

Keyword(s):

Abstract:

©

Adaptive Overlays for Shared Stream Processing Environments

Olga Papaemmanouil, Sujoy Basu, Sujata Banerjee

HP Laboratories
HPL-2007-178(R.1)

stream processing, overlay, quality-of-service

Large-scale overlays has become a powerful paradigm for deploying stream processing applications in
wide-area environments. The dynamic nature of these systems makes it difficult to guarantee the Quality of
Service (QoS) requirements of each application. In this work we present a framework for distributing
stream processing applications, where processing components and stream flows could be shared across
multiple applications. In our approach, nodes coordinate to precompute alternative network deployments
for each application that respect both node constraints and the applications' QoS requirements. Given this
set of alternative deployments, nodes can react fast to changes on the network conditions, workload or
application expectation.

External Posting Date: October 6, 2008 [Fulltext] Approved for External Publication
Internal Posting Date: October 6, 2008 [Fulltext]

A Brief version published in Proceedings of the 4th International Workshop on Networking Meets Databases (NetDB)

Copyright 2008 Hewlett-Packard Development Company, L.P.

Adaptive Overlays for Shared Stream Processing
Environments

Olga Papaemmanouil
Brown University

olga@cs.brown.edu

Sujoy Basu
HP Labs

basus@hpl.hp.com

Sujata Banerjee
HP Labs

sujata@hpl.hp.com

ABSTRACT
Large-scale overlays has become a powerful paradigm for
deploying stream processing applications in wide-area envi-
ronments. The dynamic nature of these systems makes it
difficult to guarantee the Quality of Service (QoS) require-
ments of each application. In this work we present a frame-
work for distributing stream processing applications, where
processing components and stream flows could be shared
across multiple applications. In our approach, nodes coor-
dinate to precompute alternative network deployments for
each application that respect both node constraints and the
applications’ QoS requirements. Given this set of alternative
deployments, nodes can react fast to changes on the network
conditions, workload or application expectation.

1. INTRODUCTION
Over the part few years, stream processing systems (SPS)

has gained considerable attention in a wide range of appli-
cations including planetary-scale sensor networks or “macro-
scopes” [3, 10], network performance and security monitor-
ing [1, 2], multi-player online games and feed-based informa-
tion mash-ups [4]. These applications are characterized by
a large number of geographically dispersed entities: sources
that generate potentially large volumes of data streams and
consumers that register large number of concurrent queries
over these data streams. To facilitate these applications,
SPS systems need to provide high network and workload
scalability. The former refers to the ability to gracefully deal
with increasing geographical distribution of system compo-
nents, whereas the latter addresses large number of simulta-
neous user queries. To achieve both types of scalability, the
system should scale out and distribute its processing across
multiple nodes, constituting distributed stream management
systems [6, 17, 20].

While distributed versions of stream processing sys-
tems [6, 17, 20] and solutions for in-network stream pro-
cessing [8, 25, 28] have been proposed, our work addresses
the problem of network deployment of stream-based queries
in shared processing environments. Sharing of data streams
and processing components have been shown [22, 27] to im-
prove resource utilization since redundant computations can
be avoided. Moreover, shared data streams are forwarded
to a single location for further processing, reducing network
traffic. Thus, the processing capacity of the system can be
improved by reusing previously generated data streams and
computational results.

Existing work on shared-aware processing [22, 27] focuses
on composing stream processing queries that reutilize ex-

isting processing components. However, the problem of
in-network deployment of applications with shared compo-
nents adds new challenges. First, applications often express
Quality-of-Service (QoS) specifications, which describe the
relationship between various characteristics of the output
and its usefulness, e.g., utility, response delay, end-to-end
loss rate, etc. For example, in many real-time financial ap-
plications, query answers are useful if they arrive timely.
When applications are executed across multiple machines
their QoS is affected by the location of each of their pro-
cessing components. Thus, if some of these components are
shared across multiple queries, their location will have an
impact on the service level of all their dependent applica-
tions.

Moreover, stream processing applications are expected to
operate over the public Internet, with large number of un-
reliable receptors, on commodity machines, some or all of
which may contribute their resources only on a transient
basis (e.g., as in the case of peer-to-peer settings). In gen-
eral, distributed steam processing systems should be able
to deal with churn, time-varying workload and resource
availability. Thus, in-network deployments of processing
queries should be periodically reevaluated to adapt to any
dynamic changes. In shared environments, periodic (or oc-
casionally concurrent) modifications of the current deploy-
ments (through migration or replication of the processing
components) require special attention, as multiple applica-
tions, with possible conflicting QoS expectations, could be
affected.

This paper addresses the aforementioned challenges of
shared stream processing systems. We propose an adap-
tive overlay-based framework that distributes stream pro-
cessing queries across multiple available nodes. In our sys-
tem, nodes self-organize on a distributed resource directory
service, which they can use for advertising and discovering
available resources. Our framework strives to identify de-
ployments of multiple shared stream processing queries that
respect resource constraints of the network nodes and QoS
expectations of each application, while maintaining a low
bandwidth consumption. As opposed to previous work [8,
25, 28], we follow a proactive approach, where nodes peri-
odically collaborate to precompute alternative deployments
of the registered queries. During run time, when QoS vio-
lations occur, the system can react fast to changes and mi-
grate to a valid state (i.e., with no violations) by applying
the most suitable of the precomputed plans. Moreover, even
in the absence of any violations, the best of these plans can
be applied periodically in order to improve the bandwidth

Join

Aggr

Filter Filter

Filter

Figure 1: Query deployment example.

consumption of the system.

2. SYSTEM MODEL
Our system consists of a large number of brokers (or

nodes), providing stream-based query processing services [5,
24]. Data sources (or publishers) publish data streams while
clients (or subscribers) subscribe their data interests ex-
pressed as stream-oriented continuous queries. The system
streams data from publishers to subscribers via processing
operators deployed on the network, an example of which is
shown in Figure 1. In the rest of the discussion, we use the
terms node and broker interchangeably.

