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Quality of service (QoS) guarantees for applications are desirable under many
scenarios. Despite much prior research on providing QoS in storage systems,
current storage systems do not support extensive QoS guarantees. We believe
this is mainly due to the low I/O efficiency of the various mechanisms designed
for QoS. We find that I/O efficiency has received surprisingly little attention in 
storage QoS research. This is puzzling since the well known characteristics of
I/O devices indicate that their efficiency depends crucially on the order in which
the requests are served. In this paper, we attempt to alleviate the I/O efficiency 
concerns of proportional share schedulers. We first study the inherent trade-off 
between fairness and I/O efficiency. We find that significantly higher I/O
efficiency can be achieved by slightly relaxing short-term fairness guarantees. 
We then develop several low-level mechanisms for proportional share 
schedulers and present a self-tuning algorithm that achieves good efficiency 
while still providing fairness guarantees. Experimental results indicate that an
I/O efficiency of over 90% is achievable by allowing the scheduler to deviate
from proportional service for a few seconds at a time. 
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ABSTRACT
Quality of service (QoS) guarantees for applications are desirable
under many scenarios. Despite much prior research on providing
QoS in storage systems, current storage systems do not support ex-
tensive QoS guarantees. We believe this is mainly due to the low
I/O efficiency of the various mechanisms designed for QoS. We
find that I/O efficiency has received surprisingly little attention in
storage QoS research. This is puzzling since the well known char-
acteristics of I/O devices indicate that their efficiency depends cru-
cially on the order in which the requests are served. In this paper,
we attempt to alleviate the I/O efficiency concerns of proportional
share schedulers. We first study the inherent trade-off between fair-
ness and I/O efficiency. We find that significantlyhigher I/O ef-
ficiencycan be achieved by slightlyrelaxing short-term fairness
guarantees. We then develop several low-level mechanisms for pro-
portional share schedulers and present a self-tuning algorithm that
achieves good efficiency while still providing fairness guarantees.
Experimental results indicate that an I/O efficiency of over90% is
achievable by allowing the scheduler to deviate from proportional
service for a few seconds at a time.

1. INTRODUCTION
Increasing cost pressures on IT environments have been fueling a
recent trend towards storage consolidation, where multiple appli-
cations share storage systems to improve utilization, cost, and op-
erational efficiency. The primary motivation behind storage QoS
research has been to alleviate problems that arise due to sharing,
such as handling diverse application I/O requirements and chang-
ing workload demands and characteristics. For example, theperfor-
mance of interactive or time-critical workloads such as media serv-
ing and transaction processing should not be hurt by I/O intensive
workloads or background jobs such as online analytics, file serv-
ing or virus scanning. Despite much prior research [3, 14, 15, 17],
QoS mechanisms do not enjoy widespread deployment in today’s
storage systems. We believe this is primarily due to the low I/O
efficiencies of the existing QoS mechanisms.

Fairness and I/O efficiency are known to be quite difficult to opti-
mize simultaneously for multiple applications sharing I/Oresources.
Disk schedulers usually attempt to maximize overall throughput by
reducing mechanical delays while serving I/O requests. Theindi-
vidual application (or process) making the I/O request is usually not
considered in the scheduling decisions. The conventional belief is
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that maximizing the overall throughput is good for all applications
accessing the storage system and providing fairness can substan-
tially reduce the overall throughput. In contrast, other resources
in a system such as CPU, memory, and network bandwidth can be
multiplexed based on per process behavior by using well known
fairness algorithms.

We believe that the existing QoS mechanisms proposed so far have
not adequately addressed the problem of losing I/O efficiency due
to proportional sharing. The main issue at hand is to find the right
balance between the two opposing forces of proportional share guar-
antees and IO efficiency. Our first contribution is to systematically
study this inherent trade-off. We find that I/O efficiency canbe
improved if we relax thefairness granularity, the minimum time
interval over which the QoS mechanisms guarantee fairness in pro-
portional shares of the contending applications. This is significant
as it indicates that it may be possible to improve the I/O efficiency
without greatly affecting the QoS guarantees.

Based on our understanding of this trade-off, we then develop adap-
tive mechanisms to improve the I/O efficiency of proportional share
schedulers. Our goal is to have a QoS framework with the follow-
ing properties:

• Fairness guarantees:to provide proportional share fairness
to different applications.

• I/O efficiency: to achieve high I/O efficiency comparable to
workloads running in isolation.

• Control knobs: to provide the ability to control the inher-
ent trade-off between the I/O efficiency and the proportional
share guarantees.

• Work conservation: storage system is not kept idle when
there are pending requests.

We propose two mechanisms to achieve these properties:variable
size batchingandbounded concurrency. A batch is a set of requests
from an application that are issued consecutively without interven-
tion from other applications. Concurrency refers to the number of
requests outstanding at the device. The first mechanism allows an
application to have a different batch size from the one it would oth-
erwise receive from a proportional share scheduler. This isuseful
for workloads that exhibit spatial locality as it reduces the delays
due to excessive disk seeks. The second mechanism allows thefair-
share scheduler to keep a sufficient level of concurrency so that the
existing throughput optimizing schedulers can be effectively uti-
lized. However, the concurrency needs to be bounded so that the
fairness guarantees can be enforced. We show that these two mech-
anisms are indeed effective in improving I/O efficiency while only
slightly increasing the fairness granularity for the QoS guarantees.



We also develop an algorithm that adapts the settings of these two
parameters for a given set of workload characteristics. This is use-
ful as it allows us to keep the I/O efficiency high in the presence of
dynamically changing workload characteristics without impacting
the QoS guarantees (i.e., the fairness granularity).

In the remainder of this paper, we first discuss the prior workin
section 2 and describe our system model in section 3. Then, we
describe our mechanisms to trade off between I/O efficiency and
the fairness granularity in section 4, and develop analytical bounds
for the fairness granularity in section 5. We evaluate our approach
in section 6 and then conclude.

2. RELATED WORK
Providing QoS support has been an active area of research in sys-
tems and many proposed mechanisms in the networking domain
have found their way into deployments. For example, (WFQ [5],
WF2Q [2], SFQ [6–8], DRR [16]) have been adopted for traffic
shaping and providing fairness for network link bandwidth.

Existing approaches forQoS in storagecan be classified into three
main categories: (1) IO scheduling based on fair schedulingalgo-
rithms, (2) time slicing at the disk, and (3) control theoretic ap-
proaches.

