

A practical scalable distributed B-tree
Marcos K. Aguilera, Wojciech Golab

Information Services and Process Innovation Laboratory
HP Laboratories Palo Alto
HPL-2007-193
December 17, 2007*

distributed data
structures,
distributed
algorithms,
scalability, fault
tolerance

We propose a new algorithm for a practical, fault-tolerant, and scalable B-tree
distributed over a set of servers. Our algorithm supports practical features not
present in prior work: transactions that allow atomic execution of multiple
operations over multiple B-trees, online migration of B-tree nodes between
servers, and dynamic addition and removal of servers. Moreover, our algorithm
is conceptually simple: we use transactions to manipulate B-tree nodes so that
clients need not use complicated concurrency and locking protocols used in
prior work. We implemented our approach and show that its performance and
scalability are comparable to previous schemes, yet it offers many additional
practical features. We believe that our approach is quite general and can be
used to implement other distributed data structures easily.

 Internal Accession Date Only Approved for External Publication

© Copyright 2007 Hewlett-Packard Development Company, L.P.

A practical scalable distributed B-tree

Marcos K. Aguilera
HP Laboratories

Wojciech Golab
University of Toronto

Abstract

We propose a new algorithm for a practical, fault-
tolerant, and scalable B-tree distributed over a set of
servers. Our algorithm supports practical features
not present in prior work: transactions that allow
atomic execution of multiple operations over mul-
tiple B-trees, online migration of B-tree nodes be-
tween servers, and dynamic addition and removal
of servers. Moreover, our algorithm is conceptu-
ally simple: we use transactions to manipulate B-tree
nodes so that clients need not use complicated con-
currency and locking protocols used in prior work.
To execute these transactions quickly, we rely on
three techniques: (1) We use optimistic concurrency
control, so that B-tree nodes are not locked during
transaction execution, only during commit. This
well-known technique works well because B-trees
have little contention on update. (2) We replicate
inner nodes at clients. These replicas are lazy, and
hence lightweight, and they are very helpful to re-
duce client-server communication while traversing
the B-tree. (3) We replicate version numbers of inner
nodes across servers, so that clients can validate their
transactions efficiently, without creating bottlenecks
at the root node and other upper levels in the tree.
We implemented our approach and show that its per-
formance and scalability are comparable to previous
schemes, yet it offers many additional practical fea-
tures. We believe that our approach is quite general
and can be used to implement other distributed data
structures easily.

1 Introduction

The B-tree is an important data structure used in
databases and other systems that need to efficiently
maintain large ordered datasets. In this paper, we

propose a new algorithm fordistributed B-trees,
which are B-trees whose nodes are spread over mul-
tiple servers on a network (Figure 1). We focus on
B+-trees, where key-value pairs are all stored on leaf
nodes. Our algorithm is fault-tolerant and has good
scalability and performance: clients can execute B-
tree operations in one or two network round-trips
most of the time. In addition, our algorithm provides
a number of practical features that improve on prior
schemes [6, 11]:

• Transactional access. A client can execute a se-
quence of B-tree operations on one or more B-
trees, and do so atomically. This is important
for applications that use B-trees to build other
data structures.

• Online migration of tree nodes. A client can
move one or many tree nodes from one server to
another, and this is done transparently while the
B-tree remains functional. This enables better
load balancing among servers, especially when
new servers are added.

• Dynamic addition and removal of servers.
Servers holding the B-tree can be added and re-
moved transparently while the B-tree remains
functional. This feature allows the system to
grow and shrink dynamically, and it is also use-
ful for replacing or maintaining servers.

Another advantage of our algorithm is that it
avoids the subtle (and error-prone) concurrency and
locking protocols in previous schemes [6, 11]. In-
stead, we use a very simple idea: manipulate B-tree
nodes using transactions. For example, anInsert
operation may have to split a B-tree node, which
requires modifying the node (stored on one server)
and its parent (stored possibly on a different server);
clients use transactions to perform such modifica-
tions atomically, without having to worry about con-
current operations.

1

a

b c

d e f g

a

b c

d e f g

a

b c

d e f g

version
table
a
b
c

g

7
4
9

5

server 1

a

b c

d e f gcl
ie

nt
 1

a

b c

d e f gcl
ie

nt
 2

version
table
a
b
c

g

7
4
9

5

version
table
a
b
c

g

7
4
9

5

server 2
server 3

= B-tree inner node

= B-tree leaf node

Figure 1: Our distributed B-tree. Nodes are divided among

servers (grey indicates absence of node). A version table stores

version numbers for inner nodes. Leaf nodes have versions, but
these not stored in the version table. Two types of replication

are done for performance: (a) lazy replication of inner nodes at
clients, and (b) eager replication of the version table at servers.

In addition, we optionally use a primary-backup scheme to repli-

cate entire servers for enhanced availability. Note that a realistic
B-tree will have a much greater fan-out than shown. With a fan-

out of 200, inner nodes represent≈ 0.5% of all nodes.

The key challenge we address is how to execute
such transactions efficiently. To do so, we rely on the
combination of three techniques: (1) optimistic con-
currency control, (2) lazy replication of inner nodes
at clients, and (3) eager replication of node version
information at servers.

With the first technique, optimistic concurrency
control [7], a client does not lock tree nodes dur-
ing transaction execution. Instead, nodes are only
locked when the transaction commits, at which point
the client checks that the nodes read by the transac-
tion have not changed. To facilitate this check, B-tree
nodes have a version number that is incremented ev-
ery time the node changes. During commit, if the
version numbers of nodes read by the transaction
match those at the servers, the transaction commits.
Otherwise, the client retries the transaction. Opti-
mistic concurrency control works well because there
is typically little update contention on nodes of a B-
tree.

