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ABSTRACT
In this paper we give a new signature algorithm that allows
for controlled changes to the signed data. The change op-
erations we study are removal of subdocuments (redaction),
pseudonymization, and gradual deidentification of hierarchi-
cally structured data. These operations are applicable in
a number of practically relevant application scenarios, in-
cluding the release of previously classified government docu-
ments, privacy-aware management of audit-log data, and the
release of tables of health records. When applied directly to
redaction, our algorithm improves on [18] by reducing signif-
icantly the overhead of cryptographic information that has
to be stored with the original data.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Security, integrity, and protection; K.6.5 [Management
of Computing and Information Systems]: Security and
Protection

General Terms
Security, Algorithms
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1. INTRODUCTION
Traditional digital signature schemes can be used to check

that the authenticity and integrity of data are maintained,
i.e. that the data has not been modified since it was signed.
However, in some instances modification of the data is not
only allowable, but desirable. In this paper we consider three
important, practical types of modifications: redaction, pseu-
donymization and data deidentification.

Consider the Freedom of Information Act in the US and
similar laws in other countries which enable citizens to re-
quest the disclosure of government documents. Often in
such cases sensitive information, such as names of individu-
als, are blacked out or removed prior to release. This process
of removal is called redaction.

In other applications, it is not appropriate to redact, but
rather to replace data tokens with pseudonyms consistently
throughout the document. Pseudonymization provides the
end user with the ability to make certain kinds of struc-
tural correlations among the data without having access to
sensitive information.

Finally, in other applications, such as those involving cen-
sus data and healthcare records, it may be appropriate to
gradually deidentify the data. For example, a birth date of
an individual, such as June 7, 1980 could be replaced by suc-
cessive generalizations, such as June 1980, 1980, the 1980s,
etc. A city name could be replaced by its state or province,
then by its country, etc. An income value could be replaced
by nested salary ranges. Such successive generalization has
been studied, for example, by Sweeney [23, 24]. Sweeney has
further shown that health records commonly released to the
public, and assumed to be anonymous, could be successfully
linked to individuals in a number of cases, and therefore
that deidentification is indeed necessary to preserve medical
privacy.

In each of these cases, if the original data were signed, then
traditional digital signatures could not be used to check the



integrity of the transformed data. While one could re-sign
the modified data, establishing the integrity of the modified
dataset, this would destroy any connection to the integrity
of the original data. In this paper, we are interested in
techniques that cryptographically link the integrity of the
two datasets.

Integrity-preserving redaction, pseudonymization, and dei-
dentification are useful tools for other types of data besides
documents. For example, auditing and event logging are
considered to be best practices in complying with corpo-
rate governance regulations such as SOX or privacy regula-
tions such as HIPAA, to pick two examples from the United
States. Such logs may contain sensitive information. In ad-
dition, audit logs are often voluminous, so in practice it is
more practical to deal with a subset of the data than with
the entire data set. Taking a subset of the data is equivalent
to redacting all of the data that is not in the subset. As a
result, redaction can be used to link the integrity of a subset
to the integrity of the master data. We believe that a flexi-
ble redaction algorithm that can ensure the integrity of the
redacted data will be a useful tool for supporting privacy-
aware management of audit logs.

It is further desirable to have a scheme that can ensure
that certain parts of the document cannot be further re-
dacted, pseudonymized or deidentified. This is important
because it serves as a safeguard to prevent certain essen-
tial meanings in a document from being changed. This
additional requirement for the redaction problem is called
“disclosure control,” and was introduced by Miyazaki et al.,
whose solution increased the size of the associated signature
by a factor linear in the number of portentially redactable
subdocuments [18].

In this paper we introduce an efficient algorithm to es-
tablish and verify the integrity of signed data subject to re-
daction, pseudonymization, and deidentification, which sup-
ports disclosure control in all three cases. Although for the
first of the three problems, redaction, several solutions have
been described in the literature, we are not aware of previous
work on pseudonymized or deidentified data. Our algorithm
significantly increases the efficiency of the previously known
algorithm of [18] for redaction with disclosure control. We
do this by adapting to our scenario the tree-building tech-
niques of Johnson et al. in [12].

For redaction and pseudonymization the size of the cryp-
tographic data overhead we have to store with the original
document increases, in the worst case, by a logarithmic fac-
tor for each sequence of consecutive subdocuments that are
redacted or marked as nonredactable.

Applying this algorithm directly to the deidentification
problem would lead to an additional overhead which is lin-
ear in the length of the chains of generalizations. This can
be significant in a healthcare example, where a typical ta-
ble may contain millions of records and the chain of gener-
alization for dates may be of length four. To handle this
problem, we give a variant of the algorithm for the deidenti-
fication problem which avoids this blow-up, in case the suc-
cessive generalizations follow a uniform pattern across the
document or table, as is the case for dates, for example.

1.1 Organization of the paper
The paper is organized as follows. In Section 2 we describe

related work on redaction and then a motivating example
for some of the problems arising for deindentification; and

finally we describe our model, list cryptographic preliminar-
ies, and review a redactable signature algorithm from [12]
that we use. In Section 3 we describe our new redaction
algorithm with disclosure control, and in Section 4 we use
this algorithm to solve the pseudonymization and deindenti-
fication problems efficiently. We give our security definitions
and proof in the in Section 5.

