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ABSTRACT

Quality of service (QoS) guarantees for applications asgradele
under many scenarios. Despite much prior research on fngvid
QoS in storage systems, current storage systems do notrsegpo
tensive QoS guarantees. We believe this is mainly due tootle |
1/0 efficiency of the various mechanisms designed for QoS. We
find that I/O efficiency has received surprisingly littleeattion in
storage QoS research. This is puzzling since the well kndvan-c
acteristics of 1/0 devices indicate that their efficiencpeieds cru-
cially on the order in which the requests are served. In thpep
we attempt to alleviate the 1/O efficiency concerns of prtipogl
share schedulers. We first study the inherent trade-offdmvair-
ness and I/O efficiency. We find that significantiigher 1/0 ef-
ficiency can be achieved by slightlselaxing short-term fairness
guarantees. We then develop several low-level mechanmmsd-
portional share schedulers and present a self-tuningitiigothat
achieves good efficiency while still providing fairness qardees.
Experimental results indicate that an 1/O efficiency of d@% is
achievable by allowing the scheduler to deviate from prtpoal
service for a few seconds at a time.

1. INTRODUCTION

Increasing cost pressures on IT environments have beeindueel
recent trend towards storage consolidation, where mealtpipli-
cations share storage systems to improve utilization, eost op-
erational efficiency. The primary motivation behind st@dgoS
research has been to alleviate problems that arise due timgha
such as handling diverse application 1/0O requirements &athg-
ing workload demands and characteristics. For exampl@etfer-
mance of interactive or time-critical workloads such as imeérv-
ing and transaction processing should not be hurt by I/Ohgive
workloads or background jobs such as online analytics, étg-s
ing or virus scanning. Despite much prior research [3, 1411h
QoS mechanisms do not enjoy widespread deployment in teday’
storage systems. We believe this is primarily due to the v |
efficiencies of the existing QoS mechanisms.

Fairness and /O efficiency are known to be quite difficult pdi-o
mize simultaneously for multiple applications sharing tiéQources.
Disk schedulers usually attempt to maximize overall thigug by
reducing mechanical delays while serving 1/0 requests. ifitie
vidual application (or process) making the I/O request igilg not
considered in the scheduling decisions. The conventiogl&ftis
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that maximizing the overall throughput is good for all apptions
accessing the storage system and providing fairness catasdb
tially reduce the overall throughput. In contrast, othesorgces

in a system such as CPU, memory, and network bandwidth can be
multiplexed based on per process behavior by using well know
fairness algorithms.

We believe that the existing QoS mechanisms proposed sa¥ar h
not adequately addressed the problem of losing 1/0O effigiele
to proportional sharing. The main issue at hand is to find ithte r
balance between the two opposing forces of proportionaksizar-
antees and |0 efficiency. Our first contribution is to systeca#y
study this inherent trade-off. We find that 1/O efficiency dam
improved if we relax thdairness granularity the minimum time
interval over which the QoS mechanisms guarantee fairmge®#
portional shares of the contending applications. Thisgaificant
as it indicates that it may be possible to improve the |/O iefficy
without greatly affecting the QoS guarantees.

Based on our understanding of this trade-off, we then devadap-
tive mechanisms to improve the 1/O efficiency of proportisteare
schedulers. Our goal is to have a QoS framework with theviallo
ing properties:

e Fairness guaranteesto provide proportional share fairness
to different applications.

e |/O efficiency: to achieve high I/O efficiency comparable to
workloads running in isolation.

e Control knobs: to provide the ability to control the inher-
ent trade-off between the 1/0O efficiency and the proportiona
share guarantees.

e Work conservation: storage system is not kept idle when
there are pending requests.

We propose two mechanisms to achieve these propevigble
size batchingindbounded concurrencyA batch is a set of requests
from an application that are issued consecutively withotérven-
tion from other applications. Concurrency refers to the benof
requests outstanding at the device. The first mechanismwsabo
application to have a different batch size from the one ithvath-
erwise receive from a proportional share scheduler. Thisésul
for workloads that exhibit spatial locality as it reduces ttelays
due to excessive disk seeks. The second mechanism allofesrthe
share scheduler to keep a sufficient level of concurrenchiadhe
existing throughput optimizing schedulers can be effetyiwti-
lized. However, the concurrency needs to be bounded solthat t
fairness guarantees can be enforced. We show that thesed@le m
anisms are indeed effective in improving I/O efficiency ehohly
slightly increasing the fairness granularity for the Qoargintees.



We also develop an algorithm that adapts the settings oé ttves
parameters for a given set of workload characteristicss Ehiise-
ful as it allows us to keep the 1/O efficiency high in the preseaf
dynamically changing workload characteristics withoupauting
the QoS guaranteekd,, the fairness granularity).

In the remainder of this paper, we first discuss the prior work

of preserving the 10 access patterns of an application antl-av
ing interference with other workloads. However, this ajggiohas
several issues. (1) 10 requests from an application thas this
application’s timeslice (either because they did not catgptur-
ing the timeslice, or arrived after it ended) must wait utité next
timeslice arrives. As such, the worst case latency bourntdease
with the number of applications and the duration of the timarg

section 2 and describe our system model in section 3. Then, wetum. (2) During a timeslice, the server sees only the reguesn

describe our mechanisms to trade off between 1/O efficiemdy a
the fairness granularity in section 4, and develop analytounds
for the fairness granularity in section 5. We evaluate oyaregch
in section 6 and then conclude.

2. RELATED WORK

Providing QoS support has been an active area of researgis-in s
tems and many proposed mechanisms in the networking domain
have found their way into deployments. For example, (WFQ [5]

WF2Q [2], SFQ [6-8], DRR [16]) have been adopted for traffic
shaping and providing fairness for network link bandwidth.

Existing approaches f@poS in storagean be classified into three
main categories: (1) IO scheduling based on fair scheduligg-
rithms, (2) time slicing at the disk, and (3) control thearetp-
proaches.

Scheduling-based techniques to support QoS use variakit$-Qf
algorithm [5] to provide fair sharing. YFQ [3], SFQ(D) [1LByatar
[20], and Cello [15] use virtual time based tagging to sel@stand
then use a seek optimizer to schedule the chosen requestee- St

henge [10] and SCAN-EDF [14] also consider both seek timds an

request deadlines. Other approaches sugbCdsck [9] do burst
handling and provide fair scheduling to handle both lateshegd-
lines and bandwidth allocation. A fundamental limitatiohex-
isting techniques is that they focus mainly on fairness louhaot
study the trade-off between fairness and 1/O efficiency. @onk
extends one such algorithm to support a balance betweeressir
and efficiency.

