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Abstract

Dust, scratches or hair on originals (prints, slides or negatives) distinctly appear as light
or dark artifacts on a scan. These unsightly artifacts have become a major consumer concern.
There are several scenarios for removal of dust and scratch artifacts. One scenario is during
acquisition, e.g., while scanning a photographic media. Another is artifact removal from a dig-
ital image in an image editor. For each scenario, a different solution is suitable, with different
performance requirements and differing levels of user interaction. This report describes a com-
prehensive set of algorithms for the removal of dust and scratches from images. Our algorithms
solve a wide range of use scenarios.

A dust and scratch removal solution has two steps: a detection step and a reconstruction step.
Very good detection of dust and scratches is possible using side information, such as provided
by dedicated hardware. Without hardware assistance, dust and scratch removal algorithms
generally resort to blurring, thereby, losing image detail. We present algorithmic alternatives
for dust and scratch detection. In addition we present reconstruction algorithms, that preserve
image detail better than previously available alternatives. These algorithms consistently produce
visually pleasing images in extensive testing.

1 Introduction

The ubiquitous acceptance of digital imaging is motivating many photography enthusiasts to trans-
fer their photographic archive to digital form. Scans of negatives and positives (slides) are preferred
since these transmissive media have a better range of tones than reflective prints. However, nega-
tives and positives are small and must be scanned at high resolution to view on a monitor or re-
produce in print. The high resolution scan of the image also makes small dust specks and scratches
very apparent. These unsightly defects have become an important issue for consumers. Algorithms
for removing dust and scratches vary in several aspects: speed and memory performance, utilization
of side information, if any, and the image quality of the repaired image. Dust and scratch removal
solutions available today both in scanners and image editors trade-off defect removal with loss of
image details. Typically, the results are too blurry. This paper presents algorithms that improve
the possible trade-off. For every dust and scratch removal scenario, we propose a solution that
removes more defects and produces better image quality than available alternatives.

The image in Figure 1(a) contains severe dust and scratch defects. In the image in Figure 2(a)
the defects are less severe, but still very disturbing. This image is more representative of a typical
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(a) An image with dust and scratch defects (b) Cleaned image

Figure 1: Example of dust and scratch removal.

(a) An image with dust defects (b) Cleaned image

Figure 2: Example of dust removal in a typical consumer image.

consumer image. Dust is found in digital images of all types. Scratches exist primarily on images
scanned from slides and negatives. The work described in this paper does not target tears that
are often found on old photographs. Dust and scratches appear as light or dark artifacts in the
image. Dust defects can appear as small specks in the image, and sometimes look narrow and long.
Scratches are narrow and usually very long and straight. They tend to have very low contrast with
the background. Dust typically has higher contrast making it easier to detect.

We are able to offer a wide range of algorithmic solutions for dust and scratch removal appli-
cations. We describe four tiers of solutions. Tier 1 addresses a real-time use case, for example
in a capture device, with no specialized hardware. It is an efficient local software algorithm, and
has low memory utilization. It produces more overall image blur than the higher tiers. Tier 2
addresses off-line or near real-time use cases, such as an image editor or post-capture processing.
It, therefore, allows more processing time and higher memory utilization. It utilizes image analysis
techniques on larger image regions to refine the detection of defects thereby avoiding overall image
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blur. Tier 3 is intended for the discriminating user who is willing to invest some manual inter-
vention and longer running time to obtain very high image quality. It is also a software solution,
like Tier 1 and 2, but utilizes state of the art image infilling algorithms for reconstruction. Tier 4
addresses both the real-time and the off-line scenarios and corresponds to the special case where
hardware-assisted detection is available. Combining this side information with the efficient local
reconstruction algorithm of Tier 1 attains very high image quality. At every tier our algorithms
successfully reduce dust and scratch artifacts and produce superior image quality than competing
algorithms [19, 2].

The removal of dust and scratches proceeds in two steps: a detection step and a reconstruction
step. The detection step identifies defective pixels and the reconstruction step replaces the defective
pixels.

The challenge for detection is that defects have to be found, while image features should not be
detected erroneously. We divide detection algorithms according to several aspects

• Algorithms that use side information. Side information can come in the form of, e.g., user-
selection in an image editor, or an infra-red (IR) image in a scanner. This information is the
best way to avoid false detections.

• Algorithms that make a hard classification of pixels versus algorithms that make a soft
decision. Hard classification creates a binary defect map where each pixel is labelled as
defective or not defective. Soft classification attributes a credibility value to each pixel. A
defect map provides a convenient representation of defects, but can lead to artifacts due to
missed defects and false detections. When using soft classification, artifacts are usually less
visible in the resulting repair.

• Algorithms that operate on a local neighborhood versus non-local algorithms that use large
image regions. Local algorithms have the advantage in performance. However, they cannot
distinguish defects from image features that have similar characteristics, without non-local
context (unless they use side information).

This division defines 2 × 2 × 2 = 8 categories of detection algorithms. Section 3 describes four
algorithms, each of which fits into a different category. In particular, the algorithm in Subsection 3.4
uses an IR image and computes a credibility map, while the other algorithms detect from the input
image. Our approach, like previous work[19], is to generate a detail-less image in which the defects
are ”erased”. Our local detection algorithms compare several properties between the original and
the detail-less image which results in detection of defects but not of image edges. Local measures,
however, cannot avoid detection of image details that have similar characteristics to dust and
scratches. We, therefore, examine regions in the defect map and the corresponding image regions
to refine the classification. In this stage we may modify the classification of pixels that do or do
not seem to create defects with plausible characteristics together with other pixels in their regions.