2. BACKGROUND

2.1 Related work
The redaction problem has been independently considered

by several groups of authors, under different names: as “dig-
itally signed document sanitizing schemes” by Miyazaki et
al. [17, 18], as “content extraction signatures” by Steinfeld et
al. [21], and as“redactable signatures”by Johnson et al. [12].

Documents often contain information that should never
be modified. A legal statement that a document was pre-
pared in accordance with law would be an example of some-
thing a signer may wish to appear throughout the lifecycle
of the document. Moreover, for many applications there are
only limited parts of the document that would even make
sense to redact. For example, in a structured form it might
be acceptable to redact the data filled into the form, but
there is no reason why the form itself should ever be redac-
ted. Therefore, it is important to consider cryptographic
redaction mechanisms that can also prevent parts of a docu-
ment from being further redacted. This problem was intro-
duced in [18] as redaction with “disclosure control”. Earlier
work [21] gave a solution to the related problem of giving
the signer more control over which subsets can be redacted
and which cannot.

Recently the redaction problem has also been studied by
various other authors. Ateniese et al. proposed sanitizable
signatures that use chameleon hash functions instead of the
usual hash functions, and allow redactors having their own
secret key to modify some portions of the originally signed
document where this was designated by the signer [1, 2].
Suzuki et al. proposed another construction called “sani-
tizable signatures with secret information” [22]. In their
scheme, a signer can assign and change a condition for each
portion of the document stating whether it can be redacted
or not. Izu et al. proposed a scheme called PIATS, which ad-
dresses further redaction of the document in a different way
[10]. In PIATS, not only the signer but also the redactor
signs the redacted document. Here verifiers can learn who
has redacted the document and avoid malicious additional
redaction, although additional redaction is not prohibited
directly.

Miyazaki et al. proposed “invisible sanitizable signatures”
based on the aggregate signatures derived from bilinear maps
[14, 16]. Their scheme enables a redactor to hide the num-
ber of redacted subdocuments as well as to assign disclo-
sure conditions to each portion of the document. After
their scheme was proposed, many other redactable signature
schemes based on aggregate signature have been proposed,
including that of Sano et al., who proposed a visible and
invisible redactable signature scheme called “sanitizable and
deletable signature scheme” in [11, 20].

2.2 A motivating example
In this section we describe an example using healthcare

records in which our techniques for redaction, pseudonym-



ization and deidentification are applicable. The problem
of deidentification of health records has been studied by
Sweeney [23, 24]. She has shown that in many cases it is
possible to link presumably anonymous health records to the
real world identity of the individuals. This linking of health
records was possible using the attributes of zip code (postal
code), birth date, and gender alone. These three attributes
are sufficient to uniquely identify approximately 87% of the
population of the United States, and are contained, along
with the names of the corresponding individuals, in publicly
available voter registration lists. The medical records so rei-
denitified included those of the Governor of Massachusetts.
Thus it often desirable to deidentify health records before
releasing them to the public.

The key tools for deidentifying tables of records used by
Sweeney are suppression and generalization of data fields.
Suppression corresponds to our notion of redaction. In gen-
eralization, a data field is made successively more general.
For example, a zip code 32578 could be generalized to 3257*,
and further to 325**, etc; a date could be generalized from
June 10, 1968 to June 1968, to 1968, then to 1960-1969.
Generalization and suppression can be modeled as trees,
where a suppressed attribute corresponds to a NULL ele-
ment at the root of the tree.

Sweeney describes (heuristic) algorithms that can be used
to deidentify tables using generalization and suppression to
achieve a privacy property she calls k-anonymity. We are not
concerned with the specifics of these algorithms and defini-
tions here, but note that they are fully compatible with the
integrity mechanisms we discuss in this paper.1

Consider the example healthcare data shown in Table 1a.
For this data it is plausible that we may wish to:

• pseudonymize the patient name, in order to allow cross
correlation of records,

• deidentify the race, birth dates, gender or zip code
from some of the entries in order to prevent reidentifi-
cations as described above, e.g. using one of Sweeney’s
k-anonymity algorithms, and

• leave the medical diagnosis field unchanged.

The corresponding deidentitified table might now look as
shown in Table 1b.

If we wish to establish the integrity of this kind of data
using cryptographic techniques, then traditional digital sig-
natures only establish the integrity of the data in isolation.
Such techniques cannot be used to link the integrity of the
pseudonymized and deidentified data to the original. In this
paper, we show how to use redactable signatures to effi-
ciently establish the integrity of both datasets in such a way
that the integrity of the two can be linked.

2.3 Preliminaries

1Which deidentification method is appropriate in a given
situation is often a difficult problem itself. Solutions needs
to balance the utiltiy of the deidentified data with an as-
sessment of which data are publicly known and with which
the released data could be cross-linked, and they should
take into account that the very fact that data have been
removed from a specific record could leak information about
that record.

2.3.1 Model
There are three sorts of players in our model: signers,

redactors, and users.
The signer prepares and authenticates a document or data

set once, producing an ordinary digital signature along with
some auxiliary information; we will call the signature to-
gether with the auxiliary information an extended signature
for the original document. The signature depends on the
original data, on a list of operations to be allowed on parts
of the data, and on the signer’s private signing key.