Among the scheduling-based techniques, Zygaria [18] andAAQ
[19] use hierarchical token buckets to support QoS guaearitar
distributed storage systems. Zygaria supports througtgserves
and throughput caps while preserving /O efficiency, bueittmer
provides mechanisms for trading fairness with efficienayauapts
scheduling based on the workload. Similarly, the ODIS sulead
in AQUA employs a “bandwidth maximizer” that attempts to in-
crease aggregate throughput as long as the QoS assuramces ar
violated. While ODIS employs a throttling-based heuristigo-
rithm that adjusts the token rate based on overall diskzatilbn,
it does not consider individual workload characteristits.cases
where the system is over-loaded and not all QoS requirencants
be met, there is no guarantee of proportional service. Noiape
effort is made to maintain the efficiency of sequential aratigfly
local workloads. By contrast, our framework guarantees tilaen
workloads are backlogged, the service will be allocategpqirton-
ately between the workloads based on their weights; thisagitiee
is proven theoretically and demonstrated experimentétiyaddi-
tion, our mechanism enables high 1/O efficiency for spati&it
cal workloads by trading off fairness granularity - i.e.,dlowing
brief deviations from proportional service.

Techniques (e.g., Argon [17]) in the second category arecas
time multiplexing at the disk, where each application idgresd a
time quantum dedicated to its 10 requests. This has the &ayan

the corresponding application. While this improves thecedficy
of serving sequential requests, it decreases the effeethgeof the
seek optimizer for random requests, because it cannot tetteea
pending requests into consideration. (3) It is difficultrigpiement
a work-conserving scheduler using time-slicing. If, dgrantimes-
lice, the application has no requests pending, then theeséer
comes idle even though there are requests pending from ajher
plications. If the scheduler pre-empts the timeslice ohaperarily
idle application, it can interfere with the proportionglguaran-
tees. In section 6.6, we present a comparison of our methitdawi
method based on time-slicing.

Control theoretic approaches such as Triage [12] and SKds [
use client throttling as a mechanism to ensure fair shanngng
clients and may lead to lower utilization. Fagade [13] ttiepro-
vide latency guarantees to applications by controlling léregth

of disk queues. This can lead to lower overall efficiency drel t
trade-off between the loss of efficiency and latency is nptaed.

3. SYSTEM MODEL

Our system consists of a storage server that is shared betavee
number of applications. Each application has an assoocietéght
The goal of the proportional share (fair) scheduler is to/jot® ac-
tive applications 1/0 throughput in proportion to their asisited
weights. Thefair scheduler is logically interposed between the
applications and the storage server. In an actual impleatient

it could reside in the storage server, in a network switcla gep-
arate “shim” appliance [11], or in a device driver stack. Taie
scheduler maintains a set of input queues, one for eacltcagiph,
and an output queue. In our system, we used a variant of a Defici
Round Robin (DRR) scheduler to move I/O requests from thetinp
queues to the output queue. Once requests are moved to fhe out
gueue, we say they aseheduled Requests are moved from the
output queue to the storage system as fast as the undertypirzgs
devices permit. We describe the fair scheduler in greateilde
Section 4.
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Notation: The number of applications is denoted s Theit
application isy; its weight isw;j, and its queue in the fair scheduler
is Q. D is the number of outstanding scheduled requests.,-
the number of requests in the scheduler output queue plise tho
outstanding at the storage server. These and other natense
are summarized in Table 1 for convenient reference.

3.1 Metric Definitions



SYMBOLS | DESCRIPTION

N number of applications

a theith application

Wi weight of applicatiorgy

Qi fair scheduler queue f@&;

Gj batch size for applicatiog;

D number of outstanding scheduled
requests

N (tg,t2) throughput for application;, alone

ri(ty,t2) throughput for application;, shared

& (ty,12) efficiency of the scheduler

F(t1,12) fairness of the scheduler

Table 1: Notation used in this paper. The last four metrics are defined
over a time interval (t1,t). For notational convenience we omifty,t2),
since the time interval is implicit.

The objective of our system is to provide throughput to agpli
tions in proportion to their weights, while maintaining higverall
system throughput. The performance of a storage servendspe
critically upon the order in which the requests are servest. e-
ample, it is substantially more efficient to serve sequétitis to-
gether. This is unlike other domains, such as networkingresthe
order in which packets are dispatched does not affect thealbve
throughput of a switch. For this reason, it is important tamee
the overall throughput (efficiency), in addition to a faissecrite-
rion. Efficiency denotes the ratio of the actual system thhmuit
to that attained when the applications are run without fatence.
Fairness refers to how well the application throughputscmdtieir
assigned weights.

We first define an efficiency measure that captures the slowdow
due to scheduling the mix of requests rather than running tine
isolation. To motivate the definition, consider two appiicas a;
anday which have isolated throughputs iof = 100 andn, = 200
(requests/sec) respectively. Suppose that when run tgesing

a fair scheduler, 25 requestsafand 40 requests @ were com-
pleted in an interval offls = 1 second. Now, if these requests of
a; were run in isolation (at a rate of 100 reqg/sec) they would-com
plete in 025 sec; similarly the 40 requests af would complete

in 0.2 sec. Hence the total time to complete requests of both ap-

plications using an isolating scheduler would Tig = 0.45 sec.
The efficiency of the fair scheduler i&,/Ts = 0.45. If the fair
scheduler were improved and the measured throughpws arfid

scheduler in the intervals, tp) is defined as:

E(ty,t2) = Tm/Ts @

LEMMA 1. &(t1,t2) = 3iri/n;

PrROOF Consider the time intervdly,ty) and suppose the fair
scheduler serviceg requests of;, for each of the concurrent ap-
plications. Ts = t; —t; denote the length of the interval. The time
required to service th@ requests o#; in isolation is given by| =
Bi/ni; recall thatn; denotes the throughput of applicatiepwhen
running in isolation. The total time taken to service theuesjs
from all applications is therefore given By, = 3t/ = i Bi/n;.
Hence efficiency?’(t1,t2) = Tm/Ts = 3 Tsri/Ni Ts= Jjri/ni, since
by definitionr;=g;/Ts. [

Note that higher is better for this metric and and a value oEams

that the throughput obtained for a given workload matchasdh-
tained by running the different applications making up therkw

load in isolation. A value greater than 1 means that the aoenti
workload has higher throughput than running the applicatim
isolation. This happens when random workloads are merged as
shown in the experimental results in Section 4.1. This isabse

the lower level seek optimizer gets more opportunities doice the

time spent on seeking.