The reconstruction step should replace the defective pixels resulting in an image with no visible
defects. We divide reconstruction algorithms to similar categories

• Algorithms that use a hard detection map (i.e., defect map) versus algorithms that use a
soft detection map (i.e., a credibility map). The values in a defect map are binary, whereas
a credibility map contains values in the range [0, 1]. Reconstruction algorithms that use the
rich information contained in a credibility map are more complex, but have the potential to
generate better image quality.
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• Algorithms that operate on a local neighborhood versus algorithms that use non-local image
regions. While local algorithms are fast, they are only able to perform a smoothing type of
operation. Non-local algorithms are slow, but result in better image quality. In particular,
good restoration of texture is only possible with non-local information.

To reconstruct based on a defect map the algorithms have to estimate the original pixel value
for each defective pixel. The algorithms ignore the values of pixels labelled as defective. We suggest
both a local approach and a non-local approach. Our local algorithm, referred to as the directional
reconstruction, uses the local directionality to decide how defective pixels should be set. The non-
local algorithm uses ideas from texture synthesis, in particular [10]. The latter algorithm is better
able to mimic the existing image texture, while the directional algorithm reconstructs lines better.
The directional algorithm is significantly faster and is also better at re-building image features
that are erroneously detected as defects. Subsections 4.2 and 4.3 describe the local and non-local
algorithms, respectively.

For reconstruction based on a soft classification, we developed a local filter that extends the
bilateral filter [21]. While the bilateral filter makes a soft classification of its neighbors based on the
gray-level difference of each neighbor with the central pixel and location relative to the central pixel,
our new algorithm modifies the weighting scheme to include the soft credibility map computed in
the detection step. This extension, the credibility-weighted bilateral filter is able to remove non-
Gaussian noise, such as dust and scratch artifacts, as well as Gaussian noise simultaneously. This
algorithm is presented in Section 4.1.

The rest of the paper is organized as follows. In Section 2, we describe related work on the
removal of defects, particularly dust and scratches. The following two sections describe the detection
algorithms (Section 3) and reconstruction algorithms (Section 4). Section 5 describes solutions for
a variety of applications. Figures 1(b) and 2(b) preview some results of dust and scratch removal.
In Section 6 we discuss directions for future work, and Section 7 summarizes our conclusions.

2 Related Work

Let us first consider the options that a user has for removing dust and scratch defects from a digital
image. Adobe Photoshop [1], a standard image editing program, offers several options. One option
is a dust and scratch filter that appears under the “Filter/Noise” menu. This operation blurs the
whole image or a selected region. It does not do any form of detection. If applied to the whole
image it results in a blurry image. The user can apply the filter regionally by selecting regions
with defects, but this requires considerable manual effort. If a defect occurs in a textured area
the filter will blur the texture. Another option in Photoshop would be to use the stamp tool to
remove defects. This tool can repair defects in textured areas. Using this tool, however, is very
time consuming and requires some practice.

This paper describes algorithms to replace the manual operation described above. The problem
of dust and scratch removal is usually addressed as two distinct tasks. The first is the detection of
the dust and scratch regions, in other words, defect detection. The second is the reconstruction of
those defective regions.
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2.1 Defect detection

We draw a strong distinction between solutions that use specialized hardware to detect dust and
scratch in scanners and those that approach the problem algorithmically.

2.1.1 Hardware detection

Most scanners, particularly high-end scanners, have special purpose hardware to assist with the
detection of dust and scratches on the original. Defects in transmissive material (negatives and
positives) are reliably detected with an infra-red scan. Unlike visible light, infra-red light is not
blocked by the colors in the image, but it is blocked by the opaque dust. The infra-red light is scat-
tered differently in scratched areas, as compared with non-defective areas. Applied Science Fiction
first introduced the use of infra-red hardware assisted detection for film in 2000 [2]. Figure 5(b)
shows the results of an infra-red scan for a slide with dust and scratch defects. While the infra-red
channel has a shadow of the image, the defects show clearly.

Infra-red hardware is not useful for scans of prints (reflective scans). One hardware assisted
approach for reflective scans is offered by Digital ICE [2]. This solution involves scanning the print
twice with lighting from two different directions. The shadow cast by a spec of dust should differ
between the two images enabling detection. In practice, this approach does not lead to reliable
detection. The algorithms used for the interpretation of the scans are proprietary in most cases.
This approach is, however, reminiscent of the multiple-lighting approach used to model objects
with polynomial texture maps [20]. In future work we intend to apply this modelling approach to
the problem of detection from two (or more) scans of the print.

2.1.2 Software detection

Without the assistance of special purpose hardware detection must proceed with the limited infor-
mation contained in a single digital image. Detection relies on characteristics of dust and scratch
defects in the digital image [19, 3]. For example, the defects are assumed to be narrow and to have
a significant difference in contrast compared with their background [19]. This approach uses local
operations for detection, which cannot differentiate between dust and image features with similar
characteristics. Hence, this approach suffers from false detections. Subsections 3.2 and 3.3 describe
our detection algorithms which extends this approach, and has fewer false detections.

An alternate approach to detection is defect specific. For example, [9] detects straight or nearly
straight anomalies in an image. Scratches appear as anomalies of this type in scans of negatives
and slides.

All the defect detection approaches we have seen to date take a hard decision, i.e., they classify
pixels as good or defective. We know of no prior work that uses a soft decision approach.

2.2 Reconstruction of defective pixels

The correction of defective pixels can be viewed as an image reconstruction problem. In this
problem, the pixel being repaired as well as much of its neighboring pixels may be defective, i.e.,
their values are only loosely related to the respective original values. The values at these pixels
should thus be ignored by the reconstruction algorithm.

At this stage of the solution, we assume that the defects are already detected. Simple recon-
struction algorithms, such as the one in [19], merely smooth the defect regions, for example, using
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a median filter or another form of averaging. The median reconstruction is computationally very
efficient, but is not very good from an image quality perspective. Figure 3(d) shows an example of
median correction. The defective pixels were replaced, but the large scratch is still visible because
the correction is too smooth, and does not match the texture in that area.