The data and extended signature may be given to a redac-
tor. The redactor may modify the data, according to the
signer’s list of operations allowed. Among the modifications
that we treat in this paper are the redaction of parts of the
data, marking certain parts of the data as nonredactable,
and the replacement of parts of the data by pseudonyms
or deidentifying generalizations. We will refer to a set of
any of these allowed modifications as a (generalized) redac-
tion operation. The redactor makes certain changes to the
auxiliary information, and combines it with the original sig-
nature value to form a modified extended signature, which,
together with the modified data, may then be “published”,
sent to another redactor, or sent to a user.

There may be more than one redaction operation, per-
formed by more than one redactor, where subsequent op-
erations will only be verifiable if they are performed ac-
cording to the current modified form of the data and its
extended signature (so that, for example, a pseudonym can-
not be changed back to the subdocument that it replaced in
a previous redaction operation).

A user is able to verify the correctness of the modified data
using the (modified) extended signature, capturing the prop-
erty that the data should only be modified by the redactor
according to the specifications of the signer. Unlike the sit-
uation with ordinary signature schemes, where any change
to the data should cause the signature verification to fail,
here we want to allow a carefully specified set of changes to
the data, while disallowing all other changes. We give a for-
mal definition of security for redactable-signature schemes
in §5.1, and prove that our algorithms satisfy the definition
in §5.2.

All of the algorithms discussed in this paper can be stated
in terms of any proofs of integrity that begin by hashing their
inputs with a one-way hash function, including both digital
signatures and time-stamp certificates. Precise definitions
of the security of time-stamping schemes are not yet clear in
the cryptographic literature (see [8, 3, 4]), and therefore we
state all our security results in terms of digital signatures.

We describe our cryptographic algorithms in terms of how
they apply to simple documents, viewed as strings of char-
acters over an alphabet. Let m denote a document to be
signed, segmented into a sequence of subdocuments m1, m2,
. . ., mn. In the case of ordinary text documents, these might
correspond to words, sentences, or paragraphs, depending on
the level of granularity desired. We will use ⊥ as a standard
symbol denoting a redacted subdocument, agreed upon by
convention by users of the system. In §4.1 below, we sketch
an application where the “document” consists of a snapshot
of the contents of a database, and subdocuments are records
or fields of records in the database.

As a practical consideration, in any implementation the
rendering algorithm that displays the document would have
to decide how to display modified versions. For example, in



Name Race Birth Date Gender ZIP Medical Diagnosis
Frank Miller white June 2, 1970 male 45873 chest pain
Mary Ross white Apr 10, 1964 female 45875 obesity
Howard Wu Asian Jan 17, 1958 male 45875 hypertension
Frank Miller white June 2, 1970 male 45873 HIV-related symptoms
Cathy Dunne black Sep 20, 1975 female 45874 short of breath

(a) unredacted

Name Race Birth Date Gender ZIP Medical Diagnosis
Patient 1 white 1970 4587* chest pain
Patient 2 white 1964 female 45875 obesity
Patient 3 Asian 1958 4587* hypertension
Patient 1 1970 male 4587* HIV-related symptoms
Patient 4 1975 female 45874 short of breath

(b) redacted

Table 1: Example healthcare data.

our algorithm redacted subdocuments may be represented
in our data structure as, say, 160-bit apparently random
bit-strings. In the simplest case, the rendering algorithm
could display each one with 27 base-64 encoded charac-
ters. A slightly more complicated rendering algorithm might
display them with more user-friendly values (e.g. “pseudo-
nym1”, “pseudonym2”, etc.), and give the user the options
of clicking on that value or hovering over it to reveal the
actual value.

2.3.2 Cryptographic building blocks
The security of our algorithms relies on several crypto-

graphic assumptions.
Let H denote a particular choice of collision-free hash

function. (See [13], Chapter 9, for more details).
Let S be a digital signature scheme that is secure against

existential forgery attacks by an adaptive chosen-message
adversary [7]. (Strictly speaking, we assume—and in prac-
tice this is completely without loss of generality—that the
signature scheme starts by hashing its input, and we use S
to denote the operations after the computation of a hash
value.)

Let C(·, ·) be a secure randomized commitment scheme,
as can be constructed based on the existence of collision-
free hash functions [9]. (In practice, one might implement
C by simply taking C(m, r) = H(0,m, r) with a collision-
free hash function H, with 0 serving as a tag indicating input
for the commitment scheme.) The output x = C(m, r) of
any invocation of the commitment function does not leak
any information about the particular committed value m.

Let G be a secure length-doubling pseudorandom gener-
ator, as used in the GGM construction of pseudorandom
functions [5]. Since we use it repeatedly throughout this
paper, we sketch the construction here. Beginning with a
single random seed s, the construction computes a list of
pseudorandom values, by building a binary tree from the
root to the leaves. Specifically, suppose that s is k bits long.
The signer uses the pseudorandom generator to expand s to
a 2k-bit string, and lets the first and second k bits form, re-
spectively, the left and the right children of s. (In practice,
this could be implemented by computing H(1, s) for the left
child and H(2, s) for the right child.) Continuing in this

manner, we obtain n leaves.

2.3.3 A redactable signature algorithm
In this section we describe in some detail a particular re-

dactable signature algorithm, due to [12]. In this algorithm,
the additional data added to form the extended signature for
the original document is of constant size, and only grows log-
arithmically with the number of sequences of consecutively
redacted subdocuments.

