X) = −1.

Proof. It is straigtforward that XT X = I, so that X is symmetric and orthogonal. Extend
z to an orthonormal basis let Z be the orthogonal matrix with this basis as its columns. Then
XZ = Z − 2zzT Z = ZD(−1, 1, 1) whence det(X) = det(ZT XZ) = −1. QED
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Matrices of the form I − 2zzT with unit-length z are called elementary reflectors or Householder
transformations after Alston Householder, who pioneered their use in matrix computation [3].

Thanks to the SVD, the basic problem can be recast as the problem of finding a rank-one
perturbation of a diagonal matrix that is orthogonal and has determinant of the correct sign,
namely

∆ ≡ det(U) det(V ) ,

Lemma 2 The triple R, x, and y solves ( 1 ) if and only if the matrix

Q ≡ Σ + (UT x)(V T y)T

is orthogonal and det(Q) = ∆.

Proof. If Q has the specified properties then R = UQV T = H +xyT is a rotation and is a rank-one
perturbation of H. If R, x, and y satisfy ( 1 ) and R is a rotation then UT RV = UT (H+xyT )V = Q
is orthogonal and has determinant equal to ∆. QED

We consider first the case in which rank(B) = 0.

Lemma 3 The ROPR H is orthogonal (and Σ = I, and B = 0) if and only if either x = 0 or
x = 2Ry. In the former case, det(H) = 1 and in the latter, det(H) = −1.

Proof. By (4), B = 0 if and only if x − w = ±w if and only if x = 0 or x = 2w. When x = 0,
H = R is a rotation and its determinant is 1. When x = 2w = 2Ry, H = R−2RyyT = R(I−2yyT )
and hence det(H) = det(I − 2yyT ) = −1 by Lemma 1. QED

We now completely understand the case B = 0, Σ = I, and H is orthogonal. If the determinant
of H is one, then the displacement vector x = 0 and there is no way to recover the image plane
normal vector y from H; there are infintely many solution triples. Indeed R = H, x = 0, y
satisfy (1) for any unit-length y. On the other hand, if the determinant of H is −1, there are again
infinitely many solutions. Let z be any unit vector, and X = I−2zzT the corresponding elementary
reflector. Let R = HX = H(I − 2zzT ) = H − (2Hz)zT . Clearly, det(R) = det(H) det(X) = 1, so
R is a rotation. The triple R, x = −2Hz, and y = z satisfies (1), and is clearly distinct for each
unit vector z.

We summarize this in the following.

Theorem 1 Let H be orthogonal. Then H is a ROPR. If det(H) = 1 then R = H, x = 0, and
y = z satisfy (1) for any unit vector z. If det(H) = −1 then R = HX, x = −2Hz, and y = z
satisfy (1) for any unit vector z and corresponding elementary reflector X = I − 2zzT .

The case rank(B) = 0 now being settled, we consider the next possibility, in which rank(B) = 1,
or equivalently the case in which two of the singular values of H are unity. As shown next, this
case arises when x = αRy with α 6∈ {0, 2}.

Lemma 4 If x = αRy then the symmetric matrix B in (4) has

(i) one negative eigenvalue if 0 < α < 2 ,

(ii) no nonzero eigenvalue (that is, B = 0) if α = 0 or α = 2 ,
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(iii) one positive eigenvalue if α 6∈ [0, 2] .

Proof. If x = αRy then B = (α2 − 2α)wwT . The vector w = Ry is nonzero. Thus, rank(B) ≤ 1,
at least two of the eigenvalues of B are zero, and the third is given by α2 − 2α. QED

Suppose we have a solution R, x, y to the basic problem. From Lemma 2 we see that with the
definitions u ≡ UT x and v ≡ V T y we have that Q = UT RV = Σ+uvT is orthogonal. We compute
that

I = QQT = Σ2 + (Σv)uT + u(Σv)T + uuT

where we have used 1 = yT y = vT (V T V )v = vT v. Suppose without loss of generality that it is the
first singular value σ1 that is different from, indeed greater than, unity. Then we have that

I − Σ2 =

 1− σ2
1 0 0

0 0 0
0 0 0


= (Σv)uT + u(Σv)T + uuT

≡ M .