One of our local reconstruction algorithms extends the bilateral filter [21], a noise reduction
filter. When the noise has a Gaussian distribution the bilateral filter distinguishes between noise
and features; it removes noise and retains the features. When the noise has Gaussian distribution
with a known variance the bilateral filter separates noise, which has relatively low local contrast,
from features, which have high local contrast. When the distortion in the image does not follow
a Gaussian distribution, the bilateral filter may interpret large local difference as image features
rather than defects which should be smoothed. Dust and scratch defects would, unfortunately, be
enhanced by the bilateral filter. In Subsection 4.1, we extend this filter to correctly clean images
with non-Gaussian distortions using soft credibility values.

Two approaches to image restoration of missing regions of an image in the literature are im-
age inpainting and texture synthesis. Algorithms for both approaches are computationally slow
compared with typical local averaging algorithms.

Texture synthesis algorithms are concerned with producing a large texture image from a small
sample of a texture. The resulting texture image should appear to arise from the same texture
to a human observer. The texture should not appear to be duplicated or artificial. Many texture
synthesis algorithms have been developed since the 1970’s. One approach is to simulate the physical
generation of the texture [15]. This approach is not realistic for most textures. Another approach
uses statistical models of texture such as Markov random fields [8, 10, 24] and marginal statistics
stored in a co-occurrence matrix [17, 7]. More recently, multi-scale feature extraction methods
that rely upon wavelet decomposition have been used to define texture models [6, 18, 25]. A non-
parametric approach, introduced in [10], uses simplistic operations to produce visually superior
results in many cases, particularly for highly structured texture. We elaborate on this method in
sub-section 4.

Image inpainting [16] attempts to fill in a defective region in the image in a natural way. The
pixels in the defective image are treated as missing. The algorithm iteratively solves some partial
differential equations that smoothly propagate the information surrounding the missing region to
preserve the gradients apparent in the boundary. The original inpainting algorithm [16] repairs the
image structure quite well, but tends to smooth away texture. In more recent work[5], the authors
introduce a solution for both structure and texture inpainting. This solution decomposes the image
into a structural component and a texture component and works on each component separately.
Likewise, the texture synthesis approach of [10] has been used to fill in holes in images [4]. Finally,
the technique of Projection Onto Convex Sets (POCS) was used in [14] to remove scratches or wires
using both global frequency and local spatial information in the image.
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(a) Original scan (b) Enlarged defect

(c) defect map (d) Median

(e) Directional (f) contextual

Figure 3: Comparison of the reconstruction results. The original image is shown in (a) with an
enlarged view of the dust in (b). (c) shows the defect map. (d), (e) and (f) show the median,
directional, and contextual reconstructions respectively. After the median (d) the defect, though
blurred, can still be seen. The directional (e) reconstruction successfully restore the texture of the
overalls, further disguising the dust. The contextual (f) fully reconstructs the texture leaving no
trace of the defect.
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Side Information Soft/Hard Local/Non-Local Algorithm
1 No Soft Local Section 3.1
2 No Soft Non-local
3 No Hard Local Section 3.2
4 No Hard Non-Local Section 3.3
5 Yes Soft Local Section 3.4
6 Yes Soft Non-Local
7 Yes Hard Local
8 Yes Hard Non-Local

Table 1: Detection approaches classified by type and complexity.

3 Detection

This section describes our detection algorithms in detail. Table 1 summarize the categories of
detection algorithms, as discussed in Section 1. The entries in the Algorithm column refer to
categories for which we have developed algorithms. The number in each box corresponds to the
number of the subsection that describes the algorithm for this category.

3.1 A Credibility Measure Based on the Image

The candidate pixels are those that are much lighter (or darker) than their neighbors and are
therefore suspected to be parts of defects. To find these pixels, we follow the direction of [19] and
create a so-called detail-less image. The goal is to erase dust and scratch defects, such as lines
and spots, while keeping other image features such as edges and texture. One simple and efficient
option for generating a detail-less image is a median filter. Another good approach for creating
a detail-less image include morphological closing and opening. We chose the median filter which
removes spots and lines effectively. It also preserves straight edges, but distorts edges with sharp
curves. This distortion can translate to false detection, which other aspects of our algorithms treat.

The size of the median filter is a parameter indicating the size of the defect. It has been our
experience that the size of the physical dust and scratch defects can be taken as fixed (i.e.,the
distribution of the sizes of these objects is narrow). The size of the defect in pixels, then, depends
on the resolution of the digital image. Higher resolution implies bigger defect sizes.

The algorithm uses a gray representation of the image. A detail-less image is created using
a median filter. The algorithm then uses the gray image and the detail-less image to compute
two measures at each pixel, where each measure indicates how likely this pixel is to be defective.
The two measures are gray-level difference and contrast dis-similarity. The computation of each
measure is very fast and simple.
Gray level difference

This measure is a pixel-by-pixel difference between the gray image and the detail-less image.
Defects have high values in the gray-level difference measure. Image edges have high values as well,
as do small edges in textured areas.
Contrast dis-similarity

The purpose of the contrast dis-similarity measure is to exclude edges and texture edges that
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have high values in the gray-level difference measure. The intuition behind this measure is that
image edges, unlike defects, are still evident in the detail-less image. While the pixel values along
the edge are usually changed by the filtering process, the contrast in the region around each pixel
remains high even in the detail-less image. When defects are erased in the detail-less image,
however, the contrast is high in the original image, but low in the detail-less image.

The local contrast difference between the gray image and the detail-less image at pixel i is
computed as follows:

1. Let σg
i be the standard deviation of the pixel values in the D ×D neighborhood of pixel i in

the gray image.

