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Abstract

CACTI 5.0 is the latest major revision of the CACTI tool for modeling the dynamic power, access

time, area, and leakage power of caches and other memories. CACTI 5.0 includes a number of major im-

provements over CACTI 4.0. First, as fabrication technologies enter the deep-submicron era, device and

process parameter scaling has become non-linear. To better model this, the base technology modeling in

CACTI 5.0 has been changed from simple linear scaling of the original CACTI 0.8 micron technology to

models based on the ITRS roadmap. Second, embedded DRAM technology has become available from

some vendors, and there is interest in 3D stacking of commodity DRAM with modern chip multiproces-

sors. As another major enhancement, CACTI 5.0 adds modeling support of DRAM memories. Third,

to support the significant technology modeling changes above and to enable fair comparisons of SRAM
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At the same time, various circuit assumptions have been updated to be more relevant to modern design
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1 Introduction

CACTI 5.0 is the latest major revision of the CACTI tool [1][2][3][4] for modeling the dynamic power, access
time, area, and leakage power of caches and other memories. CACTI has become widely used by computer
architects, both directly and indirectly through other tools such as Wattch.

CACTI 5.0 includes a number of major improvements over CACTI 4.0. First, as fabrication technogies
enter the deep-submicron era, device and process parameter scaling has become non-linear. To better
model this, the base technology modeling in CACTI 5.0 has been changed from simple linear scaling of
the original 0.8 micron technology to models based on the ITRS roadmap. Second, embedded DRAM
technology has become available from some vendors, and there is interest in 3D stacking of commodity
DRAM with modern chip multiprocessors. As another major enhancement, CACTI 5.0 adds modeling
support of DRAM memories. Third, to support the significant technology modeling changes above and
to enable fair comparisons of SRAM and DRAM technology, the CACTI code base has been extensively
rewritten to become more modular. At the same time, various circuit assumptions have been updated to
be more relevant to modern design practice. Finally, numerous bug fixes and small feature improvements
have been made. For example, the cache organization assumed by CACTI is now output graphically by the
web-based server, to assist users in understanding the output generated by CACTI.

The following section gives an overview of these changes, after which they are discussed in detail in
subsequent sections.

2 Changes and Enhancements in Version 5.0

2.1 Organizational Changes

Earlier versions of CACTI (up to version 3.2) made use of a single row predecoder at the center of a memory
bank with the row predecoded signals being driven to the subarrays for decoding. In version 4.0, this
centralized decoding logic was implicitly replaced with distributed decoding logic. Using H-tree distribution,
the address bits were transmitted to the distributed sinks where the decoding took place. However, because
of some inconsistencies in the modeling, it was not clear at what granularity the distributed decoding took
place - whether there was one sink per subarray or 2 or 4 subarrays. There were some other problems with
the CACTI code such as the following:

• The area model was not updated after version 3.2, so the impact on area of moving from centralized
to distributed decoding was not captured. Also, the leakage model did not account for the multi-
ple distributed sinks. The impact of cache access type (normal/serial/fast) [4] on area was also not
captured;

• Number of address bits routed to the subarrays was being computed incorrectly;

• Gate load seen by NAND gate in the 3-8 decode block was being computed incorrectly; and

• There were problems with the logic computing the degree of muxing at the tristate subarray output
drivers.

In version 5.0, we resolve these issues, redefine and clarify what the organizational assumptions of memory
are and remove ambiguity from the modeling. Details about the organization of memory can be found in
Section 3.

2.2 Circuit and Sizing Changes

Earlier versions of CACTI made use of row decoding logic with two stages - the first stage was composed of
3-8 predecode blocks (composed of NAND3 gates) followed by a NOR decode gate and wordline driver. The
number of gates in the row decoding path was kept fixed and the gates were then sized using the method
of logical effort for an effective fanout of 3 per stage. In version 5.0, in addition to the row decoding logic,
we also model the bitline mux decoding logic and the sense-amplifier mux decoding logic. We use the same
circuit structures to model all decoding logic and we base the modeling on the effort described in [5]. We
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use the sizing heuristic described in [5] that has been shown to be good from an energy-delay perspective.
With the new circuit structures and modeling that we use, the limit on maximum number of signals that
can be decoded is increased from 4096 (in version 4.2) to 262144 (in version 5.0). While we do not expect
the number of signals that are decoded to be very high, extending the limit from 4096 helps with exploring
area/delay/power tradeoffs in a more thorough manner for large memories, especially for large DRAMs.
Details of the modeling of decoding logic are described in Section 4.

There are certain problems with the modeling of the H-tree distribution network in version 4.2. An
inverter-driver is placed at branches of the address, datain and dataout H-tree. However, the dataout H-
tree does not model tristate drivers. The output data bits may come from a few subarrays and so the
address needs to be distributed to a few subarrays, however, dynamic power spent in transmitting address
is computed as if all the data comes from a single subarray. The leakage in the drivers of the datain H-tree
is not modeled.

In verson 5.0, we model the H-tree distribution network more rigorously. For the dataout H-tree we
model tristate buffers at each branch. For the address and datain H-trees, instead of assuming inverters at
the branches of the H-tree we assume the use of buffers that may be gated to allow or disallow the passage of
signals and thereby control the dynamic power. We size these drivers based on the methodology described
in [5] which takes the resistance and capacitance of intermediate wires into account during sizing. We also
model the use of repeaters in the H-tree distribution network which are sized according to equations from
[6].

2.3 Technology Changes

Earlier versions of CACTI relied on a complicated way of obtaining device data for the input technology-
node. Computation of access/cycle time and dynamic power were based off device data of a 0.8-micron
process that was scaled to the given technology-node using simple linear scaling principles. Leakage power
calculation, however, made use of Ioff (subthreshold leakage current) values that were based off device data
obtained through BSIM3 parameter extractions. In version 4.2, BSIM3 extraction was carried out for a few
select technology nodes (130/100/70 nm); as a result leakage power estimation was available only for these
select technology nodes.