Stream Processing Model. Client queries are defined
as directed, acyclic data-flow graphs of stream-oriented op-
erators [5, 24]. Multiple queries can be expressed, each in-
terconnecting multiple operators. We assume that each pro-
cessing operator has specific requirements, i.e., CPU, mem-
ory, disk space, etc, which can be required through resource
profiling techniques [7]. In our prototype, we focus on CPU
requirements, measured in CPU cycles per stream tuple. We
refer to this as the cost of an operator oi, ocoi

. Moreover,
given the input rate of each operator, rin

oi
in tuples per time

period, the load of each operator (in CPU cycles per time
period) is defined by the product ocoi

× rin
oi

.
Clients can also express their QoS expectations for the

queries they register to the system, such as end-to-end la-
tency, loss rate and available bandwidth. In this work, we
have used end-to-end latency as the QoS metric. Thus, each
query qi is associated with a maximum end-to-end latency
expectation QoSqi

. Without loss of generality, latency can
be replaced with another additive metric.

Processing Overlay. Operators are free to roam in the
network and may be reallocated over time as part of our
optimization process. The location of a query’s operators
define the deployment plan of the query. Depending on the
resources available in the network and the query’s require-
ments, each query could have multiple alternative deploy-
ment plans. The operators of a query are interconnected by
overlay links, each forwarding the output of an operator to
the next processing operator in the query plan. Thus, query
deployments create an overlay network with a topology con-
sistent with the data flow of the registered queries.

If an operator oi forwards its output to oj we refer to oi

as the upstream operator of oj (or its publisher) and to oj as
the downstream operator of oi (or its subscriber). Operators
could have multiple publishers (e.g., join, union) and since
they could be shared across queries they could also have
multiple subscribers. We denote the set of subscribers of oi

as suboi
and its set of publishers as puboi

.
Resource Directory Overlay. To discover potential

hosts of the processing operators, we rely on a distributed
resource discovery service, implemented and maintained by
the nodes in our system. Our implementation is based on
the NodeWiz [9] system, a scalable tree-based overlay in-
frastructure for resource discovery. Nodes can use NodeWiz
to advertise the attributes of available resources and effi-
ciently perform multi-attribute queries to discover the ad-
vertised resources. NodeWiz can adapt the assignment of
the multi-attribute space to the nodes such that the load
of distributing adverts and performing queries is balanced
across nodes.

In our model, we assume that each node ni has a CPU
capacity ci. Distributing operators in the network affects the
residual capacity of the available nodes. More specifically,
if Oni

is the set of operator executed on node ni, then the
residual CPU capacity of each node is

ci −
∑

oj∈Oni

ocoj
× r

in
oj

Nodes periodically advertise their residual capacity to
NodeWiz and query the directory to discover nodes that
have enough CPU capacity to host and execute a specific
operator. The queries are issued when needed as part of our
proactive operator placement approach.

Network Monitoring Service. Our overlay-based mid-
dleware relies on a network monitoring service for collecting
latency statistics of the overlay links between nodes in our
system. In our implementation we use S3 [33], a scalable
sensing service for real-time and configurable monitoring for
large networked systems. The infrastructure measures both
network and node metrics, while it aggregates data in a scal-
able manner. Moreover, inference algorithms can be used to
derive path properties of all pairs of nodes based on a small
set of network paths. S3 is currently deployed on PlanetLab
and performs measurements of several network metrics.

3. OPTIMIZATION
Our optimization framework distributes processing oper-

ators, aiming to meet the QoS expectations of each query
and respect the resource constraints of the nodes. In the
rest of the section, we describe our approach in detail.

Optimization goal. Across all possible deployments of
the registered queries, only a subset of them are feasible.
The following definition describes these plans.

Definition 1. Given a set of nodes N with CPU capac-

ities ci, ∀ni ∈ N and a set of operators O shared across a

query set Q, with QoS expectations QoSqt ,∀qt ∈ Q, a feasi-

ble deployment plan of the operator set O across the set of

brokers N , is one that satisfies the following:

∑

oj∈Oni

ocoj
× r

in
oj

≤ ci,∀ni ∈ N

dqt ≤ QoSqt ,∀qt ∈ Q

where the function h(oi) : O → N provides the host node of
oi. The latency of a query qt, dqt , is the end-to-end response
latency of the query, measured by aggregating the network
latency of all overlay links connecting the operators of the
query to its publisher (or a source). If an operator has mul-
tiple publishers, then the overlay path with the maximum
latency is used.

In this work, we assume that we maintain CPU loads at
each node under a certain threshold, i.e., the residual CPU
capacity will never be planned to be zero. Under this as-
sumption, processing delays are negligible compared to net-
work delays, thus, d(ni, nj) refers to the network latency of
the overlay link between ni and nj . Given a set of feasible
plans our goal is to deploy the one that minimizes the total
bandwidth consumption, i.e., the sum of outgoing data rate
over all nodes in our system. Formally, this is defined as:

min
∑

ni∈N

bi

bi =
∑

oj∈Oni

∑

om∈suboj

r
in
oj

× soj
× φ(h(oj), h(om))

φ(v, u) =

{

1 v 6= u
0 otherwise

where soi
is the selectivity of the operator oi.

3.1 Design Goals
Our framework strives to meet three requirements. First,

it should be adaptive, even to load spikes, and continuously
maintain an efficient network deployment of each query. Any
QoS or resource violations should be detected and addressed
as soon as possible. To achieve this, our framework must be
light-weight and the deployment plans should be efficiently
discovered. Second, our protocol should be scalable in terms
of the network size, the number of queries and the degree
of sharing across their processing operators. Finally, since
operator migrations could affect multiple queries, the solu-
tion should be equally attentive to each individual operator’s
placement and query’s QoS.

To address these challenges, we designed a decentralized
optimization framework that does not rely on global infor-
mation and has low communication cost. Our protocol pe-
riodically precomputes alternative feasible deployment plans
for all registered queries. Each broker maintains information
regarding the placement of its local operators and periodi-
cally collaborates with nodes in its “close neighborhood” to
compose deployment plans that distribute the total set of
query operators. Whenever a resource or QoS violation oc-
curs, the system can react fast by applying the most suitable
plan from the precomputed set. Moreover, even in the ab-
sence of violations, the system can periodically improve its
current state by applying a more efficient deployment than
the current one. Finally, our protocol includes a replication-
based approach for handling conflicting concurrent modifi-
cations of queries.

