

Peer-to-peer Ink Messaging across Heterogeneous Devices and Platforms
Manoj Prasad A, Muthuselvam Selvaraj and Sriganesh Madhvanath
HP Laboratories India, Bangalore
HPL-2007-202
December 20, 2007*

Digital Ink
Markup
Language, Ink
Messaging,
XMPP

Pen and touch interfaces for personal and shared devices are becoming
increasingly relevant today, in the context of mobility and ease of use. A
key capability enabled by pen-interfaces is that of messaging using
handwritten, as opposed to text messages. Not only are ink messages
easier to enter than text messages (especially when a full keyboard is not
present), they allow the incorporation of other elements such as drawings
and doodles into instant messaging. However since ink formats are
typically platform-specific and proprietary, messaging across different
platforms such as Tablet PCs and Linux-based PDAs poses an
interoperability problem. In this paper, we show how Ink Markup
Language (InkML), an open draft standard from W3C, can be used to
address this problem. In particular, we propose an Ink messaging protocol,
and a system architecture for implementing the protocol operations. We
have implemented this protocol as an extension to the Extensible
Messaging and Presence Protocol (XMPP), an open IETF standard.

 Internal Accession Date Only Approved for External Publication
To be published and presented at ACM COMPUTE 2008, Bangalore
© Copyright 2007 Hewlett-Packard Development Company, L.P.

Peer-to-peer Ink Messaging across Heterogeneous
Devices and Platforms

Manoj Prasad Aο, Muthuselvam Selvaraj* and Sriganesh Madhvanath
OST/HP Labs India and HP GDAS*

Bangalore, India

{manoj.prasad, muthuselvam.selvaraj, srig}@hp.com

ο Formerly intern at HP Labs India

ABSTRACT
Pen and touch interfaces for personal and shared devices are
becoming increasingly relevant today, in the context of mobility
and ease of use. A key capability enabled by pen-interfaces is that
of messaging using handwritten, as opposed to text messages. Not
only are ink messages easier to enter than text messages
(especially when a full keyboard is not present), they allow the
incorporation of other elements such as drawings and doodles into
instant messaging. However since ink formats are typically
platform-specific and proprietary, messaging across different
platforms such as Tablet PCs and Linux-based PDAs poses an
interoperability problem. In this paper, we show how Ink Markup
Language (InkML), an open draft standard from W3C, can be
used to address this problem. In particular, we propose an Ink
messaging protocol, and a system architecture for implementing
the protocol operations. We have implemented this protocol as an
extension to the Extensible Messaging and Presence Protocol
(XMPP), an open IETF standard.

Categories and Subject Descriptors
H.4.3 [Communications Applications]: Messaging using
handwritten messages.

Keywords

Digital Ink Markup Language, Ink Messaging, XMPP

1. INTRODUCTION
Instant Messaging has overtaken email as the most common
application on the internet, and is rapidly becoming available on a
number of portable devices and platforms. In addition to its social
uses, messaging is also finding widespread use in domains
ranging from customer support and remote healthcare, to active
learning in classrooms. Digital ink is an important modality for
messaging along with text, images and voice. The incorporation
of digital ink in the popular IM application greatly enhances the
power of the application in more ways than one. For instance, a
user can communicate rapidly using handwritten messages in any
language as well as drawings, without having to learn the text

input mechanism of the specific device (Figure 1). Ink can also be
overlaid on text and graphic content to enable new kinds of
collaboration and social networking experiences. For example,
one can imagine a group of friends using ink messages to interact
over a city map on their GPS-enabled mobile devices, or over
textbook content in a classroom.

Figure 1: Peer-to-Peer ink messaging scenario across different

devices
Unfortunately since ink formats are typically platform-specific
and proprietary; messaging across different platforms such as
Tablet PCs and Linux-based PDAs poses an interoperability
problem. For example, User 1 may, have a Windows PC with an
external graphics tablet as digitizer, while User 2 may use a Linux
PDA with built-in digitizer (Figure 1). In order to provide digital
ink-based instant messaging capability in a heterogeneous
environment, one must necessarily address the following issues:
(i) Representation of digital ink captured so that it may be
understood by different ink-enabled platforms, (ii) Differences
with respect to the constituent channels of ink data (such as X, Y,
pressure, and so forth) captured by the devices, and differences in
the resolution and range of their channel values, (iii) Differences
in form factor and display size, and implications for rendering of
ink, and (iv) An efficient protocol for messaging of ink messages
that deal with the above differences.

