

Feature Selection for Text Classification

George Forman
Information Services and Process Innovation Laboratory
HP Laboratories Palo Alto
HPL-2007-16(R.1)
May 3, 2007*

text classification,
document
categorization,
unstructured data,
feature generation,
feature selection,
overview

* Internal Accession Date Only
Published as a book chapter in Computational Methods of Feature Selection
© Copyright 2007 CRC Press/Taylor and Francis Group

Chapter: Feature Selection for Text Classification

Book: Computational Methods of Feature Selection

Chapman and Hall/CRC Press, 2007

George Forman

Hewlett-Packard Labs

April 26, 2007

Contents

1 Introduction 2

1.1 Feature Selection Phyla . 4
1.2 Characteristic Difficulties of Text Classification Tasks 5

2 Text Feature Generators 6

2.1 Word Merging . 6
2.2 Word Phrases . 8
2.3 Character N-grams . 8
2.4 Multi-Field Records . 9
2.5 Other Properties . 10
2.6 Feature Values . 10

3 Feature Filtering for Classification 11

3.1 Binary Classification . 12
3.2 Multi-Class Classification . 15
3.3 Hierarchical Classification . 17

4 Practical and Scalable Computation 18

5 A Case Study 19

6 Conclusion and Future Work 21

1 Introduction

Applications of text classification technology are becoming widespread. In
the defense against spam email, suspect messages are flagged as potential
spam and set aside to facilitate batch deletion. News articles are automat-
ically sorted into topic channels, and conditionally routed to individuals
based on learned profiles of user interest. In content management, docu-
ments are categorized into multi-faceted topic hierarchies for easier search-
ing and browsing. Shopping and auction web sites do the same with short
textual item descriptions. In customer support, the text notes of call logs
are categorized with respect to known issues in order to quantify trends
over time. These are but a few examples of how text classification is finding
its way into applications. Readers are referred to the excellent survey by
Sebastiani [14].

All these applications are enabled by standard machine learning algo-
rithms—such as Support Vector Machines (SVMs) and Näıve Bayes var-
iants[12]—coupled with a pre-processing step that transforms the text string
representation into a numeric feature vector. By far, the most common
transformation is the ‘bag of words,’ in which each column of a case’s feature
vector corresponds to the number of times it contains a specific word of the
training corpus. Strikingly, although this representation is oblivious to the
order of the words in the document, it achieves satisfactory accuracy in
most topic-classification applications. For intuition behind this: if the word
‘viagra’ appears anywhere in an email message, regardless of its position,
the probability that it is spam is much greater than if it had not appeared
at all.

Rather than allocate every unique word in the training corpus to a dis-
tinct feature column, one can optionally perform feature selection to be
more discriminating about which words to provide as input to the learning
algorithm. This has two major motivations:

1. Accuracy (error rate, F-measure, ROC area, etc.): The accuracy of
many learning algorithms can be improved by selecting the most pre-
dictive features. For example, Näıve Bayes tends to perform poorly
without feature selection in text classification settings. The purpose of
feature selection is sometimes described as a need to eliminate useless
noise words, but a study showed that even the lower ranked words
continue to have predictive value[9]—only a small set of words are
truly equally likely to occur in each class. Thus, feature selection may
be viewed as selecting those words with the strongest signal-to-noise

2

ratio. Pragmatically, the goal is to select whatever subset of features
yields a highly accurate classifier.

2. Scalability: A large text corpus can easily have tens to hundreds of
thousands of distinct words. By selecting only a fraction of the vo-
cabulary as input, the induction algorithm may require a great deal
less computation. This may also yield savings in storage or network
bandwidth. These benefits could be an enabling factor in some ap-
plications, e.g. involving large numbers of classifiers to train or large
numbers of cases.

Even so, the need for feature selection has been somewhat lessened by
continuing advances in the accuracy and scalability of core machine learning
algorithms. For example, Joachims recently demonstrated a new linear SVM
classifier that can be trained on over 800,000 text cases with nearly 50,000
word features in less than 3 minutes on a 3.6GHz PC processor [10]. What
is more, for some training sets, feature selection provides no improvement
in accuracy. Hence, the additional complexity of feature selection can be
omitted for many researchers who are not interested in feature selection,
but simply need a fixed and easily replicable input representation.

Nevertheless, a data-mining practitioner faced with a given training set
from which to produce the best possible classifier should not ignore feature
selection. It can significantly boost accuracy for some datasets, and may
at least produce modest improvements on average. Thus, feature selection
still has a role to play for those who seek to maximize accuracy, e.g. indus-
trial practitioners, application programmers, and contestants in data-mining
competitions.

Moreover, the accuracy and scalability benefits accrue more substantially
when one considers other possibilities for feature terms besides just individ-
ual words. For example, having a single feature representing the occurrence
of the phrase ‘John Denver’ can be far more predictive for some classification
tasks than just having one feature for the word ‘John’ and another for the
word ‘Denver.’ Other potentially useful features include any consecutive se-
quence of characters (n-grams) and, for domains that include multiple text
fields (e.g. title, authors, abstract, keywords, body, and references), sep-
arate feature sets may be generated for each field or any combination of
concatenated fields. It can be prohibitive simply to extend the bag of terms
to include every potential feature that occurs in the training corpus. Thus,
feature selection is also needed for scalability into large feature spaces. One
can then search via cross-validation to improve the input representation to

3

the core induction algorithm. That is, different choices for feature generators
can be tried, as well as different choices for feature selectors. In this way,
the scalability improvements of feature selection can also benefit accuracy
by extending the space that may be searched in a reasonable time.