3.2 Approach overview
We propose a proactive distributed operator placement al-

gorithm which is based on informing downstream operators
about the feasible placements of their upstream operators.
This way nodes can take decisions regarding the placement
of their local and upstream operators that will influence their
shared queries the best way possible. The main advantage
of our approach is that nodes can make placement decisions
on their own, which provides fast reaction to any QoS vio-
lations.

Each operator periodically sends deployment plans to its
subscribed downstream operators describing possible place-
ments of their upstream operators. We refer to these plans
as partial, since they only deploy a subset of a query’s oper-

Symbol Definition
ocoi

cost of operator oi

rin
oi

input rate of operator oi

QoSqt QoS of query qt

dqt response latency of query qt

suboi
subscribers (downstream operators) of oi

puboi
publishers (upstream operators) of oi

h(oi) host node of operator oi

ci capacity of node ni

Oni
set of operators hosted on ni

Qoi
set of queries sharing operator oi

Aoi
candidate hosts of operator oi

Poi
upstream operators of oi

O(qi) set of operators in query qi

Table 1: Notation.

ators. When a node receives a partial plans from the pub-
lisher of local operator it extends the plan by adding the
possible placements of the local operator. Partial plans that
meet the QoS expectations of all queries sharing the opera-
tors in the plan are propagated. To identify feasible deploy-
ments we employ a search algorithm, which we call k-ahead

search. The algorithm discovers the placement of k oper-
ators ahead from the local operator that incurs the lowest
latency. Based on this minimum latency, we eliminate, as
early in the optimization process as possible, partial plans
that could violated any QoS expectations.

Finally, every node finalizes its local partial plans: for
each one of them, it evaluates its impact on the bandwidth
consumption and the latency of all affected queries. Using
the final plans, a node can make fast placement decisions in
run-time. Next we describe these steps in detail.

3.3 Deployment Plan Generation
Each node periodically identifies a set of partial deploy-

ment plans for all its local operators. Let us assume an
operator oi shared by a set of queries qt ∈ Qoi

. Let also
Poi

be the set of upstream operators for oi. An example is
shown in Figure 2. Queries q1 and q2 share operators o1 and
o2 and Po3

= Po4
= {o1, o2}.

A partial deployment plan for oi assigns each operator
oj ∈ Poi

∪ {oi} to one of the nodes in the network. Each
partial plan p is associated with (a) a partial cost, pcp, i.e.,
the bandwidth consumption it occurs, and (b) a partial la-

tency for each query it affects, plpqt
,∀qt ∈ Qoi

. For example,
a partial plan for o2 will assign operators o1 and o2 to two
nodes, evaluate the bandwidth consumed due to these place-
ments, and the response latency up to operator o2 for each
query q1 and q2.

In the rest of the section, we describe how deployment
plans are generated. We start with the k-ahead search algo-
rithm.

3.3.1 k-ahead search
Every node nv runs the k-ahead search for each local op-

erator oi ∈ Onv and each candidate host for that operator.
If Aoi

is the set of candidate hosts for oi, the search iden-
tifies the minimum latency placement of k operators ahead
of oi for each of the queries sharing oi, assuming that oi is
placed on the node nj ∈ Aoi

. Intuitively, it attempts to
identify the minimum impact on the latency of each query
qt ∈ Qoi

, if we migrate oi to node nj and make the best
placement decision (wrt latency) for the next k downstream

operators of each query qt. Below we describe the steps of
the algorithm, which initially evaluates the 1-ahead latency
and then derives the k-ahead latency value for every triplet
(oi, nj , qt), where oi ∈ Onv , nj ∈ Aoi

, qt ∈ Qoi
.

For each operator oi ∈ Onv , nv executes the following
steps:

1. Identifies the candidate hosts Aoi
of the local opera-

tor oi by querying the resource directory service. As-
suming the constraint requirements of oi are C =
[(c1, v1), (c2, v2), ..., (cm, vm)], where ci is the resource
attribute and vi is the operator’s requirement for that
resource, we query the resource directory for nodes
with

c1 ≥ v1 ∧ c2 ≥ v2 ∧ ... ∧ cm ≥ vm.

2. If om is the downstream operator of oi for the query
qt ∈ Qoi

, the node sends a request to the host of
om, asking for the set of candidate hosts Aom of that
operator. For each one of these candidate nodes, it
queries the networking monitoring service for the la-
tency d(nj , nt),∀nj ∈ Aoi

,∀nt ∈ Aom . The 1-ahead
latency for the oi operator with respect to its candi-
date nj and the query qt ∈ Qoi

is

γ
1
i (nj , qt) = min

nu∈Aom

{d(nj , nu)}

In Figure 2, subq1
o2

= o4, subq1
o2

= o3 and n1 will request
from n2 the candidate hosts Ao2

for the operator o2,
and will estimate the 1-ahead latencies γ1

1(n5, q1) =
γ1
1(n5, q2) = 10ms. Also for o2 we assume γ1

2(n6, q1) =
5ms and γ1

2(n6, q2) = 15ms.

3. The algorithm continues in rounds, where for each
operator oi the node waits for it subscribers om in
the query qt ∈ Qoi

to complete the evaluation of the
(k− 1)-ahead latency before they proceed with the es-
timation of the k-ahead latency. The k-ahead latency
for the oi operator with respect to its candidate nj and
the query qt ∈ Qoi

is

γ
k
i (nj , qt) = min

nu∈Aom

{γk−1
i (nt, qt) + d(nj , nu)}

Due to space constraints, we omit the detailed al-
gorithm for the k-ahead search and illustrate the last
step using the example in Figure 2. In this case,
γ2
1(n5, q1) = min{(10 + γ1

2(n6, q1), 30 + γ1
2(n9, q1)} =

15ms, and γ2
1(n5, q2) = min{10+ γ1

2(n6, q2), 30+ γ1
2(n9, q2)} =

25ms. Thus, assuming we migrate o1 to n5, the placement
with the minimum latency of the next two operators will
increase the response latency of q1 by 15ms and the latency
of q2 by 25ms.