The algorithm is as follows:
Setup: Given a security parameter, the signer chooses a

collision-free hash function H, a secure pseudorandom gen-
erator G, a secure commitment scheme C, and a secure
signature scheme S. The signer then generates a public-
private key pair (PK,SK), publishes the public parameters
(PK,H,C, S), and keeps the private key secret.

Sign: Given a document m = (m1, . . . ,mn), the signer
chooses a random seed s, and computes an n-leaf GGM tree,
using G. Let (r1, . . . , rn) denote the list of these leaves. For
each subdocument mi, the signer computes xi = C(mi, ri).
Next, the signer builds a Merkle hash tree from the list of
leaves (x1, . . . , xn) to form the root h, and signs it with
the private key SK, to get a signature σ. The extended
signature for m is (s, σ). The signer sends the following
information to the redactor in a secure channel: (m, s, σ).
We assume that an adversary cannot obtain the information
transmitted in the secure channel.

Redact: Given the document m, the redactor chooses
L, the set of subdocument in m to redact, and proceeds as
follows.

The redactor constructs the GGM tree from random seed
s, and obtains n pseudorandom values r1, . . . , rn. Let m′ =
(m′1, . . . ,m

′
n) where

m′i =

{
mi i /∈ L
⊥ i ∈ L

and let

R = {ri | i /∈ L} , and
M = {xi | i ∈ L} ,

so that R is the set of GGM leaves corresponding to non-
redacted subdocuments and M is the set of commitment



values corresponding to redacted subdocuments.
Let SG be the minimum set of subroots of the GGM tree

that covers R. Let SM be the minimum set of subroots of
the Merkle tree that covers M .

The extended signature for m′ is (SG, SM , σ). The redac-
tor then sends the following information to the user over a
secure channel: (m′, SG, SM , σ).

The communication overhead of this algorithm can be
compared to the baseline case where the redactor simply
redacts subdocuments and re-signs the resulting document
(with resulting signature σ′, say). In such a case, the redac-
tor would have to send to the user the following information:
(m′, σ′). Thus, the communication overhead from the redac-
tor to the user of this algorithm is due to SG and SM , whose
size we can bound as follows.

In general, this cost can be as large as O(n). (For example,
if L consists of exactly the set of even-numbered subdocu-
ments, then SG and SM are each of size n/2.) However, in
practice, especially for text documents and images, it is often
the case that redactions consist of sequences of consecutive
subdocuments; when this occurs, there will be considerable
savings.

Consider first the case where L consists of a single se-
quence of j consecutive subdocuments to be redacted (j ≤
n). The total number of tree nodes required—pseudorandom
tree nodes included in SG plus hash values included in SM —
is at most O(lg j + lg(n − j)) = O(lgn). If L contains s
sequences of consecutive subdocuments, then the total cost
is O(s lgn) tree nodes (each of length depending on the se-
curity parameter governing the lengths of the outputs of the
pseudorandom generator and the hash function).

Verify: From the location of the ⊥ symbols in m′, the
user can determine the indices that each root in SG and
SM cover. The user expands each of the subroots in SG to
reconstruct R. From these values, the user can compute the
set of commitments {C(mi, ri) | i /∈ L}. The user combines
these commitments with the subroots in SM to compute the
root of the Merkle tree, and verifies the correctness of σ as
a signature on that root with respect to the public key PK
of the signer.

3. NEW ALGORITHM: PROHIBITING RE-
DACTION EFFICIENTLY

In this section we show how to extend the algorithm of
§2.3.3 above in order to be able specify that any subdocu-
ment is nonredactable. This implements the capability first
introduced by the authors of [18], while improving the effi-
ciency of their algorithm.

The Setup operation is as before.
Once again, the Sign operation begins with the random

choice of a seed value s. Instead of using s to build a GGM
tree with n leaves, we now build a tree with 2n leaves,
(r1, . . . , r2n). Now each subdocument mi is associated with
a pair of pseudorandom values, ri and rn+i. We use ri as
before, to compute the commitment value xi = C(mi, ri);
and we use the second value, rn+i, to compute a hash value
yi = H(3, rn+i), where 3 (or any standard constant) is a tag
to indicate input to computations of H for use in exactly
this place in the overall signature scheme. Finally, we build a
Merkle tree from the list of 2n values (x1, . . . , xn, y1, . . . , yn),
and sign the root of this tree, with resulting signature σ. As
before, the extended signature for m is (s, σ).

We use the second set of n leaves to extend the Redact
operation to allow for the marking of subdocuments as non-
redactable. As before, let L be the set of indices of subdocu-
ments to be redacted, and now let L′ be the set of indices of
subdocuments that are nonredactable. Note that L and L′

must be disjoint, as a subdocument cannot be both redacted
and nonredactable. The interpretation of the status of mi

is summarized as follows.

semantics
i /∈ L i /∈ L′ ith subdocument can be redacted
i ∈ L i /∈ L′ ith subdocument is redacted
i /∈ L i ∈ L′ ith subdocument is nonredactable
i ∈ L i ∈ L′ invalid

Figure 1: Semantics of verification algorithm.

