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Abstract

The Gale-Berlekamp (in short, GB) code is the dual code of the binary product code
in which the horizontal and vertical constituent codes are both the parity code. It is
shown that the problem of deciding whether there is a codeword of the GB code within
a prescribed distance from a given received word, is NP-complete. The problem remains
hard (in a well-defined sense) even if the decoder is allowed unlimited preprocessing
that depends only on the code length. While the intractability of maximum-likelihood
decoding for specific codes has already been shown by Bruck and Naor and Lobstein, the
result herein seems to be the first that shows hardness for familiar (or “natural”) codes.
In contrast, it is also shown that, with respect to any memoryless binary symmetric
channel with crossover probability less than 1/2, maximum-likelihood decoding can be
implemented in linear time for all error events except for a portion that occurs with
vanishing probability.

Keywords: Gale—Berlekamp switching game; Hadamard matrices; Intractable
problems; Maximum-likelihood decoding; NP-complete problems.

1 Introduction

Denote by & the subset {1, —1} of the real field R and by ®"*" the set of all n x n real
matrices with entries in ®. We consider the following optimization problem:

*Work done while visiting Hewlett—Packard Laboratories, Palo Alto, CA.



Optimization Problem 1.1. Given a matriz A € ®™*™, flip the sign of entire rows and
columns in A so that the resulting matriz has the largest possible number of 1’s.

This problem is known as the Gale-Berlekamp (in short, GB) switching game; see for
example Brown and Spencer [4], Fishburn and Sloane [6], or Spencer [22, Lecture 6]. The
subject of this work is showing that this game is hard to solve. In the more general formu-
lation of the game, the number of rows and columns in A does not have to be the same, yet
for the purpose of demonstrating the hardness, we will restrict ourselves to the special case
where the matrix A is square.

1.1 Equivalent formulations of the GB switching game

There are several equivalent formulations of the GB switching game, as shown next. For a
vector & € R", denote by D(x) the n x n real diagonal matrix whose main diagonal consists
of the entries of . Flipping entire rows and columns of A can be represented as the product
D(xz)AD(y) for some row vectors ¢,y € ®". Denote by .J,, the matrix in ®"*" whose entries
are all 1. The number of (—1)’s in D(x)AD(y) equals the number of 1’s in the 0-1 matrix

B = 3(Jo — D(z)AD(y)) . (1)

But this number is also the sum of the entries of B and this sum, in turn, is equal to (n? —
xAy")/2 (hereafter (-)” denotes transposition). Hence, we have the following reformulation
of the GB switching game:

Optimization Problem 1.2. Given a matric A € ®"*" | find row vectors x,y € ®"
that mazimize xAy? .
The number of nonzero entries in the matrix B in (1) equals the number of nonzero

entries in 2D(x)BD(y), for every x,y € ®". But

2D(z)BD(y) = D(z)(Jn — D(x)AD(y))D(y)
= D(z)J,D(y) — A

We now observe that D(x)J,D(y) has rank 1; in fact, the set
R(n) = {M € v
M = D(x)J,D(y) for some x,y € (b"}

(which is of size 22"~1) consists of all the matrices of rank 1 in ®**”. Denoting by d(-, -) the
Hamming distance between two matrices—or two vectors—of the same order (namely, the
number of entries in which the two matrices differ), we get the next reformulation of the GB
switching game:



Optimization Problem 1.3. Given a matriz A € ®"*", find a rank-1 matriz M € ®™*"
that minimizes d(M, A).

We mention that Optimization Problem 1.3 is a constrained form of the problem of
computing the rigidity of a matrix: see Lokam [14] and the references therein.

Optimization Problem 1.3 can be translated into a problem in which the objects are
matrices over the binary field Fy, simply by applying to each entry the bijection ¢ : & — F,
which sends 1 to 0 and —1 to 1. Next, we characterize the set of matrices to which R(n) is
mapped under this bijection.

Given a positive integer n, let 1,, be the all-1 row vector of length n and, fori =1,2,...,n,
denote by e; the row unit-vector in F5 whose ith coordinate equals 1. Also, let F;'*" stand
for the set of all n x n matrices over Fy. The n X n Gale—Berlekamp code, denoted hereafter
by Car(n), is the set of all matrices in F3'*™ that belong to the linear span of the following
set of 2n matrices over Fy:

Ln)={e L.}, U{1] &}, -

It is easy to verify that any 2n—1 matrices in £(n) are linearly independent over Fy (but the
sum of all 2n matrices in £(n) is zero). In addition, it is not hard to see that, with respect
to Hamming weight, the elements in £(n) are the minimum-weight nonzero elements in the
linear span of £(n). Hence, Cgg(n) is a linear [n?, 2n—1,n] code over Fy. The elements of
Car(n), each being a matrix in F3*" will be referred to as the codewords of Cqg(n). From
the definition of the code Cqg(n) we get that it is the dual code the [n?, (n—1)2, 4] product
code over Fy with the horizontal and vertical constituent codes both being the [n,n—1,2]
parity code over [Fy.

Under the bijection ¢ : ® — Fy, the set R(n) maps to Cgg(n). Thus, Optimization Prob-
lems 1.1-1.3 can be expressed as a maximum-likelihood decoding (MLD) problem of the GB
code, with respect to any memoryless binary symmetric channel (BSC) with crossover prob-
ability less than 1/2. Specifically:

Optimization Problem 1.4. Given a matriz Z € F3"" | find a codeword T' € Cgg(n)
that minimizes d(I', Z).