2. Let σdl
i be the standard deviation of the pixel values in the D×D neighborhood of pixel i in

the detail-less image.

3. The contrast difference at location i is defined as

(σg
i − σdl

i )2

(σg
i )2 + (σdl

i )2 + C
, (1)

where C is a positive constant used to avoid division by 0.

Note that other measures of contrast can be used in place of the standard deviations. A related
contrast similarity measure has been proposed by Wang et al. [23] as one element of a general
measure designed to compare between images.
Combining the measures

For each pixel of the image we use the two measures described above to decide whether it
is defective or not. The hard approach to pixel labelling would threshold each of the gray-level
difference and contrast difference measure separation and combine with an AND operation. The
disadvantage of the hard approach is that defects that are not evident in both measures will be
missed.

The approach we selected to combine the measure treats each measure as a “probability” of
defect. We want to label pixels that have both high gray-level difference and high contrast dis-
similarity as defects. We therefore multiply the value at each pixel to obtain a single measure, and
map the resulting measure into the range [0, 1] to obtain the credibility map. (Other operations
in place of the multiplication that correspond to a fuzzy-AND operation could be utilized [26].)
Figure 4(b) shows an example of a defect map computed by this detection algorithm.

3.2 Pixel Labelling based on Local Information

The pixel labelling algorithm computes a hard classification by thresholding the credibility map
computed in Section 3.1. Figure 4(d) shows an example of a defect map. This hard threshold is
typically selected to balance missing defects and false detections. Non-local context is necessary to
improve upon this trade-off.

3.3 A Refined Defect Map based on Non-Local Information

This algorithm examines regions in the defect map and the corresponding image regions to refine
the local pixel labelling. Three heuristic are currently used to detect the contour of defects, to
avoid erroneous detections of textural features, and to avoid detection of eye-glint.
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Detecting the defect contour using classification
The detection steps thus far find high-contrast defects. If the defect is sharp, then the contrast

with the background is sufficient to find all the defective pixels. The process of scanning, unfor-
tunately, tend to blur the edges of the dust or scratches, particularly at high scanning resolutions.
The outcome of this optical blur is that the contour of the dust does not have enough contrast
to be detected. When the contour of a defect is not detected the result of reconstruction is not
visually pleasing. First, the contour which is not reconstructed remains visible, so that the defect
appears reduced, but does not disappear. Second, the pixels of the defect contour are used for the
estimation of the new pixel value in reconstruction, which misleads the algorithm.

We cast the problem of finding the defect contour as a classification problem. Given the pixel
labelling from the first stage, pixels that surround defective pixels are examined and classified as
defective/not defective. We use Quadratic Discriminant Analysis (QDA)[13] on the gray level at
the pixels (a 1-dimensional classification).

This method utilizes intensity information, for the classification, as well as geometric informa-
tion, i.e., the proximity to a defect. The combined information attains the right balance between
finding the low-contrast defect contour and preserving features. From an implementation viewpoint,
the method has low computation time.
Excluding high activity areas

Some images contain high activity texture that is very similar to dust or scratches. In such
images, the density of detections is too high. Even a very dusty picture will not contain the
abundance of defects detected in textured areas. To improve the robustness of the algorithm to
such textures we added a filter which ignores the detections in an area of the image if there are
too many detections. This simple heuristic greatly improves the results of the algorithm in images
with high activity. The result of this heuristic can be observed in the difference of the defect maps
in Figure 4(f) as compared with Figure 4(d).
Avoiding detection of eye glint

We have found that glint in a person’s eye (the tiny bright flash of light) has similar character-
istics as light dust on an image. It is therefore typically labelled as a defect by the pixel labelling
algorithm. Removing the glint results in an image that appears lifeless. This artifact is one to
which people are particularly sensitive. The solution to this problem is the observation that we
have to treat the eye area with care. We implemented an eye detection algorithm based on the
Viola-Jones method [22], which enabled us to detect when a particular labelled defect was actually
due to eye glint.

3.4 Infra-Red Assisted Detection

Infrared dust and scratch detection is based upon the observation that image-forming dyes in com-
mon film originals are transparent in the infrared, whereas defects are typically opaque. IR source
selection is constrained by both cost and the spectral sensitivity limitations of sensors optimized for
visible-band scanning, and the resulting emission spectra are closer to the visible band than would
be ideal. The spectral absorptivities of common film dyes therefore overlap the spectral emissivities
of the available IR sources, resulting in significant crosstalk between the visible and IR images.

We developed a decorrelation procedure that removes the film-dye contribution from IR images.
We have observed that the absorptivity spectra of common photographic films closely follow the
Beer-Lambert law as exposure and thereby image-forming dye concentration is varied. The algo-
rithm therefore assumes that in the density domain the contribution of the image forming dyes on
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the film to IR response is linear. That is the response, in the density domain to the IR light (DIR)
is modelled as

DIR
i − a ·DI

i + b

where DI is the response of the visible light in the density domain. The procedure estimates the
parameters, a and b of this linear model using the visible image and the IR image and essentially
removes this contribution from the IR image.

We have further observed that the cyan dye layer is the principal source of IR absorptivity in
common films. To reduce computation, only the red image channel is used for parameter estimation.

The outcome of the decorrelation procedure is demonstrated in Figures 5(c). Note that decor-
relation removes all the image details from the IR image, while leaving dust and scratches.
From IR Data to Defect Likelihood

Once image data is removed from the IR image, we are left with an image containing noise,
from, e.g., the sensor, and some dark regions indicating defects. The decorrelated IR data is
assumed to follow a Gaussian distribution. Under this assumption the probability of pixels below
the background level goes down quickly, however, it is not zero even for low values of IR. Thus a
thresholding scheme is not sufficient to detect defects even after decorrelation.