We next define a fairness metric that measures how close the ra
tios of the throughputs of the different applications coisipg the
workload matches the ratios that would result from a faoedtion.
Over the intervalty,t2), let the fair scheduler provide a throughput
of rj for applicationa;. Definew, =r;/yr; to be themeasured
weightof a using the fair scheduler, and Mt = [wy, w5, ---wy]

be the vector of measured weights. Mgt= [wy,Wo,---wy] be
the vector ofspecified weightexpected from a fair schedule. The
measure of fairness is the "distance" between the measantdrv
W’ and the specified vectd¥. While different measures could be
employed, we use the well-known norm as the measure in this
paper. Thel; distance between the vectors is defined alsvi —
wi|. Note that sincey;jw; = 1 = y;w{, bothW andW’ are unit
vectors under the; norm.

DEFINITION 2. Fairness metric.¢7): Let application @ obtain
a throughput r over an intervalty,t2). The total throughput is R

a increased to 40 and 80 reg/sec, the efficiency would increase 3] ; ri, and the measured weight ofia W = r;/R. The fairness

to (40/100+ 80/200)/1 = 0.8. In some cases the use of a fair
scheduler can actually lead to a speedup rather than a showdo
by merging the workloads; in this case the efficiency canestde
For instance, if the measured throughputs were 60 and 128a&q
the corresponding efficiency would be/A@0+ 120/200= 1.2.

Definition 1 provides a formal definition for the efficiency aae
sure discussed above. Lemma 1 derives a simple relatiorebatw
efficiency and the measured and isolated throughputs ofppke a
cations.

DEerINITION 1. Efficiency metric€): Let S be a set of requests
serviced by the fair scheduler over the interyal,ty). Let Ts =

metric is defined as:

F(t,t2) =3 [wi—wj| @)

Note that thd_; distance between the vectors, and hegts,to),
can range between 0 and 2. The lower value is better, sinasihsn
that the ratio of the application throughputs have a good¢imatth
the weights.

Example: Consider three applications, one with high locality and
two random workloads. Let the desired weights be in the ratio
1:2:3; thenW = [wy,wp,w3] = [1/6,1/3,1/2]. Suppose the mea-
sured throughputs for the three applications using a fdiedal-

ing algorithm were 53, 102, and 155 requests/sec respbctivee

(t2 —t1). Let Ty denote the total time needed to service each of the measured weights aré?’ = [w},w,, w;] =[53/310,102/310,155/310 =

application’s requests from set S in isolation. The efficyeof the

[0.17,0.33,0.5]. Hence the fairness metri¢ = 0.003, indicating



very good fairness in the allocation. Suppose instead thedsc
uler provided 10, 10 and 280 requests/sec to applicatens,
andag respectively. The measured weights in this case \We=
(W}, W5, wi] = [10/300,10/300,280/300 = [0.03,0.03,0.93. Hence
the fairness metricz = 0.87, indicating very poor fairness in the
allocation. Thus we want fairness metric to be smaller teeHass
deviation from the desired weights.

Finally, we consider the notion of fairness granularity. ¢had-
uler that is fair over short intervals of time is also fair ovarge
intervals (since a large interval is the sum of small intexyabut
the reverse is not necessarily true. As such, a scheduleistfzr
over short intervals is more strictly fair than one that isydiair
over long intervals. Intuitively, the fairness granulariff a sched-
uler is the smallest length of time over which it is consigiiefair;
smaller is better. Thus, a scheduler with a fairness graitylef
one second may deviate from a proportional allocation ofiser
over intervals shorter than one second, but assures piapalral-
location for measurement intervals of one second or longae
techniques we propose in the next section work by relaxiirg fa
ness granularity in order to gain efficiency. A formal deforitof
fairness granularity is given below.

DEFINITION 3. Fairness Granularityd(fm) is defined as the
smallest time duratior such that95" percentile value of the set
{Z({t1+(Mm—1)e, tg+me), m=1,---(tp—t1)/e} is less than f.

Having looked at the metrics that we use to measure the perfor
mance of a fair scheduling framework, we now look at variais f
scheduling algorithms and the design of an efficient faiedciter.

4. FAIR SCHEDULER DESIGN

In this section, we first study the inherent trade-off betwése
1/0 efficiency and the fairness guarantees of proportiohates!/O
schedulers and introduce two parameters that impact botk.
characterize this trade-off experimentally by modifyihg 1/0O is-
sue behavior of a proportional share scheduler and usirnhetyn
workloads. We then incorporate our findings into a new de&ign
an I/O efficient proportional 1/0 share scheduler.

For our experimental evaluation, we used a modified versidineo
Deficit Round Robin (DRR [16]) scheduler. The basic DRR algo-
rithm performs scheduling decisions in rounds: it allosatquan-
tum of tokens to each application (or input queue) in a round, and
the number of tokens is proportional to the application’sghe
The number of 10s transferred from an application’s inpuug!

to the output queue is proportional to the number of accuredla
tokens the application has. If the application has no IOslimgn

in its input queue in a round, the tokens disappear. Othervifis
there are both 10s and tokens left, but there are not enougimso
to send any more |0s, then the tokens persist to the next riphisd

is the deficit). The DRR algorithm can produce throughpuppre
tional to the application’s assigned weight, where the ughput

is measured either in bytes/sec, or in |Os/sec (IOPS), bggihg
how tokens are charged for the 10s. We use IOPS in this paper.

We chose DRR for three reasons: (1) the run-time for DRR i9 O(1
amortized over a number of requests; (2) DRR provides simila
fairness guarantees as other proportional share algaijtand (3)
DRR was easier to modify for our experiments. We performeal tw
modifications to the basic DRR algorithm so that we can sthay t

relationship between I/O efficiency and the fairness graityl ex-
hibited by the DRR. The first modification allows us to contiu
concurrency of the 1/0 requests at the storage system arskthe
ond one allows us to take advantage of the spatial locality ref
quest stream, if any. In the next two sections, we describb ef
these modifications in detail and present our experimeetllts
showing how they impact the 1/O efficiency and the fairnessgr
ularity.

4.1 Bounded Concurrency

The amount of concurrency at the storage device has a pmfoun
impact on the achievable throughput. This is because highels

of concurrency allow the scheduler to improve the requessrnimg

so that the mechanical delays are minimized. In additioghdi
levels of concurrency allow RAID devices or striped volumes
take advantage of the multiple disk drives they contain.