There has been a substantial body of work published on the problem of computing and
bounding the covering radius, pge(n), of Car(n): see [4], [6], [9, pp. 396-397], and [22,
Lecture 6]. In particular, it is known that

2 32 n2  p3?
7 — T + 0(n3/2) < pGB(n) < ? — \/2_71_ + 0(n3/2) . (2)

As such, GB codes have a small covering radius given their (fairly low) rate: from the sphere-
covering bound one gets that the covering radius of any linear [N, k| code over F, is greater
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than

N Nk
2 2log, e’

where e = 2.71828 - - - (see [19]), and plugging N = n? and k = 2n—1 into this expression
yields the lower bound

n3/2

Viog, e

Furthermore, the upper bound in (2), which was proved using probabilistic arguments by
Brown and Spencer in [4, pp. 47-49], was established also algorithmically by Spencer in [22]
through derandomization. He presented a deterministic polynomial-time algorithm which
finds for every matrix Z € F;*", a codeword I'" € Cgp(n) such that d(I", Z) is at most the
right-hand side of (2) (see also Berger [2] and Pach and Spencer [19]). Note, however, that
this algorithm does not necessarily find a closest codeword in Cgg(n) to Z, i.e., this algorithm
is not a maximum-likelihood decoder.

| S,

Relating pgg(n) to the notation of Optimization Problem 1.2, we also have

min max Ay’ =n? —2pgs(n) .
Acdnxn w,ye<I>n

1.2 Complexity of MLD

The complexity of MLD of general linear codes was first studied by Berlekamp et al. in [3].
To show that MLD is intractable, it was stated as a decision problem:

Decision Problem 1.5. MLD orF LINEAR CODES.

Instance: Linear [N, k| code C over Fy (represented, say, by its parity-check ma-
trix), a word z € F) , and an integer 7.

Question: Is there a codeword in ¢ € C such that d(¢, z) < 77

Berlekamp et al. showed in [3] that this problem is NP-complete, using a reduction from
THREE-DIMENSIONAL MATCHING (see the book of Garey and Johnson [8] about the theory
of NP-completeness; the latter problem is described on pp. 50-53]). In Problem 1.5, the
code C is part of the input, even though, in practice, the code is usually known in advance.
Studying this more realistic version of the problem was the subject of the papers by Bruck
and Naor [5] and Lobstein [13], who considered MLD of specific linear codes Cgn(n) and
Crob(n), of parameters

[N=3n(n—1)/2, k=(n(n+1)/2)—1, d=2]

and
[N=3n? k=n>-3n+2,d=12]
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respectively. The codes Cgn(n) and Crqp(n) are explicitly described in the respective papers
and, in particular, generator (or parity-check) matrices of these codes can be constructed in
polynomial time. The results in [5] and [13] imply that the following decision problem is
NP-complete (the problem is stated here for the parameters of [5]):

Decision Problem 1.6. MLD OF Cgx(n).-

Instance: Word z € Fo"™ Y72 and an integer 7.

Question: Is there a codeword ¢ € Cpx(n) such that d(e, z) < 77

In fact, since the codes are now specific, an even stronger statement was made in those
two papers: Problem 1.6 is unlikely to become easy even if the decoder is allowed unlimited
preprocessing that depends only on n (but not on z): here “unlikely” means that if Prob-
lem 1.6 could be solved in polynomial time and unlimited preprocessing, then the polynomial
hierarchy would collapse (albeit not necessarily collapsing NP with P).

One drawback of the results in [5] and [13] is that the codes Cpx(n) and Crop(n) are not
“natural”: they are artificially crafted for the proofs to work. Thus, attempts have been made
to show the intractability of MLD of more widely-known codes. Indeed, Barg showed in [1]
that MLD of product codes is NP-complete, and a similar result was obtained by Guruswami
and Vardy in [10] for the class of generalized Reed—Solomon codes. However, in both these
results the ensembles of codes at any given parameter range are super-polynomially large,
and the results do not specify which of the codes within the ensemble is hard to decode.

1.3 Results of this work

In this work, we prove that the following decision-problem version of Optimization Prob-
lem 1.2, is NP-complete:

Decision Problem 1.7. BILINEAR FORM OVER ®.

Instance: Matrix A € ®"*" and an integer 7.

Question: Are there vectors &,y € ®" such that zAy? > 77
A direct consequence of this result is that the following decision-problem version of Op-
timization Problem 1.4, is NP-complete:

Decision Problem 1.8. MLD or GB CODES.

Instance: Matrix Z € F3*" and an integer 7.

Question: Is there a codeword I' € Cgg(n) such that d(I', Z) < 77



Furthermore, we invoke the arguments in [5] to claim that these problems remain hard
(in the sense that otherwise the polynomial hierarchy collapses) even with unlimited prepro-
cessing. Our result seems to be the first to exhibit the intractability of MLD of a specific
and familiar code, which we can comfortably refer to as “natural”: the GB code has been
studied before in several contexts—some of which motivated by its favorable covering radius.

Our NP-completeness proof consists of two reductions, which will be presented in Sec-
tions 3 and 4.

In contrast to our hardness result, we present in Section 5 a linear-time algorithm which,
almost always, implements MLD of the GB code, with respect to any BSC with (fixed)
crossover probability less than 1/2. The MLD implementation and, indeed, also the decoding
fail only for a portion of error events which occurs with probability that goes to zero as the
code length increases.