The credibility measure is computed probabilistically using the statistics of the IR data.

1. Set the background level during decorrelation.

2. Estimate IR noise variance by the IR sample variance using a straightforward computation

3. For every pixel compute the distance of that IR value from the background, normalized by
the noise standard deviations.

4. Compute the probability of this value for a standard normal variable.

Rather than using the standard normal probability, a parameter may be used to obtain lower or
higher defect removal. This parameter corresponds to a normalized distance range for defects, e.g.
[−3,−1] would indicate that pixels whose value is at least 3 noise deviations below the background
are defective, and pixels whose value is greater than 1 noise deviation below the background contain
good data. The credibility value for each pixel is computed by mapping the distance in the given
range to the range [0, 1]. An example of the resulting credibility measure for a high level of defect
removal is shown is Figure 5(d).
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(a) Image with defects (b) S/W detection - soft

(c) Repaired image - filtering (d) S/W detection - pixel labeling

(e) Repaired image - infilling (f) S/W detection - regional classification

Figure 4: Examples of software only dust and scratch removal algorithms. The original image (a) has a large
scratch in the sky right above the mountain on the right which extends across the entire image. It also has several
dust defects in the sky, e.g., to the left of the mountain on the right. The credibility map (b) is the result of the soft
detection algorithm. Repaired image (c) is the result of the credibility-weighted filter using the credibility map (b).
The defect map (d) shows the map detected by the pixel labelling algorithm, which finds all the details in the snow
texture. The defect map in (f) shows the result of regional classification, which removes most of the false detections.
In the repaired image (e), the dust defects in the sky are removed and the scratch is reduced significantly. These
details may be difficult to see in print. We suggest viewing them in the digital format.
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(a) Slide scan (b) IR scan of slide

(c) Decorrelated IR data (d) Credibility measure

Figure 5: Example of detection using infra-red. The resulting repair is shown in Figure 1(b)
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Soft/Hard Local/Non-Local Algorithm
1 Soft Local Section 4.1
2 Soft Non-local
3 Hard Local Section 4.2
4 Hard Non-Local Section 4.3

Table 2: Reconstruction approaches classified by type and complexity.

4 Reconstruction

Like our detection algorithms, we developed reconstruction algorithms in several of the categories
described in Section 1. Table 2 summarizes the categories. The first algorithm in this section uses
a soft credibility. The two following algorithms use a defect map.

4.1 A credibility weighted bilateral filter

The bilateral filter is given by the following formula, which operates on a local neighborhood of
pixels. The neighborhood, for example, may consist of k × k pixels symmetric about the pixel to
be filtered, where k is an odd integer greater than 1.

u0 =
∑

n Ln · g (β|fn − f0|) · fn∑
n Ln · g (β|fn − f0|) (2)

where the index 0 refers to the central pixel to be filtered, and the index n refers to its n-th
neighbor, g(·) ∈ [0, 1] is the photometric function, i.e., a function that relates gray-level differences
to perceptible edge strengths, β is a scaling constant related to the edge strength, f is the measured
single channel signal, Ln is the spatial weight at each neighbor. The sum over n includes the central
pixel n = 0.

The bilateral filter computes a weighted average of pixels in the neighborhood. The contribution
from each of the pixels depends on:

1. The spatial distance from center pixel. Typically a Gaussian function is used to reduce
the weight of pixels further out from the central pixel.

2. Contrast difference from central pixel. The pixel contribution is weighted according to
a photometric function such that if the contrast difference is low the weight is high, and if
the contrast difference is high, the weight is low.

We may write the bilateral filter equivalently as

u0 = f0 +
∑

n 6=0 Ln · g (β|δn|) · δn

L0 +
∑

n 6=0 Ln · g (β|δn|) (3)

where δn = fn− f0. This formulation lends itself to higher order bilateral filters, e.g., replacing the
first order differences δn by higher order differences, such as δ

(2)
n = (f−n + fn)/2− f0.

Like the classic bilateral filter, the credibility-weighted bilateral filter computes a weighted
average of pixels in the neighborhood. The contribution from each of the pixels depends on the
two factors used by the bilateral filter and one additional factor:
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3. Pixel credibility. When setting the weight of any pixel in the neighborhood, we balance
the effect of the credibility of both the pixel under consideration and the central pixel. When
the credibility of a neighborhood pixel is low its relative weight is also low. In addition, if the
credibility in the central pixel is low, the sensitivity of the photometric function is reduced so
that the relative weight of other neighborhood pixels may increase.

The rest of this section describes this filter in detail. More details on the bilateral filter may be
found in [21].
Zeroth order filter

We extend the bilateral filter to take advantage of pixel credibility in the following way:

u0 =
∑

n LnCn · g (βC0|fn − f0|) · fn∑
n LnCn · g (βC0|fn − f0|) (4)

where C0 is the credibility of the central pixel and Cn is the credibility of the nth pixel in the
neighborhood. Again, we re-write the credibility-weighted bilateral filter as follows.

u0 = f0 +
∑

n 6=0 LnCn · g (βC0|δn|) · δn

L0C0 +
∑

n6=0 LnCn · g (βC0|δn|) (5)

where δn = fn − f0.
The behavior of the credibility weighted bilateral filter ranges between the following extreme

cases:

1. If the central pixel has zero credibility, it is replaced by a weighted average of its neighbors
regardless of their similarity to the central pixel, but where their relative weights are their
credibility-values (in other words, an average of the non-defective neighbors).

2. If the central pixel has full credibility, it is replaced by a modified bilateral weighted average
of itself and its neighbors, where the bilateral weight of each neighbor depends both on the
similarity to the central pixel (as in bilateral), and on its credibility (in other words, a bilateral
average of the non-defective neighbors).