The paper is organized as follows. Section 2 of the paper briefly
introduces the two standards used in our solution: InkML and
XMPP. Section 3 of the paper describes related work. Section 4
describes the ink messaging protocol we have devised.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Compute 2008, Jan 18-20, Bangalore, Karnataka, India. © 2008 ACM
ISBN 978-1-59593-950-0/08/01...$5.00

Architectural and implementation details of our solution are
provided in Section 5. The paper concludes with a discussion of
next steps and future research directions.

2. INK MESSAGING USING INKML and
XMPP
Our proposed solution for peer-to-peer ink messaging addresses
issues identified earlier, by leveraging Digital Ink Markup
Language (InkML) [1], a draft specification from W3C for the
platform and device-independent description of digital ink.
InkML is an XML based markup language for representing digital
ink envisioned as an open alternative to the proprietary ink data
formats from device vendors. InkML is easily extensible to meet
application specific requirements. In addition to allowing accurate
and platform-independent representation of the various
“channels” or “dimensions” of digital ink such as position,
pressure, color, width, and so on, InkML includes elements for
grouping ink, transforming ink in various ways, and attaching
metadata and semantic interpretation to ink. InkML also supports
archival and streaming modes of using digital ink. The reader is
referred to the most recent draft specification of InkML [1] for
details of these, and the other core components of InkML.

For our implementation, we chose the Extensible Messaging and
Presence Protocol (XMPP) [2] as the basic protocol for
implementing our Ink messaging protocol. XMPP is an open
XML communications protocol developed by the Jabber open-
source community in 1999, formalized by the IETF in 2002-2004,
and continuously extended through the standards process of the
XMPP Standards Foundation. The core XMPP protocol provides
the basic instant messaging and presence features. Beyond instant
messaging, it provides a generalized, extensible framework for
incrementally exchanging XML data which can be applied to
develop a variety of distributed application services.
We have implemented our ink messaging protocol as an XMPP
Extension Protocol (XEP) [3] to support InkML based Ink
messages.

3. RELATED WORK
Messaging applications with support for digital ink messages may
now be found on ink-enabled platforms such as TabletPC;
however their realm of applicability is limited in scope by the
proprietary formats of digital ink used for ink messages (e.g.
Microsoft’s Ink Serializable Format (ISF)), and the assumptions
they make regarding the device’s capabilities (such as support for
.NET or the ability to capture certain channels of digital ink at a
certain sampling rate and resolution. We believe that while ink as
a data type has been investigated deeply in the context of Tablet
PCs, the use of it for other devices and platforms is likely to grow.

Among solutions aimed at supporting interoperability across
platforms and devices, XEP-0113 [4] is an extension to XMPP
that uses the “path” element of Scalar Vector Graphics (SVG) to
represent ink messages. It was aimed at providing basic
whiteboard capabilities for XMPP based (chat) applications. This
extension supports only X and Y channels and does not address
differences in digitizer capabilities.

The RiverInk Framework [5] proposes the use of a subset of
InkML [1] (trace and brush) to be used as the common
intermediate ink data format for interoperability. It does not

provide a messaging solution, but adopts a multi-part xml format
containing (i) the ink data in PNG image format (suitable for
rendering on non-ink aware platforms), (ii) native platform ink
format (e.g. ISF in the case of Windows) as well as in (iii) InkML
format, for interoperability between heterogeneous devices
(including non pen–enabled devices). This solution may work
well for LAN environments but may be too bulky for mobile
networks given the multiple representations that need to be
transmitted. Further, the approach focuses only on the capture of
X & Y channels of ink stroke data, and does not capture all
relevant contextual information, or device capabilities and
attributes such as additional channels, screen size and resolution.

4. INK MESSAGING PROTOCOL
In this section, we briefly describe the protocol we have
developed for peer to peer ink messaging. As mentioned earlier,
our implementation uses XMPP, however a standard protocol
such as HTTP, or a custom protocol may instead be used as the
underlying protocol to transport ink messages. For reasons of
brevity, we do not describe the common processes associated with
messaging applications, such as user authentication and user state
management.

The protocol has two phases of operation: Initialization Phase and
Data Transfer phase. The protocol uses <inkMLMessage>
elements to wrap the InkML data fragments corresponding to ink
messages. The aggregation of all InkML data fragments for the
entire messaging session including both of these phases is
structured as a single InkML document.