There are several problems with the above approach of obtaining device data. Using two sets of parame-
ters, one for computation of access/cycle time/dynamic power and another for leakage power, is a convoluted
approach and is hard to maintain. Also, the approach of basing device parameter values off a 0.8-micron
process is not a good one because of several reasons. Device scaling has become quite non-linear in the
deep-submicron era. Device performance targets can no longer be achieved through simple linear scaling
of device parameters. Moreover, it is well-known that physical gate-lengths (according to the ITRS, phys-
ical gate-length is the final, as-etched length of the bottom of the gate electrode) have scaled much more
aggressively [7][8] than what would be projected by simple linear scaling from the 0.8 micron process.

In version 5.0, we adopt a simpler, more evolvable approach of obtaining device data. We use device
data that the ITRS [7] uses to make its projections. The ITRS makes use of the MASTAR software tool
(Model for Assessment of CMOS Technologies and Roadmaps) [9] for computation of device characteristics
of current and future technology nodes. Using MASTAR, device parameters may be obtained for different
technologies such as planar bulk, double gate and Silicon-On-Insulator. MASTAR includes device profile
and result files of each year/technology-node for which the ITRS makes projections and we incorporate the
data from these files into CACTI. These device profiles are based off published industry process data and
industry-consensus targets set by historical trends and system drivers. While it is not necessary that these
device numbers match or would match process numbers of various vendors in an exact manner, they do
come within the same ball-park as can be seen by looking at the Ion-Ioff cloud graphic within the MASTAR
software which shows a scatter plot of various published vendor Ion-Ioff numbers and corresponding ITRS
projections. With this approach of using device data from the ITRS, it also becomes possible to incorporate
device data corresponding to different device types that the ITRS defines such as high performance (HP),
LSTP (Low Standby Power) and Low Operating Power (LOP). More details about the device data used in
CACTI can be found in Section 8.

There are some problems with interconnect modeling of version 4.2 also. Version 4.2 utilizes 2 types of
wires in the delay model, ‘local’ and ‘global’. The local type is used for wordlines and bitlines, while the
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global type is used for all other wires. The resistance per unit length and capacitance per unit length for
these two wire types are also calculated in a convoluted manner. For a given technology, the resistance per
unit length of the local wire is calculated by assuming ideal scaling in all dimensions and using base data of
a 0.8-micron process. The base resistance per unit length for the 0.8-micron process is itself calculated by
assuming copper wires in the base 0.8-micron process and readjusting the sheet resistance value of version
3.2 which assumed aluminium wires. As the resistivity of copper is about 2/3rd that of aluminium, the
sheet resistance of copper was computed to be 2/3rd that of aluminium. However, this implies that the
thickness of metal assumed in versions 3.2 and 4.2 are the same which turns out to be not true. When we
compute sheet resistance for the 0.8-micron process with the thickness of local wire assumed in version 4.2
and assuming a resistivity of 2.2 µohm-cm for copper, the value comes out to be a factor of 3.4 smaller than
that used in version 3.2. In version 4.2, resistance per unit length for the global wire type is calculated to
be smaller than that of local wire type by a factor of 2.04. This factor of 2.04 is calculated based on RC
delays and wire sizes of different wire types in the 2004 ITRS but the underlying assumptions are not known.
Another problem is that even though the delay model makes use of two types of wires, local and global, the
area model makes use of just the local wire type and the pitch calculation of all wires (local type and global
type) are based off the assumed width and spacing for the local wire type; this results in an underestimation
of pitch (and area) occupied by the global wires

Capacitance per unit length calculation of version 4.2 also suffers from certain problems. The capacitance
per unit length values for local and global wire types are assumed to remain constant across technology nodes.
The capacitance per unit length value for local wire type was calculated for a 65 nm process as (2.9/3.6)*230
= 185 fF/m where 230 is the published capacitance per unit length value for an Intel 130 nm process [10], 3.6
is the dielectric constant of the 130 nm process and 2.9 is the dielectric constant of an Intel 65 nm process
[8]. Computing the value of capacitance per unit length in this manner for a 65 nm process ignores the
fact that the fringing component of capacitance remains almost constant across technology-nodes and scales
very slowly [6][11]. Also, assuming that the dielectric constant remains fixed at 2.9 for future technology
nodes ignores the possibility of use of lower-k dielectrics. Capacitance per unit length of the global type
wire of version 4.2 is calculated to be smaller than that of local type wires by a factor of 1.4. This factor of
1.4 is again calculated based on RC delays and wire sizes of different wire types in the 2004 ITRS but the
underlying assumptions again are not known.

In version 5.0, we remove the ambiguity from the interconnect modeling. We use the interconnect
projections made in [6][12] which are based off well-documented simple models of resistance and capacitance.
Because of the difficulty in projecting the values of interconnect properties in an exact manner at future
technology nodes the approach employed in [6][12] was to come up with two sets of projections based
on aggressive and conservative assumptions. The aggressive projections assume aggressive use of low-k
dielectrics, insignificant resistance degradation due to dishing and scattering, and tall wire aspect ratios.
The conservative projections assume limited use of low-k dielectrics, significant resistance degradation due
to dishing and scattering, and smaller wire aspect ratios. We incorporate both sets of projections into
CACTI. We also model 2 types of wires inside CACTI - semi-global and global with properties identical to
that described in [6][12]. More details of the interconnect modeling are described in Section 8.2. Comparison
of area, delay and power of caches obtained using versions 4.2 and 5.0 are presented in Section 11.2.

2.4 DRAM Modeling

One of the major enhancements of version 5.0 is the incorporation of embedded DRAM models for a logic-
based embedded DRAM fabrication process [13][14][15]. In the last few years, embedded DRAM has made
its way into various applications. The IBM POWER4 made use of embedded DRAM in its L3 cache [16].
The main compute chip inside the Blue Gene/L supercomputer also makes use of embedded DRAM [17].
Embedded DRAM has also been used in the CPU used within Sony’s Playstation 2 [18].