The rate of Cgr(n), which equals (2n—1)/n? and is therefore inversely proportional to
the square root of the length of Cgr(n), vanishes as the code length increases (this is why
it is at all possible to decode this code reliably even over a BSC with crossover probability
arbitrarily close to 1/2). However, using Cgg(n) as a building block, it is easy to come up
with higher-rate codes for which MLD is intractable. We demonstrate how this can be done
in Section 4.4.

We mention that our result on the NP-completeness of Problem 1.7 (BILINEAR FORM
OVER &) improves on an earlier result by Poljak and Rohn [20], where a similar result was
obtained for a less constrained problem: the entries of the matrix A therein can take integer
values rather than values only from ® (the particular reduction in [20] constructs matrices
in which some of the entries may grow with the matrix order n).

As another application of the NP-completeness of Problem 1.7, we show in Section 6 that
the following problem is NP-complete:
Decision Problem 1.9. QUADRATIC FORM OVER O.
Instance: Symmetric matrix @) € ®"*" and an integer o.

Question: Is there a row vector v € ®" such that vQvT > o?

2 Preliminaries

We present here several definitions and quote several known results.

Let G = (V, E) be a (finite undirected) graph with a vertex set V' and an edge set FE.
We will further assume that a graph has neither self-loops nor parallel edges. For a subset
S C V, denote by 0(S) the set of edges each having one endpoint in S and one endpoint in
V'\ S. A cut-set is a subset of E that equals 0(S5) for some S C V. The following decision
problem is well-known to be NP-complete [8, p. 210]:
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Decision Problem 2.1. Max-CuT.

Instance: Graph: G = (V, E) and an integer 7.
Question: Is there a cut-set 9(S) C E of size at least 77

The incidence matriz of a graph G is a |V| x |E| matrix Ug = (u;) over F, whose rows
(respectively, columns) are indexed by V (respectively, E), and u;, = 1 if and only if 7 is
one of the endpoints of e in G. Representing each cut-set in G by its characteristic vector in
F|2E|, we obtain a set of vectors over F, which is called the cut-set code of G (see Hakimi and
Frank [11]). This set is a linear space over I, and is spanned by the rows of Ug. When G is
connected then rank(Ug) = |[V| — 1.

The code Cpn(n) in Problem 1.6 was constructed by Bruck and Naor in [5] as a cut-set
code of a certain graph over n(n+1)/2 vertices. They then showed that Problem 1.6 is
NP-complete by a reduction from Problem 2.1 (MAx-CuT).

A graph G = (V, E) is called bipartite if the set of vertices V' can be partitioned into
disjoint subsets V' and V" such that each edge in E has one endpoint in V' and one endpoint
in V"; we then write G = (V' : V" E). A bipartite graph is balanced if |V'| = |V"| and it is
complete if there is an edge connecting each vertex in V' with each vertex in V.

It is rather easy to see that the code Cgp(n) is the cut-set code of a complete balanced
bipartite graph where |V'| = [V"| = n (see Solé and Zaslavsky [21]).

Problem 2.1 is trivial to solve for the case of bipartite graphs. However, if edges may be
assigned negative weights then the problem (as formulated next) becomes NP-complete:

Decision Problem 2.2. BIPARTITE MAX-CUT OVER .
Instance: Balanced bipartite graph: G = (V' : V" F), a weight function w : F —
®, and an integer 7.

Question: Is there a cut-set 9(S) C E such that Y- 4 w(e) > 77

The NP-completeness of Problem 2.2 was proved in McCormick et al. [17] using a reduc-
tion from Problem 2.1. (The problem as stated in [17] does not assume that the graph is
balanced, yet this restriction can be easily incorporated into the reduction by adding dummy
vertices. In addition, while the edge weights in [17] can be arbitrary, one can verify that the
NP-completeness proof therein still holds even when the weights are restricted to ®.)

3 Relaxed problem

In this section, we prove the NP-completeness of a relaxation of Problem 1.7 (BILINEAR
FOorM OVER ®) where we allow the matrix to have also zero entries. Our main hardness
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result, which will be proved in Section 4, will be based on a reduction from the problem
considered here.

Hereafter, &g denotes the set ® U {0}, and the formal statement of the relaxed problem
is as follows:

Decision Problem 3.1. BILINEAR FORM OVER @.

Instance: Matrix B € ®3*" and an integer o.

Question: Are there row vectors x,y € ®" such that zBy? > o7
Proposition 3.1. Problem 3.1 is NP-complete.
Proof. First, it is easy to see that Problem 3.1 is in NP. Our proof of completeness

borrows ideas from Poljak and Rohn [20] and will be by a reduction from Problem 2.2
(BIPARTITE MAX-CUT OVER ®). Let

G=(V'":V"E), w: E—®, 1)

be an instance of the latter problem and denote by n the size of V' (which is also the size of
V"). We map this instance to an instance (B, o) of Problem 3.1, where

o= QT—Zw(e)

ecE

and B = (b; ;) is a matrix in ®F*" whose rows (respectively, columns) are indexed by the
elements of V' (respectively, V"), and

b { —w(e) if i and j are connected by an edge e
T

0 otherwise

With any two subsets S C V' and T" C V", we associate the following two vectors
z = z(S5) = (zi)iev: and y = y(S) = (y;)jev» in O™

)1 ifieS
Ti=11 —1  otherwise
and
{1 ifjeT
Yi=1 21 otherwise

Clearly, the mapping S +— (S) (respectively, T+ y(T')) is a bijection from the set of
subsets of V' (respectively, V") onto ®". Denoting by S and T the sets V' \ S and V" \ T,



respectively, we next compute the total weight of the edges in the cut-set 9(S U T):

> el = (-3 )t (- X bu)

e€d(SUT) (i,)€SXT (i,)€SXT
1
- I >, bijle
’] GVIXVII
1
= 3 (ccBy b~,j)
( ,J)EV, VI/
1
= 3(eBy"+ > w)
eckE
Hence,
Z wle) > if and only if By’ >0 .
e€d(SUT)
The result follows. H

4 Main hardness result

In this section, we prove our main hardness result:

Theorem 4.1. Problem 1.7 (BILINEAR FORM OVER ®) is NP-complete.