Proportional share 1/0 schedulers carefully regulate gwiests
from each application before issuing them to the storageesys
This is necessary for achieving the desired proportionglitaran-
tees that these schedulers seek to provide. Unfortunétédyalso
has the side effect of limiting the amount of request corengsy
available at the storage devices. As a result, even if tiserericur-
rency available at the workload, the DRR algorithm dispasatnly
a portion of the pending requests in a round, and the conuzyre
levels in storage systems tend to be low.

Our first modification to the DRR scheduler is to make the numbe
of outstanding scheduled requefsa controllable parameter. We
call this parametethe concurrency boundThis allows the modi-
fied DRR scheduler to keep a larger number of requests peatling
the storage system. Figure 2(a) shows the I/O throughpairat

by the modified DRR scheduler as a function of the concurrency
bound. For this experiment, we used three workloads andhegt t
weights in the ratio 1:2:3. All three were closed workloagach
keeping a total of 8 requests outstanding. In the legend, &me

a sequential workload and R means a random workload. Hence
RRR means three random workloads running simultaneously. F
ure 2(a) shows that overall throughput increases with migbae-
currency levels, and the gains in I/O throughput are subiatakiVe

also plot the efficiency metric for various values of D, asvamo

in figure 2(b). Note that efficiency is higher than 1 for mixeighw
random workloads. This is because putting together randork-w
loads results in higher seek efficiency. On the other hargljese

tial workload mix has a lower efficiency even at large queygtiie
because of frequent switching among various workloads aieeh
seek delays.

While increasing concurrency improves the 1/O efficientyl$o
impacts the fairness guarantees of the proportional shargched-
uler. Figure 2(c) shows the proportional share fairnesd aecond
granularity for the same experiment. It shows that highercoo
rency also leads to substantial loss of fairness, resultingach
application receiving substantially different througtgpfrom their
assigned weights. We notice that the fairness starts dengeat

D = 8, and becomes similar to the fairness of a standard through-
put maximizing scheduler as the concurrency bound appesaich

D = 20. The modified DRR behaves like a pass through sched-
uler at this point and loses all its ability to regulate thtighput
proportions of individual applications.
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4.2 Variable Size Batching

The other factor that impacts the 1/O efficiency is the harglbf
spatial locality. Most storage systems implement some fofm
prefetching for sequential workloads which trades off &ddal
transfer time with potential savings from fewer mechangesks.
An 1/O efficient proportional share scheduler also needsatule
sequential workloads differently to take advantage of tality.

Our second modification to the DRR scheduler is to introduce v
able size batching so that highly sequential workloads angel
prefetches can be supported for efficient proportionalishaiwe
introduce abatch sizgparametelG, which refers to the number of
10s that are scheduled from an application in one round of DRR
This parameter can be different for each workload depenafirtge
degree of spatial locality present; we denote the batchfeizap-
plicationa; asG;. Variable size batching allows more requests from
a given application to be issued as a batch to the storagensyx-
fore switching to the next application. Thus, it reducesiifgrence
among applications to benefit sequential workloads and lvads
exhibiting spatial locality.

One way to increase the batch size is to increase the batetokiz
all applications in a proportionate manner for every rouiis,
however, leads to an increase in batching even for appicathat
may not necessarily benefit from it. To verify this we ran 3atiént
workload mixes, RRR, RLR, and LLL. Here L means a workload
with high locality. Figure 3(a) shows the overall /0O thrdyogt
achieved from the modified DRR scheduler as the batch sizg-s v
ied. It shows that workloads with high locality benefit substaliyi
from the variable batch sizes and random workloads are aimos
unaffected by the batch size parameter.

would like to be able to have different batch sizes based en th
locality of the workload. We modified DRR to assign each agapli
tion a number of tokens based on its batch size. Clearlycths
flicts with the assigned weight of the application, and assalte
applications with modified number of tokens should not nezei
any tokens for a number of rounds so as to preserve the overall
proportions. We do this by skipping one or more rounds fos¢he
applications. The number of rounds to be skipped can be ctadpu
easily. For example, consider 3 applications with weightgatio
1:2:3. Let the batch size be 128, 64 and 16 for applicatio@sahd

3 respectively. Now, based on the weights and batch size$; ap
cation 1 will get a quantum of 128 every 24 rounds, applicago
will get a quantum of 64 every 6 rounds and application 3 véll @
quantum of 16 every round. Fractional allocations were eetied

in this example, but they can also be handled in a similar mann

To test that variable batch size indeed helps in improvifigiehcy,

we experimented with 2 workloads, one random and other seque
tial. Here, we varied the batch size of the sequential wadkiioom

1 to 256. Figure 3(b) shows the overall 1/0O efficiency with the
variable batch sizes. We observe that for small batch sieepér-
formance is lower (64 % of stand-alone throughput). Howeioer

a batch size of 128, we get the desired efficiency (close t86100
of stand-alone throughput) and the overall throughput eftbrk-
loads is 1155 and 80 IOPS which is very close to half the stand
alone performance (2380 and 160 IOPS).

However, the efficiency increase doesn’t come for free — it ad
versely affect the fairness guarantees of the DRR algorittim
effect, the assigned weights can be enforced by the modifitid D
scheduler at a larger time granularity. When the batch of Hez
issued from a workload;, it gets ahead of others in terms of allo-

Since all workloads do not benefit from a higher batch size, we cated proportion of the shared system. As the DRR schedifes s



LT = 128K (locality threshold);
int runCount[K], runPos[K];
int current = reqLBN = 0;
Compute Locality()
/I lf request address is not within threshold, start new run
if (|runPos[current] - reqgLBN> LT) then
current++;
if (current == K) then
current =0
end
runCountfcurrent] = O;
end
runCount[current]++;
runPos[current] = reqLBN;
Add request to corresponding DRR queue;
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16 Periodically: (every 1 second)
17 L; = average of non-zero runCount[] entries;

Algorithm 1: Calculating average run length

On Request Arrival:
Compute Locality();
Enqueue request in application’s queue;
Dequeue request();
On Request Completion:
D=D-1;
Dequeue request();
Algorithm 2: Adaptive DRR algorithm

1 DG;: deficit count of applicatior;
2 B: number of requests pending @p;
3 Ri: number of requests pending @;
4 curHead = index of current queue;
5 Dequeue Request():
6 for count« 1to N do
7 i=curHead,;
8 [/l If inactive, go to next queue
9 if (R +R;j==0)then
10 curHead++;
11 if (curHead == N)then
12 curHead =0
13 continue;
14 /I If active and has request, send it
15 if (DC > 1 AND R > 0) then
16 DG = DGi-1;
17 R=R-1
18 R=R+1
19 D=D+1;
20 Send request frorg;;
21 return;
22 /I If active with no request, return
23 if (B > 0AND R == 0) then
24 return // Do not send more;
25 curHead++;
26 if (curHead == N)then
27 curHead =0
28 /I Deficit count is zero, replenish and start over
29 for i< 1to N do
30 if (a deserves quantuntiien
31 DC =G
32 goto line 6;

Algorithm 3: DRR request dispatching.

the workloada; in the subsequent rounds, the assigned weights are Adapting concurrency: As discussed in section 4, the efficiency

reached but over a longer time interval.