We define m′ as before, but now define R and M as fol-
lows:

R = {ri | i /∈ L, 1 ≤ k ≤ n}
∪ {rn+k | i /∈ L′, 1 ≤ k ≤ n} ,

M = {xi | i ∈ L} ∪ {yi | i ∈ L′} .
As before, we let SG be the minimum set of subroots of
the GGM tree that covers R, and let SM be the minimum
set of subroots of the Merkle tree that covers M . Here, the
location of the ⊥ symbols in m′ are not sufficient to describe
the range of indices covered by SG and SM . Therefore, each
subroot must be prepended with a description of its path to
the root. Such an encoding has length at most logarithmic
in n.

The extended signature for m′ is (SG, SM , σ). The redac-
tor then sends the following information to the user over a
secure channel: (m′, SG, SM , σ).

The receiver of this information could also be another
redactor who performs an additional round of redaction on
the document. This intermediate redactor can further re-
dact subdocuments that have not been previously marked
as nonredactable. This is enforced via the semantics in Fig-
ure 1, and by the fact that this redactor cannot compute the
necessary preimages in the Merkle and GGM trees to change
a subdocument from nonredactable to redactable. Similarly,
the redactor can mark subdocuments as nonredactable if and
only if they have not been previously redacted.

As before, the communication overhead of this algorithm
is due to SG and SM . Once again, we can expect that
for many sorts of documents both the redacted parts and
the parts to be marked as nonredactable will occur in se-
quences of consecutive subdocuments. If L ∪ L′ contains s
sequences of consecutive subdocuments, then we incur a cost
of O(s lgn) tree nodes. Assuming tree nodes of length k, the
extended signature is of size O(|σ|+ ks lgn). When s is not
too large, this compares favorably to the algorithm of [18],
whose extended signature is of size O(|σ| + kn), both for
the original document as well as for any redacted versions
of it, independent of the number or the distribution of the
redacted and nonredactable subdocuments.

The Verify operation is changed to account for the chan-
ges in the data structure. As before, given (m′, SG, SM , σ),
the user recomputes the root of the Merkle tree, using m′,
SG, and SM , and then checks that σ is a correct signature
for this root.

The user also makes another check, verifying that L and L′



are disjoint, i.e. verifying the correctness of the semantics in
Figure 1 above. This prevents an adversary from redacting
a subdocument that has been marked nonredactable.

4. APPLICATIONS
In this section we apply the algorithm of §3 to treat the the

pseudonymization and deindentification problems motivated
in §2.2, and to solve them efficiently.

4.1 Subsets of tables
Guaranteeing the integrity of the contents of a database

is similar to the problem of secure document redaction, as
follows. Computing an integrity certificate (for example, a
digital signature) for a subset of the database that somehow
ties to a signature for the entire database is exactly analo-
gous to computing a signature for a redacted document that
ties to a signature for the original document, where the sub-
set corresponds to the nonredacted portion of the document.

Consider a 2-dimensional array of entries, consisting of r
rows and c columns. We will consider the data in the array
to constitute a single “document” whose rc entries are its
subdocuments, taken row by row (or column by column, de-
pending on the application). Building the GGM tree in order
to sign the array according to the algorithm of §3 above, we
take care to group the r pseudorandom leaves correspond-
ing to the entries of each row into individual subtrees, and
build the Merkle tree in a similar manner. When r is not
an even power of 2, this will result in somewhat larger data
structures for both the GGM and Merkle trees, but consid-
erably reduces the size of the auxiliary data in the extended
signature when entire rows of the array are redacted.

This application is of particular interest in the case of
audit logs, which can be considered to be append-only data-
bases. An audit report, computed as the response to a
database query, often consists of a subset of the entire audit
log, sometimes with certain entries redacted. In this case,
our algorithm applies directly as a solution to the problem of
accompanying the audit report with a proof of its integrity.
For the case where as an additional constraint certain entries
must be pseudonymized or deidentified, see below.

4.2 Efficient pseudonymization and deidenti-
fication

Once again, we will describe this algorithm in terms of a
document m = (m1, . . . ,mn). With the illustrative tables
of §2.2 in mind, let us suppose that each subdocument mi

has an associated list of pseudonyms or deidentifying gener-
alizations, denoted pi = (pi1, . . . , pili). For certain subdoc-
uments, this list may be empty.

Now the signer can apply the algorithm of §3, not to the
original document itself, but rather to an augmented form
of the document, which is unambiguously encoded as each
subdocument followed by a list of its successively more gen-
eral pseudonyms. For example we might represent the first
row of our table of healthcare data as

[ ‘Frank Miller’, ‘Patient 1’ ]
[ ‘white’ ]
[ ‘June 2, 1970’, ‘June 1970’, ‘1970’, ‘1970-1979’ ]
[ ‘male’ ]
[ ‘45873’, ‘4587*’, ‘458*’, ‘45*’, ‘4*’ ]

[ ‘chest pain’ ].

We could then treat each bracket and token within the
brackets in the above representation as an independent sub-
document that can be redacted or marked for no further
redaction. The signer could distribute such a version with
each bracket pre-marked as nonredactable to preserve the re-
lationship between the subdocuments and its pseudonyms.

Display conventions may vary according to the applica-
tion. For example, we might require that if mi is redacted
(i.e. m′i = ⊥ in the modified version m′), then only the lex-
icographically first nonredacted pseudonym pij (1 ≤ j ≤ li)
is displayed by the rendering algorithm.