In our modeling of embedded DRAM, we leverage the similarity that exists in the global and peripheral
circuitry of embedded SRAM and DRAM and model only their essential differences. We use the same array
organization for embedded DRAM that we used for SRAM. By having a common framework that, in general,
places embedded SRAM and DRAM on an equal footing and emphasizes only their essential differences, we
are able to compare relative tradeoffs between embedded SRAM and DRAM. We describe the modeling of
embedded DRAM in Section 9.
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2.5 Miscellaneous Changes

2.5.1 Optimization Function Change

In version 5.0, we follow a different approach in finding the optimal solution with CACTI. Our new approach
allows users to exercise more control on area, delay and power of the final solution. The optimization is
carried out in the following steps: first, we find all solutions with area that is within a certain percentage
(user-supplied value) of the area of the solution with best area efficiency. We refer to this area constraint
as ‘maxareaconstraint’. Next, from this reduced set of solutions that satisfy the maxareaconstraint, we find
all solutions with access time that is within a certain percentage of the best access time solution (in the
reduced set). We refer to this access time constraint as ‘maxacctimeconstraint’. To the subset of solutions
that results after the application of maxacctimeconstraint, we apply the following optimization function:

optimization-func =
dynamic-energy

min-dynamic-energy
flag-opt-for-dynamic-energy +

dynamic-power

min-dynamic-power
flag-opt-for-dynamic-power +

leak-power

min-leak-power
flag-opt-for-leak-power+

rand-cycle-time

min-rand-cycle-time
flag-opt-for-rand-cycle-time

where dynamic-energy, dynamic-power, leak-power and rand-cycle-time are the dynamic energy, dy-
namic power, leakage power and random cycle time of a solution respectively and min-dynamic-energy,
min-dynamic-power, min-leak-power and min-rand-cycle-time are their minimum (best) values in the subset
of solutions being considered. flag-opt-for-dynamic-energy, flag-opt-for-dynamic-power, flag-opt-for-leak-
power and flag-opt-for-rand-cycle-time are user-specified boolean variables. The new optimization process
allows exploration of the solution space in a controlled manner to arrive at a solution with user-desired
characteristics.

2.5.2 New Gate Area Model

In version 5.0, we introduce a new analytical gate area model from [19]. With the new gate area model
it becomes possible to make the areas of gates sensitive to transistor sizing so that when transistor sizing
changes, the areas also change. With the new gate area model, transistors may get folded when they
are subject to pitch-matching constraints and the area is calculated accordingly. This feature is useful in
capturing differences in area caused due to different pitch-matching constraints that may have to be satisfied,
particularly between SRAM and DRAM.

2.5.3 Wire Model

Version 4.2 models wires using the equivalent circuit model shown in Figure 1. The Elmore delay of this
model is RC/2, however this model underestimates the wire-to-gate component (RwireCgate) of delay. In
version 5.0, we replace this model with the Pi RC model, shown in Figure 2, which has been used in more
recent SRAM modeling efforts [20].

2.5.4 ECC and Redundancy

In order to be able to check and correct soft errors, most memories of today have support for ECC (Error
Correction Code). In version 5.0, we capture the impact of ECC by incorporating a model that captures
the ECC overhead in memory cell and data bus (datain and dataout) area. We incorporate a variable that
specifies the number of data bits per ECC bit. By default, we fix the value of this variable to 8.

In order to improve yield, many memories of today incorporate redundant entities even at the subarray
level. For example, the data array of the 16 MB Intel Xeon L3 cache [21] which has 256 subarrays also
incorporates 32 redundant subarrays. In version 5.0, we incorporate a variable that specifies the number of
mats per redundant mat. By default, we fix the value of this variable to 8.
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Figure 1: L-model of wire used in version 4.2.

Figure 2: Pi RC model of wire used in version 5.0.

2.5.5 Display Changes

To facilitate better understanding of cache organization, version 5.0 can output data/tag array organization
graphically. Figure 3 shows an example of the graphical display generated by version 5.0. The top part of
the figure shows a generic mat organization assumed by CACTI. It is followed by the data and tag array
organization plotted based on array dimensions calculated by CACTI.

3 Data Array Organization

At the highest level, a data array is composed of multiple identical banks (Nbanks). Each bank can be
concurrently accessed and has its own address and data bus. Each bank is composed of multiple identical
subbanks (Nsubbanks) with one subbank being activated per access. Each subbank is composed of multiple
identical mats (Nmats-in-subbank). All mats in a subbank are activated during an access with each mat holding
part of the accessed word in the bank. Each mat itself is a self-contained memory structure composed of
4 identical subarrays and associated predecoding logic. Each subarray is a 2D matrix of memory cells and
associated peripheral circuitry. Figure 4 shows the layout of an array with 4 banks. In this example each
bank is shown to have 4 subbanks and each subbbank is shown to have 4 mats. Not shown in Figure 4,
address and data are assumed to be distributed to the mats on H-tree distribution networks.

The rest of this section further describes details of the array organization assumed in CACTI. Section
3.1 describes the organization of a mat. Section 3.2 describes the organization of the H-tree distribution
networks. Section 3.3 presents the different organizational parameters associated with a data array.

3.1 Mat Organization

Figure 5 shows the high-level composition of all mats. A mat is always composed of 4 subarrays and
associated predecoding/decoding logic which is located at the center of the mat. The predecoding/decoding
logic is shared by all 4 subarrays. The bottom subarrays are mirror images of the top subarrays and the
left hand side subarrays are mirror images of the right hand side ones. Not shown in this figure, by default,
address/datain/dataout signals are assumed to enter the mat in the middle through its sides; alternatively,
under user-control, it may also be specified to assume that they traverse over the memory cells.

Figure 6 shows the high-level composition of a subarray. The subarray consists of a 2D matrix of
the memory cells and associated peripheral circuitry. Figure 7 shows the peripheral circuitry associated
with bitlines of a subarray. After a wordline gets activated, memory cell data gets transferred to bitlines.

8



Figure 3: Example of the graphical display generated by version 5.0.

Figure 4: Layout of an example array with 4 banks. In this example each bank has 4 subbanks and each
subbank has 4 mats.