If the central pixel has medium credibility, we want the similarity measure between neighbors
and center to have less importance than in case 2, but more importance than the zero-importance
in case 1.
First order filter

We know from previous experience with the bilateral filter that for higher resolution images the
zeroth order bilateral filter is not sufficient. In such images edges can span a number of pixels and
appear as gradual changes, so that the filter misses the edge and smooths across it. Higher order
bilateral filters have been developed that perform much better for high resolution images. Whereas
the zeroth order bilateral filter uses each pixel in the neighborhood independently, the 1st order
bilateral filter uses opposing pairs of pixels from the neighborhood together.

We have extended the credibility-weighted bilateral filter to the first order formulation. The
differences between the zeroth order formulation and the first order formulation are:

• The index n refers to a pair of neighborhood pixels with indices n, n′, e.g., we may choose
opposing pixel pairs.
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• The neighboring pixel value fn is replaced by the average of the pair n, n′.

• The credibility Cn is replaced by a function that combines the two pixel credibility values Cn

and Cn′ . One may use any function corresponding to a fuzzy-AND operation [26].

C1
n,n′ = min(Cn, Cn′) (6)

C2
n,n′ = Cn · Cn′ (7)

C3
n,n′ = bCn + Cn′ − 1c0 (8)

where the notation b·c0 indicates clipping of negative values to 0. These functions are ordered
by how severely they penalize the pair based on individual pixel credibility. We prefer the
combination function 7.

Thus, the first-order credibility-weighted bilateral filter is

u0 = f0 +
∑

n,n′ Ln,n′Cn,n′ · g
(
βC0|δn,n′ |

) · δn,n′

L0C0 +
∑

n,n′ LnCn,n′ · g
(
βC0|δn,n′ |

) (9)

where δn,n′ = (fn + f ′n)/2 − f0, and Cn,n′ is one of the equations above. For symmetric pair
Ln,n′ = Ln = L′n.
Combined zeroth & first order filter

While the first order bilateral filter is better suited to high resolution images, it does not remove
distortions as well. Near a defect we often do not find opposing pairs of high credibility pixels. The
best trade-off for reducing both defects and noise, while preserving edges, is obtained by weighting
the response of both filters. The weighting function is based on the similarity between credibility
values of the pair of pixels.

u0 = f0 +

∑
n,n′ [αn,n′ · w(1)

n,n′ · δn,n′ + (1− αn,n′) ·
(
w

(0)
n δn + w

(0)
n′ δ′n

)
· 1

2 ]

L0C0 +
∑

n,n′ [αn,n′ · w(1)
n,n′ + (1− αn,n′) ·

(
w

(0)
n + w

(0)
n′

)
· 1

2 ]
(10)

w
(1)
n,n′ = Ln,n′Cn,n′ · g

(
βC0|δn,n′ |

)
(11)

w(0)
n = LnCn · g (βC0|δn|) (12)

where the weight given to the first order filter is

αn,n′ =
min(Cn, C ′

n)
max(Cn, C ′

n)
.

This weighting factor ensures that the first order filter is used when the pair of pixels have similar
credibilities. However, when there is a significant difference between the two credibilities, e.g.,
only one of the pixels is credible, the zeroth order filter will have greater weight. The aim of this
formulation is to avoid blurring of features.

Figures 1(b) and 2 show an example of dust and scratch removal using the credibility weighted
bilateral filter with credibilities computed using IR assisted detection.
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4.2 A Directional Reconstruction Algorithm

The directional reconstruction algorithm is a local reconstruction algorithm that uses a defect map.
Like other local algorithms it computes a weighted average of the neighborhood of the defective
pixels. It is different from other averaging operations in two ways. First, it does not use the value
of defective pixels in the neighborhood of the pixel to repair. Second, it attempts to determine
whether there is a feature in the block with a definite direction. The algorithm determines the
dominant direction, if any, in a local block surrounding the defective pixel, and corrects the missing
pixel so that the existing direction is emphasized. Image features that are mistakenly detected
as defects can be partially restored in this way. If no definite direction is observed, however, the
algorithm falls back to the median option or simply computes the average of the block.

The steps of the algorithm are

1. Compute the gradient at each pixel in the block D ×D.

2. Estimate the reliability of gradient information in each pixel: Gradients involving defected
pixels are not reliable at all, gradients with small magnitude might indicate noise instead of
local directionality. The importance of such measure is stressed by Medioni et al. [12].

3. Compute the weighted average of the gradients in the block, taking the reliability estimations
as weight-measures.

4. If the local gradient information is unreliable or the average gradient is small, replace the
defective pixel with the median or average value of the non-defective pixels.

5. Find the direction of the local edge in the block. This direction is perpendicular to the average
gradient. Now find a line in the same direction that crosses the pixel of interest. This line is
parallel to the local edge.

6. Replace the defective central pixel with the average value of the non-defective pixels along
this line, giving higher weight to pixels closer to the central pixel than to distant ones.

The directional reconstruction attains better image quality than median reconstruction; com-
pare, for example, Figure 3(d) versus 3(e). Yet it does not reconstruct textures very well.

4.3 A Non-Local Context Dependent Algorithm

The non-local reconstruction algorithm also uses a defect map, and is intended to overcome the
shortcomings of local reconstruction, in particular in textured areas. It is motivated by a texture
synthesis algorithm [10]. Rather than averaging, it copies like textures from elsewhere in the image.

Let D and R be positive integers such that D < R. Typical values for D and R, for example,
are D = 5 and R = 100. At each defective pixel i,

1. Let Ci be the context of the defective pixel i. The context includes all color channels of the
pixels in a D ×D neighborhood around pixel i.