Scheduling-based techniques to support QoS use variants ofWFQ
algorithm [5] to provide fair sharing. YFQ [3], SFQ(D) [11],Avatar
[20], and Cello [15] use virtual time based tagging to selectIOs and
then use a seek optimizer to schedule the chosen requests. Stone-
henge [10] and SCAN-EDF [14] also consider both seek times and
request deadlines. Other approaches such aspClock [9] do burst
handling and provide fair scheduling to handle both latencydead-
lines and bandwidth allocation. A fundamental limitation of ex-
isting techniques is that they focus mainly on fairness but do not
study the trade-off between fairness and I/O efficiency. Ourwork
extends one such algorithm to support a balance between fairness
and efficiency.

Among the scheduling-based techniques, Zygaria [18] and AQuA
[19] use hierarchical token buckets to support QoS guarantees for
distributed storage systems. Zygaria supports throughputreserves
and throughput caps while preserving I/O efficiency, but it neither
provides mechanisms for trading fairness with efficiency nor adapts
scheduling based on the workload. Similarly, the ODIS scheduler
in AQuA employs a “bandwidth maximizer” that attempts to in-
crease aggregate throughput as long as the QoS assurances are not
violated. While ODIS employs a throttling-based heuristicalgo-
rithm that adjusts the token rate based on overall disk utilization,
it does not consider individual workload characteristics.In cases
where the system is over-loaded and not all QoS requirementscan
be met, there is no guarantee of proportional service. No special
effort is made to maintain the efficiency of sequential and spatially
local workloads. By contrast, our framework guarantees that, when
workloads are backlogged, the service will be allocated proportion-
ately between the workloads based on their weights; this guarantee
is proven theoretically and demonstrated experimentally.In addi-
tion, our mechanism enables high I/O efficiency for spatially lo-
cal workloads by trading off fairness granularity - i.e., byallowing
brief deviations from proportional service.

Techniques (e.g., Argon [17]) in the second category are based on
time multiplexing at the disk, where each application is assigned a
time quantum dedicated to its IO requests. This has the advantage

of preserving the IO access patterns of an application and avoid-
ing interference with other workloads. However, this approach has
several issues. (1) IO requests from an application that miss the
application’s timeslice (either because they did not complete dur-
ing the timeslice, or arrived after it ended) must wait untilthe next
timeslice arrives. As such, the worst case latency bounds increase
with the number of applications and the duration of the time quan-
tum. (2) During a timeslice, the server sees only the requests from
the corresponding application. While this improves the efficiency
of serving sequential requests, it decreases the effectiveness of the
seek optimizer for random requests, because it cannot take all the
pending requests into consideration. (3) It is difficult to implement
a work-conserving scheduler using time-slicing. If, during a times-
lice, the application has no requests pending, then the server be-
comes idle even though there are requests pending from otherap-
plications. If the scheduler pre-empts the timeslice of a temporarily
idle application, it can interfere with the proportionality guaran-
tees. In section 6.6, we present a comparison of our method with a
method based on time-slicing.

Control theoretic approaches such as Triage [12] and Sleds [4]
use client throttling as a mechanism to ensure fair sharing among
clients and may lead to lower utilization. Façade [13] triesto pro-
vide latency guarantees to applications by controlling thelength
of disk queues. This can lead to lower overall efficiency and the
trade-off between the loss of efficiency and latency is not explored.

3. SYSTEM MODEL
Our system consists of a storage server that is shared between a
number of applications. Each application has an associatedweight.
The goal of the proportional share (fair) scheduler is to provide ac-
tive applications I/O throughput in proportion to their associated
weights. Thefair scheduler is logically interposed between the
applications and the storage server. In an actual implementation,
it could reside in the storage server, in a network switch, ina sep-
arate “shim” appliance [11], or in a device driver stack. Thefair
scheduler maintains a set of input queues, one for each application,
and an output queue. In our system, we used a variant of a Deficit
Round Robin (DRR) scheduler to move I/O requests from the input
queues to the output queue. Once requests are moved to the output
queue, we say they arescheduled. Requests are moved from the
output queue to the storage system as fast as the underlying storage
devices permit. We describe the fair scheduler in greater detail in
Section 4.

n Apps
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Server
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Figure 1: System Model

Notation: The number of applications is denoted asN. The ith

application isai ; its weight iswi , and its queue in the fair scheduler
is Qi . D is the number of outstanding scheduled requests -i.e.,
the number of requests in the scheduler output queue plus those
outstanding at the storage server. These and other notations we use
are summarized in Table 1 for convenient reference.

3.1 Metric Definitions



SYMBOLS DESCRIPTION

N number of applications
ai the ith application
wi weight of applicationai
Qi fair scheduler queue forai
Gi batch size for applicationai
D number of outstanding scheduled

requests
ni(t1,t2) throughput for applicationai , alone
r i(t1,t2) throughput for applicationai , shared
E (t1,t2) efficiency of the scheduler
F (t1,t2) fairness of the scheduler

Table 1: Notation used in this paper. The last four metrics are defined
over a time interval (t1,t2). For notational convenience we omit(t1,t2),
since the time interval is implicit.

The objective of our system is to provide throughput to applica-
tions in proportion to their weights, while maintaining high overall
system throughput. The performance of a storage server depends
critically upon the order in which the requests are served. For ex-
ample, it is substantially more efficient to serve sequential I/Os to-
gether. This is unlike other domains, such as networking, where the
order in which packets are dispatched does not affect the overall
throughput of a switch. For this reason, it is important to measure
the overall throughput (efficiency), in addition to a fairness crite-
rion. Efficiency denotes the ratio of the actual system throughput
to that attained when the applications are run without interference.
Fairness refers to how well the application throughputs match their
assigned weights.

We first define an efficiency measure that captures the slowdown
due to scheduling the mix of requests rather than running them in
isolation. To motivate the definition, consider two applications a1
anda2 which have isolated throughputs ofn1 = 100 andn2 = 200
(requests/sec) respectively. Suppose that when run together using
a fair scheduler, 25 requests ofa1 and 40 requests ofa2 were com-
pleted in an interval ofTs = 1 second. Now, if these requests of
a1 were run in isolation (at a rate of 100 req/sec) they would com-
plete in 0.25 sec; similarly the 40 requests ofa2 would complete
in 0.2 sec. Hence the total time to complete requests of both ap-
plications using an isolating scheduler would beTm = 0.45 sec.
The efficiency of the fair scheduler isTm/Ts = 0.45. If the fair
scheduler were improved and the measured throughputs ofa1 and
a2 increased to 40 and 80 req/sec, the efficiency would increase
to (40/100+ 80/200)/1 = 0.8. In some cases the use of a fair
scheduler can actually lead to a speedup rather than a slowdown
by merging the workloads; in this case the efficiency can exceed 1.
For instance, if the measured throughputs were 60 and 120 req/sec,
the corresponding efficiency would be 60/100+120/200= 1.2.

Definition 1 provides a formal definition for the efficiency mea-
sure discussed above. Lemma 1 derives a simple relation between
efficiency and the measured and isolated throughputs of the appli-
cations.