The matrix M evidently has rank one, and we can therefore conclude that Σv is a scalar multiple
αu, and that M is therefore (1 + 2α)uuT . The form of M then implies that only the first element
of u is nonzero, and then this is also true of Σv, and hence of v, and finally the normalization of
v leads to the conclusion v = (1, 0, 0)T and u = (u1, 0, 0)T where u1 is a root of the quadratic
u2

1 +2σ1u1 +(σ2
1−1) = 0. The solution u1 = 1−σ1 leads to Q = I and is appropriate when ∆ = 1.

The other solution, u1 = −1− σ1 leads to Q = D(−1, 1, 1) and is correct when ∆ = −1.
When it is the third rather than the first singular value that differs from one, then v = (0, 0, 1)

and u = (0, 0, u3), but nothing essential changes. This proves

Theorem 2 Let H have two singular values equal to one, so that rank(B) = 1. Then H is a
ROPR and there is a unique solution to (1). When B has a positive eigenvalue then x is a multiple
of the first column of U and y is the first column of V . When B has a negative eigenvalue then x
is a multiple of the third column of U and y is the third column of V .

In Tsai, the possibilities in the rank-deficient cases are further limited, perhaps by what is
physically realizable in a two-camera situation. Thus, the fully degenerate case (Σ = I) is identified
with a translation x equal to zero; the other possibility is ignored. In the partly degenerate case
in which w and x are linearly dependent, it is assumed or perhaps shown via geometric arguments
that σ1 = σ2 > σ3, in other words that B is negative semidefinite. We think there is considerable
value to considering the fully general algebraic rather than geometric problem of reconstructing
the constituent terms making up a otherwise completely arbitrary ROPR. So we consider all the
possibilities here, even if they cannot be realized with physical cameras.

Moving ahead, we consider for the remainder of this section the generic case, in which rank(B) =
2 and the singular values of H are distinct.

Lemma 5 Let H be a ROPR and let B be given by (4). B has rank 2 if and only if x and Ry are
linearly independent. In that case, the singular values of H satisfy

σ1 > σ2 = 1 > σ3 . (6)

Furthermore, x is not an eigenvector of B, and y is not an eigenvector of the matrix C of ( 5 ).
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Proof. The matrix uuT − vvT has the span of {u, v} as its range. It thus has rank 2 if and only
if u and v are linearly independent. The vectors x and w are linearly independent if and only if
x− w and w are linearly independent. These observations and (4) prove the first assertion.

It is straightforward to show that when u and v are linearly independent, the matrix A =
uuT − vvT has one positive and one negative eigenvalue (and the rest are zero). Indeed, if z is in
the span of u and v and is orthogonal to v then zT Az = (zT u)2 > 0, and if z is in the span of u
and v and is orthogonal to u then zT Az = −(zT v)2 < 0, which implies that A is indefinite and
hence has nonzero eigenvalues of both signs. Since B is of this form, and has rank 2, we know
that its eigenvalues are β1 > β2 = 0 > β3. Since HHT = I + B, the singular values of H and the
eigenvalues of B are related by σ2

i = 1 + βi. This allows us to conclude that the ordering relations
in (6) hold.

Again, if u and v are linearly independent and A = uuT − vvT then z = u + v is not an eigen-
vector of A. For if it were, say Az = λz, then equating coefficients of u and v (valid due to their
independence) we find that λ = uT u+uT v = −(vT v +uT v) which leads to −2uT v = uT u+ vT v, or
0 = (u + v)T (u + v) which implies that u = −v, which is impossible because they were assumed to
be linearly independent. Now note that x is the sum of x−w and w, and that ( 4 ) holds, whence
we can conclude that x is not an eigenvector of B. Similar reasoning applied to y shows that it is
not an eigenvector of C. QED

Lemma 5 has as an immediate consequence the following:

Theorem 3 The second singular value of a ROPR is equal to one.

Proof. If rank(B) = 0 then Σ = I; all of the singular values are equal to one. If rank(B) = 1 then
either the largest singular value is greater than one or the smallest is less than one, but the other
two, and always the second, are equal to one. If rank(B) = 2 then Lemma 5 applies. Finally, as
noted above, rank(B) > 2 is impossible. QED

Let A(:, k) denote the kth column of the matrix A.