The bitline data may go through a level of bitline multiplexing before it is sensed by the sense amplifiers.
Depending on the degree of bitline multiplexing, a single sense amplifier may be shared by multiple bitlines.
The data is sensed by the sense amplifiers and then passed to tristate output drivers which drive the dataout
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Figure 5: High-level composition of a mat.

vertical H-tree (described later in this section). An additional level of multiplexing may be required at the
outputs of the sense amplifiers in organizations in which the bitline multiplexing is not sufficient to cull
out the output data or in set-associative caches in which the output word from the correct way needs to
be selected. The select signals that control the multiplexing of the bitline mux and the sense amp mux are
generated by the bitline mux select signals decoder and the sense amp mux select signals decoder respectively.
When the degree of multiplexing after the outputs of the sense amplifiers is simply equal to the associativity
of the cache, the sense amp mux select signal decoder does not have to decode any address bits and instead
simply buffers the input way-select signals that arrive from the tag array.

Figure 6: High-level composition of a subarray.
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Figure 7: Peripheral circuitry associated with bitlines. Not shown in this figure, but the outputs of the
muxes are assumed to be precharged high.

Figure 8: Layout of edge of array to banks H-tree network.

3.2 Routing to Mats

Address and data are routed to and from the mats on H-tree distribution networks. H-tree distribution
networks are used to route address and data and provide uniform access to all the mats in a large memory.1

1Non-uniform cache architectures (NUCA) are currently beyond the scope of CACTI 5.0 but may be supported by future
versions of CACTI.
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Figure 9: Layout of the horizontal H-tree within a bank.

Such a memory organization is interconnect-centric and is well-suited for coping with the trend of worsening
wire delay with respect to device delay. Rather than shipping a bunch of predecoded address signals to
the mats, it makes sense to ship the address bits and decode them at the sinks (mats) [22]. Contemporary
divided wordline architectures which make use of broadcast of global signals suffer from increased wire delay
as memory capacities get larger [20]. Details of a memory organization similar to what we have assumed
may also be found in [23]. For ease of pipelining multiple accesses in the array, separate request and reply
networks are assumed. The request network carries address and datain from the edge of the array to the
mats while the reply network carries dataout from the mats to the edge of the array. The structure of the
request and reply networks is similar; here we discuss the high-level organization of the request network.

The request H-tree network is divided into two networks:

1. The H-tree network from the edge of the array to the edge of a bank; and,

2. The H-tree network from the edge of the bank to the mats.

Figure 8 shows the layout of the request H-tree network between the array edge and the banks. Address
and datain are routed to each bank on this H-tree network and enter each bank at the middle from one of its
sides. The H-tree network from the edge of the bank to the mats is further divided into two 1-dimensional
horizontal and vertical H-tree networks. Figure 9 shows the layout of the horizontal H-tree within a bank
which is located at the middle of the bank while Figure 10 shows the layout of the vertical H-trees within
a bank. The leaves of the horizontal H-tree act as the parent nodes (marked as V0) of the vertical H-trees.
In order to understand the routing of signals on the H-tree networks within a bank, we use an illustrative
example. Consider a bank with the following parameters: 1MB capacity, 256-bit output word, 4 subbanks,
4 mats in each subbank. Looked at together, Figures 9 and 10 can be considered to be the horizontal and
vertical H-trees within such a bank. The number of address bits required to address a word in this bank is
15. As there are 8 subbanks and because each mat in a subbank is activated during an access, the number
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Figure 10: Layout of the vertical H-trees within a bank.

of address bits that need to be distributed to each mat is 12. Because each mat in a subbank produces 64
out of the 256 output bits, the number of datain signals that need to be distributed to each mat is 64. Thus
15 bits of address and 256 bits of datain enter the bank from the left side driven by the H0 node. At the H1
node, the 15 address signals are redriven such that each of the two nodes H1 receive the 15 address signals.
The datain signals split at node H1 and 32 datain signals go to the left H2 node and the other 32 go to the
right H2 node. At each H2 node, the address signals are again redriven such that all of the 4 V0 nodes end
up receiving the 15 address bits. The datain signals again split at each H2 node so that each V0 node ends
up receiving 64 datain bits. These 15 address bits and 64 datain bits then traverse to each mat along the
4 vertical H-trees. In the vertical H-trees, address and datain may either be assumed to be broadcast to all
mats or alternatively, it may be assumed that these signals are appropriately gated so that they are routed
to just the correct subbank that contains the data; by default, we assume the latter scenario.

The reply network H-trees are similar in principle to the request network H-trees. In case of the reply
network vertical H-trees, dataout bits from each mat of a subbank travel on the vertical H-trees to the middle
of the bank where they sink into the reply network horizontal H-tree, and are carried to the edge of the
bank.

3.3 Organizational Parameters of a Data Array

In order to calculate the optimal organization based on a given objective function, like earlier versions of
CACTI [1][2][3][4], each bank is associated with partitioning parameters Ndwl, Ndbl and Nspd, where Ndwl =
Number of segments in a bank wordline, Ndbl = Number of segments in a bank bitline, and Nspd = Number
of sets mapped to each bank wordline.

Unlike earlier versions of CACTI, in CACTI 5.0 Nspd can take on fractional values less than one. This is
useful for small highly-associative caches with large line sizes. Without values of Nspd less than one, memory
mats with huge aspect ratios with only a few word lines but hundreds of bits per word line would be created.
For a pure scratchpad memory (not a cache), Nspd is used to vary the aspect ratio of the memory bank.
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Nsubbanks and Nmats-in-subbank are related to Ndwl and Ndbl as follows:

Nsubbanks =
Ndbl

2
(1)

Nmats-in-subbank =
Ndwl

2
(2)

Figure 11 shows different partitions of the same bank. The partitioning parameters are labeled alongside.
Table 1 lists various organizational parameters associated with a data array.

Figure 11: Different partitions of a bank.

3.4 Comments about Organization of Data Array

The cache organization chosen in the CACTI model is a compromise between many possible different cache
organizations. For example, in some organizations all the data bits could be read out of a single mat. This
could reduce dynamic power but increase routing requirements. On the other hand, organizations exist where
all mats are activated on a request and each produces part of the bits required. This obviously burns a lot
of dynamic power, but has the smallest routing requirements. CACTI chooses a middle ground, where all
the bits for a read come from a single subbank, but multiple mats. Other more complicated organizations,
in which predecoders are shared by two subarrays instead of four, or in which sense amplifiers are shared
between top and bottom subarrays, are also possible, however we try to model a simple common case in
CACTI.