2. Look at all the D×D neighborhoods, Nj , in an R×R region around pixel i. Neighborhoods
with defective pixels are excluded from the search.
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Tier Time Performance Memory Utilization Image Quality Scanner/Image Editor
Tier 1 Real-Time Image strip Acceptable Scanner
Tier 2 Efficient (seconds) Two full images Good Both
Tier 3 Slow (minutes) Two full images Excellent Image editor

+ data structures
Tier 4 Real-Time Two Image strips Excellent Scanner

Table 3: Dust and scratch solution tiers.

3. Find the neighborhood Nj which is most similar to Ci. Specifically, for every neighborhood
Nj , compute the sum of squared differences between the non-defective pixels of Ci and the
corresponding pixels of Nj . Let Nj∗ be the neighborhood with the lowest sum of squared
differences.

4. If the sum of squared differences is below a pre-defined threshold, replace the defective pixels
in Ci with the corresponding pixel values from Nj∗.

5. Otherwise replace pixel i with the median value of its D ×D neighborhood.

Note that in step 4 several pixels are typically replaced. Replacing several pixels together
has two advantages. The first advantage is speed, because the number of searches for matching
neighborhoods is reduced. The second is, perhaps surprisingly, in image quality. Work in texture
synthesis [11] has shown that texture is duplicated better when groups of pixels are copied rather
than single pixels. In step 5, when no “good enough” context is found, the algorithm defaults to
the median solution.

Figure 3(f) demonstrates the results of the non-local reconstruction. The advantage of this
reconstruction in restoring textures is very evident.

5 Applications

Dust and scratch removal applications arise in various scenarios. For example, a solution in a
scanner pipeline must be fully-automatic and efficient. A scanner may also utilize side information,
such as an IR scan. In an image editor, efficiency constraints may be relaxed, but, for the naive
user, the application should require minimal intervention. On the other hand, there are some users
that want excellent results and are willing to make the necessary effort. We describe four tiers
of applications and a solution that is suited to each level. Table 3 summarizes the characteristics
and requirements of each application tier, and Table 4 indicates the categories of detection and
reconstruction algorithms we propose for each tier.

5.1 Tier 1: Dust and Scratch Removal Combined with Denoising with Best
Performance

Tier 1 use case assumes the most demanding performance requirements, e.g., a real-time system
such as a scanner, without specialized hardware. For best performance, the imaging pipeline of
a capture device processes the image in strips. Thus, algorithms in the pipeline can only access
local image information. This is the worst case for detection, because with local information false
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Detection Reconstruction
Tier Soft/Hard Local/Non-Local Side Information Soft/Hard Local/Non-Local
Tier 1 Soft Local No Soft Local
Tier 2 Hard Non-local No Hard Local
Tier 3 Hard Non-Local User selection Hard Non-Local
Tier 4 Soft Local IR image Soft Local

Table 4: Characteristics of detection and reconstruction algorithms for application tiers.

detections are inevitable. To avoid noticeable artifacts due to false alarms we advocate a soft
classification. Our solution for tier 1, therefore uses the detection algorithm in Subsection 3.1 and
the credibility weighted bilateral filter from Subsection 4.1. This combination is particularly well
suited to this application, because a capture device requires denoising in addition to dust and
scratch removal. The credibility-weighted filter does both in one operation and a single pass over
the image. This solution has a trade-off between defect removal and image detail preservation
that is worse than the higher tiers. An example of the results of our solution may be found in
Figure 4(c). The trade-off was tuned for effective defect removal, at the cost of detail loss.

5.2 Tier 2: An Automatic, Non-Blurring Software Solution

Tier 2 case assumes an automatic software-only solution. The performance requirements at this
tier allow more processing time and more memory. This enables the algorithm to access the entire
image as well as the defect map. We are, therefore, able to take advantage of non-local image
analysis using the detection algorithm in Subsection 3.3. The reconstruction algorithm we propose
for this application is the local infilling algorithm from Subsection 4.2. The refined defect map
enables the solution to avoid overall image blur, but inevitably includes some false detections. The
reconstruction algorithm is able to repair some image details to compensate for false detections.
While this solution uses more memory and computation time than tier 1, it is fast enough to be
used in the imaging pipeline of a scanner as well as in an image editor.

Figure 6 shows a comparison of this solutions with other available software solutions. The origi-
nal image (a) has two strong scratches across the sky and bridge. The repair in Adobe Photoshop[1]
(c) has blurred away the scratch along with the entire image. This solution is better suited to dust
defects, where the user can select the small area containing dust thereby avoiding overall image
blur. By comparison our Tier 2 software only solution (d) does not blur the image overall. It
obscures the scratches, but does not remove them entirely. The result of Digital ICE (e) removes
the scratches well in the sky, but leaves section of the scratch on the bridge. There is also some blur
of image features that leave a noticeable scar where the scratch was near the cables. The result of
our hardware assisted solution (f) removes the scratch across the entire image. It blurs the cables
a bit, but not enough to be visually disturbing.

Figure 4 demonstrates the advantage of this solution over the local solution from Tier 1. The
refined defect map, Figure 4(f), retains few false detections as compared with the credibility map
in Figure 4(b). The repaired image, Figure 4(e), therefore, remains sharp. The dust defects were
removed. The scratch in the sky is reduced, but not removed completely.
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5.3 Tier 3: The Discriminating User

Tier 3 is another software-only solution intended for the discriminating user who is willing to invest
some time and effort to obtain very high image quality. In an image editor, user interaction may
provide side information to the detection algorithm. For example, an initial defect map may be
computed using the algorithm in Subsection 3.3. The user can select pixels labelled as defective
in the defect map and re-label them as clean. Given an accurate defect map, this tier has two
advantages. The number of pixels that need to be repaired is typically small, so that we can utilize
a slower reconstruction algorithm. In addition, we can assume that image features are not labelled
as defective. In this setting, the non-local reconstruction algorithm from Subsection 4.3 gives the
best repair, in particular in textured areas. This solution can provide excellent image quality,
assuming useful side-information from the user.