In an ideal world, we might know, for any task domain, the best feature
generator and feature selection method that dominates all others. However,
in the research literature, no single dominant method appears. We must
either choose one ourselves from among many reasonable options, or use
cross-validation to select one of many. If the latter, then our role becomes
one of providing a sufficiently large (but not intractable) search space to
cover good possibilities. This changes the game somewhat—we can propose
features that might be useful, without having to assure their usefulness.

Section 2 describes a variety of common feature generators, which may
be used to produce many potentially useful features. Section 3 describes
the details of feature selection for binary and multi-class settings. Section 4
discusses the efficient evaluation of feature selection, and the computational
corners that may be cut for repeated evaluations. Section 5 illustrates the
gains that the described methods can provide, both in selecting a subset of
words and in selecting a good combination of feature generators. The re-
mainder of this introduction describes the three major paradigms of feature
selection, and the common characteristics of the text domain.

1.1 Feature Selection Phyla

There are three major paradigms of feature selection: Filter methods evalu-
ate each feature independently with respect to the class labels in the train-
ing set, and determine a ranking of all features, from which the top ranked
features are selected [1]. Wrapper methods use classic AI search methods—
such as greedy hill-climbing or simulated-annealing—to search for the ‘best’
subset of features, repeatedly evaluating different feature subsets via cross-
validation with a particular induction algorithm. Embedded methods build
a usually linear prediction model that simultaneously tries to maximize the
goodness-of-fit of the model and minimize the number of input features [7].
Some variants build a classifier on the full dataset, and then iteratively re-
move features the classifier depends on least [8]. By beginning with the
full dataset, they qualify as the least scalable. Given large feature spaces,
memory may be exceeded simply to realize the full feature vectors with all
potential features. We will not consider such methods further. Filter meth-
ods are the simplest to implement and the most scalable. Hence, they are
appropriate to treat very large feature spaces and are the focus here. They

4

can also be used as a pre-processing step to reduce the feature dimension-
ality sufficiently to enable other, less scalable methods. Wrapper methods
have traditionally sought specific combinations of individual features from
the power set of features, but this approach scales poorly for the large num-
ber of features inherent with classifying text. Using cross-validation to select
among feature generators and optimize other parameters is somewhat like
a wrapper method, but one that involves far fewer runs of the induction
algorithm than typical wrapper feature selection.

1.2 Characteristic Difficulties of Text Classification Tasks

Besides the high dimensionality of the feature space, text classification prob-
lems are also characterized as frequently having a high degree of class imbal-
ance. Consider training a text classifier to identify pages on any particular
topic across the entire Web. High class skew is problematic for induction
algorithms. If only 1% of the training cases are in the positive class, then the
classifier can obtain 99% accuracy simply by predicting the negative class
for all cases. Often the classifier must have its decision threshold adjusted
in a separate post-processing phase, or else it must explicitly optimize for F-
measure—which pressures it to increase recall of the positive class, without
sacrificing too much precision.

One complication of high class skew is that even large training sets can
end up having very few positive examples from which to characterize the pos-
itive class. Given 1% positives, a training set with 5000 randomly selected,
manually labeled examples ends up with only 50 positives on average. This
leads to significantly more uncertainty in the frequency estimates of words
in the positive class than in the negative class. And if a predictive word is
spelled ‘color’ in half the positive cases and ‘colour’ in the other half, then
this dispersion of information into separate features yields more uncertainty.
In technical notes or web text, we often encounter misspellings, which may
yield other variants, such as ‘collor.’ This problem is exacerbated by the
fact that natural language provides many ways to express the same idea,
e.g. hue, tint, shade, dye or paint.

Another common aspect of text classification is that the large feature
space typically follows a Zipf-like distribution [11]. That is, there are a few
very common words, and very many words that rarely appear. By contrast,
the most predictive features would be those that appear nearly always in
one class, but not in the other.

Finally, text classification problems sometimes have only small amounts
of training data available, perhaps more often than in other domains. This

5

may partly be because a person’s judgment is often needed to determine the
topic label or interest level. By contrast, non-text classification problems
may have their training sets labeled by machines sometimes, e.g. classifying
which inkjet pens during manufacture ultimately fail their final quality test.

2 Text Feature Generators

Before we address the question of how to discard words, we must first deter-
mine what shall count as a word. For example, is ‘HP-UX’ one word, or is it
two words? What about ‘650-857-1501’? When it comes to programming, a
simple solution is to take any contiguous sequence of alphabetic characters;
or alphanumeric characters to include identifiers such as ‘ioctl32’, which
may sometimes be useful. By using the Posix regular expression \p{L&}+

we avoid breaking ‘näıve’ in two, as well as many accented words in French,
German, etc. But what about ‘win 32’, ‘can’t’ or words that may be hy-
phenated over a line break? Like most data cleaning endeavors, the list of
exceptions is endless, and one must simply draw a line somewhere and hope
for an 80%-20% tradeoff. Fortunately, semantic errors in word parsing are
usually only seen by the core learning algorithm, and it is their statistical
properties that matter, not its readability or intuitiveness to people. Our
purpose is to offer a range of feature generators so that the feature selector
may discover the strongly predictive features. The most beneficial feature
generators will vary according to the characteristics of the domain text.

2.1 Word Merging

One method of reducing the size of the feature space somewhat is to merge
word variants together, and treat them as a single feature. More impor-
tantly, this can also improve the predictive value of some features.

Forcing all letters to lowercase is a nearly ubiquitous practice. It nor-
malizes for capitalization at the beginning of a sentence, which does not
otherwise affect the word’s meaning, and helps reduce the dispersion issue
mentioned in the introduction. For proper nouns, it occasionally conflates
other word meanings, e.g. ‘Bush’ or ‘LaTeX.’