4.3 Parameter Adaptation

We have discussed two techniques for balancing the effigiand
fairness provided by a storage server: variable size bagchind
bounded concurrency. Variable size batching requires éhlste
per application that depends on how sequential (or spatidhl)
it is, and bounded concurrency requires a param@®gtd limit
the number of outstanding scheduled requests. The bestsvidu
all these parameters depend on the workload characteristid
the load on the system. Since the relationship between waulkl
characteristics and the best parameter values can be cqraplg
workloads and system loads vary over time, it is impracticain
administrator to provide the values for these parameteesinvile-
mented an automated, adaptive method to set the per-applica
variable batch sizes and the concurrency parameters.

Adapting batch sizes:As we showed in section 4.2, increasing the
batch size for application workloads that are sequentiapatially
local improves the efficiency of the storage server by ratuthe
disk seeks, at some cost to the fairness. Ideally, one watlthe
batch size large enough to capture the sequentiality of eack-
load, but no larger. We do this by periodically setting thichaize

of the application to its average receah length(up to a maximum
value). A run is a maximal sequence of requests from a work-
load that are within a threshold distance of the previousiest

— we used a threshold distance of 128KB. Algorithm 1 shows the
pseudo-code that tracks the l&tun lengths; the average recent
run length is the average of tierun-lengths. Algorithm 2 shows
the overall adaptive DRR algorithm.

of the storage server generally increases as the concyroérice
server is increased; however, a large output queue may tead t
loss in fairness. The length of the output queue requiredamm
tain proportional service depends not only on the weightthef
applications but also on the number of pending requests.e¥or
ample, consider two closed applications with 16 10s pendirgjl
times and weights in the ratio 1:4. Now, in the output queue of
lengthD, we should hav® /5 requests frona; and 4 /5 requests
from a,. WhenD is larger than 20, all 16 pending requestsagf
are in the output queue, and it does not have any more redoests
send; the remaining slots in the queue may be occupied bymend
requests froma; (which still has 12 pending requests in the DRR
gueue) affecting the fairness guarantees. This is becaB&edan
only guarantee proportional service so long as the apitagre
backlogged — that is, there are enough pending requestscin ea
application queue to use up the tokens available and fill thie o
put queue. Thus, we need to adapt the length of the outpuiequeu
based on the number of requests pending from an applicatidon a
its share.

A method to control the concurrency to maximize efficiencylevh
maintaining fairness is shown in Algorithm 3. In order to rmax
mize the efficiency of the server, we allow the concurrencinto
crease so long as each active application that has tokeasdond

has pending 10s in its DRR queue. If the current applicapn
has no pending requests in the DRR queue we stop sending re-
guests (thereby decreasing concurrency as requests derapthe
server) until one of two events occurs: eittegrsends a new re-
quest (perhaps triggered by the completion of an earlierest) or

it completes all its requests in the output queue. In the dase,



we continue adding;’s requests to the output queue. In the second
case, we declarg inactive and continue serving requests from the

next DRR queue. In addition, when an application runs oubof t
kens, the round continues with the next DRR queue. An agjgita
is considered active if it has at least one request in thedsdéein-
put queue, output queue, or outstanding at the server. Sirergy
active application receives the full service it is entittedn each
round, the algorithm guarantees proportional service lfaciive
applications.

5. ANALYTICAL BOUNDS

Increasing the concurrency and the per-application baies $or
sequential or local workloads improves the efficiency of fhie
scheduler, but at some cost in fairness, as we have obsénviis
section, we present some analytical bounds on how far tltires
scheduler can deviate from proportional service.

Most fair schedulers such as WFQ [5], SFQ [7], Self-Clocked [
and DRR [16], guarantee that the difference between thegiwrei
adjusted) amount of service obtained by any two backloggetl-a
cations in an interval is bounded. The bound is generallgped-
dent of the length of the interval. During any time interjtalty],
where two flows (applicationsf) andg are backlogged for the en-
tire interval, the difference in aggregate cost of requestspleted

for f andg, is given by:
Sltnte) | _ 7 g™

Si(tatz) PR 3)

wherec"® is the maximum cost of a request from flay[6, 7].
Cost is any specified positive function of the requests; Xangple,

if the cost of each request is one, the aggregate cost is thberu
of requests. A similar (but weaker) bound has been showrhtor t
basic DRR algorithm [16].

When the server is allowed to have multiple outstanding estsu
simultaneously, the bound is larger. For example, Jin eflal.
show that in SFQ(D), where the server has upt@utstanding
requests, the bound in Eg. 3 is multiplied @y + 1). In our case,
as shown below, the bound grows as bdothnd the maximum value
of the batch sizes.

THEOREM 1. During any time intervalts, to], where two appli-

cations aand g are backlogged, the difference in weight-adjusted
amount of work completed by DRR using corresponding batch-

sizes G, Gj, and concurrency D is bounded by:
G Gj 1 1
N J’_ _

Stuto)  Siltut)] 2 )4+D(= + =)
Wi Wj - Wi Wj Wi Wj

PrROOF Consider an intervalt{,t,] where applicatiorg; gets
m; non-zero quantum allocations. Each quantum allocatioreeor
sponds to batch siz8; of a;. The total amount of service obtained
by & can be written as:

S(t1,t2) = mGj +DCi(t1) 4 di(t1) — DCi(t) — di(t2)  (4)

Here,DC;(t) denotes the number of tokeashas at time¢ anddi (t)
denotes the number of outstanding scheduled (but not coeaple
requests frong; at timet.