With the second technique, lazy replication at
clients, each client maintains replicas of inner B-
tree nodes it has discovered so far. As B-tree nodes
tend to have many children (fan-out of 200 or more
is typical), inner nodes comprise a small fraction of
the data in a B-tree, so replicating inner nodes takes
relatively little space. Replicas are updated lazily:
clients fetch updates only after they attempt to use a

stale version. This avoids the problem of updating a
large number of clients in a short period when inner
nodes change.

A transaction frequently needs to check the ver-
sion number of the root node and other upper-level
nodes, and this can create a performance bottleneck
at the servers holding these nodes. With the third
technique, eager replication of version numbers at
servers, we replicate these version numbers across
all servers so that they can be validated at any one
server. The resulting network traffic is manageable
since we replicate version numbers only for inner
nodes of the tree, and these typically change infre-
quently when the tree fanout is large.

As we show, with these techniques, a client exe-
cutes B-tree operations in one or two network round-
trips most of the time, and no server is a performance
bottleneck. It is the combination ofall three tech-
niques that provides efficiency. For example, with-
out lazy replication, clients require multiple network
round-trips to just traverse the B-tree. Without opti-
mistic concurrency control, clients require additional
network round-trips to lock nodes. Without eager
replication of version numbers, the server holding
the root node becomes a performance bottleneck.

We have implemented our scheme and evaluated
it using experiments, which show that performance
and scalability are good. We also derive space and
time complexities analytically.

To summarize, in this paper we provide a new
practical and fault-tolerant algorithm for distributed
B-trees. This is the first algorithm that supports
transactional access (multiple B-tree operations ex-
ecuted atomically), online node migration, and dy-
namic addition and removal of servers—features
that are important in practice. Our scheme is sim-
pler to implement and more powerful than previous
schemes based on rather complicated locking pro-
tocols. Moreover, we believe our approach is quite
general and can be used to implement other dis-
tributed data structures with little effort. We con-
sider the performance of our algorithm analytically
and experimentally, and we show that performance
and scalability are good.

This paper is organized as follows. Related work
is explained in Section 2. We describe the model in
Section 3 and the problem in Section 4. In Section 5
we explain the transactions we use and techniques to

2

make them fast. The B-tree algorithm is presented
in Section 6, followed by its analysis in Section 7
and experimental evaluation in Section 8. Section 9
concludes the paper.

2 Related work

As far as we know, this is the first work to provide
a distributed data structure that efficiently and con-
sistently supports dictionary and enumeration oper-
ations, execution of multiple operations atomically,
and online addition and removal of servers.

Most prior work on concurrent B-trees focuses on
shared memory systems, in which the B-tree is stored
in a single memory space and multiple threads or
processors coordinate access through the judicious
use of locks. The best known concurrent B-tree
scheme is called a B-link tree [8, 13], which seeks
to reduce lock usage for efficiency. A B-link tree is
a B+-tree where each tree node is augmented with
a pointer to its right sibling. This pointer allows
Lookup operations to execute without acquiring any
locks, while Insert and Delete operations acquire
locks on a small number of nodes. Intuitively, the
additional pointer allows a process to recover from
temporary inconsistencies.

Algorithms for distributed B-trees in message-
passing systems are proposed in [6, 11]. For man-
aging concurrency, [6, 11] use subtle protocols and
locking schemes. These algorithms do not support
the execution of multiple operations atomically, node
migration, or dynamic server addition and removal.
Moreover, experiments show that our algorithm per-
forms similarly to [11] ([6] does not publish perfor-
mance numbers).

Much work has been done on peer-to-peer data
structures, such as distributed hash tables (DHT)
(e.g.,[15, 12]) and others. Unlike B-trees, hash tables
do not support enumeration operations, though some
DHT extensions support range queries (e.g., [1]).
Peer-to-peer data structures work with little syn-
chrony and high churn (i.e., nodes coming and going
frequently), characteristic of the Internet, but tend to
provide weak or no consistency guarantees. Appli-
cations of peer-to-peer systems include file sharing.
In contrast, our work on B-tree focuses on providing
strong consistency in more controlled environments,

such as data centers and computing clusters. Appli-
cations of B-trees include database systems.

A high-performance DHT that provides strong
consistency in computing clusters was proposed in
[2]. Other distributed data structures include LH*
[10], RP* [9], and their variants. None of these sup-
port transactions over multiple operations, and fur-
thermore [2] and LH* lack efficient enumeration.

Work on transactional memory proposes to use
transactions to implement concurrent data structures
[4, 14, 3]. That work focuses on shared memory mul-
tiprocessors, where processes communicate cheaply
via a shared address space, and the challenge is how
to execute memory transactions efficiently. This is
done either in hardware, by extending the cache co-
herence protocol, or in software, by carefully coordi-
nating overlapping transactions. In contrast, we con-
sider message-passing systems where process com-
munication is expensive (compared to shared mem-
ory), which requires schemes that minimize commu-
nication and coordination.

For message-passing systems, distributed B-trees
are proposed in [11, 6], without support for transac-
tions or online removal of servers. Replicating B-
tree information for performance is proposed in [6],
which replicates inner nodes eagerly at many servers.
In contrast, we replicate inner nodes lazily at clients
for performance, we replicate version numbers at
servers for performance, and we (optionally) repli-
cate servers for fault tolerance, not performance.

3 Model

We consider distributed systems with a setΠ =
Πs ∪ Πc of processes, where processes inΠs are
calledservers and processes inΠc are calledclients
(Πs∩Πc=∅). Intuitively, servers implement a ser-
vice (i.e., the distributed B-tree) while clients utilize
the service. Throughout this paper,nodes refer to B-
tree nodes rather than hosts or processes.

Processes can communicate with each other by
sending messages through bidirectional links. There
is a link between every client and server, and between
every pair of servers, but there may not be links be-
tween pairs of clients (e.g., to model the fact they are
not aware of each other). Links are reliable: they do
not drop, create, or duplicate messages.