4.1 Kronecker product and Hadamard matrices

The proof will make use of two lemmas, which we state next.

For the the first lemma we need the following definition. Let X = (x;;) and Y be real
matrices of orders k x £ and p x g, respectively. The Kronecker product X ® Y is defined as
the (kp) x (£q) matrix that has the following block form:

I171Y .’ELQY tee Ilng

.rQ,lY .7/‘2,2Y tee IQ,gY
XY = : : :

.’L‘k,ly xk,QY s .’Ek,gY

Among the properties of Kronecker product, it is known that for every four matrices X, Y,
Z,and W,
(XRZ)(Y QW)= (XY)® (ZW), (3)



provided that the (ordinary) matrix multiplications are allowed, namely, the number of
columns of X (respectively, Z) equals the number of rows of Y (respectively, W); see [16,
Theorem 43.4].

Lemma 4.2. Let B be a matriz in R™™ and let m be a positive integer. Then

T_ 2. T
o max (B®Jn)y =m max rBs" . (4)

Furthermore, the left-hand side of (4) is mazimized for vectors © and y in ®™" of the form
zr=rQ®1, and yYy=s8Q1, (5)

where T and s are vectors in ®" that mazimize the right-hand side of (4).

Proof. First, for every two vectors &,y € ™" of the form (5) we have

z(B® Jm)yT = 1,)(B® Jin)(s ® lm)T
= (rel,)(Be J.)(s" ®15,)
= (rBs") ® (1pJml))

= m?- (rBs’),

r®
r®

where the third equality follows from two applications of the rule (3). Hence, it remains to
show that the maximum in the left-hand side of (4) is indeed attained by vectors & and y
of the form (5).

Let € = (21 3 ... Zpy,) and y attain that maximum and consider the real vector
vl =W vy ... vn)T = (B® )y’ .

Fixing v, the vector & must be one of those in ®™" that maximize the scalar product z - v7.
Such vectors, in turn, are characterized by

zi=sgn(v;), 1<i<mn

(for indexes 7 where v; = 0, the value z; can be arbitrarily set to either 1 or —1). On the other
hand, by the particular form of the matrix B ® J,,, we get that for every j = 0,1,...,n—1,

Vim+1 = Vjm+2 = - - - = VU(G+1)m 5
consequently, a maximizing vector x satisfies
Lim+1 = Tjm+2 = - -+ = Tj(m+1)-1 = sgN (Vjmy1)

whenever v;,,11 # 0, and can always be assumed to satisfy these equalities when v, = 0.
It follows that for every vector y that belongs to a pair (x,y) that maximizes the left-hand
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side of (4), we can always assume that the respective vector x takes the form r ® 1,, for
some vector r € ®". Reversing the roles of x and y, we conclude that y can be assumed to
take the form s ® 1,, for some s € ®". O

The second lemma, taken from [4], presents a property of Hadamard matrices. Recall
that an m x m matrix H over R is called a Hadamard matriz if the entries of H are in ®
and HH" =m - I.

Lemma 4.3. Let H be an mxm Hadamard matriz. For every two row vectorsr,s € ®™,

|7‘HsT‘ < m3/? .

Proof. For a row vector 7 € R™, denote by ||r|| its L, norm v/r - 7. We have,
|lrH|? = rHH r" =m - ||r|*.
Applying the Cauchy-Schwartz inequality yields for any two row vectors r,s € ®™,
rHs"| < |[rH[| - |lsl = Vm- e - [lsl| = m*.

(For an alternate proof of the lemma, see [4].) O

Polynomially-constructible symmetric Hadamard matrices are known for infinitely many
orders m; in particular, Sylvester-type Hadamard matrices exist whenever m = 2" and take

the form _ L1 _
(1—1)‘8(1—1)@“'@(1—11

-

h times

(see, for example [15, Section 2.3]).

4.2 Proof of main hardness result

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Problem 1.7 (BILINEAR FORM OVER @) is easily verified to
be in NP. The completeness will be established by a reduction from Problem 3.1 (BILINEAR
FORM OVER @y).

Let (B,0) be an instance of the latter problem, where B = (b;;) is a matrix in &g*".
Take m to be the smallest power of 2 that is greater than 2n?, and let H be an m x m
Hadamard matrix. We now map (B, o) to an instance (A, 7) of Problem 1.7, where

1
r=(o-3)m*
2
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and A is a matrix in @™"*™" of the block form (4; ;)7,_, in which each m x m block A;; is

given by

B bi,ij if bi,j #0 ..
Ai,j_{ H ifbi,j:(] , 1 <,5<n.

Notice that A; ; equals the respective block in B® J,,, whenever b; ; # 0; otherwise, 4; ; = H

whereas the respective block in B ® J,, is all-zero.