Likewise, various word stemming algorithms can be used to merge mul-
tiple related word forms. For example, ‘cat,’ ‘cats,’ ‘catlike’ and ‘catty’ may
all be merged into a common feature. Stemming typically benefits recall but
at a cost of precision. If one is searching for ‘catty’ and the word is treated
the same as ‘cat,’ then a certain amount of precision is necessarily lost. For
extremely skewed class distributions, this loss may be unsupportable.

6

Stemming algorithms make both over-stemming errors and under-stem-
ming errors, but again, the semantics are less important than the feature’s
statistical properties. Unfortunately, stemmers must be separately designed
for each natural language, and while many good stemmers are available for
Romance languages, other languages such as Hebrew and Arabic continue
to be quite difficult to stem well. Another difficulty is that in some text
classification applications, multiple natural languages are mixed together,
sometimes even within a single training case. This would require a language
recognizer to identify which stemming algorithm should be used on each
case or each sentence. This level of complexity and slowdown is unwelcome.
Simply taking the first few characters of each word may yield equivalent
classification accuracy for many classification problems.

For classifying technical texts or blogs, misspellings may be common or
rampant. Inserting an automatic spelling correction step into the process-
ing pipeline is sometimes proposed, but the mistakes introduced may out-
weigh the purported benefit. One common problem is that out-of-vocabulary
(OOV) words of the spell checker may be forced to the nearest known word,
which may have quite a different meaning. This often happens with tech-
nical terms, which may be essential predictors. For misspellings that are
common, the misspelled form may occur frequently enough to pose a useful
feature, e.g. ‘volcanoe.’

A common source of OOV words is abbreviations and acronyms, espe-
cially in governmental or technical texts. Where glossaries are available, the
short and long forms may be merged into a single term. Although various
acronym dictionaries are available online, there are many collisions for short
acronyms, and they tend to be very domain-specific and even document-
specific. Some research has shown success recognizing acronym definitions
in text, such as ‘(OOV)’ above, which provides a locally unambiguous defi-
nition for the term.

Online thesauruses can also be used to merge different words together,
e.g. to resolve the ‘color’ vs. ‘hue’ problem mentioned in the introduction.
Unfortunately, this approach rarely helps, as many words have multiple
meanings, and so their meanings become distorted. To disambiguate word
meanings correctly would require a much deeper understanding of the text
than is needed for text classification. However, there are domain-specific
situations where thesauruses of synonyms can be helpful. For example, if
there is a large set of part numbers that correspond to a common product
line, it could be very beneficial to have a single feature to represent this.

7

2.2 Word Phrases

Whereas merging related words together can produce features with more fre-
quent occurrence (typically with greater recall and lower precision), identify-
ing multiple word phrases as a single term can produce rarer, highly specific
features (which typically aid precision and have lower recall), e.g. ‘John Den-
ver’ or ‘user interface.’ Rather than require a dictionary of phrases as above,
a simple approach is to treat all consecutive pairs of words as a phrase term,
and let feature selection determine which are useful for prediction. The re-
cent trend to remove spaces in proper names, e.g. ‘SourceForge,’ provides the
specificity of phrases without any special software consideration—perhaps
motivated by the modern world of online searching.

This can be extended for phrases of three or more words with occasionally
more specificity, but with strictly decreasing frequency. Most of the benefit
is obtained by two-word phrases [13]. This is in part because portions of
the phrase may already have the same statistical properties, e.g. the four-
word phrase ‘United States of America’ is covered already by the two-word
phrase ‘United States.’ In addition, the reach of a two-word phrase can be
extended by eliminating common stopwords, e.g. ‘head of the household’ be-
comes ‘head household.’ Stopword lists are language specific, unfortunately.
Their primary benefit to classification is in extending the reach of phrases,
rather than eliminating commonly useless words, which most feature selec-
tion methods can already remove in a language-independent fashion.

2.3 Character N-grams

The word identification methods above fail in some situations, and can miss
some good opportunities for features. For example, languages such as Chi-
nese and Japanese do not use a space character. Segmenting such text
into words is complex, whereas nearly equivalent accuracy may be obtained
by simply using every pair of adjacent Unicode characters as features—n-
grams. Certainly many of the combinations will be meaningless, but feature
selection can identify the most predictive ones. For languages that use the
Latin character set, 3-grams or 6-grams may be appropriate. For exam-
ple, n-grams would capture the essence of common technical text patterns
such as ‘HP-UX 11.0’, ‘while (<>) {’, ‘#!/bin/’, and ‘ :)’. Phrases of
two adjacent n-grams simply correspond to (2n)-grams. Note that while the
number of potential n-grams grows exponentially with n, in practice only
a small fraction of the possibilities occur in actual training examples, and
only a fraction of those will be found predictive.

8

Interestingly, the common Adobe PDF document format records the
position of each character on the page, but does not explicitly represent
spaces. Software libraries to extract the text from PDF use heuristics to
decide where to output a space character. That is why text extracts are
sometimes missing spaces between words, or have a space character inserted
between every pair of letters. Clearly, these types of errors would wreak
havoc with a classifier that depends on spaces to identify words. A more
robust approach is for the feature generator to strip all whitespace, and
generate n-grams from the resulting sequence.