3

Operation Description

Insert(k, v) adds (k, v) to B
Lookup(k) returns v s.t. (k, v) ∈ B or⊥ (if no such v)
Delete(k) deletes (k, v) from B for v s.t. (k, v) ∈ B
getNext(k) returns smallest k′>k s.t. (k, •) ∈ B, or⊥
getPrev(k) returns largest k′<k s.t. (k, •) ∈ B, or⊥

Figure 2: Operations on a B-tree B.

Processes are subject to crash failures. To deal
with crashes, servers have stable storage. A server
that crashes subsequently recovers with its stable
storage intact. Clients may not have stable storage
and may not recover from crashes.

The system is synchronous: message delays and
process step delays are bounded. This is intended to
model corporate data centers where B-trees are used1

and it is similar to the perfect failure detection as-
sumption in [11].

4 Problem

We provide an overview of B-trees, define distributed
B-trees, explain transactional access, and describe B-
tree management operations.

4.1 B-tree overview

We provide a brief overview of B-trees; details can
be found in a data structures textbook. A B-tree
stores a set of key-value pairs(k, v) such that there
is at most one valuev associated with each keyk.
A B-tree supports the standard dictionary operations
(Insert, Lookup, Delete) and enumeration operations
(getNext, getPrev), described in Figure 2.

A B-tree is internally organized as a balanced tree.
We focus on the B+-tree, a B-tree variant where key-
value pairs are only stored at leaf nodes (Figure 3).
Each tree level stores keys in increasing order. The
lowest level also stores values associated with keys,
while upper levels store pointers. To lookup a key,
we start at the root and follow the appropriate point-
ers to find the proper leaf node. To insert a pair
(k, v), we lookup the leaf node wherek would be,
and place(k, v) there if there is an empty slot. Oth-
erwise, wesplit the leaf node into two nodes and

1Our scheme should be extensible to asynchronous systems
by relaxing B-tree consistency, but we have not done so since
applications of B-trees, such as databases, require consistency.

A B F M R V X

R

F J T

G

*

**v w x v w y v x†

Figure 3: B+-tree: leafs store key-value pairs and inner nodes

store keys and pointers. Keys and values are denoted in upper

and lower case, respectively. To lookup key G, we start at the
root, follow the left pointer as G<R, arrive at node ∗, follow the

middle pointer as F<G<J , and arrive at node ∗∗ where G is.

A B F M R

R

F J T

G
v w x v w y

V
v

W
y

X

X
x

nodes changed
due to split

Figure 4: Splitting nodes: inserting (W, y) causes a split of

node † in the tree from Figure 3.

update the parent appropriately as illustrated in Fig-
ure 4. Updating the parent might require splitting
it as well, recursively (not shown). Deleting a key
entails doing the inverse operation, merging nodes
when a node is less than half full. The enumeration
operations (getNext andgetPrev) are almost identi-
cal toLookup.

4.2 Distributed B-tree

A distributed B-tree has its nodes spread over multi-
ple servers. For flexibility, we require that a node can
be placed on any server according to some arbitrary
user-supplied functionchooseServer() that is called
when a new node is allocated. For example, if a new
server is added,chooseServer() can return the new
server until it is as full as others.

A distributed B-tree supports concurrent opera-
tions by multiple clients, and its operations should
be linearizable [5]. Roughly speaking, linearizabil-
ity requires each operation to appear to take effect
instantaneously at a point in time between the opera-
tion invocation and response.

4.3 Transactional access

Transactional access allows clients to perform mul-
tiple B-tree operations atomically. Transactions are
linearizable: the corresponding sequence of B-tree

4

Operation Description

addServer(s) add new server s
removeServer(s) remove server s from system

Migrate(x, s) migrate node x to server s
firstNode(s) enumerate nodes in server s
nextNode(x, s) enumerate nodes in server s

Figure 5: Management operations on a B-tree.

operations appears to take effect instantaneously at
a point in time between when the transaction begins
and when it commits successfully. We expect trans-
actions to be short-lived rather than long-lived (i.e.,
execute within milliseconds, not hours). Below we
show a sample transaction to atomically increment
the value associated with keyk.

BeginTx();

v ← Lookup(k);
Insert(k, v + 1);

success← Commit();
EndTx();

4.4 Management operations

Management operations include migration of nodes
and additions and removals of servers, as shown in
Figure 5. FunctionaddServer adds a new server
that can then be used to allocate B-tree nodes,
which is useful for expanding the system. Func-
tion removeServer is used to remove a server, say,
for upgrades or maintenance, or just to shrink the
system. The operation first migrates all nodes in a
server to other servers, which could take some time,
and then removes the server from the system (before
some client adds nodes to it).Migrate is used to move
nodes from one server to another, say to balance load
after a new server has been added. To enumerate
nodes,firstNode(s) returns the first node in servers
(in some arbitrary order) andnextNode(x, s) returns
the node after nodex. Other management operations
(not shown) include querying current and historical
load and space usage of a server. All management
operations occuronline: during their execution the
B-tree remains fully operational.

5 Transactions

In our B-tree implementation, clients use transac-
tions to atomically manipulate nodes and other ob-
jects. We use a type of optimistic distributed transac-
tion with several techniques to improve performance.

A transaction manipulatesobjects stored at
servers. Each object is a fixed-length data structure,
such as a B-tree node or a bit vector. Objects are
either static or allocated from a static pool at each
server, where each object in the pool has a flag in-
dicating whether it is free. We chose to implement
allocation and deallocation ourselves, so that these
can be transactional. Objects include anID, which
uniquely identifies the object and the server where it
is stored, and possibly aversion number, which is in-
cremented whenever the object changes. Below is a
list of objects we actually use.