Lemma 6 Let H be a ROPR that is not orthogonal. Then U(:, 2) is orthogonal to both x and Ry,
and V (:, 2) is orthogonal to both y and RT x.

Proof. If x and Ry are linearly dependent then so are RT x and y. In that case, and since B 6= 0,
we have by Lemma 2 that both x and Ry are multiples of either U(: .1) or of U(:, 3), and similarly
that both RT x and y are multiples of either V (: .1) or of V (:, 3). In case rank(B) = 2, Lemma 5
shows that the eigenvalues of B are distinct, and the second of them is zero. By ( 4 ), the one-
dimensional null space of B is the set of vectors orthogonal to both x and Ry. And U(:, 2) is the
normalized null vector of B, so it is orthogonal to x and Ry. Similar arguments based on HT H
yield the corresponding conclusion concerning V (:, 2). QED

Lemmas 5 and 6 give us the following guide to where to look for the vectors x and y.

Corollary 1 When the ROPR H is not orthogonal, x is a linear combination of U(:, 1) and U(:, 3)
and y is a linear combination of V (:, 1) and V (:, 3). Moreover, when the singular values of H are
distinct, then x = aU(:, 1)+cU(:, 3) and y = bV (:, 1)+dV (:, 3) and none of the four scalars a, b, c, d
is zero.
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Suppose that H is a ROPR, not orthogonal. Then

UT x =

 a
0
c


and

V T y =

 b
0
d


We know (Theorem 3) that σ2 = 1. Thus,

Q = Σ + UT x(V T y)T

=

 σ1 + ab 0 ad
0 1 0
cb 0 σ3 + cd

 (7)

Clearly, the 2× 2 matrix

Q2 = Q2(a, b, c, d) =

(
σ1 + ab ad

cb σ3 + cd

)
(8)

is orthogonal along with Q, and it has the same determinant.
Thus, the problem of computing the motion parameters reduces to the diagonal, 2 × 2 case.

Given the computed first and third singular values

σ1 > 1 > σ3 (9)

of H, (suitably adjusted as above to enforce these relations) determine the scalars a, b, c, and d so
that Q2(a, b, c, d) is orthogonal and has the desired determinant, namely ∆.

An orthogonal matrix of order 2 having positive determinant is a plane-rotation matrix of the
form (

C S
−S C

)
(10)

where C = cos θ and S = sin θ. Any orthogonal matrix of order 2 whose determinant is −1 is of
the form (

C S
S −C

)
(11)

for a sine, cosine pair.
While we already showed that none of the four scalars can be zero, we now have another simple

proof of the fact. We claim that the off-diagonal elements of Q2 are nonzero, which implies this.
For if they, the sines, are zero, then the diagonal elements, the cosines, are ±1. In order for this to
occur and in view of ( 9 ), we would need that both ab and cd be nonzero, whence the off diagonal
entries would also be nonzero, a contradiction. And if the sines are nonzero then by ( 8 ) none of
the four parameters can vanish.

Suppose that Q2(a, b, c, d) has the desired properties. We claim that Q2(−a,−b, c, d) has them
as well. In the case that Q2 is a rotation, the sign change alters Q2 from the plane rotation through
the angle θ to the rotation through the angle −θ; it is still a rotation, orthogonal, with determinant
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one. When ∆ = −1, the change in the signs of a and b again changes only the signs of the off-
diagonal elements of Q2, leaving it orthogonal with determinant −1. As none of the four scalars
is zero, this sign change represents an actual change to the motion parameters R, x, and y. Thus,
when rank(B) = 2, the solutions to the basic problem come in pairs. We need to prove now that
there is just one pair that satisfy ( 1 ), always up to mutual rescaling of x and y.

To do so we simply note that the requirements on Q2 amount to a set of quadratic equations,
and that these admit exactly two real solutions. We have two equations corresponding to the form
of Q2, either ( 10 ) or ( 11 ), and one equation that amounts to C2 + S2 = 1. Because we know
that d 6= 0, for the moment we take d = 1, and we renormalize later. Let Y ≡ 1 + b2 and let
D ≡ σ1 − σ3. From the assumption that Q2 is a plane rotation we derive the requirement

Y =
σ2

1 − σ2
3

1− σ2
3

.