4 Circuit Models and Sizing

In Section 3, the high-level organization of an array was described. In this section, we delve deeper into
logic and circuit design of the different entities. We also present the techniques adopted for sizing different
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Parameter Name Meaning Parameter Type

Nbanks Number of banks User input
Ndwl Number of divisions in a bank wordline Degree of freedom
Ndbl Number of divisions in a bank bitline Degree of freedom
Nspd Number of sets mapped to a bank wordline Degree of freedom
Dbitline-mux Degree of muxing at bitlines Degree of freedom
Nsubbanks Number of subbanks Calculated
Nmats-in-subbank Number of mats in a subbank Calculated
Nsubarr-rows Number of rows in a subarray Calculated
Nsubarr-cols Number of columns in a subarray Calculated
Dout-driv-mux Degree of bitline multiplexing Degree of freedom
Dout-driv-mux Degree of sense amp multiplexing Calculated
Nsubarr-sense-amps Number of sense amplifiers in a subarray Calculated
Nsubarr-out-drivers Number of output drivers in a subarray Calculated
Nbank-addr-bits Number of address bits to a bank Calculated
Nbank-datain-bits Number of datain bits to a mat Calculated
Nbank-dataout-bits Number of dataout bits from a mat Calculated
Nmat-addr-bits Number of address bits to a mat Calculated
Nmat-datain-bits Number of datain bits to a mat Calculated
Nmat-dataout-bits Number of dataout bits from a mat Calculated
Nmat-way-select Number of way-select bits to a mat (for data array of cache) Calculated

Table 1: Organizational parameters of a data array.

circuits. The rest of this section is organized as follows: First, in Section 4.1, we describe the circuit model
that we have assumed for wires. Next in Section 4.2, we describe the general philosophy that we have
adopted for sizing circuits. Next in Section 4.3, we describe the circuit models and sizing techniques for the
different circuits within a mat, and in Section 4.5, we describe them for the circuits used in the different
H-tree networks.

4.1 Wire Modeling

Wires are considered to belong to one of two types: ideal or non-ideal. Ideal wires are assumed to have zero
resistance and capacitance. Non-ideal wires are assumed to have finite resistance and capacitance and are
modeled using a one-section Pi RC model shown in Figure 12. In this figure, Rwire and Cwire for a wire of
length Lwire are given by the following equations:

Rwire = LwireRunit-length-wire (3)

Cwire = LwireCunit-length-wire (4)

Figure 12: One-section Pi RC model that we have assumed for non-ideal wires.

For computation of Runit-length-wire and Cunit-length-wire wires, we use the equations presented in [6][12]
which are reproduced below. Figure 13 shows the accompanying picture for the capacitance model from [6].
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Runit-length-wire = αscatter

ρ

(thickness − barrier − dishing)(width − 2 ∗ barrier)
(5)

Cunit-length-wire = ǫ0(2Mǫhoriz

thickness

spacing
+ 2ǫvert

width

ILDthick

) + fringe(ǫhoriz, ǫvert) (6)

Figure 13: Capacitance model from [6].

4.2 Sizing Philosophy

In general the sizing of circuits depends on various optimization goals: circuits may be sized for minimum
delay, minimum energy-delay product, etc. CACTI’s goal is to model simple representative circuit sizing
applicable to a broad range of common applications. As in earlier SRAM modeling efforts [5][20][24], we
have made extensive use of the method of logical effort in sizing different circuit blocks. Explanation of the
method of logical effort may be found in [25].

4.3 Sizing of Mat Circuits

As described earlier in Section 3.1, a mat is composed of entities such as the predecoding/decoding logic,
memory cell array and bitline peripheral circuitry. We present circuits, models and sizing techniques for
these entities.

4.3.1 Predecoder and Decoder

As discussed in Section 2, new circuit structures have been adopted for the decoding logic. The same decoding
logic circuit structures are utilized for producing the row-decode signals and the select signals of the bitline
and sense amplifier muxes. In the discussion here, we focus on the row-decoding logic. In order to describe
the circuit structures assumed within the different entities of the row-decoding logic, we use an illustrative
example. Figure 14 shows the structure of the row-decoding logic for a subarray with 1024 rows. The
row-decoding logic is composed of two row-predecode blocks and the row-decode gates and drivers. The row-
predecode blocks are responsible for predecoding the address bits and generating predecoded signals. The
row-decode gates and drivers are responsible for decoding the predecoded outputs and driving the wordline
load. Each row-predecode block can predecode a maximum of 9 bits and has a 2-level logic structure. With
1024 rows, the number of address bits required for row-decoding is 10. Figure 15 shows the structure of each
row predecode block for a subarray with 1024 rows. Each row predecode block is responsible for predecoding
5 address bits and each of them generates 32 predecoded output bits. Each predecode block has two levels.
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The first level is composed of one 2-4 decode unit and one 3-8 decode unit. At the second level, the 4 outputs
from the 2-4 decode unit and the 8 outputs from the 3-8 decode unit are combined together using 32 NAND2
gates in order to produce the 32 predecoded outputs. The 32 predecoded outputs from each predecode block
are combined together using the 1024 NAND2 gates to generate the row decode signals.

Figure 14: Structure of the row decoding logic for a subarray with 1024 rows.

Figure 17 shows the circuit paths in the decoding logic for the subarray with 1024 rows. One of the paths
contains the NAND2 of the 2-4 decode unit and the other contains the NAND3 gate of the 3-8 decode unit.
Each path has 3 stages in its path. The branching efforts at the outputs of the first two stages are also
shown in the figure. The predecode output wire is treated as a non-ideal wire with its Rpredec-out-wire and
Cpredec-out-wire computed using the following equations:

Rpredec-output-wire = Lpredec-output-wireRunit-length-wire (7)

Cpredec-output-wire = Lpredec-output-wireCunit-length-wire (8)

where Lpredec-output-wire is the maximum length amongst lengths of predecode output wires.
The sizing of gates in each circuit path is calculated using the method of logical effort. In each of the 3

stages of each circuit path, minimum-size transistors are assumed at the input of the stage and each stage
is sized independent of each other using the method of logical effort. While this is not optimal from a delay
point of view, it is simpler to model and has been found to be a good sizing heuristic from an energy-delay
point of view [5].