Object Description

tree node stores keys and pointers or values
bit vector used by node allocator

metadata tracks server list and root node ID

Transactions have aread set and awrite set, with
their usual semantics: they are empty when a trans-
action starts, and as the transaction reads and writes
objects, these objects are added to the read and write
sets, respectively. Our transactions use optimistic
concurrency control [7]: objects are not locked
during transaction execution, only during commit,
which happens through standard two-phase commit.

Lazy replication of objects at clients. The trans-
actions we use tend to have a small write set with
objects at a single server, and a large read set with
objects at many servers. For example, a B-treeInsert
typically writes only to a leaf node and reads many
nodes from root to leaf. To optimize for this type
of transaction, clients replicate certain key objects.
These replicas speed up transaction execution be-
cause a client can read replicated objects locally. Not
every object is replicated: only inner B-tree nodes
and metadata objects (which record information such
as the list of servers in the system), so that the size of
replicated data is small.

Replicas are updated lazily: when a transaction
aborts because it used out-of-date objects, the client
discards any local copies of such objects, and fetches
fresh copies the next time the objects are accessed.
The use of lazy replicas may cause a transaction to
abort even without any overlap with other transac-
tions, in case a replica is out-of-date when the trans-
action begins. We did not find this to be a problem
for B-trees since the objects we replicate lazily (inner
nodes of the B-tree) change relatively rarely.

5

Eager replication of version numbers at
servers. B-tree operations tend to read upper-level
B-tree nodes frequently. For example, every traver-
sal begins at the root node. As explained above, these
nodes are replicated at clients, but when a transac-
tion commits, they still need to be validated against
servers. The servers holding these popular nodes can
become a performance bottleneck. To prevent this
problem, we replicate the version numbers of all in-
ner nodes of the B-tree at all servers, so that a trans-
action can validate them at any server. We maintain
these replicas synchronized when a transaction com-
mits; this is done as part of two-phase commit. Fig-
ure 1 illustrates the various types of replication that
we use.

Another benefit of replicated version numbers is to
optimize transactions that read many inner nodes but
only modify one leaf node, such as when one inserts
a key-value at a non-full leaf, which is a common op-
eration. Such transactions typically need to contact
only one server, namely the one storing the leaf node,
since this server can validate all inner nodes. We can
then commit the transaction in one phase instead of
two (explained below). The end result is that most
B-tree operations commit in one network round-trip.

Committing transactions. A client commits a
transaction with standard two-phase commit, with
modifications to deal with objects that have repli-
cated version numbers at servers. If such an object
is in the write set, its new version must be updated
at all servers. If such an object is in the read set, it
can be validated at any server. Validation means to
check whether the object is up-to-date, by compar-
ing its version number (or its content if the object has
no version numbers) against what is stored at some
server. The client chooses the server so as to mini-
mize the number of different servers involved in the
transaction; if only one server is involved, the trans-
action can be committed faster (as explained below).

In two-phase commit, the first phase locks and val-
idates objects used in the transaction, and the second
phase commits the changes if the first phase is suc-
cessful. More precisely, in the first phase, the client
sends the read and write sets to servers. A server tries
to read-lock and write-lock objects in the read and
write sets, and validates the objects in the read set
against the objects stored at the server. Servers re-
ply with an OK if the objects are successfully locked

and validations are successful. Servers do not block
on locks; they simply return not-OK to the client. In
the second phase, the client tells servers to commit
if all replies are OK, or abort otherwise. In the latter
case, the client restarts the transaction (possibly af-
ter some random exponential back-off, to deal with
contention).

If a transaction only involves one server then it can
commit with one-phase commit: a client can simply
send a single message to a server with the read and
write sets. The server validates the read set and, if
successful, writes the objects in the write set.

Other optimizations. If a transaction reads an ob-
ject for which it does not have a local replica, the
client must request the object from the server stor-
ing it. When this happens, we piggyback a request to
check the version numbers of objects in the read set.
If some object is stale, this check enables clients to
abort doomed transactions early. A read-only trans-
action (e.g., performing onlyLookup) for which the
last read was validated as just described, can be com-
mitted without accessing any server.

Fault tolerance. Our algorithm tolerates crash
failures of clients and servers. A server uses stable
storage to recover from crashes without losing the
contents of the B-tree. Because we use transactions,
fault tolerance comes for free: we just need to ensure
that transactions are atomic, and this is provided by
two-phase commit. For example, if a client crashes
outside the two-phase commit protocol, there is no
recovery to do. If a client crashes during two-phase
commit, the recovery comprises determining the out-
come of the transaction (by querying the servers in-
volved in the transaction) and informing all servers
of this outcome.

We also optionally provide another form of fault
tolerance: active primary-backup replication of
servers (not to confuse with the other forms of repli-
cation discussed above). Roughly speaking, the
backup server is a shadow replica of the primary at
all times: everything is replicated, including all B-
tree nodes. This well-known technique enables the
system to fail over to the backup if the primary server
crashes, without having to wait for the primary server
to recover. We use transactions as natural points in
time to synchronize the backup. Because primary-
backup replication is expensive in terms of resources,
this mechanism is optional, according to the user’s

6

preferences. Note that even without primary-backup
replication, data are not lost on crashes since servers
can use stable storage to recover.

Transaction interface. The table below shows the
interface to transactions, wheren denotes an object
ID andval is an object value.

operation description

BeginTx() clear read and write sets
Read(n) read object n locally or from server

and add (n, val) to read set
Write(n, val) add (n, val) to write set

Commit() execute two-phase commit

Abort() abort transaction
IsAborted() check if transaction has aborted

EndTx() garbage collect transaction structures

Roughly speaking,Read and Write add objects
to the read and write sets, whileCommit executes
two-phase commit as described above.Abort marks
the transaction as prematurely aborted so that sub-
sequent calls toCommit fails. IsAborted indicates
whether the transaction has aborted.

6 Details of distributed B-Tree algo-
rithm

We now explain how we use transactions to imple-
ment our distributed B-tree.