5.4 Tier 4: An IR Assisted Solution

The solution for Tier 4 assumes that special IR hardware is available for detection. Since specialized
hardware would only be available in a scanner, we assumed very strict requirements in speed
and memory utilization. This tier uses the detection algorithm described in Subsection 3.4. The
credibility weighted bilateral filter described in Section 4.1 is a perfect fit for this application. The
imaging pipeline of the scanner includes denoising, and we can combine these two steps into one
using this filter. With detection based on IR data this algorithm performs at its best. The credibility
values are computed from an independent source, so the credibility map has high accuracy. The
filter is able to remove defects completely because these have values near 0 in the credibility map.
It does not cause the blur that we saw in the Tier 1 application since the credibility value of non-
defective pixels is high. Figures 1(b) and 6(f) demonstrate the application of the hardware assisted
solution to images with dust and scratch defects.

Results of this solution are shown in Figure 1(b), 2(b), and 6(f). Figure 6 compares the result
of this solution with several the dust and scratch removal solutions. This image is marred by two
scratches. One scratch across the entire image about a quarter of the way from the top of the image.
There is a smaller scratch on the right below the first scratch. Both scratches have low contrast,
and the first scratch is a challenge to repair because it crosses the texture of the bridge cables.
The Photoshop algorithm removes the scratch, but leaves the image very blurry, see Figure 6(c).
Our solution is sharper. Compare our hardware-assisted results with Digital ICE. The result of
our best automatic software-only solution from Tier 2, Figure 6(d), is not able to remove these
challenging scratches and produces artifacts on the bridge. The competitive hardware solution,
Digital ICE, does not blur the image. It is able to remove the scratches in the sky, but leaves parts
of the scratches on the bridge and blurring artifacts in the cable texture where the scratch was
originally. The removal results of our hardware solution in Figure 6(f) are superior, demonstrating
better defect removal and less disturbing artifacts.

6 Future Work

Our recent work for software-only algorithms is aimed at further reducing false detections as well
as improving low-contrast defect detection.

• Scratch defects often have low-contrast which results in partial detection. Likewise, large
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dust defects are not always fully detected. We would like to connect between detections to
complete the defect using tensor voting [12].

• Make use of image analysis, e.g. noise and texture, to adapt the algorithm to the image.
Global and regional image information can be useful to adaptively tune detection parameters
and for removal of dense detections from textural areas.

In the future we plan to continue improving detection in the following directions:

• Analyze geometric and photometric characteristics of defect clusters to decide whether they
are dust, scratches or image features. This requires finding the connected components of the
defective pixels and analyzing the components.

• Introduce special handling for additional features of importance, as we did for eyes.

We are researching a new detection approach for prints using multiple scans. The approach is
related to modelling objects with polynomial texture maps [20].

A limitation of the credibility-weighted bilateral filter is that if a defect lies on an edge in the
image or in a textured region, and the defect pixels have very low credibility, then the filter will
compute a new value that blurs the edge. We have experimented with a heuristic that increases
the credibility of pixels in high-activity areas of the image. A disciplined approach that avoids such
edge artifacts remains future work.

The non-local reconstruction algorithm gives us the best repair results, but is too slow for most
applications. Recent work aims to improve the running time of the this algorithm significantly by
using search heuristics. This speedup also enables us to attempt more complex image reconstruction
applications which we are investigating.

Tables 1 and 2 include several entries for which we have not developed algorithms. Some of
these are directions for future work. We do not have a detection or reconstruction algorithm that
makes a soft classification and uses non-local image regions. Such algorithms may reduce artifacts
even further than the current algorithms, but are expected to be slower.

7 Conclusions

We presented a comprehensive set of algorithm for the removal of dust and scratches from digital
images. We introduced several categories of algorithms that differ in several aspects: making soft
vs. hard classification of pixels, using local vs. non-local information, and taking advantage of
external assistance. The task of removal was divided to two steps: detection and reconstruction.
For each step several algorithms were developed that fall into different categories.

We have introduced several innovations in our algorithms. The software-only local detection
step takes advantage of local contrast difference which enables the algorithm to separate defects
from large image edges better than the commonly used gray level difference.

We have made the observation that without side information regional considerations are nec-
essary to separate dust and scratch defects from image details with similar characteristics. The
regional classification step effectively removes false detections using simple but insightful heuristics.
For example, the heuristic for detecting texture is critical to avoid blurry results. Avoiding glint
removal is important because most pictures contain faces.
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For reconstruction, we also employ regional considerations, in order to repair texture. The
contextual reconstruction achieves very credible repair of defective pixels. In particular the repair
is superior to local algorithms for textures.

Our local approach for repair from a defect map, the directional reconstruction, is good at
repairing defective pixels, and it is often able to compensate for false detections by reconstructing
the features. Since it is a local algorithm, it is better suited to applications where efficiency is
important.

We introduced the credibility weighted bilateral filter for local repair using a credibility map.
In this efficient filter, we have incorporated the ability to use pixels with partial credibility. It is,
therefore, perfectly suited to use in a scanner with side information in the form of an IR scan.

We described four tiers of dust and scratch removal solutions that are suitable for different ap-
plications. We show that either side information or looser performance requirements lead to higher
image quality. The results of the solution at each tier compare well with competitive solutions.
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(a) Image with defects (b) Image with defects indicated by arrows

(c) Repaired image - Photoshop (d) Repaired image - Tier 2

(e) Repaired image - Digital ICE (f) Repaired image - Tier 4

Figure 6: Comparison of dust and scratch removal algorithms.
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