For convenience, we introduce the notation « and g for the following maximal values:

a = max zAy’ and f = max rBs’ .

z,ycdmn r,8€cdn

By Lemma 4.3 we get that for every two vectors x,y € ®™",

(zAy") — (2(B® Jn)y")|

2

< n*- max ‘rHsT|
r,8€d™m
< n2.md?.
so, by Lemma 4.2,
3/2

|a—5m2| <n?-m
Hence, if 8 > o then
2

n
az,BmQ—nZ-m?’/Qz (U—T>m2>7,
m

|Z(A—(B® Ju))y'|

where the last inequality follows from the requirement that m > 2n*. Conversely, if o > 7

then
n? T 1

(6
B> > T __>5-1
m

vym = m?2 27 ’
namely, 8 > 0. We conclude that

a>T if and only if B >0,

thereby completing the proof.

O

As Problem 1.7 (BILINEAR FORM OVER @) and Problem 1.8 (MLD or GB CODESs)

are equivalent, the following corollary immediately follows.

Corollary 4.4. Problem 1.8 (MLD or GB CODES) is NP-complete.
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4.3 Hardness with preprocessing

In practice, the design of any decoder—say, a decoder of Cgp(n)—is carried out only once,
as opposed to the number of applications of the decoder (to received words) which, in turn,
can be very large. Therefore, when measuring the decoding complexity, one can attribute
computations that depend only on the parameter n (and not on the received word) to the
decoding design stage, rather than to the time the decoder is actually applied. Computations
that depend only on n are referred to as preprocessing, and the question is whether MLD
of Cgp(n) remains hard even if we ignore the complexity of preprocessing. Another way of
posing this question is whether, for any given n, a Boolean circuit that implements MLD of
Cag(n) is still unlikely to be polynomially large in n, even if we ignore the time it takes to
design that circuit. By invoking a result of Karp and Lipton [12], Bruck and Naor provided
a positive answer to this question, for the case of the code Cpx(n); in their result, “unlikely”
means that if there were polynomially large circuits that implement MLD of that code,
then the polynomial hierarchy would collapse (see [5, Section 3] for more details). Using
the arguments made by Bruck and Naor, the very same conclusion can be drawn from
Corollary 4.4 with respect to circuits that implement MLD of Cgg(n).

4.4 Codes at higher rates

While the rate of Cgp(n) vanishes as n increases, we next use Cgp(n) as a building block to
obtain higher-rate codes for which MLD is intractable: simply take the code

C = C()XCGB(TL)
= {(CO|F) 1 ¢y €Cy andFECGB(n)},

where C; is a linear [N, k, d] code over F, with length N that is polynomially large in n but
also greater than n?, the rate k/N is at least a prescribed value R (< 1), and d > n?. Explicit
constructions of such codes Cy are known (e.g., Justesen codes [15, Section 10.11]) and, for
these parameters, the rate of C is greater than (1 — (1/n))R. Given a received word of the
form z = (0| Z) (where Z € F3*™) and an integer 7 < n?, any codeword in C at Hamming
distance at most 7 from z must take the form ¢ = (0|I') for some I' € Cgg(n). Thus,
any polynomial-time implementation of MLD of C would imply such an implementation for

CGB (TL) .

5 Decoding algorithm over the BSC

In this section, we present a linear-time decoding algorithm for Cgg(n). We show that,
with respect to any BSC with crossover probability less than 1/2, the algorithm errs with
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probability that decays exponentially with n. Since a similar behavior of the error probability
is achieved also by a maximum-likelihood decoder for Cgg(n), our analysis will lead to the
conclusion that, with respect to the probability measure which is induced by the channel,
the decoding algorithm that we present here implements MLD with probability approaching
1 as the code length goes to infinity.

We will use the notation BSC(p) for a BSC with crossover probability p € [0,1]. We
assume that a codeword I' = (I'; ;) of Cgp(n) is transmitted through BSC(p) and an n x n
matrix Z = (Z, j) over T, is received at the channel output, such that Prob{Z; ; # I'; ;} = p,
independently for distinct pairs (4, 7).

Given a decoder D : F*" — Cgg(n), we denote by P, (D|I') the probability that the
decoder returns the incorrect codeword, given that I' € Cgg(n) is transmitted; namely,

P...(D|l') = Prob{D(Z) # I' | T was transmitted} ,

where the conditional probability is the one induced by BSC(p) (the dependence of Py, (D|I")
on p is kept implicit for the sake of simplicity of the notation). Also, we let P...(D) denote
the decoding error probability for the worst-case codeword:

P...(D) = max P (D).

TeCgp(n)

5.1 Linear-time decoding algorithm

The decoder that we present for Cgg(n) is the function
Dg])?‘ : IFQRX” — CGB (n)

whose value for every given Z € F;*" is given by the return value of the algorithm
GB_DECODER shown in Figure 1 (in the figure, we use our earlier notation d(-,-) for Ham-
ming distance). The algorithm GB_DECODER can be viewed as a variant of an algorithm
that has been recently suggested for jointly compressing similar files [23].