In this example that we considered for decoding logic of a subarray with 1024 rows, there were two
different circuit paths, one involving the NAND2 gate and another involving the NAND3 gate. In the
general case, when each predecode block decodes different number of address bits, a maximum of four circuit
paths may exist. When the degree of decoding is low, some of the circuit blocks shown in Figure 14 may not
be required. For example, Figure 16 shows the decoding logic for a subarray with 8 rows. In this case, the
decoding logic simply involves a 3-8 decode unit as shown.
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Figure 15: Structure of the row predecode block for a subarray with 1024 rows.

As mentioned before, the same circuit structures used within the row-decoding logic are also used for
generating the select signals of the bitline and sense amplifier muxes. However, unlike the row-decoding
logic in which the NAND2 decode gates and drivers are assumed to be placed on the side of subarray, the
NAND2 decode gates and drivers are assumed to be placed at the center of the mat near their corresponding
predecode blocks. Also, the resistance/capacitance of the wires between the predecode blocks and the decode
gates are not modeled and are assumed to be zero.

4.3.2 Bitline Peripheral Circuitry

Memory Cell Figure 18 shows the circuit assumed for a 1-ported SRAM cell. The transistors of the
SRAM cell are sized based on the widths specified in [17] and are presented in Section 8.

18



Figure 16: Structure of the row-decoding logic for a subarray with 8 rows. The row-decoding logic is simply
composed of 8 decode gates and drivers.
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Figure 17: Row decoding logic circuit paths for a subarray with 1024 rows. One of the circuit paths contains
the NAND2 gate of the 2-4 decode unit while the other contains the NAND3 gate of the 3-8 decode unit.

Sense Amplifier Figure 19 shows the circuit assumed for a sense amplifier - it’s a clocked latch-based
sense amplifier. When the ENABLE signal is not active, there is no flow of current through the transistors
of the latch. The small-signal circuit model and analysis of this latch-based sense amplifier is presented in
Section 4.4.

Bitline and Sense Amplifier Muxes Figure 20 shows the circuit assumed for the bitline and sense
amplifier muxes. We assume that the mux is implemented using NMOS pass transistors. The use of NMOS
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Figure 18: 1-ported 6T SRAM cell
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Figure 19: Clocked latch-based sense amplifier

transistors implies that the output of the mux needs to be precharged high in order to avoid degraded ones.
We do not attempt to size the transistors in the muxes and instead assume (as in [20]) fixed widths for the
NMOS transistors across all partitions of the array.

Precharge and Equalization Circuitry Figure 21 shows the circuit assumed for precharging and equal-
izing the bitlines. The bitlines are assumed to be precharged to VDD through the PMOS transistors. Just like
the transistors in the bitline and sense amp muxes, we do not attempt to size the precharge and equalization
transistors and instead assume fixed-width transistors across different partitions of the array.
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Figure 20: NMOS-based mux. The output is assumed to be precharged high.

Figure 21: Bitlines precharge and equalization circuitry.

Bitlines Read Path Circuit Model Figure 22 shows the circuit model for the bitline read path between
the memory cell and the sense amplifier mux.

4.4 Sense Amplifier Circuit Model

Figure 19 showed the clocked latch-based sense amplifier that we have assumed. [26] presents analysis of this
circuit and equations for sensing delay under different assumptions. Figure 23 shows one of the small-signal
models presented in [26]. Use of this small-signal model is based on two assumptions:

1. Current has been flowing in the circuit for a sufficiently long time; and

2. The equilibriating device can be modeled as an ideal switch.

For the small-signal model of Figure 23, it has been shown that the delay of the sensing operation is
given by the following equation:

Tsense =
Csense

Gm

ln(
VDD

Vsense

) (9)

Use of this equation for calculation of sense amplifier delay requires that the value of Gmn and Gmp

for the circuit be known. We assume that the transistors in the sense amplifier latch exhibit short-channel
effects. For a transistor that exhibits short-channel effect, we use the following typical current equation [27]
for computation of saturation current:

Idsat =
µeff

2
Cox

W

L
(VGS − VTH)Vdsat (10)
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Figure 22: Circuit model of the bitline read path between the SRAM cell and the sense amplifier input.

Figure 23: Small-signal model of the latch-based sense amplifier (from [26]).

Differentiating the above equation with respect to VGS gives the equation for Gm of the transistor. It
can be seen that because of short-channel effect, Gm comes out to be independent of VGS.
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Gm =
µeff

2
Cox

W

L
Vdsat (11)

4.5 Routing Networks

As described earlier in Section 3.2, address and data are routed to and from the mats on H-tree distribution
networks. First address/data are routed on an H-tree from array edge to bank edge and then on another
H-tree from bank edge to the mats.

4.5.1 Array Edge to Bank Edge H-tree

Figure 8 showed the layout of H-tree distribution of address and data between the array edge and the banks.
This H-tree network is assumed to be composed of inverter-based repeaters. The sizing of the repeaters and
the separation distance between them is determined based on the formulae given in [6]. In order to allow for
energy-delay tradeoffs in the repeater design, we introduce an user-controlled variable “maximum percentage
of delay away from best repeater solution” or ‘maxrepeaterdelayconstraint’ in short. A maxrepeaterdelaycon-
straint of zero results in the best delay repeater solution. For a maxrepeaterdelayconstraint of 10%, the delay
of the path is allowed to get worse by a maximum of 10% with respect to the best delay repeater solution
by reducing the sizing and increasing the separation distance. Thus, with the maxrepeaterdelayconstraint,
limited energy savings are possible at the expense of delay.