DEFINITION 1. Efficiency metric (E ): Let S be a set of requests
serviced by the fair scheduler over the interval(t1,t2). Let Ts =
(t2− t1). Let Tm denote the total time needed to service each of the
application’s requests from set S in isolation. The efficiency of the

scheduler in the interval(t1,t2) is defined as:

E (t1,t2) = Tm/Ts (1)

LEMMA 1. E (t1,t2) = ∑i r i/ni

PROOF. Consider the time interval(t1,t2) and suppose the fair
scheduler servicesβi requests ofai , for each of the concurrent ap-
plications.Ts = t2− t1 denote the length of the interval. The time
required to service theβi requests ofai in isolation is given byt ′i =
βi/ni ; recall thatni denotes the throughput of applicationai when
running in isolation. The total time taken to service the requests
from all applications is therefore given byTm = ∑i t

′
i = ∑i βi/ni .

Hence efficiencyE (t1,t2) = Tm/Ts = ∑i Tsr i/niTs= ∑i r i/ni , since
by definitionr i=βi/Ts.

Note that higher is better for this metric and and a value of 1 means
that the throughput obtained for a given workload matches that ob-
tained by running the different applications making up the work-
load in isolation. A value greater than 1 means that the concurrent
workload has higher throughput than running the applications in
isolation. This happens when random workloads are merged as
shown in the experimental results in Section 4.1. This is because
the lower level seek optimizer gets more opportunities to reduce the
time spent on seeking.

We next define a fairness metric that measures how close the ra-
tios of the throughputs of the different applications comprising the
workload matches the ratios that would result from a fair allocation.
Over the interval(t1,t2), let the fair scheduler provide a throughput
of r i for applicationai . Definew′i = r i/∑ j r j to be themeasured
weightof ai using the fair scheduler, and letW′ = [w′1,w

′
2, · · ·w

′
N]

be the vector of measured weights. LetW = [w1,w2, · · ·wN] be
the vector ofspecified weights, expected from a fair schedule. The
measure of fairness is the "distance" between the measured vector
W′ and the specified vectorW. While different measures could be
employed, we use the well-knownL1 norm as the measure in this
paper. TheL1 distance between the vectors is defined as∑i |wi −
w′i |. Note that since∑i wi = 1 = ∑i w

′
i , bothW andW′ are unit

vectors under theL1 norm.

DEFINITION 2. Fairness metric (F ): Let application ai obtain
a throughput ri over an interval(t1,t2). The total throughput is R=
∑n

i=1 r i , and the measured weight of ai is w′i = r i/R. The fairness
metric is defined as:

F (t1,t2) = ∑
i
|wi −w′i | (2)

Note that theL1 distance between the vectors, and henceF (t1,t2),
can range between 0 and 2. The lower value is better, since it means
that the ratio of the application throughputs have a good match with
the weights.

Example: Consider three applications, one with high locality and
two random workloads. Let the desired weights be in the ratio
1:2:3; thenW = [w1,w2,w3] = [1/6,1/3,1/2]. Suppose the mea-
sured throughputs for the three applications using a fair schedul-
ing algorithm were 53, 102, and 155 requests/sec respectively. The
measured weights are:W′= [w′1,w

′
2,w
′
3] = [53/310,102/310,155/310] =

[0.17,0.33,0.5]. Hence the fairness metricF = 0.003, indicating



very good fairness in the allocation. Suppose instead the sched-
uler provided 10, 10 and 280 requests/sec to applicationsa1, a2
anda3 respectively. The measured weights in this case are:W′ =
[w′1,w

′
2,w
′
3] = [10/300,10/300,280/300] = [0.03,0.03,0.93]. Hence

the fairness metricF = 0.87, indicating very poor fairness in the
allocation. Thus we want fairness metric to be smaller to have less
deviation from the desired weights.

Finally, we consider the notion of fairness granularity. A sched-
uler that is fair over short intervals of time is also fair over large
intervals (since a large interval is the sum of small intervals), but
the reverse is not necessarily true. As such, a scheduler that is fair
over short intervals is more strictly fair than one that is only fair
over long intervals. Intuitively, the fairness granularity of a sched-
uler is the smallest length of time over which it is consistently fair;
smaller is better. Thus, a scheduler with a fairness granularity of
one second may deviate from a proportional allocation of service
over intervals shorter than one second, but assures proportional al-
location for measurement intervals of one second or longer.The
techniques we propose in the next section work by relaxing fair-
ness granularity in order to gain efficiency. A formal definition of
fairness granularity is given below.

DEFINITION 3. Fairness Granularityδ( fm) is defined as the
smallest time durationε such that95th percentile value of the set
{F (t1 +(m−1)ε , t1 +mε), m= 1, · · · (t2− t1)/ε} is less than fm.

Having looked at the metrics that we use to measure the perfor-
mance of a fair scheduling framework, we now look at various fair
scheduling algorithms and the design of an efficient fair scheduler.

4. FAIR SCHEDULER DESIGN
In this section, we first study the inherent trade-off between the
I/O efficiency and the fairness guarantees of proportional share I/O
schedulers and introduce two parameters that impact both. We
characterize this trade-off experimentally by modifying the I/O is-
sue behavior of a proportional share scheduler and using synthetic
workloads. We then incorporate our findings into a new designfor
an I/O efficient proportional I/O share scheduler.

For our experimental evaluation, we used a modified version of the
Deficit Round Robin (DRR [16]) scheduler. The basic DRR algo-
rithm performs scheduling decisions in rounds: it allocates aquan-
tumof tokens to each application (or input queue) in a round, and
the number of tokens is proportional to the application’s weight.
The number of IOs transferred from an application’s input queue
to the output queue is proportional to the number of accumulated
tokens the application has. If the application has no IOs pending
in its input queue in a round, the tokens disappear. Otherwise, if
there are both IOs and tokens left, but there are not enough tokens
to send any more IOs, then the tokens persist to the next round(this
is the deficit). The DRR algorithm can produce throughput propor-
tional to the application’s assigned weight, where the throughput
is measured either in bytes/sec, or in IOs/sec (IOPS), by changing
how tokens are charged for the IOs. We use IOPS in this paper.

We chose DRR for three reasons: (1) the run-time for DRR is O(1)
amortized over a number of requests; (2) DRR provides similar
fairness guarantees as other proportional share algorithms; and (3)
DRR was easier to modify for our experiments. We performed two
modifications to the basic DRR algorithm so that we can study the

relationship between I/O efficiency and the fairness granularity ex-
hibited by the DRR. The first modification allows us to controlthe
concurrency of the I/O requests at the storage system and thesec-
ond one allows us to take advantage of the spatial locality ofa re-
quest stream, if any. In the next two sections, we describe each of
these modifications in detail and present our experimental results
showing how they impact the I/O efficiency and the fairness gran-
ularity.