3.3.2 Plan generation
Our plan generation process is initiated by nodes execut-

ing the “leaf” operators of a query, i.e., operators that re-
ceive streams from the sources. We first describe how partial
deployment plans are created at the leaf nodes and then we
focus on the nodes executing intermediate operators. We as-
sume that each node is aware of the candidate hosts of each
local operator, as the k-ahead search algorithm precedes the
plan generation process.

Leaf nodes. Let oi be a leaf operator executed on a node
nv . Node nv will create a set of partial plans, each one as-
signing oi to a different candidate host nj ∈ Aoi

and evaluate

its partial cost and the partial latencies of all queries sharing
oi. If Soi

is the set of input sources for oi, and h(s), s ∈ Soj
,

is the node publishing data on behalf of source s, then, the
partial latency (i.e., the latency from the sources to the nj)
of a query qt is

pl
p
qt

= max
s∈Soi

d(h(s), nj),∀qt ∈ Qoi
.

Finally, since this plan assigns the first operator, its partial
bandwidth consumption is zero.

Plan Elimination. Once a partial plan is created, we
need to decide whether we should forward it downstream
and expand it by adding more operator migrations. A par-
tial plan is propagated only if it could lead to a feasible de-
ployment. The decision is based on the results of the k-ahead
search. The k-ahead latency for a triplet (oi, nj , qt) repre-
sents the minimum latency overhead for a query qt across
all possible placements of k operators ahead of oi, assuming
oi is placed on nj . If the latency of the query up to operator
oi plus the minimum latency for k operators ahead violates
the QoS of the query, the partial plan could not lead to any
feasible deployments. More specifically, a partial plan p that
places operator oi to node nj is infeasible if there exists at
least one query qt ∈ Qoi

such that,

pl
p
qt

+ γ
k
i (nj , qt) ≥ QoSqt .

Note, that the k-ahead latency, although it does not elim-
inate feasible plans, it does not identify all infeasible deploy-
ments. Thus, the propagated plans are “potentially” feasi-
ble plans which may be proven infeasible in following steps.
Moreover, there is a tradeoff with respect to the parame-
ter k. The more operators ahead we search, the higher the
overhead of the k-ahead search, however, the earlier we will
be able to discover infeasible plans. Our initial experiments
reveal that our approach manages to eliminate a significant
number of redundant partial plans early in the propagation
process, keeping the optimization traffic small.

Intermediate nodes. Partial plans that are not elimi-
nated are forwarded downstream, along with their metadata
(i.e., partial cost and latencies). Let us assume a node nv,
processing an operator oi, receives a partial plan p from its
publishers om ∈ puboi

. For purposes of illustration we as-
sume a single publisher. Our equations can be generalized
for multiple publisher in a straightforward way. Note, that
each query sharing oi is also sharing its publishers. Thus,
each received plan includes a partial latency plpqt

,∀qt ∈ Qoi
.

Our protocol expands each of these plans by adding migra-
tions of the local operator oi to its candidate hosts.

For each candidate host nj ∈ Aoi
, the node nv validates

the resource availability: it parses the plan p to check if
any upstream operators have also been assigned to nj . To
facilitate this, we send along with each plan metadata on
the expected load requirements of each operator included in
each plan. If the residual capacity of nj is enough to process
all assigned operators including oi, we estimate the impact
of the new partial plan f :

pl
f
qt

= pl
p
qt

+ d(hp(om), nj),∀qt ∈ Qoi

pc
f = pc

m + r
out
om

× φ(hp(om), nj)

where, hp(om) is the host of om in the partial plan p. For
each new partial plan f we also check if it could lead to a
feasible deployment, based on the k-ahead latency γk

i (nj , qt),
and propagate only feasible partial plans.

o1

o2

o3o4

q1 q2

Ao1

Ao2

Ao3

10ms

5ms

15ms

Ao4
n7

n8

n6

n5

n1

n2

n3n4

30ms

n9

n10
n11

5ms
10ms

Figure 2: Query example.

Final plan generation. Partial plans created on a node
are “finalized” and stored locally. To finalize a partial plan
we quantify its impact on the current bandwidth consump-
tion and on the latency of the queries it affects. To imple-
ment this process, we maintain statistics on the bandwidth
consumed by the upstream operators of every local oper-
ator and the query latency up to this local operator. For
example, in Figure 2, if o1 is a leaf operator, n2 maintains
statistics on the bandwidth consumption from o1 to o2 and
the latency up to operator o2. For each plan, we evaluate the
difference of these metrics between the current deployment
and the one suggested by the plan and store this metadata
along with the corresponding final plan. Thus, every node
stores a set of feasible deployments for its local and upstream
operators, along with the effect of these deployments on the
system cost and the latency of the queries. In Figure 2, n2

stores plans that migrate operators {o1, o2}, while n4 will
store plans that place {o1, o2, o4}.

Combining and expanding partial plans received from the
upstream nodes may generate a large number of final plans.
To deal with this problem, we employ a number of elimina-
tion heuristics. For example, among final plans with similar
impact on the query latencies we keep the ones with the
minimum bandwidth consumption, while if they have simi-
lar impact on the bandwidth we store the ones that reduce
the query latency the most. We omit the rest of the heuris-
tics due to space limitations.

3.4 Run-time optimization
In this section we describe how queries are initially de-

ployed in the network and how we can use our precomputed
deployment plans to adapt to dynamic changes in our sys-
tem.

Initial placement. When a client registers a new query
our system tries to identify if any of the operators and
streams of the query already exist in the system. Discovery
of processing components and data streams has been ad-
dressed in [22, 27] and it is outside the scope of this paper.
In this work, we assume that all available components are
advertised to our resource directory service using a global
naming schema and are located by querying the directory.
Operators that do not exist are assigned for execution to
the node closest to their publisher operator with enough
CPU capacity. Once, the query is deployed, we execute our
plan generation algorithm and across all discovered plans we
apply the one that provides the minimum bandwidth con-
sumption. This plan will meet the latency expectation of the
query without violating the QoS of the rest of the queries.
If no feasible plan can be discovered the query is rejected.