A variation that is especially appropriate for hierarchical
generalization following Sweeney’s approach (see §2.2) would
require that only prefixes of the list [mi, (pi1, . . . , pili) ] can
be redacted (where the pseudonyms are listed in order from
specific to general, so that each pij is more specific than
pi,j+1). Furthermore, this requirement can be enforced by
adding this to the “semantic” checks that are validated by
the Verify procedure.

To estimate the cost of this algorithm, let k be the length
of the commitment values and hash values, and let p =
l1 + . . . + ln denote the total number of pseudonyms. The
augmented document has n+ p subdocuments, and and its
initial extended signature is of size O(|σ|+ k).

After one or several redaction operations, let s denote
the number of sequences of consecutive subdocuments in
L∪L′. The extended signature is then of size O(|σ|+ks lgn).
The cost of signing or validating is O(s lgn) operations in
addition to the “bare” digital-signature operation itself.

4.2.1 An efficiency improvement
The reader will observe that the algorithm just described

requires the storage of an abundance of redundant data,
especially in the case of certain data fields where the list
of deidentifying pseudonyms for a data item is easily com-
putable. The zip codes in §2.2 provide us a simple example,
where 45873 has the possible pseudonyms 4587*, 458*, etc.
In this case, we could simply make each of the five digits
in the zip code a redactable character, instead of explicitly
storing the list pi = (4587∗, 458∗, 45∗, 4∗) in the augmented
document. Both the rendering algorithm and the Verify
procedure must be suitably modified to handle data fields
(subdocuments) containing zip codes. (For a completely dif-
ferent approach to this variation of the problem, see the
techniques of [15], based on the Blum-Micali pseudorandom
generator.)

Naturally, fields containing such data as dates or street ad-
dresses could be handled in a similar manner. But a similar
approach can be used for more complicated data items, lack-
ing a simple algorithm for computing the list of pseudonyms.
For example, suppose we have data fields with items such as
mi = unicorn, and pi = (equine, ungulate, mammal, animal).
As long as there is a hierarchical classification of the deiden-
tifying generalizations for the items in an identified subset
of the data fields (subdocuments) of m, this classification of
terms can be encoded in a “dictionary” that is appended to
the document, marked as nonredactable, and the use of this
dictionary can be suitably folded into the Verify procedure.
If the dictionary is a completely standardized one, the aug-
mented document only needs to include a persistent pointer
to it (also marked as nonredactable).

Let d denote the size of the dictionary. Now the number of
subdocuments in the augmented document can be reduced



from n+ p to O(n+n lg d), assuming the dictionary is stan-
dardized, and to O(d + n + n lg d) if the dictionary is sent
along and signed with the document.

5. SECURITY
In this section we formally define our security require-

ments, and state and prove a theorem describing the secu-
rity achieved by our algorithms. In order to analyze the
security of our protocol, we give a formal game-based se-
curity definition, extending the usual definitions of security
for encryption schemes and for signature schemes, that cap-
tures all of our desired security properties in a single game.
Next we sketch a proof of security, reducing the existence of
a successful adversary for our scheme to the existence of an
adversary that successfully breaks one or more of the signa-
ture scheme, the pseudorandom generator, the commitment
scheme, or the one-way hash function that our protocol uses.

5.1 Definitions
The principal requirement for any kind of signature scheme

is that it should be computationally infeasible to forge ille-
gitimate signatures. In contrast to conventional signature
schemes, where no changes to a signed document are per-
mitted, here we need a precise characterization of the class
of modifications to the original document that we consider
to be legitimate. Extending the definition used by [12], we
define a partial order on redacted documents, as follows.

Definition 1. Let document m consist of n subdocuments
(m1, . . . ,mn). A redacted version of m is a sequence of n
subdocuments (m′1, . . . ,m

′
n) such that (for each i = 1 . . . n),

m′i satisfies exactly one of the following conditions:

1. m′i = mi, indicating that mi is (present and) redact-
able;

2. m′i = ⊥, indicating that mi is redacted; or

3. m′i = m̂i, indicating that m′i is nonredactable (and
identical to mi).

Definition 2. Let p = (p1, . . . , pn) and q = (q1, . . . , qn)
be two redacted versions of m. We define a partial order on
redacted documents by requiring that p ≺ q holds if and only
if all of the following are satisfied, for i = 1 . . . n:

1. if pi 6= ⊥, then qi 6= ⊥;

2. if pi = m̂i, then either qi = mi or qi = m̂i; and

3. if pi = ⊥, then either qi = mi or qi = ⊥.

In this case, we also write q � p.

The partial order is defined so that p ≺ q if and only if
p is a permitted redaction of q. For example, suppose m
contains four subdocuments m1, . . ., m4. If m1 and m3 are
redacted in p, and m1 is redacted in q, then p ≺ q. In
particular, the original document is � any redacted version
of it. Our goal is that given a (possibly redacted) document
p, along with its extended signature, anyone can obtain an
appropriately redacted document p′ ≺ p with a verifiable
extended signature, but it is infeasible to forge a signature
for any document p′′ � p.

By our definition of the partial order ≺, this unforgeability
requirement also implies a sort of consistency requirement:

If a subdocument of a document m has been marked as
nonredactable, then it is infeasible later to produce a valid
extended signature for a redacted version of m in which this
subdocument has been redacted.