4.5.2 Bank Edge to Mat H-tree

Figures 9 and 10 showed layout examples of horizontal and vertical H-trees within a bank, each with 3 nodes.
We assume that drivers are placed at each of the nodes of these H-trees. Figure 24 shows the circuit path and
driver circuit structure of the address/datain H-trees, and Figure 25 shows the circuit path and driver circuit
structure of the vertical dataout H-tree. In order to allow for signal-gating in the address/datain H-trees we
consider multi-stage buffers with a 2-input NAND gate as the input stage. The sizing and number of gates
at each node of the H-trees is computed using the methodology described in [5] which takes into account the
resistance and capacitance of the intermediate wires in the H-tree.

Figure 24: Circuit path of address/datain H-trees within a bank.

One problem with the circuit paths of Figures 24 and 25 is that they start experiencing increased wire
delays as the wire lengths between the drivers start to get long. This also limits the maximum random cycle
time that can be achieved for the array. So, as an alternative to modeling drivers only at H-tree branching
nodes, we also consider an alternative model in which the H-tree circuit paths within a bank are composed of
buffers at regular intervals (i.e. repeaters). With repeaters, the delay through the H-tree paths within a bank
can be reduced at the expense of increased power consumption. Figure 26 shows the different types of buffer
circuits that have been modeled in the H-tree path. At the branches of the H-tree, we again assume buffers
with a NAND gate in the input stage in order to allow for signal-gating whereas in the H-tree segments
between two nodes, we model inverter-based buffers. We again size these buffers according to the buffer
sizing formulae given in [6]. The maxrepeaterdelayconstraint that was described in Section 4.5.1 is also used
here to decide the sizing of the buffers and their separation distance so that delay in these H-trees also may
be traded off for potential energy savings.
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Figure 25: Circuit path of vertical dataout H-trees.

Figure 26: Different types of buffer circuit stages that have been modeled in the H-trees within a bank.

5 Area Modeling

In this section, we describe the area model of a data array. In Section 5.1, we describe the area model that
we have used to find the areas of simple gates. We then present the equations of the area model in Section
5.2.

24



5.1 Gate Area Model

A new area model has been used to estimate the areas of transistors and gates such as inverter, NAND
and NOR gates. This area model is based off a layout model from [19] which describes a fast technique to
estimate standard cell characteristics before the cells are actually laid out. Figure 27 illustrates the layout
model that has been used in [19]. Table 2 shows the process/technology input parameters required by this
gate area model. For a thorough description of the technique, please refer to [19]. Gates with stacked
transistors are assumed to have a layout similar to that described in [1]. When a transistor width exceeds
a certain maximum value (Hn-diff for NMOS and Hp-diff for PMOS in Table 2), the transistor is assumed
to be folded. This maximum value can either be process-specific or context-specific. An example of when a
context-specific width would be used is in case of memory sense amplifiers which typically have to be laid
out at a certain pitch.
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Figure 27: Layout model assumed for gates (from [19]).

Parameter name Meaning

Hn-diff Maximum height of n diffusion of a transistor
Hp-diff Maximum height of p diffusion for a transistor
Hgap-bet-same-diffs Minimum gap between diffusions of the same type
Hgap-bet-opp-diffs Minimum gap between n and p diffusions
Hpower-rail Height of VDD (GND) power rail
Wp Minimum width of poly (poly half-pitch or process feature size)
Sp-p Minimum poly-to-poly spacing
Wc Contact width
Sp-c Minimum poly-to-contact spacing

Table 2: Process/technology input parameters required by the gate area model.

Given the width of an NMOS transistor, Wbefore-folding, the number of folded transistors may be calculated
as follows:

Nfolded-transistors = ⌈
Wbefore-folding

Hn-diff

⌉ (12)

The equation for total diffusion width of Nstacked transistors when they are not folded is given by the
following equation:
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total-diff-width = 2(Wc + 2Sp-c) + NstackedWp + (Nstacked − 1)Sp-p (13)

The equation for total diffusion width of Nstacked transistors when they are folded is given by the following
equation:

total-diff-width = 2Nfolded-transistors(Wc + 2Sp-c) + Nfolded-transistorsNstackedWp +

Nfolded-transistors(Nstacked − 1)Sp-p (14)

Note that Equation 14 is a generalized form of the equations used for calculating diffusion width (for
computation of drain capacitance) in the original CACTI report [1]. Earlier versions of CACTI assumed at
most two folded transistors; in version 5.0, we allow the degree of folding to be greater than 2 and make
the associated layout and area models more general. Note that drain capacitance calculation in version 5.0
makes use of equations similar to 13 and 14 for computation of diffusion width.

The height of a gate is calculated using the following equation:

Hgate = Hn-diff + Hp-diff + Hgap-bet-opp-diffs + 2Hpower-rail (15)

5.2 Area Model Equations

The area of the data array is estimated based on the area occupied by a single bank and the area spent in
routing address and data to the banks. It is assumed that the area spent in routing address and data to the
bank is decided by the pitch of the routed wires. Figures 28 and 29 show two example arrays with 8 and 16
banks respectively; we present equations for the calculation of the areas of these arrays.

Figure 28: Supporting figure for example area calculation of array with 8 banks.

Adata-arr = Hdata-arrWdata-arr (16)

The pitch of wires routed to the banks is given by the following equation:

Pall-wires = PwireNwires-routed-to-banks (17)

For the data array of Figure 28 with 8 banks, the relevant equations are as follows:
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Figure 29: Supporting figure for example area calculation of array with 16 banks.