4.1 Bounded Concurrency
The amount of concurrency at the storage device has a profound
impact on the achievable throughput. This is because higherlevels
of concurrency allow the scheduler to improve the request ordering
so that the mechanical delays are minimized. In addition, higher
levels of concurrency allow RAID devices or striped volumesto
take advantage of the multiple disk drives they contain.

Proportional share I/O schedulers carefully regulate the requests
from each application before issuing them to the storage system.
This is necessary for achieving the desired proportionality guaran-
tees that these schedulers seek to provide. Unfortunately,this also
has the side effect of limiting the amount of request concurrency
available at the storage devices. As a result, even if there is concur-
rency available at the workload, the DRR algorithm dispatches only
a portion of the pending requests in a round, and the concurrency
levels in storage systems tend to be low.

Our first modification to the DRR scheduler is to make the number
of outstanding scheduled requests,D, a controllable parameter. We
call this parameterthe concurrency bound. This allows the modi-
fied DRR scheduler to keep a larger number of requests pendingat
the storage system. Figure 2(a) shows the I/O throughput obtained
by the modified DRR scheduler as a function of the concurrency
bound. For this experiment, we used three workloads and set their
weights in the ratio 1:2:3. All three were closed workloads,each
keeping a total of 8 requests outstanding. In the legend, S means
a sequential workload and R means a random workload. Hence
RRR means three random workloads running simultaneously. Fig-
ure 2(a) shows that overall throughput increases with higher con-
currency levels, and the gains in I/O throughput are substantial. We
also plot the efficiency metric for various values of D, as shown
in figure 2(b). Note that efficiency is higher than 1 for mixes with
random workloads. This is because putting together random work-
loads results in higher seek efficiency. On the other hand, sequen-
tial workload mix has a lower efficiency even at large queue depths
because of frequent switching among various workloads and higher
seek delays.

While increasing concurrency improves the I/O efficiency, it also
impacts the fairness guarantees of the proportional share I/O sched-
uler. Figure 2(c) shows the proportional share fairness at a1 second
granularity for the same experiment. It shows that higher concur-
rency also leads to substantial loss of fairness, resultingin each
application receiving substantially different throughputs from their
assigned weights. We notice that the fairness starts decreasing at
D = 8, and becomes similar to the fairness of a standard through-
put maximizing scheduler as the concurrency bound approaches to
D = 20. The modified DRR behaves like a pass through sched-
uler at this point and loses all its ability to regulate the throughput
proportions of individual applications.



 100

 1000

 10000

 0  10  20  30  40  50  60  70

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

IO
P

S
)

Queue Size (D)

SSS
RSR
RRR

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  10  20  30  40  50  60  70

E
ffi

ci
en

cy
 M

et
ric

Queue Size (D)

SSS
RSR
RRR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60  70

F
ai

rn
es

s 
m

et
ric

 (
1 

se
c 

in
te

rv
al

)

Queue Size (D)

SSS
RSR
RRR

(a) Throughput (b) Efficiency (c) Fairness

Figure 2: Bounded concurrency.
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4.2 Variable Size Batching
The other factor that impacts the I/O efficiency is the handling of
spatial locality. Most storage systems implement some formof
prefetching for sequential workloads which trades off additional
transfer time with potential savings from fewer mechanicalseeks.
An I/O efficient proportional share scheduler also needs to handle
sequential workloads differently to take advantage of the locality.

Our second modification to the DRR scheduler is to introduce vari-
able size batching so that highly sequential workloads and large
prefetches can be supported for efficient proportional sharing. We
introduce abatch sizeparameterG, which refers to the number of
IOs that are scheduled from an application in one round of DRR.
This parameter can be different for each workload dependingon the
degree of spatial locality present; we denote the batch sizefor ap-
plicationai asGi . Variable size batching allows more requests from
a given application to be issued as a batch to the storage system be-
fore switching to the next application. Thus, it reduces interference
among applications to benefit sequential workloads and workloads
exhibiting spatial locality.

One way to increase the batch size is to increase the batch size of
all applications in a proportionate manner for every round.This,
however, leads to an increase in batching even for applications that
may not necessarily benefit from it. To verify this we ran 3 different
workload mixes, RRR, RLR, and LLL. Here L means a workload
with high locality. Figure 3(a) shows the overall I/O throughput
achieved from the modified DRR scheduler as the batch size is var-
ied. It shows that workloads with high locality benefit substantially
from the variable batch sizes and random workloads are almost
unaffected by the batch size parameter.

Since all workloads do not benefit from a higher batch size, we

would like to be able to have different batch sizes based on the
locality of the workload. We modified DRR to assign each applica-
tion a number of tokens based on its batch size. Clearly, thiscon-
flicts with the assigned weight of the application, and as a result,
applications with modified number of tokens should not receive
any tokens for a number of rounds so as to preserve the overall
proportions. We do this by skipping one or more rounds for these
applications. The number of rounds to be skipped can be computed
easily. For example, consider 3 applications with weights in ratio
1:2:3. Let the batch size be 128, 64 and 16 for applications 1,2 and
3 respectively. Now, based on the weights and batch sizes, appli-
cation 1 will get a quantum of 128 every 24 rounds, application 2
will get a quantum of 64 every 6 rounds and application 3 will get a
quantum of 16 every round. Fractional allocations were not needed
in this example, but they can also be handled in a similar manner.

To test that variable batch size indeed helps in improving efficiency,
we experimented with 2 workloads, one random and other sequen-
tial. Here, we varied the batch size of the sequential workload from
1 to 256. Figure 3(b) shows the overall I/O efficiency with the
variable batch sizes. We observe that for small batch sizes the per-
formance is lower (64 % of stand-alone throughput). However, for
a batch size of 128, we get the desired efficiency (close to 100%
of stand-alone throughput) and the overall throughput of the work-
loads is 1155 and 80 IOPS which is very close to half the stand
alone performance (2380 and 160 IOPS).