Noting that 0< DCj(t) < G;j and 0< d;(t) < D, we can upper
bound the expression f& as:

S(t1,t2) <mGi+Gj+D (5)
Similarly, the lower bound is:
S(ty,tp) >mG -G —D (6)

Considering the upper and lower bounds for applicat@renda,;
respectively, we get:

S(tt2) _ mG

Wi Wi +Gj/w; +D/w; @)

Sj(t1,t2) - m;G;j

W, W, —Gj/wj—D/w; (8)

Hence the difference is bounded by:
Stut) _ Stit) - mG + (Gi+D) _ m;G;
< W

Wi wj W W W

Let 1j andtj be the number of rounds between successive quantum

allocations to applications; and a; respectively. The length of
time interval f1,t2] is at leastm; — 1)7;. Consider the other appli-
cationaj: during interval fy, t], it will receive at leastm; quantum
allocations given by:

mj = [(m — 1)1 /1}] 9)
Based on the computation & andr;, we also know that

Gix1j W
Gj T B Wi

(10)

This is because the overall allocation per round must betio c&
the weights. Substituting; andGj/w; from the equations above,
we get:

m;Gj/wj > Gj((m —1)1i/1j —1)/w; (1)
= Gitj((m —1)7/1j—1)/(WiTi) (12)
= Gim/wi —Gi/wi — Gitj/(WiTj) (13)
= Gim/wi —Gi/wi —Gj/w; (14

Substituting in the difference computation, we get:

Stut)  Si(titz) < (Gi+D) +Gi 4 &4_ (Gj+D)
Wi Wj — W W w; W

By grouping the terms for G and D we get:
Stuty) Sj(tlj-,tz) < 2(%+VGV_1)+D(i + 1

w, W w; WJ)

O

Essentially, the theorem says that the bound on unfairnessases
proportionally with a linear combination of the concurrgound
D and the batch size parameté®s and G;. Figure 4 illustrates
the parameters used in proof. Here applicatipgets its quantum
allocationG; every alternate round. Henag= 2. Also within a



Figure 4: lllustration for proof

time intervallts,t], @ may getm; = 10 such allocations. Similarly
applicationa; gets its quantum allocation &fj every fourth round,
hencerj =4. Also in the same interval; will get at least 41f; = 5)
allocations. The numbeng andmy, depend on the batch size and
weights of different applications.

6. EXPERIMENTAL EVALUATION

In this section, we evaluate our mechanisms for improvirglt®
efficiency of proportional share schedulers. We used atyaok
synthetic workloads and trace replay workloads in our erpemts.
Our results are based on the modified DRR scheduler, but clx te
niques are general enough that they can be applied to otbeopr
tional share schedulers.

Overall, we highlight two main points in our evaluation. stjrwe
show how the two parameters we introduced, bounded comayre
and the variable batch size, can be adjusted to get highesftigi
without a significant degradation in fairness. Since oureagh
trades off short term fairness in order to get higher I/O &ficy,

assigned in ratid:3:5in all cases.
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Figure 5: Fairness metric.# over time, for one second measure-

ment intervals. For each workload combination, the parameer
values with highest efficiency were used.
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6.2 /O Efficiency

In section 4, we showed the impact of individual parametarfio-
ness and I/O efficiency based on micro-benchmarks. In thigose
we look at the combined effect of all the parameters. Our goal
to show that we can adjust these parameters to obtain highffilO
ciency. Table 2 shows the measured throughput and efficimety
rics for different parameter values, of workload mixes RIRRL,
LLL and SSS respectively. These results show that the Imeseli
DRR scheduler (wher® = 1 andG = 1) does indeed exhibit poor
1/0 efficiency, between 0.13 (for the SSS workload) and 0f&8B (
the RRR workload). Our mechanisms improve 1/O efficiencyho t
levels above 90%, improving the performance of the bas&liRBR

we evaluate both fairness and efficiency. Second, we show how scheduler by a factor of two to seven for different workloaictes.

these parameters can be adapted for dynamically changing wo
loads.

6.1 Experimental Setup
Our experimental setup consists of a Linux kernel moduleitha

plements our mechanisms in a modified DRR scheduler. The mod-

ule creates a bunch of pseudo devices (entries in /dev) vdrie

backed up by a block device that can be a single disk, a RAID de

vice or a logical volume. Different applications accesgedént
pseudo devices. This is a simple mechanism to classify stgjue
from different applications, and we can set weights for gegudo
device. Our module intercepts the requests made to the psiEud
vices and passes them to the lower level Anticipatory sdeedu
Linux based on the DRR algorithm with our modifications. &nti
ipatory scheduler then dispatches these requests basés! @mn
seek minimization algorithm, we don’t make any modificasida

it.

We use a variety of synthetic micro-benchmarks and trapksye
workloads in our experiments. We experimented with three sy
thetic workloads and four different workload mixes. Thedam
workload R represents an application with 16 pending |06

Our results indicate the following: (1) The random workloatk
(RRR) is unaffected by batching parameters and its effigienc
solely dependent on the bounded concurrency (D). (2) Badgchi
helps workloads with locality and their performance imm®\as
we increase the batch size. (3) It is possible to get highiefffoy
with small values of D. This is important, since we have alyea
shown that setting D to a large value causes fairness toicleter
significantly.

Figure 5 shows the corresponding fairness for one secoad/ais
using the parameter settings that provides the highesffiteacy
for each workload (i.e., the rows in bold face). We note that t
baseline DRR scheduler has perfect fairness. Though threefa
is below 0.1 for most workloads at one second granularitgreh
are cases where the parameter settings corresponding thigtine
est 1/0O efficiency lead to poor fairness (e.g., up to 0.4 fer88S
workload).

6.3 Fairness Granularity

We have shown earlier that the fairness metficdepends on the
time interval over which it is computed. Also the analysiswsh

that the worst case fairness bound increases with increape-i

each distributed randomly over the volume. The throughgut o rameter value® andG, and so does the fairness granularity. In

this random workload when running in isolation is 8.8MB/812

this section we show how the value & changes with respect to

IOPS). The spatially local workload L does 32K sized 10s sepa the time interval over which it is computed.

rated by 16K each. This highly local application has thrqugh
running in isolation, of 41.85 MB/s (1339 IOPS). The seqisnt
workload sends 32K sized sequential 10s and has overalligiivo
put of 77.8 MB/s (2490 IOPS) in isolation. We consider 4 dfet
mixes representing different number of random, local, atgien-

For each of the workload mixes RRR, LLL, and SSS, we com-
puted the fairness metric values as a function of the meamire
time intervalt. That is, we computed? (0,t), .#(t,2t), .7 (2t,3t),