2.4 Multi-Field Records

Although most research deals with training cases as a single string, many
applications have multiple text (and non-text) fields associated with each
record. In document management, these may be title, author, abstract, key-
words, body, and references. In technical support, they may be title, product,
keywords, engineer, customer, symptoms, problem description, and solution.
Multi-field records are common in applications, even though the bulk of text
classification research treats only a single string. Furthermore, when clas-
sifying long strings, e.g. arbitrary file contents, the first few kilobytes may
be treated as a separate field and may often prove sufficient for generating
adequate features, avoiding the overhead of processing huge files, such as
tar or zip archives.

The simplest approach is to concatenate all strings together. However,
supposing the classification goal is to separate technical support cases by
product type and model, then the most informative features may be gener-
ated from the product description field alone, and concatenating all fields
will tend to water down the specificity of the features.

Another simple approach is to give each field its own separate bag-of-
words feature space. That is, the word ‘OfficeJet’ in the title field would
be treated as though it were unrelated to a feature for the same word in
the product field. Sometimes multiple fields need to be combined, while
others are kept separate, and still others are ignored. These decisions are
usually made manually today. Here again an automated search can be useful
to determine an effective choice. This increases computation time for the
search, but more importantly, it saves the expert’s time, and it may discover
better choices than would have been explored manually.

9

2.5 Other Properties

For some classification tasks, other text properties besides words or n-grams
can provide the key predictors to enable high accuracy. Some types of spam
use deceptions such as ‘4ree v!@gr@ 4 u!’ to thwart word-based features, but
these might easily be recognized by features revealing their abnormal word
lengths and the density symbols. Likewise, to recognize Perl or awk code,
the specific alphanumeric identifiers that appear are less specific than the
distribution of particular keywords and special characters. Formatting in-
formation, such as the amount of whitespace, the word count, or the average
number of words per line can be key features for particular tasks.

Where task-specific features are constructed, they are often highly valu-
able, e.g. parsing particular XML structures that contain name-value pairs.
By being task-specific, it is naturally difficult to make generally useful com-
ments about their generation or selection. The little that is said about
task-specific features in the text classification literature belies their true
importance in many practical applications.

2.6 Feature Values

Once a decision has been made about what to consider as a feature term,
the meaning of the numerical feature must be determined. For some pur-
poses, a binary value is sufficient, indicating whether the term appears at all.
This representation is used by the Bernoulli formulation of the Näıve Bayes
classifier[12]. Many other classifiers use the term frequency tft,k (the word
count in document k) directly as the feature value, e.g. the Multinomial
Näıve Bayes classifier[12].

The support vector machine (SVM) has proven highly successful in text
classification. For such kernel methods, the distance between two feature
vectors is typically computed as their dot product (cosine similarity), which
is dominated by the dimensions with larger values. To avoid the situation
where the highly frequent but non-discriminative words (such as stopwords)
dominate the distance function, one can either use binary features, or else
weight the term frequency value tft,k inversely to the feature’s document
frequency dft in the corpus (the number of documents in which the word
appears one or more times). In this way, very common words are down-
played. This idea, widely known as ‘TF.IDF,’ has a number of variants, one
form being tft,k × log(M+1

dft+1), where M is the number of documents. While
this representation requires more computation and more storage per feature
than simply using binary features, it can often lead to better accuracy for

10

kernel methods.
If the document lengths vary widely, then a long document will exhibit

larger word counts than a short document on the same topic. To make these
feature vectors more similar, the tft,k values may be normalized so that the
length (Euclidean norm) of each feature vector equals 1.

3 Feature Filtering for Classification

With a panoply of choices for feature generation laid out, we now turn to
feature filtering, which independently scores each feature with respect to the
training class labels. The subsections below describe how this can be done
for different classification settings. After the scoring is completed, the final
issue is determining how many of the best features to select for the best
performance. Unfortunately, the answer varies widely from task to task, so
several values should be tried, including the option of using all features. This
parameter can be tuned automatically via cross-validation on the training
data.

Cross-validation may also be needed to select which feature generators
to use, as well as selecting parameters for the induction algorithm, such as
the well known complexity constant C in the SVM model. The simplest to
program is to optimize each parameter in its own nested loop. However, with
each successive nesting a smaller fraction of the training data is being given
to the induction algorithm. For example, if nested 5-fold cross-validation
is being used to select the feature generator, the number of features, and
the complexity constant, then the inner-most loop trains with only half of
the training set: 4

5 × 4
5 × 4

5 = 51%. Unfortunately, the optimal parameter
values found for this small training set may be a poor choice for the full
size training set. (This is one reason why 10-fold cross-validation, despite
its computational cost, is usually preferred to 2-fold cross-validation, which
trains on nearly half as much of the data.)

Instead, a single loop of cross-validation should be married with a multi-
parameter search strategy. The simplest to program is to measure the cross-
validation accuracy (or F-measure) at each point on a simple grid, and then
select the best parameters. There is a large literature in multi-parameter
optimization that has yielded methods that are typically much more efficient,
although more complex to program.

11

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000 1200 1400 1600

po

si
ti

ve
 d

oc
um

en
ts

 c
on

ta
in

in
g

w
or

d

negative documents containing word

 learning

 causal
 bayesian

 p
ro

ba
bi

lis
ti

c

 inference

 networks

 models

 model

 algorithms
 algorithm

 these
 data

 from
 which

 can

 as
 be

 paper

 by
 with

 are

 an

 on w
e

 t
ha

t
 t

hi
s

 is

 for
 to

 in
 a

 and
 the

 of

BNS
Chi IG

Figure 1: Word document frequencies in the positive and negative classes
for a typical problem with class imbalance.

3.1 Binary Classification

We first discuss the setting where there are two-classes. Binary classification
is a fundamental case, because (1) binary domain tasks are common, e.g.
identifying spam email from good email, and (2) it is used as a subroutine
to solve most types of multi-class tasks.