However, the efficiency increase doesn’t come for free — it ad-
versely affect the fairness guarantees of the DRR algorithm. In
effect, the assigned weights can be enforced by the modified DRR
scheduler at a larger time granularity. When the batch of I/Os are
issued from a workloadai , it gets ahead of others in terms of allo-
cated proportion of the shared system. As the DRR scheduler skips



LT = 128K (locality threshold);1
int runCount[K], runPos[K];2
int current = reqLBN = 0;3
Compute Locality()4
// If request address is not within threshold, start new run;5
if ( |runPos[current] - reqLBN| > LT) then6

current++;7
if (current == K) then8

current = 09
end10
runCount[current] = 0;11

end12
runCount[current]++;13
runPos[current] = reqLBN;14
Add request to corresponding DRR queue;15

Periodically: (every 1 second)16
Li = average of non-zero runCount[] entries;17

Algorithm 1 : Calculating average run length

On Request Arrival:
Compute Locality();
Enqueue request in application’s queue;
Dequeue request();

On Request Completion:
D = D -1;
Dequeue request();

Algorithm 2 : Adaptive DRR algorithm

DCi : deficit count of applicationai ;1
Pi : number of requests pending inQD;2
Ri : number of requests pending inQi ;3
curHead = index of current queue;4
Dequeue Request():5
for count← 1to N do6
i = curHead;7
// If inactive, go to next queue8
if ( Pi + Ri == 0) then9

curHead++;10
if (curHead == N) then11

curHead = 012
continue;13

// If active and has request, send it14
if ( DCi ≥ 1 AND Ri > 0) then15

DCi = DCi -1;16
Ri = Ri - 1;17
Pi = Pi + 1;18
D = D + 1;19
Send request fromai ;20
return;21

// If active with no request, return22
if ( Pi > 0 AND Ri == 0) then23

return // Do not send more;24
curHead++;25
if (curHead == N) then26

curHead = 027
// Deficit count is zero, replenish and start over28
for i← 1 to N do29
if (ai deserves quantum)then30

DCi = Gi31
goto line 6;32

Algorithm 3 : DRR request dispatching.

the workloadai in the subsequent rounds, the assigned weights are
reached but over a longer time interval.

4.3 Parameter Adaptation
We have discussed two techniques for balancing the efficiency and
fairness provided by a storage server: variable size batching and
bounded concurrency. Variable size batching requires a batch size
per application that depends on how sequential (or spatially local)
it is, and bounded concurrency requires a parameter (D) to limit
the number of outstanding scheduled requests. The best values for
all these parameters depend on the workload characteristics and
the load on the system. Since the relationship between workload
characteristics and the best parameter values can be complex, and
workloads and system loads vary over time, it is impracticalfor an
administrator to provide the values for these parameters. We imple-
mented an automated, adaptive method to set the per-application
variable batch sizes and the concurrency parameters.

Adapting batch sizes:As we showed in section 4.2, increasing the
batch size for application workloads that are sequential orspatially
local improves the efficiency of the storage server by reducing the
disk seeks, at some cost to the fairness. Ideally, one would set the
batch size large enough to capture the sequentiality of eachwork-
load, but no larger. We do this by periodically setting the batch size
of the application to its average recentrun length(up to a maximum
value). A run is a maximal sequence of requests from a work-
load that are within a threshold distance of the previous request
— we used a threshold distance of 128KB. Algorithm 1 shows the
pseudo-code that tracks the lastK run lengths; the average recent
run length is the average of theK run-lengths. Algorithm 2 shows
the overall adaptive DRR algorithm.

Adapting concurrency: As discussed in section 4, the efficiency
of the storage server generally increases as the concurrency of the
server is increased; however, a large output queue may lead to a
loss in fairness. The length of the output queue required to main-
tain proportional service depends not only on the weights ofthe
applications but also on the number of pending requests. Forex-
ample, consider two closed applications with 16 IOs pendingat all
times and weights in the ratio 1:4. Now, in the output queue of
lengthD, we should haveD/5 requests froma1 and 4D/5 requests
from a2. WhenD is larger than 20, all 16 pending requests ofa2
are in the output queue, and it does not have any more requeststo
send; the remaining slots in the queue may be occupied by pending
requests froma1 (which still has 12 pending requests in the DRR
queue) affecting the fairness guarantees. This is because DRR can
only guarantee proportional service so long as the applications are
backlogged — that is, there are enough pending requests in each
application queue to use up the tokens available and fill the out-
put queue. Thus, we need to adapt the length of the output queue
based on the number of requests pending from an application and
its share.

A method to control the concurrency to maximize efficiency while
maintaining fairness is shown in Algorithm 3. In order to maxi-
mize the efficiency of the server, we allow the concurrency toin-
crease so long as each active application that has tokens fora round
has pending IOs in its DRR queue. If the current applicationai
has no pending requests in the DRR queue we stop sending re-
quests (thereby decreasing concurrency as requests complete at the
server) until one of two events occurs: eitherai sends a new re-
quest (perhaps triggered by the completion of an earlier request) or
it completes all its requests in the output queue. In the firstcase,



we continue addingai ’s requests to the output queue. In the second
case, we declareai inactive and continue serving requests from the
next DRR queue. In addition, when an application runs out of to-
kens, the round continues with the next DRR queue. An application
is considered active if it has at least one request in the scheduler in-
put queue, output queue, or outstanding at the server. Sinceevery
active application receives the full service it is entitledto in each
round, the algorithm guarantees proportional service for all active
applications.

5. ANALYTICAL BOUNDS
Increasing the concurrency and the per-application batch sizes for
sequential or local workloads improves the efficiency of thefair
scheduler, but at some cost in fairness, as we have observed.In this
section, we present some analytical bounds on how far the resulting
scheduler can deviate from proportional service.

Most fair schedulers such as WFQ [5], SFQ [7], Self-Clocked [6]
and DRR [16], guarantee that the difference between the (weight-
adjusted) amount of service obtained by any two backlogged appli-
cations in an interval is bounded. The bound is generally indepen-
dent of the length of the interval. During any time interval[t1,t2],
where two flows (applications)f andg are backlogged for the en-
tire interval, the difference in aggregate cost of requestscompleted
for f andg, is given by:
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wherecmax
i is the maximum cost of a request from flowai [6, 7].

Cost is any specified positive function of the requests; for example,
if the cost of each request is one, the aggregate cost is the number
of requests. A similar (but weaker) bound has been shown for the
basic DRR algorithm [16].

When the server is allowed to have multiple outstanding requests
simultaneously, the bound is larger. For example, Jin et al.[11]
show that in SFQ(D), where the server has up toD outstanding
requests, the bound in Eq. 3 is multiplied by(D+1). In our case,
as shown below, the bound grows as bothD and the maximum value
of the batch sizes.

THEOREM 1. During any time interval[t1,t2], where two appli-
cations ai and aj are backlogged, the difference in weight-adjusted
amount of work completed by DRR using corresponding batch-
sizes Gi , Gj , and concurrency D is bounded by:
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PROOF. Consider an interval [t1,t2] where applicationai gets
mi non-zero quantum allocations. Each quantum allocation corre-
sponds to batch sizeGi of ai . The total amount of service obtained
by ai can be written as:

Si(t1,t2) = miGi +DCi(t1)+di (t1)−DCi(t2)−di (t2) (4)

Here,DCi(t) denotes the number of tokensai has at timet anddi(t)
denotes the number of outstanding scheduled (but not completed)
requests fromai at timet.