. Figure 6 shows the d0percentile of this set for values of

tial workloads, defined as as RRR, LLL, SSS and RLL. Here RLL ranging from 100ms to 2000ms. For each workload mix, we used
represents one random and two local workloads. The weights a the parameter combination that gave the best efficiefity: 16



Parameters r r r & Parameters " "2 '3 ¢
1 2 3 5 D,[G1.G2,Gs] | (MBJs) | (MB/s) | (MBIs)
D.[C1,Cp.Cal | (MBIS) | (MBJS) | (MBIS) 1135 T27 [ 378 |63 0.39
L1135 052 | 155 |259 053 8135 161 | 483 | 804 | 0.49
8,[1.3,5] 084 |251 ]418 |0.86 16,[1,3,5] 212 | 634 | 1043 | 0.64
16,[1,3.5] 097 291 [484 [09 8,[8,24,40] 226 | 676 | 11.3 | 0.69
S 5.24.40] e 8,(16,48,80] 246 | 733 | 1233 [0.75
e ' : : : 8[32,06,160] | 278 | 251 | 13.96 | 0.85
8,[16,48,80 084 | 249 | 419 | 085 [32,96,
S T3208 16]0] e s i tom 8,16,96,240] | 2.01 | 8.60 | 14.62 | 0.89
s ' : : : 8,16,128,320] | 298 [ 881 | 14.95 | 0.01

(a) Workload RRR: stand alone throughput is R:8.8MB/s (byk@ad RLL: stand alone throughputs are: R:8.8MB/s, L:8M8/s.

Parameters r ry r3 & Parameters T r r -
D,[G1,G2,Gs] (MB/s) | (MB/s) | (MBIs) D,[G1,G2,G3] (Ii/IB/s) (l%/IB/s) (ﬁAB/s)
11,35 187 | 558 |949 |04 '

(1.3, 1L35] 100 | 326 |543 |O013
8,[1.3,5] 174 1516 876 | 037 8, [1,3,5] 228 679 [ 1132 [026
16,[1,3,5] 245 | 732 124 ] 053 16,[1,3,5] 322 | 961 | 1539 | 036
g' ?'5235421)] g-g‘z" fg;g ig-ii 8-%" 8.8,24,40] 503 | 1505 | 2506 | 058

[16,48, : : : : 8,[16,48,80] 592 | 17.71 | 29.63 | 0.68
8[32,96,160] |4.21 | 1251 | 21.38 | 091 8,[32,96,160] 622 | 1859 | 3121 072
8[16,96,240] | 411 | 12.24 | 20.92 | 0.89 8,[128,384,640] | 7.06 | 21.12 | 3586 | 0.82
8[16,128320] | 469 | 14.08 | 23.83 | 1.02 8,[256,768,1280] | 8.03 | 24.02 | 40.79 | 0.94

(c) Workload LLL: stand alone throughput is L:41.85MB/s. ) Workload SSS: stand alone throughput is S:77.8MB/s.

Table 2: Measured throughput and efficiency for various setings of concurrency bound and batch size.
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Figure 8: Efficiency metric & with various time intervals over which fairness is very good(< 0.1) for three different workload mixes.
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each workload set, the parameter combination with the best  jative 10s from 1 to 3 sec. This indicates that the faimess

efficiency is used. granularity increases with these parameters.



and small values of batch size for RRR, ddd= 8 and large val-
ues of batch size for the LLL and SSS workload mixes. The RRR
workload has good fairnesg (< 0.1) for measurement intervals of
300ms or higher, whereas the other workloads require 1 semon
more to achieve low fairness values. While the fairness rgdiye
improves with higher measurement intervals, the changesetr
monotonic. For the SSS workload, the algorithm gains efiiye
by allocating each workload a large batch in one round, aewl &
locating no service to it for several rounds. An interacti@iween
the high batch size and the measurement interval cause aibump
the fairness graph, since one measurement interval maynhare
rounds with large batches allocated than the next. As shelpro-
portion of service received by a workload may be too high ia on
measurement interval, and too low in the next. However, fleete
declines as the measurement interval grows larger; in otbeds,
the fairness granularity is larger for the SSS case tharhtoother
workload mixes.

These results are also in agreement with our analysis, vefhiotvs
that the worst case fairness bound increases in propoxicurn
of the queue length and batching parameters. To illusthédewe
experimented with two workloads, one random and one lodéh, w
weights set in the ratio 1:2. Figure 7 shows the cumulative 10
completed for the local workload with increasing valueshaf two
scheduler parameters. It shows that higher values for petearset-
tings result in bigger steps and bursts. Thus, if we meabuoeigh-
put over short periods, it is quite variable and the fairress be
poor. If fairness is measured over longer periods, the titrput
smooths out, and the fairness is good.

6.4 Efficiency and Fairness Granularity

In this section we look at the relationship betwdaiiness gran-
ularity and efficiency For this experiment, we assume that the
user needs very good fairness, say, a fairness mérless than
0.1. Figure 8 shows how the efficiency of the scheduler varies
with the fairness granularity. As before, the workload virkégare
1:3:5. Each point represents one parameter setting for amnke-w
load mix in one storage configuration, and the efficiency a-pl
ted against the fairness granulari§0.1). The parameter settings
are not shown (to avoid cluttering the figures), but we nogepidr-
rameter settings for some interesting points below. Indhmsts,
the ideal scheduler would be in the top left-hand corner —hhig
efficiency combined with a low fairness granularity. For the-
dom workload mix (RRR), the best combination of efficiencg an
fairness is achieved at a low fairness granularity (300migss);
the corresponding parameter settings are D=16 and G=[1fB,5
all configurations. Higher batch sizes for the RRR workload m
increase the fairness granularity without any improvenie rffi-
ciency. For the workloads with significant locality or senqtiality,
the efficiency increases with the fairness granularity. hie ¢tase
of the LLL workload mix, 90% efficiency is achieved at a fair-
ness granularity of 800—900ms; this corresponds to thentea
settingD = 8, G = [64,192 320 in all three configurations. The
third workload mix, SSS, is the most difficult test of the sthe
uler, because it is hard to retain efficiency when mixing sedjal
workloads. In this case, 90% efficiency is achieved at a éaisn
granularity of 3900ms for the single disk configuration,ngsthe
parameter settinB = 8, G = [256,768 128(. On the striped vol-
ume configurations, 90% efficiency is achieved for the SSwor
load mix at a fairness granularity of 700-1100ms (Figuré$ &d
8(c)). Overall, we conclude that fairness granularity can be trdde
for efficiency in a proportional share 1/0 scheduler.