To clarify the nature of the problem, we demonstrate with an exem-
plary binary task: identifying papers about probabilistic machine learning
methods among a collection of other computer science papers. The dataset
has 1800 papers altogether, with only 50 of them in the positive class—2.8%
positive. Each is represented by its title and abstract, which generate 12,500
alphanumeric words when treated as a single text string. Figure 1 shows, for
each word feature t, the document frequency count tpt with respect to the
50 documents in the positive class (y-axis) and separately fpt for the 1750
documents in the negative class (x-axis), similar to an ROC graph. A fea-
ture in the topmost left corner would be perfectly predictive of the positive
class, and would aid the induction algorithm a great deal. Unfortunately,
this region is typically devoid of features.

12

Table 1: Three common feature selection formulae, computed from docu-
ment frequency counts in the positive and negative classes.

Name Formula

Information Gain e(pos, neg) − [Pworde(tp, fp) + (1 − Pword)e(fn, tn)]
(IG) where e(x, y) = −xlx(x

x+y
)−xlx(y

x+y
),

and xlx(x) = x log2(x)

Chi-Squared, χ2 g(tp, (tp + fp)Ppos) + g(fn, (fn + tn)Ppos)+
(Chi) g(fp, (tp + fp)Pneg) + g(tn, (fn + tn)Pneg)

where g(count, expect) = (count−expect)2

expect

Bi-Normal Separation |F−1(tpr) − F−1(fpr)|
(BNS) where F−1 is the inverse of the Normal CDF

Notation:
pos: number of positive cases = tp + fn
neg: number of negative cases = fp + tn
tp: true positives = number of positive cases containing the word
fp: false positives = number of negative cases containing the word
fn: false negatives
tn: true negatives
tpr: true positive rate = tp/pos
fpr: false positive rate = fp/neg
Ppos: percentage of positive cases = pos/all
Pneg: percentage of negative cases = neg/all
Pword: percentage of cases containing word = (tp + fp)/all

13

Common stopwords such as ‘of’ and ‘the’ occur frequently in both classes,
and approximate the diagonal. These have no predictive value. The slightly
larger points indicate which words appear on a generic list of 570 common
English stopwords. Observe that the non-stopwords ‘paper’ and ‘algorithm’
behave like stopwords in this dataset, unsurprisingly. This illustrates that
stopwords are not only language-specific, but also domain-specific.

Because of the Zipf-like distribution of words, most words occur rarely in
each class. In fact, the majority of the points are plotted atop one another
near the origin, belying their overwhelming density in this region. Over half
of the words appear only once in the dataset and are plotted at just two
points—(1,0) and (0,1). One often removes such extremely rare words via
a minimum count threshold dfmin; in this case, dfmin = 2 removes about
half the features. Whether this is a good idea depends on the induction
algorithm and the character of the dataset. Raising dfmin typically hurts
precision.

Filter methods evaluate each feature term t according to a function of its
document frequency counts in the positive and negative classes. Three com-
monly used feature selection formulae are given in Table 3.1: Information
Gain (IG), Chi-Squared (Chi), and Bi-Normal Separation (BNS).

Returning to Figure 1, the contour lines on the graph show the decision
boundaries that these three feature selection methods would make for this
dataset when the top 100 features are requested. That is, for each method,
the points along its contour lines all evaluate to the same ‘goodness’ value
according to its function, and there are 100 features with greater values.
Naturally, each method devalues and removes the stopwords near the diag-
onal, without being language- or domain-specific, as stopword lists would
be.

The features that are selected lie above the upper contour as well as below
the matching lower contour; the contours are rotationally symmetric about
the center point. Despite this symmetry, these two areas differ in character
because the Zipfian word distribution focuses the selection decisions to be
near the origin, and the feature selection methods each have an asymmetry.
The most noticeable asymmetry is that the chi-squared method results in a
strong bias towards positive features; there are no features under its lower
contour. Information gain selects some negative features, but still has a bias
for positive features. This is more easily seen at the top, where there are
no word points obscuring the place where the contour meets the top of the
graph.

By contrast, the BNS decision boundary comes much closer to the origin
on the x-axis. Compared to the other methods, BNS prefers many more

14

of the negative features—in this case, only those occurring more than 50
times among the negatives and not once among the 50 positives. It is for
this reason that BNS excels in improving recall, usually at a minor cost to
precision. This tradeoff often yields an overall improvement in F-measure
compared to other methods.

Why is BNS asymmetric, given that its formula is symmetric? It stems
from the class skew. Since the inverse Normal cumulative distribution func-
tion (CDF) is undefined at zero, whenever there are zero occurrences of a
word in a class, we must substitute a small constant, e.g. ξ = 0.1 occur-
rences. Since there are typically more negatives than positives, the minimum
false positive rate fpr = ξ

neg
is smaller than the minimum true positive rate

tpr = ξ
pos

. In this way, a feature that occurs x times in only the minority
class is correctly preferred to one that occurs x times in only the majority
class.

Likewise, to avoid the undefined value F−1(1.0), if ever a feature oc-
curs in every single positive (negative) case, we back off the tp (fp) count
by ξ. This does not occur naturally with language texts, but text classi-
fication techniques are regularly used to treat string features of all sorts
of classification problems. In industrial settings with many classes to pro-
cess, it sometimes happens that there is a perfect indicator in the texts, e.g.
<meta name="Novell_ID" val="Win32">, which may be discovered by long
n-grams or phrases of alphanumeric words. Note that without feature selec-
tion, an SVM classifier will not make effective use of a few excellent features
[5].