Noting that 0≤ DCi(t) ≤ Gi and 0≤ di(t) ≤ D, we can upper
bound the expression forSi as:

Si(t1,t2)≤miGi +Gi +D (5)

Similarly, the lower bound is:

Si(t1,t2)≥miGi−Gi −D (6)

Considering the upper and lower bounds for applicationsai anda j
respectively, we get:

Si(t1,t2)
wi

≤
miGi

wi
+Gi/wi +D/wi (7)

Sj (t1,t2)

w j
≥

mjG j

w j
−G j/w j −D/w j (8)

Hence the difference is bounded by:
Si(t1,t2)

wi
−

Sj (t1,t2)
w j

≤ miGi
wi

+
(Gi+D)

wi
−

mj G j

w j
−

(G j +D)
w j

Let τi andτ j be the number of rounds between successive quantum
allocations to applicationsai and a j respectively. The length of
time interval [t1,t2] is at least(mi −1)τi . Consider the other appli-
cationa j : during interval [t1,t2], it will receive at leastmj quantum
allocations given by:

mj = ⌊(mi −1)τi/τ j⌋ (9)

Based on the computation ofGi andτi , we also know that

Gi ∗ τ j

G j ∗ τi
=

wi

w j
(10)

This is because the overall allocation per round must be in ratio of
the weights. Substitutingmj andG j/w j from the equations above,
we get:

mjG j/w j ≥ G j ((mi−1)τi/τ j −1)/w j (11)

= Giτ j((mi−1)τi/τ j −1)/(wiτi) (12)

= Gimi/wi −Gi/wi −Giτ j/(wiτi) (13)

= Gimi/wi −Gi/wi −G j/w j (14)

Substituting in the difference computation, we get:
Si(t1,t2)

wi
−

Sj (t1,t2)
w j

≤
(Gi+D)

wi
+Gi

wi
+ G j

w j
+ (G j +D)

w j

By grouping the terms for G and D we get:
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Essentially, the theorem says that the bound on unfairness increases
proportionally with a linear combination of the concurrency bound
D and the batch size parametersGi and G j . Figure 4 illustrates
the parameters used in proof. Here applicationai gets its quantum
allocationGi every alternate round. Henceτi = 2. Also within a



Rounds 

t1
t2

mi = 10 τi = 2

mj = 5 τ j = 4

Figure 4: Illustration for proof

time interval[t1,t2], ai may getmi = 10 such allocations. Similarly
applicationa j gets its quantum allocation ofG j every fourth round,
henceτ j =4. Also in the same intervala j will get at least 4 (mj = 5)
allocations. The numbersτk andmk depend on the batch size and
weights of different applications.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate our mechanisms for improving the I/O
efficiency of proportional share schedulers. We used a variety of
synthetic workloads and trace replay workloads in our experiments.
Our results are based on the modified DRR scheduler, but our tech-
niques are general enough that they can be applied to other propor-
tional share schedulers.

Overall, we highlight two main points in our evaluation. First, we
show how the two parameters we introduced, bounded concurrency,
and the variable batch size, can be adjusted to get high efficiency
without a significant degradation in fairness. Since our approach
trades off short term fairness in order to get higher I/O efficiency,
we evaluate both fairness and efficiency. Second, we show how
these parameters can be adapted for dynamically changing work-
loads.

6.1 Experimental Setup
Our experimental setup consists of a Linux kernel module that im-
plements our mechanisms in a modified DRR scheduler. The mod-
ule creates a bunch of pseudo devices (entries in /dev), which are
backed up by a block device that can be a single disk, a RAID de-
vice or a logical volume. Different applications access different
pseudo devices. This is a simple mechanism to classify requests
from different applications, and we can set weights for eachpseudo
device. Our module intercepts the requests made to the pseudo de-
vices and passes them to the lower level Anticipatory scheduler in
Linux based on the DRR algorithm with our modifications. Antic-
ipatory scheduler then dispatches these requests based on its own
seek minimization algorithm, we don’t make any modifications to
it.

We use a variety of synthetic micro-benchmarks and trace-replay
workloads in our experiments. We experimented with three syn-
thetic workloads and four different workload mixes. The random
workload R represents an application with 16 pending IOs of 32KB
each distributed randomly over the volume. The throughput of
this random workload when running in isolation is 8.8MB/s (281
IOPS). The spatially local workload L does 32K sized IOs sepa-
rated by 16K each. This highly local application has throughput,
running in isolation, of 41.85 MB/s (1339 IOPS). The sequential
workload sends 32K sized sequential IOs and has overall through-
put of 77.8 MB/s (2490 IOPS) in isolation. We consider 4 different
mixes representing different number of random, local, and sequen-
tial workloads, defined as as RRR, LLL, SSS and RLL. Here RLL
represents one random and two local workloads. The weights are

assigned in ratio1:3:5 in all cases.
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Figure 5: Fairness metricF over time, for one second measure-
ment intervals. For each workload combination, the parameter
values with highest efficiency were used.

6.2 I/O Efficiency
In section 4, we showed the impact of individual parameters on fair-
ness and I/O efficiency based on micro-benchmarks. In this section,
we look at the combined effect of all the parameters. Our goalis
to show that we can adjust these parameters to obtain high I/Oeffi-
ciency. Table 2 shows the measured throughput and efficiencymet-
rics for different parameter values, of workload mixes RRR,RLL,
LLL and SSS respectively. These results show that the baseline
DRR scheduler (whereD = 1 andG = 1) does indeed exhibit poor
I/O efficiency, between 0.13 (for the SSS workload) and 0.53 (for
the RRR workload). Our mechanisms improve I/O efficiency to the
levels above 90%, improving the performance of the baselineDRR
scheduler by a factor of two to seven for different workload mixes.
Our results indicate the following: (1) The random workloadmix
(RRR) is unaffected by batching parameters and its efficiency is
solely dependent on the bounded concurrency (D). (2) Batching
helps workloads with locality and their performance improves as
we increase the batch size. (3) It is possible to get high efficiency
with small values of D. This is important, since we have already
shown that setting D to a large value causes fairness to deteriorate
significantly.

Figure 5 shows the corresponding fairness for one second intervals
using the parameter settings that provides the highest I/O efficiency
for each workload (i.e., the rows in bold face). We note that the
baseline DRR scheduler has perfect fairness. Though the fairness
is below 0.1 for most workloads at one second granularity, there
are cases where the parameter settings corresponding to thehigh-
est I/O efficiency lead to poor fairness (e.g., up to 0.4 for the SSS
workload).