6.5 Adapting parameters to workloads

We have so far presented results with fixed values of the cencu
rency and batch-size parameters. We now evaluate the eglapti
DRR algorithm presented in Section 4.3.

In our first experiment, we use a mixture of three workloads, i
tially all random, and let one of the workloads increase its r
length every 10 seconds, turning into a more sequential loadk
Ideally, as the third workload gets more sequential, itetaize
needs to be adjusted to reflect this change. The weights wofdtie
loads are assigned in ratio 1:1:4, and each workload isdesf
32KB on a 2-disk stripe. Figure 9(a) shows the overall thhpug
with the adaptive DRR algorithm increases over time as orikeof
workloads becomes more sequential. We also plot the efigien
and fairness (with 1 second measurement intervals) for ahees
experiment in Figure 9(b) and the batch size of the worklobativ
changes its run length during the experiment in Figure 9bgse
results show that the adaptive DRR is able to keep high 1/0 effi
ciency and trades off short term fairness by letting thenfsis met-
ric to increase up to 0.1. It achieves this by varying thelibatze
for the changing workload as it increases its run-lengthhasva

in Figure 9. We also sampled the queue size at the storagensyst
every second. Both the mean and median queue length was 24.

In our second experiment, we again consider a mixture ofthre
workloads, two random and one sequential, and let the sequen
tial workload vary its concurrency (the number of requestsas
outstanding) from 128 to 4 at 10 second intervals. The random
workloads each have a fixed concurrency of 32 and issue 32KB
10s. Since the sequentiality characteristics of the waitodo

not vary, the algorithm keeps the batch sizes for the woddam-
changed throughout — 256 for the sequential workload and 1 fo
the random workload, as shown in Figure 10(c). The overait co
currency — the total number of outstanding requests — deesa
from 196 to 68 over a period of 150 seconds. To adapt to thegehan
ing concurrency of the workload, the algorithm automatjcatl-
justs the number of requests at the back-end queue, as shown i
Figure 10(b). As the pending count for the sequential watlo
decreases, so does the average queue length. Howeverytiemse
tial workload gets a large batch of size 256 (because it iseseq
tial) and then misses its turn for the next 64 rounds (becéase
weight is 4). During those rounds, the queue size is highusxa
of the backlog from the random workloads. The large back-end
queue allows for good seek-optimization and high efficieni
random requests. Figure 10(a) shows the efficiency andefssrn
for the duration of the experiment. The overall efficiencylisse

to 90% and fairness measured over one second intervalsuediro
0.1, which indicates that the adaptive algorithm succdgsfioan-
ages the back-end queue depth to obtain good efficiency &nd fa
ness despite the rapidly changing workload.

6.6 Time Slicing at Disk

In this section, we take a closer look at the alternative @ggin of
time slicing at the disk and discuss some of the fundamesgakis
with that approach. We implemented a DRR-timeslice alponit
that does time multiplexing at a fine granularity. The lengfttan
application’s time slices is proportional to the weight lo& appli-
cation. If an application has no more requests to send, livwaiit
if the lower level queue has at least one request pending (@),
otherwise the DRR-timeslice will move on to the next applmas
time slice. Thus, we chose to end the time slice as soon agudin ap
cation becomes inactive; we made this choice to make thelatdre
work-conserving.
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Figure 10: Dynamically adapting queue length as one of the wkloads decreases its concurrency from 128 to 4 at 10 seconds

granularity.

In this experiment, we used four random workloads, each-keep the throughput while running all three simultaneously. éNtitat

ing 8 requests pending, with equal weights. The back-endejue

depth is 16. We set the time-slice to be 100ms for each work-

load. Figure 11 shows the cumulative distribution of latefar
one of the workloads and the average total throughput. Huw's

individual 10 throughputs are lower than those obtainedsoia-
tion because system cannot provide the full desired setviak of
them. Figure 12(c) shows the overall efficiency of the systiis
calculation is done assuming a steady state average ttpough

that almost 60% of 10s have a small latency of around 50ms and isolation). The efficiency is around 1.4 due to two reasony: (
the remaining have a latency of more than 300ms. This number combining multiple traces leads to an increase in systelimation

is dependent on the workloads (four in this case); with aelarg
number of workloads, the maximum latency would be higher. By
contrast, the DRR algorithm has less jitter. DRR also hatebet
overall throughput. DRR obtains around 320 |Os/s, wherdgR-D
timeslice obtains only around 215 10s/s. In the case of tilceng

we can only use the concurrency from a single workload (8 n ou
case), whereas the DRR algorithm maintains 16 IOs in the-badk
queue. Thus, DRR-timeslice loses the improvements in effayi
associated with higher concurrency (better seek optimizstand
higher parallelism).

6.7 Experiments with Traces

In this section, we experiment with real world traces to est# our
adaptive scheduler. We used three representative tracesdiib
server ppenmai), data basetpcc), and file systemharp) work-
loads. We replayed these traces on a 4-disk logical volurhe [1
Figure 12(a) shows the throughput obtained by traces wheyn th
are run separately, in isolation. Since traces are openloauk,
the rate of request completion is also bounded by the actual a
rivals in the trace. We observe that on average openmad,apd

as the overall arrival rate increases, and (2) combiningwads
causes the size of the I/O queues to increase, providing opre
portunities for the lower level schedulers to improve tHehcy.
These results show that our adaptive DRR algorithm handles t
substantial variation in workload characteristics exeithiby real
world workloads.

7. CONCLUSIONS

In this paper we studied the trade-off between fairness &ind e
ciency in a shared storage server. We showed how this trfide-o
can be controlled using two parameters: variable size bag@and

the depth of the scheduler’s output queue. We highlightrieor-
tant characteristics of each of these parameters and slabhty
can be tuned to trade off fairness granularity — short teiméss

— with efficiency. We then present a self-tuning algorithratth
sets the values of these two parameters based on dynamie work
load characteristics. We validated our approach by an siten
experimental study using both synthetic micro-benchmarksac-
tual traces. The approach is also backed up by a formal framkew
and analysis that supports the experimental results. Erpatal

harp get 540, 1470 and 2800 10s respectively. Then we rae thes results using a variety of workload mixes indicate that & éf-

traces using DRR with weights in ratio 1:3:5. Figure 12(l)vet

ficiency of over 90% is achievable by allowing the scheduter t
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Figure 12: Running three different traces (openmail, tpcc ad harp) using adaptive DRR.

deviate from proportional service for a few seconds at a.time
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