As a side note, sometimes the purpose of feature selection is just to char-
acterize a class for user understanding rather than machine classification. In
this case, ordinarily one wants to see only the positive words and phrases.

3.2 Multi-Class Classification

There are two major forms of multi-class classification: single-label (1-of-n)
classification, where each case is known to belong in exactly one of the n
classes, and multi-label (m-of-n) classification, where each case may belong
to several, none, or even all classes.

In the multi-label case, the problem is naturally decomposed into n bi-
nary classification tasks: classi vs. not classi. Each of these binary tasks is
solved independently, and each can have its own feature selection to maxi-
mize its accuracy. In the single-label case, many induction algorithms op-
erate by decomposing the problem into n binary tasks as above, and then
making a final decision by some form of voting. Here also, feature selection

15

can be optimized independently for each binary subtask. However, some 1-
of-n induction algorithms do not perform binary decompositions, and need
multi-class feature selection to select a single set of features that work well
for the many classes. Other 1-of-n induction algorithms perform very many
binary decompositions, e.g. those that search for optimal splitting hierar-
chies, or error-correcting code classifiers that consider O(n2) dichotomies.
For these situations, it may be preferable to perform one multi-class feature
selection than a separate binary feature selection for each dichotomy.

All multi-class tasks could be dealt with by binary decompositions in the-
ory, and so there would be no need for multi-class feature selection. However,
practice often recants theory. The APIs for many good software products
and libraries expect the transformation of text into numerical feature vec-
tors to be performed as a pre-processing step, and there is no facility for
injecting feature selection into the inner loops, where the decompositions
occur. Even some m-of-n applications that can be programmed de novo de-
mand multi-class feature selection for performance and scalability reasons.
For example, where a centralized server must classify millions of objects on
the network into multiple, orthogonal taxonomies, it can be much more ef-
ficient to determine a single, reasonably sized feature vector to send across
the network than to send all the large documents themselves. In another ex-
ample application[4], a large database of unstructured, multi-field (technical
support) cases is represented in memory by a cached, limited size feature
vector representation. This is used for quick interactive exploration, clas-
sification, and labeling into multiple 1-of-n and m-of-n taxonomies, where
the classifiers are periodically retrained in real time. It would be impracti-
cal to re-extract features for each binary decomposition, or to union all the
features into a very long feature vector that would be requested by all the
binary feature selection subtasks.

Many multi-class feature selection schemes have been devised, and some
methods such as Chi-squared naturally extend to multiple classes. However,
most of them suffer from the following liability: consider a multi-class topic
recognition problem, where one of the classes happens to contain all German
texts. The German class will generate many extremely predictive words.
Nearly all feature selection schemes will prefer the stronger features, and
myopically starve the other classes for features. Likewise, if one class is
particularly difficult, multi-class feature selectors will tend to ignore it, since
it offers no strong features. If anything, such difficult classes need more
features, not fewer.

A solution to this problem is to perform feature selection for each class
separately via binary decompositions, and then to determine the final rank-

16

ing of features by a round-robin algorithm where each class gets to nominate
its most desired features in turn [2]. This scheme was devised to improve
robustness for unusual situations that arise in practice only occasionally.
Usually efforts to improve robustness come at some loss in average per-
formance. Remarkably, this improves performance even for well-balanced
research benchmarks. Why? Inevitably, some classes are easier to recog-
nize than others, and this disparity causes most feature selection methods
to slight the very classes that need more help.

3.3 Hierarchical Classification

Hierarchy is among the most powerful of organizing abstractions. Hierarchi-
cal classification includes a variety of tasks where the goal is to classify items
into a set of classes that are arranged into a tree or directed acyclic graph,
such as the Yahoo web directory. In some settings, the task is a single-
label problem to select 1-of-n nodes—or even restricted to the leaf classes
in the case of a ‘virtual hierarchy.’ In other settings, the problem is cast as
a multi-label task to select multiple interior nodes, optionally including all
super-classes along the paths to the root.

Despite the offered hierarchy of the classes, these problems are some-
times treated simply as flat multi-class tasks, aggregating training examples
up the tree structure for each class. Alternately, a top-down hierarchy of
classifiers can be generated to match the class hierarchy. The training set for
each step down the tree is composed of all the training examples under each
child subtree, optionally including a set of items positioned at the interior
node itself, which terminates the recursion. Although this decomposition of
classes is different from a flat treatment of the problem, in either decomposi-
tion, the same single-label or multi-label feature selection methods apply to
the many sub-problems. It has been suggested that each internal hierarchi-
cal classifier may be faster because each may depend on only a few features
(selected by feature selection), and may be more accurate because it only
consider cases within a limited context. For example, an interior node about
recycling that has subtopics for glass recycling and can recycling would have
a classifier under it that need only consider cases that have to do with re-
cycling. In this way, the training sets for each of the interior classifiers may
be more balanced than with a flat treatment of the problem.

17

4 Practical and Scalable Computation

We discuss briefly the matter of programming software for feature selec-
tion, with some practical pointers for efficient implementation. These issues
are usually not recorded in the research literature or in product documen-
tation. Since feature selection is often accompanied by multiple runs of
cross-validation to select the best number of features, it makes sense to save
computation where possible, rather than run each fold from scratch.

We begin with the binary case. By dividing the training cases into F
folds in advance, the true positive and false positive counts can be kept
track of separately for each fold. It then becomes very fast to determine
the tp, fp counts for any subset of folds using just 2F integers per feature.
This makes feature-filtering methods extremely scalable, and requires only
one pass through the dataset.