6.3 Fairness Granularity
We have shown earlier that the fairness metricF depends on the
time interval over which it is computed. Also the analysis shows
that the worst case fairness bound increases with increase in pa-
rameter valuesD andG, and so does the fairness granularity. In
this section we show how the value ofF changes with respect to
the time interval over which it is computed.

For each of the workload mixes RRR, LLL, and SSS, we com-
puted the fairness metric values as a function of the measurement
time intervalt. That is, we computedF (0,t), F (t,2t), F (2t,3t),
. . .. Figure 6 shows the 90th percentile of this set for values oft
ranging from 100ms to 2000ms. For each workload mix, we used
the parameter combination that gave the best efficiency:D = 16



Parameters
D,[G1,G2,G3]

r1
(MB/s)

r2
(MB/s)

r3
(MB/s)

E

1,[1,3,5] 0.52 1.55 2.59 0.53
8,[1,3,5] 0.84 2.51 4.18 0.86
16,[1,3,5] 0.97 2.91 4.84 0.99

8,[8,24,40] 0.85 2.53 4.22 0.86
8,[16,48,80] 0.84 2.49 4.19 0.85
8,[32,96,160] 0.85 2.51 4.22 0.86

Parameters
D,[G1,G2,G3]

r1
(MB/s)

r2
(MB/s)

r3
(MB/s)

E

1,[1,3,5] 1.27 3.78 6.3 0.39
8,[1,3,5] 1.61 4.83 8.04 0.49
16,[1,3,5] 2.12 6.34 10.43 0.64
8,[8,24,40] 2.26 6.76 11.3 0.69
8,[16,48,80] 2.46 7.33 12.33 0.75
8,[32,96,160] 2.78 2.51 13.96 0.85
8,[16,96,240] 2.91 8.69 14.62 0.89
8,[16,128,320] 2.98 8.81 14.95 0.91

(a) Workload RRR: stand alone throughput is R:8.8MB/s (b) Workload RLL: stand alone throughputs are: R:8.8MB/s, L:41.85MB/s.

Parameters
D,[G1,G2,G3]

r1
(MB/s)

r2
(MB/s)

r3
(MB/s)

E

1,[1,3,5] 1.87 5.58 9.49 0.4
8,[1,3,5] 1.74 5.16 8.76 0.37
16,[1,3,5] 2.45 7.32 12.4 0.53
8,[8,24,40] 2.94 8.77 14.91 0.64
8,[16,48,80] 3.62 10.79 18.44 0.78
8,[32,96,160] 4.21 12.51 21.38 0.91
8,[16,96,240] 4.11 12.24 20.92 0.89
8,[16,128,320] 4.69 14.08 23.83 1.02

Parameters
D,[G1,G2,G3]

r1
(MB/s)

r2
(MB/s)

r3
(MB/s)

E

1,[1,3,5] 1.09 3.26 5.43 0.13
8, [1,3,5] 2.28 6.79 11.32 0.26
16,[1,3,5] 3.22 9.61 15.39 0.36
8,[8,24,40] 5.03 15.05 25.06 0.58
8,[16,48,80] 5.92 17.71 29.63 0.68
8,[32,96,160] 6.22 18.59 31.21 0.72
8,[128,384,640] 7.06 21.12 35.86 0.82
8,[256,768,1280] 8.03 24.02 40.79 0.94

(c) Workload LLL: stand alone throughput is L:41.85MB/s. (d) Workload SSS: stand alone throughput is S:77.8MB/s.

Table 2: Measured throughput and efficiency for various settings of concurrency bound and batch size.
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Figure 8: Efficiency metric E with various time intervals over which fairness is very good(< 0.1) for three different workload mixes.
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each workload set, the parameter combination with the best
efficiency is used.
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and small values of batch size for RRR, andD = 8 and large val-
ues of batch size for the LLL and SSS workload mixes. The RRR
workload has good fairnessF (< 0.1) for measurement intervals of
300ms or higher, whereas the other workloads require 1 second or
more to achieve low fairness values. While the fairness generally
improves with higher measurement intervals, the changes are not
monotonic. For the SSS workload, the algorithm gains efficiency
by allocating each workload a large batch in one round, and then al-
locating no service to it for several rounds. An interactionbetween
the high batch size and the measurement interval cause a bumpin
the fairness graph, since one measurement interval may havemore
rounds with large batches allocated than the next. As such, the pro-
portion of service received by a workload may be too high in one
measurement interval, and too low in the next. However, the effect
declines as the measurement interval grows larger; in otherwords,
the fairness granularity is larger for the SSS case than for the other
workload mixes.

These results are also in agreement with our analysis, whichshows
that the worst case fairness bound increases in proportion to sum
of the queue length and batching parameters. To illustrate this, we
experimented with two workloads, one random and one local, with
weights set in the ratio 1:2. Figure 7 shows the cumulative IOs
completed for the local workload with increasing values of the two
scheduler parameters. It shows that higher values for parameter set-
tings result in bigger steps and bursts. Thus, if we measure through-
put over short periods, it is quite variable and the fairnesscan be
poor. If fairness is measured over longer periods, the throughput
smooths out, and the fairness is good.

6.4 Efficiency and Fairness Granularity
In this section we look at the relationship betweenfairness gran-
ularity and efficiency. For this experiment, we assume that the
user needs very good fairness, say, a fairness metricF less than
0.1. Figure 8 shows how the efficiency of the scheduler varies
with the fairness granularity. As before, the workload weights are
1:3:5. Each point represents one parameter setting for one work-
load mix in one storage configuration, and the efficiency is plot-
ted against the fairness granularityδ(0.1). The parameter settings
are not shown (to avoid cluttering the figures), but we note the pa-
rameter settings for some interesting points below. In these plots,
the ideal scheduler would be in the top left-hand corner — high
efficiency combined with a low fairness granularity. For theran-
dom workload mix (RRR), the best combination of efficiency and
fairness is achieved at a low fairness granularity (300ms orless);
the corresponding parameter settings are D=16 and G=[1,3,5] in
all configurations. Higher batch sizes for the RRR workload mix
increase the fairness granularity without any improvementin effi-
ciency. For the workloads with significant locality or sequentiality,
the efficiency increases with the fairness granularity. In the case
of the LLL workload mix, 90% efficiency is achieved at a fair-
ness granularity of 800–900ms; this corresponds to the parameter
settingD = 8, G = [64,192,320] in all three configurations. The
third workload mix, SSS, is the most difficult test of the sched-
uler, because it is hard to retain efficiency when mixing sequential
workloads. In this case, 90% efficiency is achieved at a fairness
granularity of 3900ms for the single disk configuration, using the
parameter settingD = 8, G = [256,768,1280]. On the striped vol-
ume configurations, 90% efficiency is achieved for the SSS work-
load mix at a fairness granularity of 700–1100ms (Figures 8(b) and
8(c)). Overall, we conclude that fairness granularity can be traded
for efficiency in a proportional share I/O scheduler.