In addition to the unforgeability requirement, the redac-
tion operations also introduce a requirements for confiden-
tiality : Given a redacted document, no adversary can infer
anything about the original version of any of its subdocu-
ments that have been redacted. We capture this property
by requiring that no adversary can distinguish two redacted
documents p and p′ whose corresponding original documents
m and m′ only differ at a specific subdocument, as in the
definition of chosen-ciphertext security for probabilistic en-
cryption schemes.

Next, we give a formal definition of security, adapted from
those of [21, 18, 12]. We use a game definition extending
both the definitions of security for encryption schemes [6,
19] as well as for signature schemes [7], capturing all of our
desired security properties in a single game. We allow an
attacker to issue commit queries, queries for commitments
for documents, sign queries, queries for signatures for doc-
uments, and redact queries, queries for redacted versions.
These queries may be chosen adaptively. Also, we allow the
adversary to choose the document on which she can ask be
challenged.

Definition 3. A redactable-signature scheme is secure if
no probabilistic polynomial-time adversary, issuing a polyno-
mial number of queries in the game defined below, achieves
a non-negligible advantage in the game.

The game proceeds as follows.
Setup: The challenger takes a security parameter as in-

put, and runs the Setup algorithm. It gives the adversary
the resulting public parameters (PK,H,C, S), and keeps the
private key SK to itself.

Phase 1: The adversary issues several queries, where a
query is one of the following:

1. commit query (m): The challenger computes a GGM
tree and then commitments for the subdocuments in
m. The commitments and random values used are
given to the adversary.

2. sign query (h): The challenger signs the hash value h,
using its private key.

3. redact query (m,L,L′): The challenger runs the
Redact algorithm, following the instructions in L and
L′ to redact or mark as nonredactable the appropriate
subdocuments in m. The challenger’s response is the
resulting quantities (m′,L,L′, SG, SM , σ).

These queries may be asked adaptively. Also, the docu-
ments queried may be distinct. Once the adversary decides
that Phase 1 is over, she may choose a challenge for attack-
ing confidentiality. (There is no need to choose a challenge
for attacking unforgeability.)

Confidentiality challenge: The adversary outputs two
equal-length documents m0,m1 on which to be challenged,
such that m0 and m1 are identical except except in a single
subdocument (the i∗th, say), along with Redact instruc-
tion lists L, L′, with i∗ ∈ L. The challenger picks a random
bit b ∈ {0, 1}, uses the Sign algorithm to produce a signa-
ture for mb and then uses the Redact algorithm to produce



(L,L′,mb, SG, SM , σ), where we require that L mark sub-
document i∗ to be redacted.

Phase 2: The adversary issues more queries, and the chal-
lenger responds as in Phase 1, with the sole restriction that
the adversary cannot make any sign or redact queries for
any document m′ � mb.

Guess: Adversary A outputs one of two kinds of guesses:
either a guess for attacking confidentiality, or one for attack-
ing unforgeability.

• Confidentiality guess: The adversary outputs a guess
b′ ∈ {0, 1}. The adversary wins the game if b = b′.
We define its advantage in attacking the scheme to be
|Pr[b = b′]− 1

2
|.

• Unforgeability guess: The adversary outputs

(m,L,L′, SG, SM , σ).

We define its advantage in attacking the scheme as
the probability that no sign or redact query has been
issued for any document m′ satisfying m′ � m or m′ �
mb in Phase 1 or 2, and that Verify(m,L,L′, SG, SM , σ)
is true.

Theorem 1. Assume that H is a collision-free hash func-
tion, S is a digital signature scheme that is secure against
existential forgery, C is a secure commitment scheme, and
G is a secure pseudorandom generator. Then the algorithm
presented in §3 is an efficient secure redactable-signature
scheme.

We sketch the proof of this theorem in §5.2 below. The
algorithm’s efficiency is described in §3 and §4.

5.2 Security analysis
The security is proved based on the security of collision-

free hash functions, commitment schemes with hiding and
binding properties, and signature schemes secure against ex-
istential forgery. Next we give informal definitions of secu-
rity for the cryptographic primitives that we use, omitting
their formal definitions.

Security of collision-free hash function: a polynomial-time
adversary has negligible probability of finding two different
messages m 6= m′ with identical hash values.

Security of commitment scheme with binding and hiding
properties: a polynomial-time adversary has negligible prob-
ability of breaking the hiding property by identifying from
a commitment its corresponding message, randomly chosen
as one of the two messages of her choice, and has negligible
probability of breaking the binding property by finding a
commitment that can be opened to two different messages
[9].

Security of signature scheme with existential unforgeabil-
ity : a polynomial-time adversary has negligible probability
of forging a valid signature S of a signer on a message m
such that the signer has never signed m [7].

Proof of Theorem 1: Let A be an adversary that has
a non-negligible advantage against our redactable-signature
scheme. We will construct an adversary B that uses A to
gain advantage against the collision-free hash function, the
secure commitment scheme, the secure signature scheme, or
the secure pseudorandom generator. The adversary B acts
as the challenger for A and uses A’s outputs as her own
outputs. B proceeds as follows.

Setup: B’s challenger chooses hash function H, commit-
ment scheme C, signature scheme S, and pseudorandom
generator G for B to break. B’s challenger gives B a public
key PK of the signature scheme S. B then gives the ad-
versary A the resulting public parameters (PK,H,C, S,G).
Note that B does not know the private key SK of signature
scheme S.