4.1 Initialization Phase
The ink messaging application is intended to work across a wide
variety of ink-enabled platforms such as PDAs, desktop PCs with
graphics tablet peripherals, Tablet PCs and Smart phones. As
described earlier, the digital ink generated by these devices differs
with respect to the channels of ink captured by their respective
digitizers, and the resolution and range of their channel values.
This mandates careful transformation of the ink data from one
device so that it may be consumed by another device. These
differences are resolved in the initialization phase, as follows

4.1.1 Trace Format (Channel) Negotiation
To begin with, the initiator and the recipient of the messaging
session exchange their <inkSource> information. Then, based on
the <inkSource> information received, they exchange a <context>
element containing a <traceFormat> having the common subset of
channels supported by both. This <traceFormat> defines the
format of the <trace> data to be exchanged in the Ink Messages.
The idea here is to exchange only those channels of ink that both
clients can capture and interpret. The <inkSource> and
<traceFormat> elements are wrapped in <definitions> blocks and
are persisted throughout the messaging session. Details of the ink
messages exchanged in this phase are shown in Figure 2.

Initiator describes its Trace Format and supported channels:
<inkMLMessage>

 <definitions>

 <inkSource id = “src-A”>

<traceFormat>

 <channel name=”X” type= “integer” max = “300” min =”0”

units=”mm”/>

 <channel name=”Y” type= “integer” max = “150” min =”0”

units = “mm”/>

 <channel name=”F” type= “integer” max = “1024” min=”0”

units=”dev”/>

</traceFormat>

 </inkSource>

 </definitions>

</inkMLMessage>

Recipient replies with its InkSource Definition:
<inkMLMessage>

 <definitions>

<inkSource id = “src-B”>

<traceFormat>

<channel name=”X” type= “integer” max = “200” min =”0”

units=”mm”/>

<channel name=”Y” type= “integer” max = “100” min =”0”

units = “mm”/>

<channel name=”T” type= “integer” max = “1000” min=”0”

units=”dev”/>

</traceFormat>

 </inkSource>

 </definitions>

</inkMLMessage>

Initiator sends its context with the derived common TraceFormat:
<inkMLMessage>

 <context id = “ctx-A”>

<traceFormat>

 <channel name=”X” type= “integer” max = “300” min =”0”

units=”mm”/>

 <channel name=”Y” type= “integer” max = “150” min =”0”

units = “mm”/>

</traceFormat>

 </context>

</inkMLMessage>

Recipient sends its context with common TraceFormat:
<inkMLMessage>

 <context id = “ctx-B”>

<traceFormat>

 <channel name=”X” type= “integer” max = 200” min =”0”

units=”mm”/>

 <channel name=”Y” type= “integer” max = “100” min =”0”

units = “mm”/>

</traceFormat>

 </context>

</inkMLMessage>

4.2 Data Transfer Phase
Ink data corresponding to a single message must contain the
context of the sender, any brush changes (color and stroke-width)
and a collection of <trace> elements. If the application performs
layout analysis on digital ink data in order to group related traces
into logical units such as a word or drawing unit, then the traces
are grouped using <traceGroup> elements and the metadata
information is captured using <annotationXML> elements. The
Layout analysis is implemented using a heuristic algorithm,
explained below.

The high shift in y-coordinate position of consecutive traces in
different lines is used to detect the line break. The minimum and
maximum x-coordinate position of each trace is found. The space
between consecutive traces in the same line is found as the
difference between the minimum x-coordinate position of the
second trace to the maximum x-coordinate position of the first
trace. The average value of the space between traces is used as the
threshold to decide the space between words. Thus the related
traces that belong to a word are placed in a <traceGroup>. The
traces captured in drawing mode are simply grouped in to a single
<traceGroup> without any layout analysis.

The structure of an example InkML ink message is shown in
Figure 3.

<inkMLMessage>

<context contextRef=”ctx-A”/>
<traceGroup id=”group-1”>

 <trace>12 23, ‘2 ‘2, 3 5, 6 7, 8 4 ... </trace>
 <trace>………. </trace>
 <trace>………. </trace>

<annotationXML type="diagram">
 <height>40</height>
 <width>50</width>
 </annotationXML>

</ traceGroup>
…
<context>

 <brush id=”red10Pen”>
 <color> #FF0000 </color>
 <width> 10 </width>
 </brush>

</context>
<traceGroup id=”group-n1”>

<trace>………. </trace>
 …………

<annotationXML type="word">
 <height>40</height>
 <width>50</width>

</annotationXML>
</traceGroup>
<traceGroup id=”group-n2”>

Figure 2: Initialization Phase – channel negotiation

……….
</traceGroup>
<annotationXML>

<messageId>Message05042007112244</messageId>
</annotationXML>

</inkMLMessage>

At the receiving end, the InkML payload is parsed and rendered.
The context (including the traceFormat) of the ink is first
constructed with reference to the definitions set up during the
Initialization Phase. Trace data is interpreted with reference to
the implicit “current context”, which is updated by brush events
and other context changes encountered during parsing. The
coordinates of the various ink channels are computed by taking
into account the range and resolution of the source ink and the
target display.