We first provide the intuition behind the algorithm. Recall from Section 1.1 that Cgg(n)
is the linear span of

Ln)={e] " 1a},_ U{1; e} _ .

and that every 2n—1 matrices in £(n) form a basis of this span over F,. It follows that for
every I' € Cgg(n) there exist unique row vectors @ = (a;)i-,; and b = (b;)7_, over F, such
that a; = 0 and

F'=a"-1,+1-b. (6)

Thus, the ith row of the transmitted codeword I' equals either b (if a; = 0) or b+ 1, (if
a; = 1); and, since a; = 0, the first row always equals b. Based on this simple observation,
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Algorithm GB_DECODER (Input: Z € F3*"):
/* 7; denotes the ith row of Z and ¢j denotes its jth column. */

1. Compute a vector @ = (0 ap as ... a,) over Fy by:

“ 1 if d(""l,’f’i) > n/2 '
aM_{ 0  otherwise , 2<1<nm.

A~

2. Compute a vector b= (131 by ... b,) over Fy by:

N 1 ifd(a,cj) >n/2 .
. <71 <
b = { 0  otherwise , lsjsmn.

3. Recompute a by

g 1 1fd(b,7.’i)>n/2 C2<i<n.
0 otherwise

4. ReturnT'=a” -1, + 1%3

Figure 1: Algorithm for computing D&% (7).

Step 1 of the algorithm GB_DECODER in Figure 1 finds an initial estimate for a by comparing
each row of the noisy matrix Z to its first row: if the ith row of Z is close (with respect
to Hamming distance) to the first row of Z then the estimate for a; is @; = 0; otherwise,
the estimate is a@; = 1. (Clearly, the choice of the first row in Z as a reference in these
comparisons is arbitrary; any other row in Z could play that role just as well.)

Once we have (an estimate for) a, we can proceed with the recovery of the entries of b:
we see from (6) that the jth column of T is equal to @’ when b; = 0, and to (a + 1,)” when
b; = 1. Therefore, we can estimate b; according to the Hamming distance between the jth
column of Z and our estimate for a’; this is done in Step 2 of GB_DECODER.

While the estimates for a and b that are computed in Steps 1 and 2 already yield a decod-
ing error probability that decays exponentially with n, Step 3 was added to GB_DECODER
to accelerate that decay so that it matches that of a maximum-likelihood decoder (see Propo-
sitions 5.1 and 5.5 below).

The operations used during the execution of GB_DECODER are additions in Fy and
increments of counters and indexes of length O(log, n). The number of applications of these
operations is quadratic in n, i.e., it is linear in the code length of Cgg(n).
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We next turn to analyzing the decoding error probability of the decoder 'Dg% implemented
by GB_DECODER. For two reals p,0 € (0, 1), denote by 6,(6) the value

1-0
_ 13)0 17p
50=(5) (5) -
It can be readily verified that for every fixed p € (0, 1), the function 6 — 0,(f) is continuous
over (0, 1) and it attains a unique maximum in that interval at # = p (in which case d,(p) = 1).

Let € = (€g)}_; be a random vector over F, whose entries are independent Bernoulli
random variables taking on F, with Prob{e;, = 1} = p (e.g., € can be taken as the error
vector that is added by BSC(p) to each row or column of the transmitted codeword). It is
known that, with respect to this probability measure, the Hamming weight of €, which we
denote by w(e), satisfies

Prob {w(e) > On} < (5,(0))" , (7)

whenever 6 > p (see [7, p. 531]). We will use the notation v, for the value 6,(1/2): it is easy
to see that

T = 0p(1/2) = 2¢/p(1-p) . (8)
Proposition 5.1. With respect to BSC(p) with any fized p < 1/2,

Por (D) < 7o)

where 0,(1) stands for a positive expression that converges to 0 as n goes to infinity (at a
rate that may depend on p). In particular, Py (Dgﬁ) decays exponentially with n.
We break the proof into three lemmas.

Lemma 5.2. Let the codeword T' = a” - 1, + 17 - b of Cap(n) be transmitted through
BSC(p) with p < 1/2, and let Z € F3*" be the (random) matriz received at the channel
output. Fix m : ZT — Z™ to be any integer function such that

lim m(n) = oo and lim m(n)
n—00 n—oco 1N

=0. (9)
Then the random vector @ = a(Z) that is computed in Step 1 of GB_DECODER satisfies
Prob {d(a, a) Z m(n)} S ,Y;l(l—op(l)) ,

where Prob {-} is the probability measure induced by the channel on its output Z, conditioned
on I' being transmitted.

Proof. Let 7 be a subset of {2, 3,...,n} of size m = m(n). We compute an upper bound
on the probability that the values a; that are computed in Step 1 are erroneous for all 7 € 7.
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Fori:=1,2,...,n, let
€, — (ei,l €2 .. Gi,n)
be the error vector (over Fy) that is added by the channel to the ith row of I' (to form the
ith row of Z). For j =1,2,...,n, denote by X; the number of rows, among the rows of Z
that are indexed by Z, in which the jth entry of the error vector differs from the respective
entry in €;, namely,

={t€T : &;# ey} -
By the definition of BSC(p) we have, for every 1 < j <mnand 1 <k <m,

m _ 1
Prob {X; =k} = <k> (p*(1=p)™ k4 pm itk (1—p)F) . (10)
Moreover, the random variables X1, X, ..., X, are statistically independent.

Now,

1€ €T

< Prob{ (Lwte + ) > 7'}

1€l

- Prob{ZXj > %} .
j=1

Prob{ﬂ(&i#ai)} < Pmb{ﬂ( (ertei) 2 g }
£

Let z be a real in (0,1) and denote by E{-} an expectation value taken with respect to
the probability measure Prob{-}. By the Chernoff bound (see [7, p. 127]) we get

Prob{ZXj > %} < E {ZmanE}zlej}
j=1

{11}

(B

IN

where, from (10),

L E{z) = g f;( ) —p)mHi=k

+pm+1 k:(l p) ) —2k
= (1-p) (pz "+ (1-p)2)"

+p(pz+ (1-p)z )" .