Furthermore, for M training cases, each fold has only M/F cases, and
an 8- or 16-bit counter will often suffice. For the 1800 paper dataset—
which altogether can generate over 300,000 word, phrase, 3-gram, 4-gram,
and 5-gram features—we can efficiently support feature selection for 10-fold
cross-validation with less than 6MB of memory. This is an insignificant
amount of memory nowadays and its computation takes only seconds on a
PC. For 10-folds on M ≤ 640, 000 cases, 100MB of memory is sufficient for
2.6 million features. Moreover, likely half or more of the features will occur
only once, and they can be discarded after one pass through the dataset,
freeing up memory for inductions that follow in cross-validation.

Large generated feature spaces need not be stored on the first pass
through the dataset. Once the counts are made—possibly on a subset of the
training cases—the best, say, 100K features are determined (overall, and for
each fold). Then a second feature-generation pass through the dataset stores
only features that are actually needed. The subsequent cross-validation in-
ductions then work with ever decreasing subsets of the realized dataset.

In the multi-class setting, further optimization is possible. If the total
number of distinct classes is C, then we can efficiently determine the tp, fp
counts for ‘class vs. not class’ binary subtasks using C+1 integers per feature
(for this exposition, we ignore the orthogonal issue of the F-folds). The
number of occurrences of the feature is tracked separately for each class,
plus one additional integer tracks the total number of occurrences in the
dataset. This missing fp counter is determined from the total minus the tp
counter for the class. Further, if we know the classes are mutually exclusive
(1-of-n classification), then we can efficiently determine the tp and fp counts
for any dichotomy between any subsets of classes.

18

It is fortunate that feature selection for cross-validation can be so effi-
cient. The bottleneck is then the induction algorithm. Reducing the number
of folds from 10-fold to 2-fold cuts the workload substantially, but the smaller
training sets can yield different behavior that misleads the search for opti-
mum parameters. Specifically, using smaller 2-fold training sets may prefer
substantially fewer features than is optimal for the full training set.

Rather than reduce the data folds, early termination can be used. With
only a few of the fold measurements completed, the current parameter set-
tings may be deemed inferior to the best result found so far. For example,
suppose the best parameters made 80 misclassifications on all 10 folds, and
the current parameters have already committed 80 mistakes halfway through
the third fold. Early termination can be done even more aggressively with
various statistical methods, and by being less conservative. After all, even
with exhaustive evaluation of the folds, it is only a somewhat arbitrary sub-
set of possibilities that are explored on a sample of the data.

Concerns about computational workload for practical text applications
may gradually become insignificant, considering that 80-core CPUs are re-
portedly within a five-year horizon and that algorithmic breakthroughs often
yield super-linear improvements.

5 A Case Study

The overall benefit of feature selection can vary to the extremes for different
datasets. For some, the accuracy can be greatly improved by selecting ∼1000
features, or for others, by selecting only a few strongly predictive features.
For still others, the performance is substantially worse with anything fewer
than all words. In some cases, including 5-grams among the features may
make all the difference. Because large gains are sometimes possible, text
feature selection will never become obsolete—although it would be welcome
if it were hidden under layers of software the way SVM solvers are today.

Nonetheless, the chapter would not be complete without an example.
Figure 2 shows the improvement in F-measure for including feature selection
vs. just giving all word features to the state-of-the-art SVM-Perf classifier
[10]. The improvement is shown for 6 different (mutually exclusive) classes,
corresponding to different computer science topics in machine learning (each
with 2.8% positives). Half the dataset was used for training, and the other
half was used for testing; five such splits were evaluated and their results are
shown as five separate whiskers for each class. The main point is how large a
gain is sometimes made by considering feature selection. In every case, the

19

 50

 60

 70

 80

 90

 100
F

-m
ea

su
re

6 different classes x 5 different splits of the dataset

C
as

e-
B

as
ed

G
en

et
ic

 A
lg

or
it

hm
s

N
eu

ra
l N

et
w

or
ks

P
ro

ba
bi

lis
ti

c
M

et
ho

ds

R
ei

nf
or

ce
m

en
t

L
ea

rn
in

g

R
ul

e
L

ea
rn

in
g

Figure 2: F-measure improvement via feature selection. The dot shows the
best performance with feature selection; the other end of the whisker shows
the best performance without feature selection, i.e. simply using all words.

SVM complexity constant C was optimized from a set of five values ranging
from 0.01 to 1. The number of features was optimized from values of 100
features and up, in steps of 1.5×, including using all features. The optimal
parameters were chosen according to which showed the best F-measure on
the test set. Certainly, this is not a large enough study or dataset to draw
general conclusions, but the potential benefit of feature selection is clearly
illustrated. A full-scale study would also need to optimize its parameters
via cross-validation on the training set, rather that taking the omniscient
view we have here for expediency.

Once we have paid the software complexity price to have the cross-
validation framework in place, we can also use it to try different feature
generators. Figure 3 shows the further improvement in F-measure over the
previous figure that is available by trying different combinations of feature
generators. The three settings tried were: (1) words, (2) words plus 2-word
phrases, and (3) words plus 2-word phrases, plus 3-grams, 4-grams and 5-
grams. (The maximum performance without the n-grams is shown by the
cross-hair, revealing that most of the performance gain is often captured by
2-word phrases. Nonetheless, n-grams do sometimes improve performance.)