Adaptive optimization. Our system periodically ini-
tiates the plan generation process and creates plans that
reflect the most current workload and network conditions.

If this process discovers query deployments that can improve
the bandwidth consumption we apply the one with the best
impact.

The precomputed deployments plans stored on our nodes
are used whenever changes in the system violate the QoS of
some queries. To detect these violations, every node mon-
itors for every local operator the latency to the location of
its publishers. It also periodically receives the latency of
all queries sharing its local operators, and it quantifies their
“slack” from their QoS expectations, i.e., the increase of la-
tency each query can tolerate.

Let us assume an operator oi with a single publisher om

and shared by a query qt with a response delay dqt and slack
slackqt . If the latency of the overlay link between oi and om

increases by

∆d(h(om), h(oi)) > slackqt ,

then the QoS of the query qt is violated and a different
deployment should be applied immediately.

Across all final plans stored at the host of oi, we search for
the a plan p that decreases qt’s latency by at least ∆plpqt

=
dqt − QoSqt . Across all plans to satisfy this condition, we
remove any plan p that does not migrate oi and om (i.e.,
includes the bottleneck link) and satisfies:

∆pl
p
qt

+ ∆d(h(om), h(oi)) ≤ QoSqt − dqt .

From the remaining plans, we apply the one with that im-
proves the most the bandwidth consumption.

If a deployment that can meet qt’s QoS can not be dis-
covered at the host of oi, the node sends a request for a
suitable plan to its subscriber for the violated query qt. The
request includes also metadata regarding the congested link
(e.g., its new latency). Nodes that receive such requests,
attempt to discover (in the same way described above) a
plan that can satisfy the QoS of the query qt. Since down-
stream nodes store plans that migrate more operators, they
are more likely to discover a feasible deployment for qt. The
propagation continues until we reach the node hosting the
last operator of the violated query. If a feasible plan does
not exist, then the query qt could not be satisfied.

It is important to mention that identifying a new deploy-
ment has a small overhead. Essentially, nodes have to search
for a plan that reduces enough the latency of a query. Fi-
nal plans can be indexed based on the queries they affect
and sorted based on their impact on each query’s latency.
Thus, when a QoS violation occurs, our system can identify
its “recovery” deployments very fast.

3.5 Concurrent modifications
Concurrent modifications of shared queries require special

attention, as they could create conflicts with respect to final
latency of their affected queries. For example, in Figure 2,
assume that the QoS of both q1 and q2 are not met, and
nodes n3 and n4 decide concurrently to apply a different
deployment plan for each query. Parallel execution of these
plans does not guarantee that their QoS expectations will
be satisfied.

To address the problem, we rely on operator replication.
We apply deployment plans by replicating the operators
whenever migrating them cannot satisfy the QoS constraints
of all their dependent queries. However, replicating pro-
cessing increases the bandwidth consumption as well as the
processing load in our system. Hence, our protocol iden-
tifies if conflicts could be resolved by alternative candidate

plans, and if none is available, then it applies replication.
Our framework exploits the metadata created during the
plan generation phase to identify alternative to replication
solutions. More specifically, it uses the existing deployment
plans to

• decide whether applying a plan by migration satisfies
all concurrently violated queries,

• allow multiple migrations whenever safe, i.e., allow for
parallel migrations,

• build a non-conflicting plan when the existing ones can
cannot be used.

In the next paragraph we describe our approach, starting
with the following definitions.

Definition 2. (DIRECT DEPENDENCIES) Two

queries qi and qj are directly dependent if they share an

operator, i.e., ∃ok such that qi ∈ Q(ok) and qj ∈ Q(ok).
Then, qi and qj are dependent queries of every operator

ok. We note the set of dependent queries of a query qi

as Dqi
and the dependent queries of an operator ok as

Dok
. Then, if O(qi) is the set of operators in query qi,

Dqi
=

⋃

ok∈O(qi)
Dok

.

Directly dependent queries do not have independent plans,
therefore concurrent modifications of their deployment plans
require special handling to avoid any conflicts and violation
of the delay constraints.

Definition 3. (INDIRECT DEPENDENCIES) Two

queries qi and qj are indirectly dependent iff O(qi ∩qj) = �
and Doi

∩ Doj
6= �.

Indirectly dependent queries have independent (non-
overlapping) plans. Nevertheless, concurrent modifications
on their deployment plans could affect their common depen-
dent queries. Hence, our framework should address these
conflicts as well, insuring that the QoS expectations of the
dependent queries are satisfied.

To detect concurrent modifications, we follow a lease-
based approach. Once a node decides that a new deploy-
ment should be applied, all operators in the plan and their
upstream operators are locked. Nodes trying to migrate al-
ready locked operators check if their modification does not
conflict with the current one in progress. If a conflict exists,
it tries to identify an alternative non-conflicting deployment.
Otherwise, it applies its initial plan by replicating the oper-
ators. In the next paragraph, we describe in more detail our
solution.

Lease-based algorithm. Assume a node has decided
on the plan p to apply for a query q. It forwards a
REQUEST LOCK(q, p) message to its publishers and sub-
scribers. In order to handle indirect dependencies, each node
that receives the lock request, will also send it to the sub-
scribers of its local operator of the query q. This request in-
forms nodes executing any query operators and their depen-
dents about the new deployment plan and request the lock
of q and its dependents. Given that no query has the lock
(which is always true for queries with no dependents), pub-
lishers/subscribers reply with a MIGR LEASE(q), once
they receive a MIGR LEASE(q) from their own pub-
lisher/subscriber of that query. Nodes that have granted

a migration lease are not allowed to grand another migra-
tion lease until the lease has been released (or expired, based
to some expiration threshold).

Once node n receives its migration lease from all its pub-
lishers and subscribers of q, is applies the plan p for that
query. It will parse the deployment plan and for every
node hosting a migrating operator o to node n sends a
MIGRATE(o, n) message. Migration is applied in a top-
down direction of the query plan, i.e. the most upstream
nodes migrate their operator (if required by the plan) and
once this process is completed the immediate operators are
informed about the change and subscribe to the new location
of the operators. As nodes update their connections, they
apply also any local migration specified by the plan. Once
the whole plan is deployed then a RELEASE LOCK(q) re-
quest is forwarded to the old locations of the operators and
their dependents, which release the lock for the query.