17



The last three chains of (in)equalities can be summarized by

Prob{ig(&i # ai)} < Prob{jzi;Xj > %}
< (w(z,m)" (11)
where

w(z,m) = (1-p) (pz ' + (1-p)2)"
+p(pz+ (1—p)z_1)m )

Let ¢ = ¢(p) be defined by
m((1/p) - 1)
2(1-2p)
and select z = z,, = 1/(1 4 (¢/m)). In this case,

, (12)

(pz;L1 + (1—p)zm)m

- <p(1 + 3) + (l—p)(l + %)1)7’1

A\\"
< (p (1- p)(l——+W))
( (1— 2p ch)
= 1— 5
m
_ e (e +o,,(1)

where 6,(1) stands for an expression that goes to 0 as m goes to infinity (at a rate that may
depend on p). Similarly,

(p2m + (1=p)2;")" < (1+(1_72p)c+(1;n@02)m

= 74 5,(1).

It follows from the last two chains of inequalities that
i) = (1p) - eG4 1 (1)

Now, from (12) we get that
e(1_2p)c — 1_p
p

Zma —2\/ 1 p +0p 7p+5p(1)'

18
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Combining the last equation with (11), we conclude that

Prob{ﬂ(&ﬁéai)} < (plam,m))"

i€T
= (p+ 5p(1))n )
and, taking the union bound over all subsets Z of {2,3,...,n} of size m, we obtain
~ n—1 n
Prob{a(a,@) 2 m} < (" 1) (ylamm)
m

< grH(m/n) (71) + 5;17(1))” )

where the last inequality follows from known upper bounds on the binomial coefficients,
in terms of the binary entropy function H(z) = —=zlog,(z) — (1—x)log,(1—z) (see, for
example [15, p. 309]). Finally, since we assume that m grows with n yet m/n = 0,(1), we
get

Prob{d(a,a) >m} < 2"HW) (4 4o (1))
fyg(lfop(l)) ,

as claimed. 0

Lemma 5.3. Under the conditions of Lemma 5.2, the random vector b= S(Z) that s
recomputed in Step 2 of GB_DECODER satisfies

Prob {5 #* b} < 7;(1-0,,(1)) .

Proof. For j = 1,2,...,n, denote by €; the error vector (over F,) that is added by
the channel to the jth column of I'. Also, let @ be the vector computed in Step 1 of
GB_DECODER. Then, for every positive integer m, the event

an

is contained in the following union of n+1 events:

. " n
{d(a, a) > m} U {]L:Jl(w(e;) > 5 m)} :
Therefore, by the union bound,

Prob {3 ” b} < Prob {d(a,@) > m}
+ i Prob{w(e;-) > g — m} : (13)
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For the remaining part of the proof, we assume that m = m(n) satisfies the conditions
in (9). Lemma 5.2 then provides an upper bound on the first term in the right-hand side
of (13). As for each of the remaining terms in (13), from (7) we get

Prob{W(GS) > g N m} = (5”(% R %Dn

1 n
= <5p(§ - Op(l))>
= (p+o(1)",
where the last equality follows from the continuity of § — §,(6). Hence,
Prob{w(e;-) > g — m} < ,Y;L(lfo;z(l)) ,

and the result follows from (13) and Lemma 5.2. O

Lemma 5.4. Under the conditions of Lemma 5.2, the vector @ = a(Z) that is computed
in Step 3 of GB_DECODER satisfies

Prob {a # a} < pt ()

Proof. As we did in the proof of Lemma 5.2, we denote by €; the error vector that is
added by the channel to the ith row of I'. The event

{@+a)

{p#8}u{U(wer>5)}

is contained in the union

where b is the vector computed in Step 2 of GB_DECODER. Therefore,
Prob {a # a} < Prob {3 # b} + Z Prob{w(ei) > g} :
i=1

and the claim follows from Lemma 5.3 and (7). O

Proof of Proposition 5.1. Conditioning on the transmitted codeword being [I' =
a’ -1, + 17 . b, we have,

Prob {DG)(Z) #T'} = Prob {(a £ a)U (b # b)}
< Prob{a # a} + Prob {3 # b} ,

where @ and b are the vectors computed in Steps 3 and 2, respectively, of GB_DECODER.
The result now follows from Lemmas 5.3 and 5.4. O

As our analysis in Section 5.2 will reveal, the error exponent (i.e., the rate of the expo-
nential decay in n) in Proposition 5.1 matches that of a maximum-likelihood decoder.
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5.2 Error probability of MLD

In this section, we compare the decoding error probability of ’Dg% to that of a maximum-
likelihood decoder, with respect to BSC(p) with any fixed crossover probability p < 1/2.

For an indeterminate &, let
n?
Wip(§) = Z Wi
t=0

denote the weight distribution of Cgg(n); that is, W; is the number of codewords in Cgg(n)
of Hamming weight ¢. Using the characterization (6) of the codewords of Cgg(n), it is easy
to verify that the Hamming weight of a codeword I' can be written as

w(l) =n- (w(a) +w(b)) — 2w(a) - w(b) .