 <traceGroup>s tagged as words are rendered by wrapping around
the available column width of the application interface (we prefer
a scrollbar only in the vertical direction). <traceGroup>s tagged
as drawings are rescaled to fit within the column width while
preserving their aspect ratio. Thus the third issue mentioned in the
introduction is addressed in this phase of the protocol.

5. SOLUTION ARCHITECTURE
The implementation of the protocol involves the development of
the Ink Processor, the logical component in each messaging client
that implements the protocol described above, and an XEP to
extend XMPP to support InkML messages as payload. The basic
messaging and presence services of XMPP are utilized.

5.1 Ink Processor
From a conceptual standpoint, the Ink Processor needs to deal
with ink messages captured locally, as well as received from its
peer. The architecture of this component is shown in Figure 4, and
described further below.

Figure 4: Ink Processor Architecture

5.1.1 Ink Capturer
The Ink Capturer component captures the ink strokes from the
digitizer of the device and represents them using <trace> entities.
It receives the brush change events from the Application User
Interface (UI) and represents those using InkML <brush> entities.
It also groups ink traces into logical units such as Words/Diagram

based on explicit or implicit cues, and creates <traceGroup>
entities to represent these logical units. It generates <ink>
messages as shown in Figure 3 and sends them to the Ink
Interpreter component.

5.1.2 Ink Interpreter
This component, as the name suggests, interprets InkML
messages received from both the Ink Capturer (local ink) as well
as from the peered messaging client. As it interprets the InkML
messages, it constantly updates the Current Context and maintains
Definitions. It also applies transformations to the digital ink based
on the current context and sends ink in a renderable form to the
Ink Renderer component.

5.1.3 Ink Renderer
The Ink Renderer component renders the digital ink data from the
interpreter onto the display area of the device. In cases where the
digital ink data does not fit the display area, the Ink Renderer
makes scaling (drawings) and reflow (words) decisions based on
the type of ink data received.

5.2 InkML Message XEP
This component is responsible for adding InkML messages to the
XMPP message payload. It intercepts all the XMPP packets sent
from the XMPP server to the client, extracts the InkML fragment
data of the ink message and sends it to Ink Interpreter component.
The client users use the unique Jabber Id (JID) to log into the
XMPP server. This component also handles client login and
messaging session management.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a solution to the problem of peer-
to-peer ink messaging across heterogeneous devices and
platforms. In particular, we have proposed the use of InkML as an
interoperable digital ink format, and proposed a protocol for the
use of InkML messages to support peer-to-peer ink-based
messaging, and architecture for the Ink Processor component that
implements these protocol operations over XMPP. We have
implemented and tested peer to peer ink messaging solution
across different ink platforms such as between a Linux desktop
with an external graphics tablet, and a Windows PDA. Future
work will focus on extending this protocol to support multiple
clients, wherein a message from one client is broadcast to all
others, and the participating devices could be either homogenous
or greatly different, and studying performance in WAN settings.
We also plan to explore the transmission of digital ink annotations
of images and text documents along with the underlying content,
and voice as an additional modality apart from ink.

7. REFERENCES
[1] Ink Markup Language (InkML),

http://www.w3.org/TR/InkML/
[2] EXtensible Messaging and Presence Protocol (XMPP),

http://www.xmpp.org/rfcs/.
[3] XMPP Extension Protocols (XEP),

http://www.xmpp.org/extensions/
[4] XEP-0113: Simple Whiteboarding,

http://www.xmpp.org/extensions/xep-0113.html

Figure 3: Example of an Ink message

Brush
change

Digital ink

Ink Processor

Ink Interpreter

Ink Capturer Ink Renderer

Display Digitizer

UI

InkML stream

Current context
and definitions

[5] Jonathan Neddenriep, William G. Griswold, "RiverInk--An
Extensible Framework for Multimodal Interoperable Ink,"
hicss, p. 258b, 40th Annual Hawaii International Conference
on System Sciences (HICSS'07), 2007.