A lock request is send across all nodes hosting operators
included in the plan and all queries sharing operators of the
plan. Once the lock has been granted any following lock
requests will be satisfied either by replication or migration
lease. A migration lease allows the deployment plan to be
applied by migrating its operators. However, if such a lease
cannot be granted due to concurrent modifications on the
query network, a replication lease can be granted, allow-
ing the node to apply the deployment plan of that query
by replicating the involved operators. This way, only this
specific query will be affected.

Property 1. If an operator oi is shared by a set of

queries Doi
, then the sub-plan rooted from oi is also shared

by the same set of queries.

Let us now assume two dependent queries qi and qj

that both have their QoS violated. Query qi sends the
REQUESTLOCK(qi, pi) requests to this downstream op-
erators and similarly for the query qj . Moreover, shared
operators that are aware of the dependencies, they forward
also the same request to their subscribers, to inform also the
dependent queries of the requested lock. Since queries share
some operators, at least one operator will receive both lock
requests. Upon receipt of the first requests it applies the
procedure describe below, i.e., identifying conflicts and re-
solving them based on the metadata of the two plans. How-
ever, when the second request for a lock arrives the first
shared node to receive does not forward it to any publishers
as a migration lease for this query has already been granted.
In the rest of the section, we describe the different cases we
encounter when trying to resolve conflicts.

Direct dependencies.
In this section we describe how we handle concurrent mod-

ifications on directly dependents plans. More specifically, we
describe in which cases we can avoid granting a replications
lease.

Parallel migrations. Concurrent modifications are not
always conflicting. If two deployment plans do not affected
the same set of queries, then both plans can be applied in
parallel. For example, in Figure 2, if n3 and n4 decide to
migrate only o3 and o4 respectively, they both changes can
be applied. In this case, the two plans decided by n3 and n4

should show no impact on the queries q1 and q2 respectively.
Our deployment plans include all the necessary information
(operators to be migrated, new hosts, affect on the queries)

0

20

40

60

80

100

120

20 40 60 80 100

Number of Nodes

%
 o
f
sa
ti
sf
ie
d
 q
u
er
y
 Q
o
S

Random Optimized

Figure 3: QoS expectations satisfied for different net-

work sizes.

to identify these cases efficiently an thus grant migration
leases to multiple non-conflicting plans.

Redundant migrations. Multiples migrations defined
by concurrent deployment of multiple plans may often not
be necessary in order to guarantee the QoS expectations of
the queries. Very often, node might identify in parallel QoS
violations and attempt to address them by applying their
own locally stored deployment plans. In this case, it is quite
possible that either one of the plans will be sufficient in order
to reconfigure the current deployment. In our approach, ev-
ery plans includes an evaluation of the impact on all affected
queries. Thus, if two plans p1 and p2 are both affecting the
same set of queries, then applying either one will still provide
a feasible deployment of our queries. Therefore, our system
will apply the plan that will first acquire the migration lease
while the second plan will be ignored.

Alternative migration plan. Deployments plans that
relocate shared operators can not be applied in parallel. In
this case, the first plan to request the lock migrates the
operators, while we attempt to identify a new alternative
non-conflicting deployment to meet any unsatisfied QoS ex-
pectations. Since the first plan is migrating a shared opera-
tor, then we look in the hosts of its downstream operators to
discover any plans that were built on top of this migration.
For example, in Figure 2, if the first plan migrates operator
o1, but the QoS of q2 is still not met, we search in node n4

for any plans that include the same migration for o1 and can
reduce further q2’s response delay, i.e., by migrating o4 as
well.

Indirect dependencies.
As mentioned above, queries may not share operators, but

still share dependents. Thus, if we attempt to modify the
deployment of indirectly dependent queries, we need to take
under consideration the impact on their shared dependents.
In this case, we grant a migration lease to the first lock
request and a replication lease to any following requests,
iff the plans to be applied are affecting overlapping sets of
dependent queries. However, in the case of that they do
not affect the QoS of the same queries, these plans can be
applied in parallel.

4. PRELIMINARY EVALUATION
We developed an initial prototype in Java and run some

preliminary experiments distributing up to 500 queries to
100 nodes. The nodes are located in a local data-center,
however the latencies between nodes represent PlanetLab
sites’ pair-wise latencies, obtained from the PlanetLab de-
ployment of S3 [33]. All nodes are organized in the NodeWiz
overlay, where they advertise their CPU availability.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

20 40 60 80 100

Number of Nodes

B
an
d
w
id
th
 c
o
n
su
m
p
ti
o
n
 (
K
B
)

Random Plan

Best Plan

Adaptive Plan

Figure 4: Total bandwidth consumption for different

network sizes.

Our queries are composed by a set of feed-based processing
operators, similar to the operators used in Yahoo!Pipes [4],
a centralized feed manipulation web service. The operators
can union, filter, split, or sort RSS feeds. In our experiments,
each query is a chain of up to h operators, and we set h to
five. To create shared queries, we treat each operator as a
separate query, thus, if an operator is in the i-level in the
chain then it is shared by (h − i + 1) queries. The input
streams of each query are randomly chosen from a set of
100 RSS feeds published from an RSS source. The average
feed size of 6.3KB. RSS sources are assigned to a random set
of brokers which publish their feeds. Clients are also hosted
by a random node.

Figure 3 shows the percentage of queries that meet their
QoS expectations for different network sizes for two different
deployment approaches. Random assigns each operator to
a random node with enough CPU to process the operator.
Optimized uses our framework to discover feasible deploy-
ments and applies for each query chain the one with the
minimum bandwidth consumption. The results show that
our approach improves the number of queries that meet their
QoS expectations by 39%-58% . Moreover, as the network
size increases and more resources become available, we are
able to satisfy all queries. Our experiments also revealed
that the average response latency of the queries decreases,
compared with the Random deployment, by 45%-52%, de-
pending on the network size and workload. We omit the
figures due to space limitations.