6.1 Dictionary and enumeration operations

The dictionary and enumeration operations of a B-
tree (Lookup, Insert, etc) all have a similar structure:
they initially traverse the B-tree to get to the leaf
node where the given key should be. Then, if the op-
eration involves changing data (i.e.,Insert, Delete),
one or more nodes close to the leaf node are changed.
We use a transaction to make these modifications.

We showInsert in detail on page 7; other oper-
ations are similar, and are included in Appendix B.
InsertHelper is a recursive helper function for insert-
ing, andSearch returns the insertion index for a key
within a node. The overall algorithm is very similar
to that of a centralized B-tree; an asterisk indicates
lines where there are differences:

• We use the transactionalRead andWrite to read
and write B-tree nodes.

Field Description

isLeaf Boolean indicating node type

depth distance of node from root
numKeys number of keys stored

keys[1..numKeys] sorted array of keys
values[1..numKeys] values for keys in leaf node

children[0..numKeys] child pointers in inner node

Figure 6: Fields of a tree node

Function Insert(key, value)
Input: key, value – key/value pair to insert
Output: true iff key was not already in the tree

* rootNum← getRoot()
* (ret, modified, root)← InsertHelper(rootNum,

key, value,−1)
if IsAborted then return ⊥
if root has too many keysthen

split root into childrenchild andchild′, and
new rootroot

* c← Alloc(); c′ ← Alloc()
* Write(rootNum, root)
* Write(c, child); Write(c′, child′)

else if modified then
* Write(rootNum, root)

end
return ret

• We use a specialgetRoot helper function to find
the B-tree root.

• We use ourAlloc andFree to allocate and free
B-tree nodes transactionally.

• We perform various safety checks to prevent the
client from crashing when its local replicas of
objects are inconsistent with each another.

We now explain these differences in more detail.
Reading and writing B-tree nodes (Read,

Write). Reading and writing B-tree nodes simply en-
tails calling the transactionalRead andWrite func-
tions, which were explained in Section 5.

Finding the root (getRoot). The B-tree root might
change as it undergoes migration or splits. Since the
root is where all tree traversals start, we need an effi-
cient way to locate it. To do so, we keep some meta-
data about the B-tree in a special metadata object,
which includes the ID of the root node and a list of
all current servers. We include the metadata object,
which is replicated at all servers for efficiency, in a
transaction’s read set to ensure the root is valid.

Node allocation and deallocation (Alloc, Free).
We need to allocate B-tree nodes transactionally to

7

Function Search(node, key)

Input: node – node to be searched
Input: key – search key
if node.numKeys = 0 then

return ⊥
else

return index of the largest key in
node.keys[1..numKeys] that does not exceed
key, or else0 if no such key

end

Function InsertHelper(n, key, value, d)

Input: n – node ID
Input: key, value – key/value pair to insert
Input: d – depth of previous node visited
Output: tuple (ret, modified, node) where

ret = true iff key was not already in
the tree,modified = true iff node n
has changed, andnode is noden

* node← Read(n)
* if node = ⊥ ∨ node.depth ≤ d then
* Abort (); return ⊥

end
i← Search(node, key)
if node.isLeaf then

if i 6= 0 ∧ node.keys[i] = key then
node.values[i]← value
return (false, true, node)

else
insertkey andvalue into node
return (true, true, node)

end
else

c← node.children[i]
* (ret,modified, child) ← InsertHelper(c,

key, value, node.depth)
if IsAborted then return ⊥
if child has too many keysthen

split child into child andchild′, update
node as needed

* c′ ← Alloc()
* Write(c, child); Write(c′, child′)

return (ret, true, node)
else if modified then

* Write(c, child)
end
return (ret, false, node)

end

avoid races (double allocations) and memory leaks
(when a client crashes). To do so, we use a simple
allocation scheme: at each server, there is a static
pool of nodes and a bit vector indicating whether a
node in the pool is free. Clients keep a lazy replica
of each server’s bit vector. To allocate a new node,
the client first decides on a server to host the node, by
calling chooseServer() (our implementation simply
returns a random server, but more elaborate schemes
are possible). Then, the client selects a free entry in
the bit vector of that server and marks it as used. The
client then adds the chosen bit vector entry (not the
node itself) to the transaction’s write set and read set.
The reason for adding it to the read set is to ensure
that the corresponding node is still free at the time
just before the transaction commits.

Node deallocation is similar to node allocation: a
client sets the appropriate bit vector entry and adds
this object to a transaction’s read and write set.

Servers can be removed from the system, and a
client should not allocate B-tree nodes on a server
that is removed or being removed. For this purpose,
the server list in the metadata object includes atran-
sient tag for servers where allocation is prohibited.
The metadata object is included in a transaction’s
read set, to ensure the server list is consistent on com-
mit.

Safety checks. Clients may have inconsistent data
in their lazy replicas of tree nodes, and so, to avoid
crashing, clients need to perform some safety checks:

• array index out of bounds
• null pointer or divide by zero
• object read has unexpected type
• infinite cycles while traversing tree

We detect the last condition by recording the dis-
tance of a node from the root in thedepth field, and
ensuring that the value of this field increases mono-
tonically during a traversal of the tree. If any of
the consistency checks fail, the transaction is aborted
and restarted.

Furthermore, when a client reads a node from a
server (inRead), we piggyback a request to validate
the transaction’s read set. If this validation fails (as
indicated byRead returning⊥), the transaction can
abort early.

8

6.2 Initialization

When a client begins executing, it uses a directory
service to find one of the B-tree servers and contacts
this server to read the metadata object, to learn the
ID of the root node and the list of servers.

6.3 Transactional access

With our approach, it is straightforward to combine
multiple B-tree operations in the same transaction:
the code for B-tree operations (e.g.,Insert or Delete)
does not actually begin or commit the transaction,
it just accumulates updates in the transaction’s write
set. Thus, a client can execute multiple operations,
and then commit all of them together.