Ranging over all a,b € F such that a; = 0, we obtain

W@ = > &

T'eCar(n)

= Y Y grw@tn) 2wt

1=0 b

— (n—1\ (n é-n(k—kf)f%l
k 14
=0 £=0

- Y (e e

=0

3 8
— o

Il
LIM
-~ o

Bl

Let
D(Mn)L : ]F;an — CGB (n)

be a maximum-likelihood decoder for Cgg(n). It is known that, with respect to BSC(p) with

p < 1/2, the decoding error probability of D{y satisfies

Pere (Diiz) < Wi () =1, (14)

where 7, is given by (8) (see [18, p. 153]). An inspection of the expression for Wi (7,) yields

Wen(n) =1+ 2n9; +0(n*9" ) (15)

which means that the main term in the upper bound (14) is Wy}, where W, = |£(n)| = 2n.
Proposition 5.5. With respect to BSC(p) with any fized p < 1/2,

Pewx (D)) = 720=051)

21



Proof. Equations (14)—(15) imply that
Py (D(MR)L) < 7;L(l—op(l)) )

To show the inequality in the other direction, let us assume that the decoder is told the
value of the vector a that is associated (by (6)) to the transmitted codeword I', and all the
decoder needs to find is an estimate b for b. As in the proof of Lemma 5.3, we denote by e;-
the error vector (over IFy) that is added by the channel to the jth column of I'. We have,

Prob {B £ b} > 1- Prob{ﬁ (w(e;.) < g)}

j=1

=1 —f[Prob{w(e;-) < g}
= 1- (1 — Prob{w(e'l) > g})n :

Now,

n n
P b{ / _} > (n/2)+1 (1 _)(n/2)-1
robq w(ej) > 25 = \nj2j41 P (1-p)
p T
> o)
— 1-p NZD
where the last inequality follows from the Stirling approximation of the binomial coefficients

(see [15, p. 309]; here Q(-) stands for an expression that grows at least linearly with its
argument). From the last two chains of inequalities we deduce that

Prob{37éb} > 1—(1—%-9(\7/—’%))n
= L.Q(\/ﬁ.ﬁ)

l—p
= ,yg(l—op(l)) ,
thereby completing the proof. O

From Propositions 5.1 and 5.5 we conclude that the error exponents of D&y and Dy are

the same. We also have the following corollary, which states that D} approximates Dy;

well, over BSC(p) with any p < 1/2.

Corollary 5.6. With respect to BSC(p) with any p < 1/2, and for every transmitted
codeword T' € Cgp(n),

Prob {D{;} (Z) = DGY(Z) =T} =1 — o)

where Prob {-} is the probability measure induced by the channel on its output Z € Fy*",
conditioned on I' being transmitted.
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6 Quadratic forms

As another application of the NP-completeness of Problem 1.7 (BILINEAR FORM OVER @),
we prove here the following result:

Proposition 6.1. Problem 1.9 (QUADRATIC FORM OVER @) is NP-complete.

Proof. Problem 1.9 is clearly in NP. The proof of completeness will be carried out by a
reduction from Problem 1.7.

Let (A, 7) be an instance of the latter problem, where A is a matrix in ®™*". Take ¢ to
be the smallest integer such that £ > 16n® and ¢ = [2"/n] for some integer h. Denote by H
a symmetric matrix in ®™* which is obtained from a 2" x 2" symmetric Hadamard matrix
by padding ¢n — 2" (< n) all-1 rows and columns. We now map the instance (4, 7) to an
instance (@, o) of Problem 1.9 where

o= (21 — 1)

and Q@ is the following symmetric matrix in ®2*2én;

Q:( H Je@A)
(Jg@A)T H '

Let
= (x| x2|...| Tp) and y=(y1|lys2|---|yo)

be two vectors in ®*, where each block, x; or Y;, is a vector in ®". Denoting by v the vector
(x| y) in &2, we have,

vQuvl = xHz" +yHy" +2z(J,® A)y"

¢
= :cHa:T—f—yHyT—i-Q(Z a:iijT> : (16)
ij=1
By Lemma 4.3 we get that
lwHz"|, |yHy"| < 2%h/2 1 9pn(tn — 2M)

< (n)3? + 20n?

nd  2nd\ ,
( T 7) ¢
1 2\, £

23
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where the second and fourth inequalities follow, respectively, from the choice of ¢ so that
¢=[2"/n] and £ > 16n3. From (16) and (17) we obtain

¢
T T 2
ax vQu —2( a T A ) < le. 18
(e w@v”) =2, 3wty (19
Denote
o = max vQu’ and f = max rAsT .

vEP2Un r,3€P"
Observing that

¢
max E x, Ayl = pe? |
ve@Z{n J

1,j=1

we get from (18) that
(28-1)F <a< (28+1)¢.

Hence, if 8 > 7 then
a>@2r-1)P=o0.

Conversely, if a > ¢ then
1/« 170
> - ——1) >—(——1): 1,
b= 3 (52 =2\p !
namely, 8 > 7. We conclude that

a>0o if and only if B>T.

This completes the proof. O

Recall that Problem 1.7 (BILINEAR FORM OVER @) is equivalent to MLD of the GB
code which, in turn, is the cut-set code of a complete balanced bipartite graph. It can be
shown that, in analogy, Problem 1.9 (QUADRATIC FORM OVER ®) is equivalent to MLD of
the [n(n—1)/2,n—1,n—1] cut-set code of a complete graph over n vertices (in which every
two distinct vertices are connected by an edge). The latter code thus serves as yet another
example of a case where MLD is NP-complete.
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