Thus, with Y uniquely determined, we have only two possiblities for b, namely b = ±
√

Y − 1. It
turns out that c = D/Y is unique and a = −bc changes sign along with b. Similar elementary
algebra solves the case ∆ = −1 as well.

Theorem 4 Let H have SVD ( 2 ) with distinct singular values satisfying ( 6 ). Up to reversal of
the signs of x and y, there are ezactly two triples R, x, y with ||y|| = 1 satisfying ( 1 ), corresponding
to the two sets, (a, b, c, d) and (−a,−b, c, d) of scalars for which the matrix Q2 of ( 8 ) is orthogonal
and has determinant ∆.

Theorem 5 A matrix is a ROPR if its second singular value is one.

Proof. Let H be the given matrix. There are three cases. If all of the singular values of H are one,
then Theorem 1 shows that H is a ROPR. If exactly one of the singular values of H differs from
one, then Theorem 2 shows that H is a ROPR. And if the second is the only one of H’s singular
values equal to one, then Theorem 4 shows that H is a ROPR. QED

Note that Theorems 3 and 2 are the two halves of a proof that H is a ROPR if and only if its
second singular value is equal to one. An analog of this result holds for matrices of arbitrary order.
All the singular values except possibly the first and last are one.

3 Finding the closest ROPR

A measured homography might be corrupted by noise and hence lose the ROPR property. How to
recover it best? An obvious question is whether one can compute the closest ROPR to the given
matrix H. A theorem of Nievergelt gives us a convenient way to do this. Compute the SVD (2) –
(3) of H. If σ2 6= 1 then H is not a ROPR. To find the closest ROPR, set σ2 equal to one, set σ1

to one of it is not already greater than or equal to one, and set σ3 to one if it is not already less
than or equal to one. After this adjustment of the singular values, the reconstituted Ĥ = UΣV T

is the ROPR closest to the given H in any unitarily invariant norm (such as the Frobenius norm).
This follows from a theorem of Nievergelt [4] When a is an n-vector we write D(a) for the diagonal
matrix of order n having the elements of a on the diagonal.
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Theorem 6 Let A be a given matrix, with SVD A = UAΣAV T
A . Let a be the ordered vector of

singular values, a = (α1 ≥ α2 ≥ · · · ≥ αn), for which ΣA = D(a). Let || · || be a unitarily invariant
matrix norm. Among all matrices of the same shape as A whose singular values satisfy a given set
of linear equations, the closest approximation in the given norm to A is the matrix B = UAΣBV T

A

that has the same singular vectors as A and whose singular values ΣB = D(b) where the vector
b = (β1 ≥ β2 ≥ · · · ≥ βn) is nonincreasing, satisfies the given linear equations and is closest to a
among all such vectors. It is closest with respect to the induced vector norm ||u−v|| = ||D(u−v)||,
the second quantity measured with the given matrix norm.

Our procedure for adjusting the singular values to enforce the linear equation σ2 = 1 finds a
sorted vector of singular values closest to the given computed singular values, whether we are using
the matrix Frobenius norm (for which the induced vector norm is the 2-norm, and the closest vector
is ours, uniquely) or the matrix spectral norm, for which the induced vector norm is the uniform
norm, and our adjusted vector is closest although possibly not uniquely so.

4 Computation of the parameters

Let H = R− xyT be a given ROPR. How can we compute the motion parameters?
We begin with the computation of the singular value decomposition H = UΣV T . If the com-

puted singular values fail to satisfy (6) we adjust them to make sure that it holds. This process
is

1. If σ1 < 1 set σ1 = 1.

2. Set σ2 = 1.

3. If σ3 > 1 set σ3 = 1.

This ensures that we are working with the singular values of a ROPR, in fact to the ROPR closest
to UΣV T .

The solution procedure, naturally, checks the singular values, and considers three distinct cases.
In each case, we show how the four scalars a, b, c, and d are computed. The vectors x and y are
then obtained as x = aU(:, 1)+ cU(:, 3) and y = bV (:, 1)+ dV (:, 3), followed by rescaling to get the
desired normalization of y. Given the four scalar parameters, we may determine Q from (7), and
R as R = UQV T .