6.4 Management operations

We now describe how to migrate tree nodes, add
servers, and remove servers. These are executed on-
line (i.e., the B-tree remains fully operational).

Migration. To migrate a nodex to servers (oper-
ationMigrate(x, s)), we need to destroy node object
x and create a new node object at servers. To do
so, a client executes a transaction that reads nodex,
deallocatesx usingFree, allocates a new nodex′ at
servers usingAlloc, writes nodex′, and replaces the
pointer tox with a pointer tox′ in x’s parent. Ifx
is the root node, then the transaction also updates the
metadata object with the new root.

Server addition. Adding a server (operation
addServer(s)) entails populating the version table
of s and making it available for future node addi-
tions and migrations. To do so, we first initialize
the version number table with special “don’t know”
versions that are smaller than any real version (e.g.,
−1). Then, we update the metadata object (using
a transaction) to adds to the server list and tags
as transient. This writes the new metadata object to
all servers includings itself. A transient server does
not participate in node allocation, but continues to
receive updates of version numbers. Next, we popu-
late the version number table ofs by reading version
numbers of inner nodes from another server and tak-
ing themax with what s might already have. This
reading need not be done using a transaction, since
concurrent updates of version numbers will be de-
livered tos and correctly handled by applyingmax.

Finally, we update the metadata object (using a trans-
action) to tags as not transient. Now, servers can be
populated with nodes using theMigrate operation, or
by waiting for new nodes to be gradually allocated
on s.

Server removal. Removing a server (operation
removeServer(s)) entails migrating away nodes on
s, while ensuring that clients eventually stop using
s. To do so, we first update the metadata object (us-
ing a transaction) to tag servers as transient. This
prevents clients from adding new nodes on servers,
but s continues to respond to reads and validations
of its nodes. Next, if the directory service points to
s (see “Initialization” in Section 5), we change it to
point to a different server. This ensures that onces
is eliminated, new clients can still find a functional
server. We then useMigrate to migrate all nodes
of servers to different servers according to some
placement policy (in our implementation, placement
is done randomly). Then, we update the metadata
object (using a transaction) by removings from the
server list. (This transaction also updates the replica
of the metadata object in servers.) After this is done,
a client that still thinks thats is in the system will
have its transactions aborted, since this client has a
stale metadata object and every transaction validates
the metadata object on commit. Finally, we termi-
nate the server process ats.

7 Analysis

In this section we analyze the complexity of our B-
tree in terms of the variables shown below.

Variable Meaning

S number of servers

N number of key-value pairs in the tree

Zk, Zv size of each key and value, respectively
D size of a tree node

Note that the number of leaf nodes in the tree is
Θ(N(Zk + Zv)/D), and the number of internal
nodes is at most the number of leaf nodes. The
branching factor isΘ(D/Zk), and so the height of
the tree isΘ(logD/Zk

N(Zk + Zv)/D).
Space complexity. Space is nearly evenly dis-

tributed across servers. Total space needed is
Θ(N(Zk + Zv)) for tree nodes,O(S2) for metadata
objects containing the root node ID and server list,

9

andO(N(Zk + Zv)S/D) for version number tables
and node allocator bit vectors. Thus, the space com-
plexity isO(N(Zk + Zv)(1 + S/D) + S2).

Communication complexity. In common cases,
a Lookup requires one network round-trip to read a
leaf node and simultaneously validate inner nodes.
getNext andgetPrev are similar toLookup. An Insert
or Delete require two network round-trips, one to
read a leaf node and one to commit the change to
the leaf node. In the worst case, a tree operation re-
quires an unbounded number of network round-trips
as transactions repeatedly abort due to contention.
In practice, contention on a B-tree is rare and is
managed successfully using an exponential back-off
scheme. The worst case without contention occurs
when a client’s replicas of tree nodes are all stale.
Then, the number of round-trips for an operation is
proportional to the height of the tree as a client needs
to read each tree level in sequence.

The number of network messages exchanged per
network round-trip is constant, except when anIn-
sert or Delete operation changes at least one inner
node. In that case the client generatesΘ(S) mes-
sages on commit in order to update version number
tables. However, the number of messages per round-
trip amortized over multiple B-tree operations is still
constant provided that the fanout of the tree isΩ(S).

8 Evaluation

We implemented our scheme using C++ and evalu-
ated its performance on a cluster of 24 1GHz Pen-
tium III machines with SCSI hard disks connected
by a Gb Ethernet switch. Each client and server
ran on their own machine. In each experiment,
the tree was pre-populated with 100,000 elements.
Then each client ran three batches ofInsert, Lookup,
and Delete operations, respectively and in this or-
der, where each batch had 10,000 operations. The
tree node size was 4 KB, keys had 10 bytes, and
values had 8 bytes, for a total of 180 and 220 keys
per inner and leaf nodes, respectively. ForInsert op-
erations, keys were generated uniformly at random
from a space of109 elements. ForLookup andDelete
operations, keys were chosen from those previously
inserted. Clients started each batch simultaneously
(to within one second), with possibly stale replicas

of inner nodes. Servers wrote updates to disk syn-
chronously and used primary-backup replication.

Figure 7 shows aggregate throughput as we vary
the system size. For the lower curve, we vary the
number of clients but keep the number of servers
at two. For the higher curve, we vary the num-
ber of clients and servers together. Error bars show
one standard deviation. As can be seen, through-
put tends to level off when the number of servers
is constant, while throughout increases almost lin-
early when the number of servers increase with the
number of clients.Insert andDelete operations were
3-7 times slower thanLookup, since Lookup does
not write to disk. These numbers are similar to the
ones reported in [11]. We also did experiments with-
out disk logging and primary-backup replication, and
performance improved roughly two-fold.