To test the adaptivity of our system, we used the following
approach. We use our framework to acquire a set of feasible
query deployment plans and for each query chain we ini-
tially apply a random plan (Random Plan). Note, that this
is a different deployment than the previous Random, as it
takes also QoS expectations into consideration and tries to
meet them. Once all operators are placed in the network,
our system can identify better feasible plans, and gradually
changes the deployment to meet these best plans, achiev-
ing the bandwidth consumption shown by Best Plan. At
this point, we reduce the input rate of our sources by half
and expect our system to adapt to the change by applying
a different deployment (Adaptive Plan). Figure 4 shows the
results. The best plan can achieve a significant improve-
ment over a random feasible deployment. Moreover, when
we decrease the input rate, we decrease the workload of our
nodes and we discover plans that place chains of operators
on the same nodes, reducing in-network stream forwarding.
Finally, as we increase our network size, we make more re-
sources available, thus, more operators can be processed in a
single node, decreasing even more the bandwidth consump-
tion.

5. RELATED WORK
Distributed query processing. Distributed query op-

timization and in particular the site selection problem are
closely related to our work and have been explored exten-
sively in the context of distributed and federated databases
[14, 15, 18, 23, 30]. To the best of our knowledge, none of
these approaches address widely-distributed processing and
network awareness.

More recent work addressed Internet-scale query process-
ing and distribution scalability. IrisNet [10] focuses on
querying wide-area sensor databases using XPath queries.
IrisNet relies on the DNS to identify the remote databases
relevant to a given query, which is then processed using
XML and XPath specific optimizations. Similar to our work,
PIER [16] addresses DHT-based highly-distributed query
processing, although in a pull-based setting. PIER discusses
how CAN [26] can be used as a hashing function on the in-
dexes of relations, distributing tuples across a very large
number of sites. Our algorithms attempt a finer-grained
control of the placement decisions, whereas in PIER, the op-
erations themselves are randomly distributed across peers by
CAN. The semantic details of our operators are abstracted
away from the placement mechanism. Instead we focus on
optimizing the network positioning of operators, and as such,
operator specific optimizations such as those presented by
PIER may still apply.

Distributed stream processing. Recently, there have
been a number of efforts focusing on stream processing [5,
24] and frameworks for in-network deployment of continu-
ous queries [6, 11, 17]. Borealis [6] is a distributed stream-
based processing system. that inherits core stream process-
ing functionality from Aurora [5] and distribution capabil-
ities from Medusa [10]. Borealis includes a optimization
framework that includes three levels of collaborating opti-
mizers. At the lowest level, a local optimizer runs at every
site and is responsible for scheduling messages to be pro-
cessed as well as deciding where in the locally running di-
agram to shed load, if required. A neighborhood optimizer
also runs at every site and is primarily responsible for load
balancing the resources at a site with those of its immediate
neighbors. At the highest level, a global optimizer is respon-
sible for accepting information from the end-point monitors
and making global optimization decisions.

GATES [11] also provides a middleware for processing of
distributed data streams. This system is designed to use
the existing grid standards and tools to the extent possible
and uses a self-adaptation algorithm that achieves the best
accuracy that is possible while maintaining the real-time
constraint on the analysis.

Stream Processing Core (SPC) [17], on the other hand,
was designed to address large scale (i.e., leveraging poten-
tially thousands of computational nodes) distributed stream
mining applications. It is designed with the assumption that
the system is constantly overloaded with respect to the avail-
able resources. For this reason, SPC has to use resources
intelligently in order to minimize the loss of useful data.
A key distinguishing feature of SPC is dynamic application
composition which enables stream connections to be made
and broken dynamically as new applications and new data
sources join and leave the system.

Borealis [6] supports run-time operator migration (but not
operator replication), yet Borealis, GATES and SPC cur-
rently avoid the operator placement problem by supporting

only pre-defined operator locations with pinned operators
in the network. This leaves the burden of efficient operator
placement to the system administrator, which is infeasible
for a dynamic, large-scale system with thousands of queries.

Operator placement. The operator placement problem
has been studied in [8, 21, 25, 27]. SAND [8], proposes a set
of approaches or in-network placement of stream processing
operators. Operators are placed either at the consumer side,
at the producer side, or in-network on a DHT routing path
between the two endpoints, depending on the bandwidth
usage of a query. Applications can also specify delay con-
straints on the placement path in the DHT. Our approach of
performing operator placement is more general than SAND
because placements are not tied to DHT routing paths or
to a specific optimization metric. Moreover, previous work
[42] has shown that DHT routing paths can lead to ineffi-
cient candidate sets for operator placement. This is because
DHT routing tables are optimized for minimizing hop count
and not for delay or bandwidth usage.

IFLOW [21, 20, 19] propose a resource-aware approach
to distributed stream management. The approach makes
use of in-network data aggregation to distribute the pro-
cessing and reduce the communication overhead involved in
large scale distributed data management. Moreover, the sys-
tem support for high-level language constructs to describe
data-flows and deploys these data-flows across the network
and reconfiguration the deployment in response to change
in operating conditions. Their solution does not identify de-
ployments that respect QoS expectations and resource con-
straints.

In SBON [25] they propose an infrastructure that man-
ages and optimizes stream queries from multiple applica-
tions. SBON performs an operator placement decision, cre-
ating a mapping of operators to physical overlay nodes. This
mapping should make efficient use of network resources, for
example, by filtering data close to the sources. The SBON
uses a decentralized algorithm for network-aware operator
placement called Relaxation placement. The idea behind
Relaxation placement is to find a solution in two steps. First,
an unpinned operator in a query is placed using a spring
relaxation technique in a virtual metric latency space. Af-
ter that, the solution is mapped to actual physical overlay
nodes. The function minimized by this approach is the data
rate-latency product. This product is the amount of data in
transit in the network and thus a measure for global network
usage. Moreover, the above solutions do not apply in shared
processing environments, since they do evaluate the impact
of their decisions on the existing queries of the system.

Finally, Synergy [27] is a middleware for composition of
stream-based continuous queries that reuse existing pro-
cessing components. Although they evaluate the impact
of shared components on the QoS of existing queries,
their framework addresses the problem of deploying new
queries rather that adapting existing deployments to dy-
namic changes of the network or workload conditions. Thus,
they do not support any run-time operator migration.