When all three of the singular values of H are one, there are infinitely many solutions to the
basic problem. In addition to indicating that this is the case, we can provide an exemplary solution
by taking

a = b = 0;

and
c = d = 0 when ∆ = 1

while
c = −2, d = 1 when ∆ = −1 .

When σ1 > 1 = σ3 we compute
c = d = 0;

and
a = 1− σ1, b = 1 when ∆ = 1
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while
c = −1− σ1, b = 1 when ∆ = −1 .

When σ1 = 1 > σ3 we compute
a = b = 0;

and
c = 1− σ3, d = 1 when ∆ = 1

while
c = −1− σ3, d = 1 when ∆ = −1 .

In the general case of rank(B) = 2, Tsai offered the following formulas for computation of the
elements of Q and the scalars a, b, c, d:

b = ±
(

σ2
1 − 1

1− σ2
3

)1/2

C =
σ1 + ∆σ3b

2

1 + b2

S = ∓(1− C2)1/2

a = −S

c = σ3 −∆C

d = 1 .

The two solutions are obtained with the two choices for the sign of b, the sign of S (and thus of a)
is always taken to be the opposite of the sign of b. 1

There are several things to observe about these formulas, from the numerical analysis view-
point. First, square roots are involved, and these may be costly. Second and more important, the
occurrences of the differences of the squares of computed quantities, such as 1 − C2 and 1 − σ2

3,
is problematic. Suppose that x is known to nearly full working precision Suppose, furthermore,
that x is close to one: x = 1 − δ and the difference δ is also quite small. When we square x we
get 1 − 2δ + δ2, and if |δ| is smaller than the square root of machine precision, then this rounds
to 1 − 2δ. This roundoff loses important information; the loss is revealed when we compute the
difference 1 − x2 = 2δ, which is now known to only half of machine precision. When we take the
square root, we therefore get a result for which only half the digits are meaningful. That these
things lead to difficulties will be shown by an example below. The problem at hand is in fact one
of solving a certain quadratic equation. 2

The Tsai formulas can produce poor results in floating point for matrices H that are close to
orthogonal. Our criterion is backward error; in other words, we want the computed R, x, and y
produce small residuals: ||H − (R− xyT )|| and ||I −RT R||.

All the computations reported here were done in Matlab on a Pentium PC. On that machine,
the machine precision is

1Note that Tsai work with an arbitrarily scaled H, so that they do not assume that σ2 = 1. Their formulas use
σ2 explicitly, but what they compute is unchanged when H and hence its singular values are divided by the original
σ2. So, in effect, we have given the Tsai formulas in their application to a matrix that has been rescaled to make it
a ROPR.

2The difficulties arising out of the use of textbook formulas in general and for quadratic solvers in particular were
described by Forsythe in the 1960s [1, 2].
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>> eps
2.220446049250313e-016

This is the smallest floating-point number ε for which, in floating-point arithmetic, 1 + ε > 1. It is
an upper bound on the relative error due to roundoff of all the individual floating-point operations.

We start with a ROPR whose singular values are all close to one.

H =

8.704900920846258e-001 -1.934310566425376e-001 -4.525830596792723e-001
2.129569923832601e-001 9.770290004164705e-001 -7.978204075402978e-003
4.437300068482838e-001 -8.943577959264387e-002 8.916865605979933e-001

(svd(H) - 1) / eps

5.000000000000000e+000
0

-1.500000000000000e+000

so σ1 = 1 + 5ε and σ3 = 1− 3ε/2.
Using the Tsai formulas we compute

R =

8.704900825471498e-001 -1.934310566425377e-001 -4.525830780234804e-001
2.129569922151317e-001 9.770290004164706e-001 -7.978208563136184e-003
4.437300256391724e-001 -8.943577959264365e-002 8.916865512470823e-001

x =

8.704900944689936e-001
2.129569924252918e-001
4.437300021505610e-001

y =

-3.847463276194947e-008
0

-2.107342425544702e-008

There is no problem with orthogonality:

>> I - R’*R
1.110223024625157e-016 0 0

0 -2.220446049250313e-016 -2.220446049250313e-016
0 -2.220446049250313e-016 -2.220446049250313e-016
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but there is a considerable problem with the residual:

>> H - (R-x*y’):

-2.395431064616815e-008 1.665334536937735e-016 9.436895709313831e-016
-8.025313719128846e-009 -1.110223024625157e-016 1.561251128379126e-016
-3.586323743531850e-008 -2.220446049250313e-016 4.440892098500626e-016

We have evidently lost half of the machine precision in the first column of the residual. The
difficulty is with the formula for S. The correct S is of size O(ε), but the roundoff in forming
S2 = (1 − C2) makes this quantity, which in exact arithmetic is O(ε2), of size O(ε), whence we
compute an approximate S of size O(

√
ε).

How can we correct the problem? We shall give alternative computational formulas, that avoid
the roundoff error issues. The key is to work through the problematic roundoff sensitive places in
exact arithmetic (algebraic simplification of the formulas). By algebraic simplifications, we avoid
taking the square root of the difference of squares of computed quantities that can be close to one
another. Instead we compute

b2 = σ1−1
1−σ3

σ1+1
σ3+1

b =
√

b2

d = 1 .

If ∆ = 1 then
c =

(1− σ3)(1 + σ3)
σ1 + σ3

and
a = −cb ,

while if ∆ = −1 then

c =
(1− σ3)(1 + σ3)

σ3 − σ1

and
a = cb .

We complete the calculation of R thus:

C = σ3 + c

and
R = UQV T

where

Q =

 ∆C 0 a
0 1 0
cb 0 C

 .

Note that the off-diagonal elements of Q2 are now computed as the product cb rather than from
the relation S =

√
1− C2, avoiding the concellation and loss of precision when S = O(ε). It is easy

to see that in the difficult case in which both σ1 − 1 and 1− σ3 are O(ε), the computed b = O(1)
and c = O(ε), so that the computed S = O(ε) as it should be.
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5 Computation of the parameters: Experiment

We tested the proposed procedures for a set of matrices generated so as to present some challenges
to the software. We formed ROPR test matrices by generating a pair of random 3× 3 orthogonal
matrices U and V , chosen by creating random rotation matrices, and then negating the third
column of V in half the cases so as to get some with positive and some with negative determinant.
We specified the singular values, keeping σ2 = 1 of course, and taking σ1 and σ3 either far from, or
very close to (a small multiple of machine precision) or exactly equal to one. Although we begin
with specified singular values, we don’t give these to the software. Rather we form H = UΣV T

and present it. The subsequent computation of the SVD of this computed H will, due to roundoff
in forming it and in computing its SVD, yield slightly perturbed singular values. We view this as
an advantage, causing additional, and realistic, difficulties to be presented to our code.

In tests on over 100,000 such randomly generated matrices, our code never fails to produce
accurate results. We check the determinant of R, check its orthogonality by measuring the largest
element of RT R− I, and check the largest element of the residual H − (R− xyT ). We have never
found a case in which the error exceeds 16ε where ε is the machine precision. As above, the tests
were done in Matlab running on a Pentium PC.

The Tsai formulas were also tested in this way, and found to suffer from a number of other
failures. They fail with a divide-by-zero if σ2 = σ3. They can attempt to take the square root of
a tiny negative quantity due to roundoff. Most important is the failure illustrated above, in which
the use of the computation of a sine from the relation sin =

√
1− cos2 leads to the loss of half the

working precision in cases in which the correct rotation is very close to the identity.

6 Conclusion

We have described several noteworthy properties of the SVD of a rank-one perturbation of a
rotation, which is a matrix of the form R− xyT with R a rotation. Using these facts, we were able
to show how to find the rank-one perturbation of a rotation closest to a given matrix. And we
were have given numerically robust formulas that allow the efficient and accurate computation of
the parameters R, x, and y given H = R− xyT .

References

[1] George E. Forsythe. How do you solve a quadratic equation. Technical Report CS 40, Stanford
University, 1966.

[2] George E. Forsythe. What is a satisfactory quadratic equation solver? In Bruno Dejon and
Peter Henrici, editors, Constructive aspects of the fundamental theorem of algebra: Proceedings
of a symposium conducted at the IBM Research Laboratory, Zürich-Rüschlikon, Switzerland,
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