The number of network round-trips per tree op-
eration, averaged over 10,000 operations, was 2.0-
2.2 for Insert, 1.000-1.001 forLookup, and 2.1-2.6
for Delete. These averages are close to the corre-
sponding lower bounds of two, one, and two network
round-trips for these operations, respectively. For ex-
ample,Insert requires one round-trip to fetch a leaf
node (since leaf nodes are not replicated at clients)
and one round-trip to write it. Operation latency (un-
der minimal load) was 2.5 ms forInsert, 1.8 ms for
Lookup, and 2.7 ms forDelete. These numbers are
reasonable, being close to disk access times.

9 Conclusion

We presented a conceptually simple method to im-
plement a distributed B-tree, by using distributed
transactions to manipulate the B-tree nodes. Our
approach has some features that are important in
practice, namely (1) being able to atomically exe-
cute multiple B-tree operations, (2) migrating B-tree
nodes, and (3) dynamically adding and removing
servers. A key challenge addressed by our scheme
is how to efficiently use transactions to manipulate
data structures. To do so, we proposed three tech-
niques: optimistic concurrency control, lazy replica-
tion of inner nodes at clients, and eager replication
of node versions at servers. These techniques to-
gether allow clients to execute common B-tree oper-
ations very efficiently, in one or two network round-

10

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 4 6 8 10 12

tr
ee

 o
pe

ra
tio

ns
 p

er
 s

ec
on

d

number of clients

serv. = # clients
2 servers

 0

 1000

 2000

 3000

 4000

 5000

 6000

 2 4 6 8 10 12
tr

ee
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d

number of clients

serv. = # clients
2 servers

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2 4 6 8 10 12

tr
ee

 o
pe

ra
tio

ns
 p

er
 s

ec
on

d

number of clients

serv. = # clients
2 servers

Figure 7: Aggregate throughput for Insert (left), Lookup (middle), and Delete (right) operations.

trips most of the time. An implementation and ex-
periments confirm the efficiency of our scheme. We
believe our approach would be useful to implement
other distributed data structures as well.

References

[1] A. Andrzejak and Z. Xu. Scalable, efficient range
queries for grid information services. InProc.
P2P’02, Sept. 2002.

[2] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler.
Scalable, distributed data structures for internet ser-
vice construction. InProc. OSDI’00, Oct. 2000.

[3] M. Herlihy, V. Luchangco, M. Moir, and I. William
N. Scherer. Software transactional memory for
dynamic-sized data structures. InProc. PODC’03,
pages 92–101, July 2003.

[4] M. Herlihy and J. E. B. Moss. Transactional mem-
ory: architectural support for lock-free data struc-
tures. InProc. ISCA ’93, pages 289–300, May 1993.

[5] M. Herlihy and J. Wing. Linearizability: A cor-
rectness condition for concurrent objects.Trans. on
Programming Languages and Syst., 12(3):463–492,
July 1990.

[6] T. Johnson and A. Colbrook. A distributed data-
balanced dictionary based on the B-link tree. In
Proc. IPPS’92, pages 319–324, Mar. 1992. A longer
version appears as MIT Tech Report MIT/LCS/TR-
530, Feb. 1992.

[7] H. T. Kung and J. T. Robinson. On optimistic meth-
ods for concurrency control.ACM Trans. Database
Syst., 6(2):213–226, 1981.

[8] P. L. Lehman and S. B. Yao. Efficient locking for
concurrent operations on B-trees.ACM Transac-
tions on Database Systems, 6(4):650–670, 1981.

[9] W. Litwin, M.-A. Neimat, and D. Schneider. RP*:
A Family of Order Preserving Scalable Distributed
Data Structures. InProc. VLDB’94, pages 342–353,
Sept. 1994.

[10] W. Litwin, M.-A. Neimat, and D. A. Schneider.
LH* - a scalable, distributed data structure.ACM
Trans. Database Syst., 21(4):480–525, 1996.

[11] J. MacCormick, N. Murphy, M. Najork,
C. Thekkath, and L. Zhou. Boxwood: Abstractions
as the foundation for storage infrastructure. In
Proc. OSDI’04, pages 105–120, Dec. 2004.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable net-
work. In Proc. ACM SIGCOMM 2001, Aug. 2001.

[13] Y. Sagiv. Concurrent operations on B-trees with
overtaking. InProc. PODS’85, pages 28–37, Mar.
1985.

[14] N. Shavit and D. Touitou. Software transactional
memory. InProc. PODC’95, pages 204–213, Aug.
1995.

[15] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. InProc.
ACM SIGCOMM 2001, Aug. 2001.

11

A Implementations of transactional primitives

In this section, we present implementations of the transactional primitives discussed in Section 5. The
pseudo-code below is expressed in terms of the following static variables:status is the status of a transaction
(one ofpending, committed, aborted); readSet andwriteSet are the read and write sets, respectively; and
localReplicas is the set of local object replicas. The latter three sets areinitially empty.

We represent a set of objects (e.g.,localReplicas) as a set of pairs of the form (ID, object). IfS is such a
set then we denote byS[i] the element with IDi (or⊥ if there is no such element inS). In the pseudo-code
we useS[i] on the left side of an assignment to indicate the addition toS of an object with IDi, replacing
any prior such object inS.

The functionsValidateFetch andValidateUpdate called byRead, Write, andCommit provide atomic ac-
cess to one or more objects at one or more servers. The pseudo-code gives their high-level specification
independent of the message-passing protocols that implement them. ValidateFetch(V, i) atomically vali-
dates objects in setV and fetches the object with IDi. Similarly, ValidateUpdate(V,U) atomically validates
objects in setV and writes objects in setU .

In reality, ValidateFetch(V, i) is implemented with a simple two-phase protocol (not shown), where the
first phase contacts servers to validate objects inV and the second phase contacts a server to fetch objecti.
If all objects inV can be validated at a server wherei is stored, we can combine both phases into a single
phase (i.e., the server validates objects inV and responds with the value of objecti, both in the same phase).