6.5 Adapting parameters to workloads
We have so far presented results with fixed values of the concur-
rency and batch-size parameters. We now evaluate the adaptive
DRR algorithm presented in Section 4.3.

In our first experiment, we use a mixture of three workloads, ini-
tially all random, and let one of the workloads increase its run
length every 10 seconds, turning into a more sequential workload.
Ideally, as the third workload gets more sequential, its batch size
needs to be adjusted to reflect this change. The weights of thework-
loads are assigned in ratio 1:1:4, and each workload issues IOs of
32KB on a 2-disk stripe. Figure 9(a) shows the overall throughput
with the adaptive DRR algorithm increases over time as one ofthe
workloads becomes more sequential. We also plot the efficiency
and fairness (with 1 second measurement intervals) for the same
experiment in Figure 9(b) and the batch size of the workload which
changes its run length during the experiment in Figure 9(c).These
results show that the adaptive DRR is able to keep high I/O effi-
ciency and trades off short term fairness by letting the fairness met-
ric to increase up to 0.1. It achieves this by varying the batch size
for the changing workload as it increases its run-length as shown
in Figure 9. We also sampled the queue size at the storage system
every second. Both the mean and median queue length was 24.

In our second experiment, we again consider a mixture of three
workloads, two random and one sequential, and let the sequen-
tial workload vary its concurrency (the number of requests it has
outstanding) from 128 to 4 at 10 second intervals. The random
workloads each have a fixed concurrency of 32 and issue 32KB
IOs. Since the sequentiality characteristics of the workloads do
not vary, the algorithm keeps the batch sizes for the workloads un-
changed throughout — 256 for the sequential workload and 1 for
the random workload, as shown in Figure 10(c). The overall con-
currency — the total number of outstanding requests — decreases
from 196 to 68 over a period of 150 seconds. To adapt to the chang-
ing concurrency of the workload, the algorithm automatically ad-
justs the number of requests at the back-end queue, as shown in
Figure 10(b). As the pending count for the sequential workload
decreases, so does the average queue length. However, the sequen-
tial workload gets a large batch of size 256 (because it is sequen-
tial) and then misses its turn for the next 64 rounds (becauseits
weight is 4). During those rounds, the queue size is high because
of the backlog from the random workloads. The large back-end
queue allows for good seek-optimization and high efficiencywith
random requests. Figure 10(a) shows the efficiency and fairness
for the duration of the experiment. The overall efficiency isclose
to 90% and fairness measured over one second intervals is around
0.1, which indicates that the adaptive algorithm successfully man-
ages the back-end queue depth to obtain good efficiency and fair-
ness despite the rapidly changing workload.

6.6 Time Slicing at Disk
In this section, we take a closer look at the alternative approach of
time slicing at the disk and discuss some of the fundamental issues
with that approach. We implemented a DRR-timeslice algorithm
that does time multiplexing at a fine granularity. The lengthof an
application’s time slices is proportional to the weight of the appli-
cation. If an application has no more requests to send, it will wait
if the lower level queue has at least one request pending (D ≥ 1),
otherwise the DRR-timeslice will move on to the next application’s
time slice. Thus, we chose to end the time slice as soon as an appli-
cation becomes inactive; we made this choice to make the scheduler
work-conserving.
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Figure 9: Dynamically adapting batch size as one of the workloads becomes more sequential over time, increasing its run length
every 10 seconds.
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Figure 10: Dynamically adapting queue length as one of the workloads decreases its concurrency from 128 to 4 at 10 seconds
granularity.

In this experiment, we used four random workloads, each keep-
ing 8 requests pending, with equal weights. The back-end queue
depth is 16. We set the time-slice to be 100ms for each work-
load. Figure 11 shows the cumulative distribution of latency for
one of the workloads and the average total throughput. This shows
that almost 60% of IOs have a small latency of around 50ms and
the remaining have a latency of more than 300ms. This number
is dependent on the workloads (four in this case); with a larger
number of workloads, the maximum latency would be higher. By
contrast, the DRR algorithm has less jitter. DRR also has better
overall throughput. DRR obtains around 320 IOs/s, whereas DRR-
timeslice obtains only around 215 IOs/s. In the case of time slicing
we can only use the concurrency from a single workload (8 in our
case), whereas the DRR algorithm maintains 16 IOs in the back-end
queue. Thus, DRR-timeslice loses the improvements in efficiency
associated with higher concurrency (better seek optimizations and
higher parallelism).

6.7 Experiments with Traces
In this section, we experiment with real world traces to evaluate our
adaptive scheduler. We used three representative traces for mail
server (openmail), data base (tpcc), and file system (harp) work-
loads. We replayed these traces on a 4-disk logical volume [1].
Figure 12(a) shows the throughput obtained by traces when they
are run separately, in isolation. Since traces are open workloads,
the rate of request completion is also bounded by the actual ar-
rivals in the trace. We observe that on average openmail, tpcc and
harp get 540, 1470 and 2800 IOs respectively. Then we ran these
traces using DRR with weights in ratio 1:3:5. Figure 12(b) shows

the throughput while running all three simultaneously. Note that
individual IO throughputs are lower than those obtained in isola-
tion because system cannot provide the full desired serviceto all of
them. Figure 12(c) shows the overall efficiency of the system(this
calculation is done assuming a steady state average throughput in
isolation). The efficiency is around 1.4 due to two reasons: (1)
combining multiple traces leads to an increase in system utilization
as the overall arrival rate increases, and (2) combining workloads
causes the size of the I/O queues to increase, providing moreop-
portunities for the lower level schedulers to improve the efficiency.
These results show that our adaptive DRR algorithm handles the
substantial variation in workload characteristics exhibited by real
world workloads.

7. CONCLUSIONS
In this paper we studied the trade-off between fairness and effi-
ciency in a shared storage server. We showed how this trade-off
can be controlled using two parameters: variable size batching and
the depth of the scheduler’s output queue. We highlight the impor-
tant characteristics of each of these parameters and show that they
can be tuned to trade off fairness granularity — short term fairness
— with efficiency. We then present a self-tuning algorithm that
sets the values of these two parameters based on dynamic work-
load characteristics. We validated our approach by an extensive
experimental study using both synthetic micro-benchmarksand ac-
tual traces. The approach is also backed up by a formal framework
and analysis that supports the experimental results. Experimental
results using a variety of workload mixes indicate that an I/O ef-
ficiency of over 90% is achievable by allowing the scheduler to
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Figure 11: Comparison of time slicing and proportional share scheduling.
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deviate from proportional service for a few seconds at a time.
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