Resource Allocation. The problem of resource alloca-
tion has also been studied in [12] for unstructured overlay-
based systems and in [32] for stream processing applications.
In [12] they use a fairness index of a distribution as a mea-
sure of fairness and load balancing is achieved by replicat-
ing documents across multiple nodes in the system. In [32]
they present a greedy load distribution algorithm that aims

at avoiding overload and minimizing end-to-end latency by
minimizing load variance and maximizing load correlation.

Load shedding techniques [29] have also been proposed in
order to reduce processing latency and address shortage in
resources, while in [31] they developed algorithms for select-
ing an operator placement plan that is resilient to changes in
load, i.e., plans that will be able to withstand a large set of
input rate combinations. Furthermore, in [13] they present
a decentralized and adaptiveresourcee allocation algorithm
that allows the composition of distributed stream processing
applications on the fly, while satisfying their QoS demands.
None of the above solution addresses the problem of query
deployment in wide-area networks neither employ operator
migration and replication to achieve the QoS expectations
of the queries.

6. CONCLUSIONS
We introduced an adaptive distributed framework for in-

network deployment of shared stream-based queries. The
key idea is to identify alternative operator placements which
meet the QoS expectations without violating any resource
constraints. Our approach allows nodes to react fast to QoS
or resource violations by applying one of the precomputed
placement configurations. Moreover, metadata regarding
the alternative operator deployments can be used to address
conflicting concurrent modifications of the shared queries.
Our preliminary results shows that our approach is viable.

We are currently optimizing our implementation on Plan-
etLab, and doing more detailed evaluation of our perfor-
mance. Moreover, we plan to study further the problem
of concurrent modifications and replication-based solutions,
e.g., identify the minimum number of replicas required to
satisfy all queries. Finally, our plans are based on time-
varying statistics, thus we would like to incorporate efficient
techniques for updating our metadata, to reflect the most
current status of our system.

7. REFERENCES
[1] Distributed intrusion detection, http://www.dshield.org.
[2] Distributed monitoring framework, http://dsd.lbl.gov/dmf.
[3] Earth scope, http://www.earthscope.org.
[4] Yahoo pipes, http://pipes.yahoo.com/pipes/.
[5] Abadi et al. Aurora: A new model and architecture for

data stream management. In VLDB journal, 2003.
[6] Abadi et al. The design of the Borealis stream processing

engine. In CIDR, 2005.
[7] Abdelzaher T. An automated profiling subsystem for

qos-aware services. In RTAS, 2000.
[8] Y. Ahmad and U. Cetintemel. Network-aware query

processing for stream-based applications. In VLDB, 2004.
[9] Basu et al. Nodewiz: Peer-to-peer resource discovery for

grids. In GP2PC, 2005.
[10] Campbell et al. IrisNet: an internet-scale architecture for

multimedia sensors. In MM, 2005.
[11] Chen et al. Gates: A grid-based middleware for processing

distributed data streams. In HPDC, 2004.
[12] Y. Drougas and V. Kalogeraki. A Fair Resource Allocation

Algorithm for Peer-to-Peer Overlays. In Proceedings of the
8th IEEE Global Internet Symposium, 2005.

[13] Y. Drougas, T. Repantis, and V. Kalogeraki. Load
Balancing Techniques for Distributed Stream Processing
Applications in Overlay Environments. In 9th IEEE
International Symposium on Object- and
Component-Oriented Real-Time Distributed Computing
(ISORC 2006), 2006.

[14] M. J. Franklin, B. T. Jnsson, and D. Kossmann.
Performance Tradeoffs for Client-Server Query Processing.
SIGMOD Record (ACM Special Interest Group on
Management of Data), 25(2):149–160, 1996.

[15] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang.
Optimizing Queries across Diverse Data Sources. In VLDB,
1997.

[16] Huebsch et al. Querying the internet with PIER. In VLDB,
2003.

[17] Jain et al. Design, implementation and evaluation of the
linear road benchmark of the stream processing core. In
SIGMOD, 2006.

[18] D. Kossman. The state of the art in distributed query
processing. ACM Computing Surveys (CSUR),
32(4):422–469, December 2000.

[19] V. Kumar, B. F. Cooper, and K. Schwan. Distributed
Stream Management using Utility-Driven Self-Adaptive
Middleware. In 2nd IEEE International Conference on
Autonomic Computing (ICAC), 2005.

[20] Kumar et al. Resource-aware distributed stream
management using dynamic overlays. In ICDCS, 2005.

[21] Kumar et al. IFLOW: Resource-aware overlays for
composing and managing distributed information flows. In
EuroSys, 2006.

[22] Kuntschke et al. StreamGlobe: Processing and sharing data
streams in grib-based P2P infrastructures. In VLDB, 2005.

[23] L. F. Mackert and G. M. Lohman. R* optimizer validation
and performance evaluation for local querie. In SIGMOD,
1986.

[24] Motwani et al. Query processing, approximation, and
resource management in a stream management system. In
CIDR, 2003.

[25] Pietzuch et al. Network-aware operator placement for
stream-processing systems. In ICDE, 2006.

[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network . In
SIGCOMM, 2001.

[27] Repantis et al. Synergy: Sharing-aware component
composition for distributed stream processing systems. In
Middleware, 2006.

[28] Srivastava et al. Operator placement for in-network stream
query processing. In PODS, 2005.

[29] N. Tatbul and S. Zdonik. Window-aware Load Shedding for
Aggregation Queries over Data Streams. In VLDB, 2006.

[30] A. Tomasic, L. Raschid, and P. Valduriez. Scaling
Heterogeneous Databases and the Design of DISCO. In
ICDCS, 1996.

[31] Y. Xing, J.-H. Hwang, U. Cetintemel, and S. Zdonik.
Providing Resiliency to Load Variations in Distributed
Stream Processing. In VLDB, 2006.

[32] Y. Xing, J.-H. Hwang, and S. Zdonik. Dynamic Load
Distribution in the Borealis Stream Processor. In ICDE,
2005.

[33] Yalagandula et al. s
3: A scalable sensing service for

monitoring large networked systems. In INM, 2006.