Phase 1: B answers A’s queries as follows. The queries
may be asked adaptively. Also, the queried document at
each query may be distinct.

1. commit query (m): B runs the first several operations
in the Sign algorithm on input m, including buliding
a GGM tree and computing commitments, building
a Merkle hash tree over commitments, and gathering
auxiliary information that would be included in the
extended signature. All of these values are given to
the adversary A.

2. sign query (h): B cannot sign the root hash h of any
Merkle tree that she calculates, because she does not
have the private key. Therefore, B submits a signing
query on the root hash to her challenger (of the sig-
nature scheme to break), and obtains a signature σ.
(The game definition for security of signature schemes
is not given here; please see [7]). Signature σ is given
to the adversary A.

B can similarly request a signature for any hash value
h of her choice.

3. redact query (m,L,L′): B runs a commit query and a
sign query on m to obtain the signature σ, along with
the seed needed for the GGM tree that would be part
of the extended signature for m. Then, B runs the
Redact algorithm, following the instructions in L and
L′ to redact or mark as nonredactable the appropriate
subdocuments in m, and computes the appropriate ex-
tended signature.

Once A decides that Phase 1 is over, if she chooses she
can issue a challenge for attacking confidentiality.

Confidentiality challenge: A outputs two equal-length
documents m0,m1 on which to be challenged, such that m0

and m1 are identical except in the i∗th subdocument (along
with Redact instruction lists L, L′, with i∗ ∈ L). B will
attempt to use A’s advantage in its confidentiality guess to
break the hiding property of the commitment scheme. B
needs to embed his commitment challenge in the challenge
of A. The i∗th subdocuments in m0 and m1 are B’s two
messages of choice for breaking the hiding property of com-
mitment scheme C. B’s challenger generates a challenge for
B as follows. B’s challenger picks a random bit b ∈ {0, 1},
and computes a commitment of the i∗th subdocument in
mb. Denote this challenge as C∗b . B uses C∗b as the commit-
ment of the i∗th subdocument in mb. B then computes the
commitments of the other subdocuments in mb (using either
m0 or m1) and obtains the root hash of the commitments.

Now B has embedded his commitment challenge at the
i∗th position of A’s challenge. For completeness, B asks
her challenger to sign the root hash (as in a sign query),
and obtains signature σ∗. And for auxiliary information
(SG, SM ), B chooses at random according to the protocol
specifications.



Finally, B runs Redact(mb,L,L
′, SG, SM , σ∗) in order to

redact the i∗th subdocument in mb, which can be computed
without knowing the actual content of the subdocument.
B gives adversary A the outputs of the Redact operation,
to be used as the confidentiality challenge to adversary A.
Readers can verify that the verification should be successful,
even though B does not know b.

Phase 2: The adversary issues more queries, and B re-
sponds as in Phase 1.

Guess: Adversary A outputs either a confidentiality guess
or an unforgeability guess. B uses A’s outputs to attack one
of the cryptographic primitives used: the hash function, the
digital signature scheme, the commitment scheme, or the
pseudorandom generator.

Confidentiality guess: If adversary A outputs a guess
b′ ∈ {0, 1}, then B outputs b′ as his guess for breaking the
commitment scheme. Because of the way in which B con-
structed his own commitment-scheme challenge, B’s guess
will be correct exactly when A’s guess is correct.

Unforgeability guess: Adversary A outputs

(m,L,L′, SG, SM , σ),

where we assume without loss of generality that no sign
query has been issued for (the root hash corresponding to)
any document m̄ satisfying m̄ � m or m̄ � mb in Phase 1 or
2. A’s advantage in attacking the scheme is the probability
that Verify(L,M, SG, SM , σ) is true.

Suppose first that σ is not equal to any of the signatures
σ̄ that were returned to A in response to a previous query
in Phase 1 or Phase 2. To convert A’s output into a
signature forgery, B constructs the Merkle hash tree for the
redacted document m, and obtains the root hash hr. Let h1

and h2 be the hash values at the two child nodes of the root
node. In this case, σ is a correct signature for the message
h1|h2 with respect to the public key PK, B can successfully
attack the digital signature scheme.

We are left with the case that signature σ is equal to a
signature σ̄ that has been given to A in a previous query in
Phase 1 or Phase 2, corresponding to extended signature
(m̄, L̄, L̄′, S̄G, S̄M , σ̄).
B compares the Merkle hash tree constructed for m with

the Merkle hash tree constructed for m̄. If the two trees
differ in their root nodes, then B can use this to produce a
forgery for PK. If the two trees differ anywhere below the
root, then B has found a hash collision.

Next, B compares the two GGM trees constructed respec-
tively for m and for m̄. If B finds any index i with subdoc-
uments mi 6= m̄i, then B has found a pair of messages that
he can use to break the binding property of the commitment
scheme.

Because of our stipulation that m 6≺ m̄, the only remain-
ing case is that for some index i, one of the following is true:

• i ∈ L̄ but i 6∈ L (so that A has computed a subdocu-
ment of m that was already redacted from m̄); B can
use this case either to break the hiding property of the
commitment scheme, or to break the pseudorandom
generator.

• i ∈ L̄′ but i ∈ L (so that A has redacted a subdocu-
ment of m already marked as nonredactable in m̄); B
can use this case either to break the one-way property
of the hash function, or to break the pseudorandom
generator.
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