(For the record, the example used: a rare word cutoff of 2, which elim-
inated any word that appeared only once in the given training set; a list
of 571 English stopwords; BNS feature scoring with the minimum count
ξ = .1; TF.IDF feature scaling without length normalization, since the ab-

20

 50

 60

 70

 80

 90

 100
F

-m
ea

su
re

6 different classes x 5 different splits of the dataset

C
as

e-
B

as
ed

G
en

et
ic

 A
lg

or
it

hm
s

N
eu

ra
l N

et
w

or
ks

P
ro

ba
bi

lis
ti

c
M

et
ho

ds

R
ei

nf
or

ce
m

en
t

L
ea

rn
in

g

R
ul

e
L

ea
rn

in
g

Figure 3: Further F-measure improvement for trying different feature gener-
ators. The plot from Figure 2 is reproduced, and the whiskers are extended
up to the maximum performance for using words, + 2-word phrases, + 3-,
4-, and 5-grams.

stracts have near uniform length; SVM-Perf with its default settings, except
the flag (-l 1), which tells it to optimize for F-measure rather than accu-
racy; and words consisting of alphanumeric characters plus underscore, and
forced to lowercase.)

6 Conclusion and Future Work

Text classification is an elephant among blind researchers. As we approach
it from different sides, we inevitably find that different strategies are called
for in feature generation and feature selection. Unfortunately for the prac-
titioner, there is much sound advice that is conflicting. A challenge for
research in this decade is to develop methods and convenient software pack-
ages that consistently generate feature sets leading to good accuracy on most
any training set, without requiring the user to spend their time trying dif-
ferent modules and parameter settings. Today, when faced with lackluster
text classification performance on a new domain problem, one has to won-
der whether it could be greatly improved by ‘tweaking the many knobs,’ or
whether the poor performance is inherent to the data.

Cross-validation for model selection and parameter tuning appears to be
the straightforward solution. However, proposing a large number of poten-
tial features for a class that has few training cases can lead to overfitting the

21

training data—generating features that are only predictive for the particular
training cases studied. Small training sets are a common problem, since ob-
taining correct topic labels requires people’s time and concentration. Even a
seemingly large training set can be meager if it is divided into many classes,
if the class sizes are highly imbalanced, or if the words used for a single
topic are diverse. Examples of the latter include multilingual texts, many
creative authors, or topics that consist of many implicit subtopics, such as
sports. These are common situations in real-world datasets and pose worthy
research challenges, since obtaining additional training data usually comes
with a cost. One direction may be to develop priors that leverage world
knowledge, e.g. gathered from many other available training sets [3][6].

Other open problems arise in generating and selecting useful features for
classes that are not topic-based. For example, one may need to classify texts
as business vs. personal, by author, or by genre (e.g. news, scientific liter-
ature, or recipes). In these situations, the specific topic words used are less
predictive, and instead one may need features that represent the verb tenses
used, complexity of sentences, or pertinence to company products. While
there is a healthy and growing literature in authorship, genre and senti-
ment classification, there are many other types of desirable and challenging
classifications that have not been addressed, for example, determining the
writing quality of an article containing figures, or classifying company web
sites into a multi-faceted yellow pages, such as UDDI.org. There is certainly
no shortage of research opportunities.

22

References

[1] G. Forman. An extensive empirical study of feature selection metrics
for text classification. J. of Machine Learning Research, 3:1289–1305,
2003.

[2] G. Forman. A pitfall and solution in multi-class feature selection for text
classification. In ICML ’04: Proc. of the 21st Int’l Conf. on Machine
learning, pages 297–304. ACM Press, 2004.

[3] G. Forman. Tackling concept drift by temporal inductive transfer. In
SIGIR ’06: Proc. of the 29th int’l ACM SIGIR conf. on research and
development in information retrieval, pages 252–259. ACM Press, 2006.

[4] G. Forman, E. Kirshenbaum, and J. Suermondt. Pragmatic text min-
ing: minimizing human effort to quantify many issues in call logs. In
KDD ’06: Proc. of the 12th ACM SIGKDD int’l conf. on Knowledge
discovery and data mining, pages 852–861. ACM Press, 2006.

[5] E. Gabrilovich and S. Markovitch. Text categorization with many re-
dundant features: using aggressive feature selection to make SVMs
competitive with C4.5. In ICML ’04: Proc. of the 21st Int’l Conf.
on Machine learning, pages 321–328, 2004.

[6] E. Gabrilovich and S. Markovitch. Feature generation for text catego-
rization using world knowledge. In Proc. of The 19th Int’l Joint Conf.
for Artificial Intelligence, pages 1048–1053, Edinburgh, Scotland, 2005.

[7] I. Guyon and E. Elisseef, A. Special issue on variable and feature
selection. J. of Machine Learning Research, 3:1157–1461, 2003.

[8] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for
cancer classification using support vector machines. Machine Learning,
46(1-3):389–422, 2002.

[9] T. Joachims. Text categorization with suport vector machines: Learn-
ing with many relevant features. In ECML’98: Proc. of the European
Conf. on Machine Learning, pages 137–142. Springer-Verlag, 1998.

[10] T. Joachims. Training linear SVMs in linear time. In Proc. of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 217–226, 2006.

23

[11] C. D. Manning and H. Schütze. Foundations of Statistical Natural
Language Processing. The MIT Press, Cambridge, Massachusetts, 1999.

[12] A. McCallum and K. Nigam. A comparison of event models for naive
bayes text classification. In AAAI/ICML-98 Workshop on Learning for
Text Categorization, TR WS-98-05, pages 41–48. AAAI Press, 1998.

[13] D. Mladenic and M. Globelnik. Word sequences as features in text
learning. In Proceedings of the 17th Electrotechnical and Computer Sci-
ence Conference (ERK98), Ljubljana, Slovenia, pages 145–148, 1998.

[14] F. Sebastiani. Machine learning in automated text categorization. ACM
Comput. Surveys, 34(1):1–47, 2002.

24