ValidateUpdate(V,U) is implemented using two-phase commit (not shown) with the modifications de-
scribed in Section 5: (1) if an object inU has its version replicated at servers then two-phase commit
updates this version at all servers, and (2) if all objects inV can be validated at a single server, and all
updates inU occur at this server (in particular, no objects inU have their version replicated at servers), then
we can combine both phases of the protocol (one-phase commit).

12

Function BeginTx
status← pending

Function EndTx
if status = pending then Abort ()
readSet← ∅
writeSet← ∅

Function Write(n, obj)
Input: i – object ID
Input: obj – object
writeSet[i]← obj
return OK

Function Read(i)
Input: i – object ID
Output: object with IDi, or else⊥ if

transaction aborted
if writeSet[i] 6= ⊥ then

return writeSet[i]
else if localReplicas[i] 6= ⊥ then

readSet[i]← localReplicas[i]
return localReplicas[i]

else
Ret← ValidateFetch(readSet, i)
if Ret = ⊥ then

Abort ()
return ⊥

else
readSet[i]← Ret
if Ret is an inner tree nodethen

localReplicas[i]← Ret
end
return Ret

end
end

Function Abort

if status = pending then
status← aborted
foreach (i, obj) ∈ readSet do

localReplicas[i]← ⊥
end

end
return OK

Function IsAborted
Output: true if status is aborted, otherwise

false
return status = aborted

Function Commit
Output: true if readSet successfully validated,

otherwisefalse
if status 6= pending then

return false
end
Ret← ValidateUpdate(readSet, writeSet)
if Ret = ⊥ then

Abort ()
return false

else
status← committed
foreach (i, obj) ∈ writeSet do

if obj is an inner tree nodethen
localReplicas[i]← obj

end
end
return true

end

Function ValidateFetch(V, i)
Input: V – objects to validate
Input: i – ID of object to fetch
Output: if objects inV are up-to-date then

return objecti, otherwise return⊥
Atomically execute the following:
foreach (j, obj) ∈ V do

if objectj at server differs fromobj then
return ⊥

end
end
Ret← value of objecti at server
return Ret

Function ValidateUpdate(V, U)
Input: V – objects to validate
Input: U – objects to update
Output: if objects inV are up to date then

return OK, otherwise return⊥
Atomically execute the following:
foreach (i, obj) ∈ V do

if objecti at server differs fromobj then
return ⊥

end
end
foreach (i, obj) ∈ U do

write obj to objecti at server
end
return OK

13

B Transactional B-tree pseudo-code

In this section, we present the implementations for theLookup andDelete operations, whereasInsert was
already discussed in Section 6. We omit implementations ofgetPrev andgetNext as these are very similar
to Lookup.

Function Lookup(key)

Input: key – search key
Output: value corresponding tokey, or⊥ is no such value

* rootNum← getRoot()
* return LookupHelper(rootNum, key, −1)

Function LookupHelper(n, key, d)

Input: n – node ID
Input: key – search key
Input: d – depth of the last node visited

* node← Read(n)
* if node = ⊥ ∨ node.depth ≤ d then
* Abort (); return ⊥

end
i← Search(node, key)
if node.isLeaf then

if i 6= 0 ∧ node.keys[i] = key then
return node.values[i]

else
return ⊥

end
else

n← node.children[i]
* return LookupHelper(n, key, node.depth)

end

Function Delete(key)

Input: key – key to delete
Output: value corresponding tokey, or⊥ if not found

* rootNum← getRoot()
* (ret,modified, root)← DeleteHelper(rootNum, key, −1)

if root has exactly one child – an internal node with IDc then
child← Read(c)

* Write(rootNum, child)
* Free(c)

else if modified then
* Write(rootNum, root)

end
return ret

14

Function DeleteHelper(n, key, d)

Input: n – node ID
Input: key – key to delete
Input: d – depth of previous node visited
Output: tuple (ret, modified, node) whereret is the value forkey (or⊥ if no such key),

modified = true iff noden has changed, andnode is noden
* node← Read(n)
* if node = ⊥ ∨ node.depth ≤ d then
* Abort (); return ⊥

end
i← Search(node, key)
if node.isLeaf then

if i 6= 0 ∧ node.keys[i] = key then
ret← node.values[i]
removekey from node
return (ret, true, node)

else
return (⊥, false, node)

end
else

c← node.children[i]
* (ret,modified, child) ← DeleteHelper(c, key, value, node.depth)

if child has too few keysthen
find node IDc′ of a sibling ofc in node

* child′ ← Read(c′)
* if child′ = ⊥ ∨ child′.depth ≤ d then
* Abort (); return ⊥

end
if child′ has enough keysthen

move some elements fromchild′ to child, updatenode as needed
* Write(c, child)
* Write(c′, child′)

else
move all elements fromchild to child′, updatenode as needed

* Free(c)
* Write(c′, child′)

end
return (ret, true, node)

else if modified then
* Write(c, child)

return (ret, false, node)
end

end

15

C Implementation of node allocator

In this section we present the implementations of theAlloc andFree functions, which are use to allocate and
deallocate tree nodes.
Function Alloc

Output: node ID of allocated node, or⊥ if out of memory
s← chooseServer()
i← object ID for allocator bit vector on servers
vect← Read(i)
if ∃j : vect[j] = 0 then

vect[j]← 1
i← object ID for entryj of allocator bit vector on servers
Write(i, vect[j])
return node ID corresponding tos andj

else
return ⊥

end

Function Free(n)
Input: n – node ID of allocated node
Output: OK on success,⊥ if node was not allocated previously
(s, j)← server address and bit vector index corresponding to noden
i← object ID for allocator bit vector on servers
vect← Read(i)
if vect[j] = 0 then

Abort
return ⊥

else
vect[j]← 0
i← object ID for entryj of allocator bit vector on servers
Write(i, vect[j])
return OK

end

16