Wdata-arr = 4Wbank + Pall-wires + 2
Pall-wires

4
(18)

Hdata-arr = 2Hbank +
Pall-wires

2
(19)

Nwires-routed-to-banks = 8(Nbank-addr-bits + Nbank-datain-bits + Nbank-dataout-bits +

Nway-select-signals) (20)

For the data array of Figure 29 with 16 banks, the relevant equations are as follows:

Hdata-arr = 4Hbank + Pall-wires + 2
Pall-wires

4
(21)

Wdata-arr = 4Wbank +
Pall-wires

2
+ 2

Pall-wires

8
(22)

Nwires-routed-to-banks = 16(Nbank-addr-bits + Nbank-datain-bits + Nbank-dataout-bits +

Nway-select-signals) (23)

The banks in a data array are assumed to be placed in such a way that the number of banks in the
horizontal direction is always either equal to or twice the number of banks in the vertical direction. The
height and width of a bank is calculated by computing the area occupied by the mats and the area occupied
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by the routing resources of the horizontal and vertical H-tree networks within a bank. We again use an
example to illustrate the calculations. Figures 9 and 10 showed the layouts of horizontal and vertical H-trees
within a bank. The horizontal and vertical H-trees were each shown to have three branching nodes (H0, H1
and H2; V0, V1 and V2). Combined together, these horizontal and vertical H-trees may be considered as
H-trees within a bank with 4 subbanks and 4 mats in each subbank. We present area model equations for
such a bank.

Abank = HbankWbank (24)

In version 5.0, as described in Section 4.5, for the H-trees within a bank we assume that drivers are placed
either only at the branching nodes of the H-trees or that there are buffers at regular intervals in the H-tree
segments. When drivers are present only at the branching nodes of the vertical H-trees within a bank, we
consider two alternative models in accounting for area overhead of the vertical H-trees. In the first model,
we consider that wires of the vertical H-trees may traverse over memory cell area; in this case, the area
overhead caused by the vertical H-trees is in terms of area occupied by drivers which are placed between
the mats. In the second model, we do not assume that the wires traverse over the memory cell area and
instead assume that they occupy area besides the mats. The second model is also applicable when there are
buffers at regular intervals in the H-tree segments. The equations that we present next for area calculation
of a bank assume the second model i.e. the wires of the vertical H-trees are assumed to not pass over the
memory cell area. The equations for area calculation under the assumption that the vertical H-tree wires
go over the memory cell area are quite similar. For our example bank with 4 subbanks and 4 mats in each
subbank, the height of the bank is calculated to be equal to the sum of heights of all subbanks plus the
height of the routing resources of the horizontal H-tree.

Hbank = 4Hmat + Hhor-htree (25)

The width of the bank is calculated to be equal to the sum of widths of all mats in a subbank plus the
width of the routing resources of the vertical H-trees.

Wbank = 4(Wmat + Wver-htree) (26)

The height of the horizontal H-tree is calculated as the height of the area occupied by the wires in the
H-tree. These wires include the address, way-select, datain, and dataout signals. Figure 30 illustrates the
layout that we assume for the wires of the horizontal H-tree. We assume that the wires are laid out using a
single layer of metal. The height of the area occupied by the wires can be calculated simply by finding the
total pitch of all wires in the horizontal H-tree. Figure 31 illustrates the layout style assumed for the vertical
H-tree wires, and is similar to that assumed for the horizontal H-tree wires. Again the width of the area
occupied by a vertical H-tree can be calculated by finding the total pitch of all wires in the vertical H-tree.

Hhor-htree = Phor-htree-wires (27)

Wver-htree = Pver-htree-wires (28)

Figure 30: Layout assumed for wires of the horizontal H-tree within a bank.
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Figure 31: Layout assumed for wires of the vertical H-tree within a bank.

The height and width of a mat are estimated using the following equations. Figure 32 shows the layout of
a mat and illustrates the assumptions made in the following equations. We assume that half of the address,
way-select, datain and dataout signals enter the mat from its left and the other half enter from the right.

Wmat =
HmatWmat-initial + Amat-center-circuitry

Winitial-mat

(29)

Hmat = 2Hsubarr-mem-cell-area + Hmat-non-cell-area (30)

Winitial-mat = 2Wsubarr-mem-cell-area + Wmat-non-cell-area (31)

Amat-center-circuitry = Arow-predec-block-1 + Arow-predec-block-2

+Abit-mux-predec-block-1 + Abit-mux-predec-block-2

+Asenseamp-mux-predec-block-1 + Asenseamp-mux-predec-block-2 +

Abit-mux-dec-drivers + Asenseamp-mux-dec-drivers (32)

Hsubarr−mem−cell−area = Nsubarr-rowsHmem-cell (33)

Wsubarr−mem−cell−area = Nsubarr-colsWmem-cell + ⌊
Nsubarr-cols

Nmem-cells-per-wordline-stitch

⌋Wwordline-stitch +

⌈
Nsubarr-cols

Nbits-per-ecc-bit

⌉Wmem-cell (34)

Hmat-non-cell-area = 2Hsubarr-bitline-peri-circ + Hhor-wires-within-mat (35)

Hhor-wires-within-mat = Hbit-mux-sel-wires + Hsenseamp-mux-sel-wires + Hwrite-mux-sel-wires +

Hnumber-mat-addr-bits

2
+

Hnumber-way-select-signals

2
+

Hnumber-mat-datain-bits

2
+

Hnumber-mat-dataout-bits

2
(36)

Wmat-non-cell-area = max(2Wsubarr-row-decoder, Wrow-predec-out-wires) (37)

Hsubarr-bitline-peri-cir = Hbit-mux + Hsenseamp-mux + Hbitline-pre-eq + Hwrite-driver + Hwrite-mux (38)

Note that the width of the mat is computed as in Equation 30 because we optimistically assume that the
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Figure 32: Layout of a mat.

circuitry laid out at the center of the mat does not lead to white space in the mat. The areas of lower-level
circuit blocks such as the bitline and sense amplifier muxes and write drivers are calculated using the area
model that was described in Section 5.1 while taking into account pitch-matching constraints.

When redundancy in mats is also considered, the following area contribution due to redundant mats is
added to the area of the data array computed in Equation 16.

Aredundant-mats = Nredundant-matsAmat (39)

Nredundant-mats = ⌊
Nbanks

Nmats

Nmats-per-redundant-mat⌋ (40)

where Nmats-per-redundant-mat is the number of mats per redundant mat that and is set to 8 by default.
The final height of the data array is readjusted under the optimistic assumption that the redundant mats
do not cause any white space in the data array.

Hdata-arr =
Adata-arr

Wdata-arr

(41)

6 Delay Modeling

In this section we present equations used in CACTI to calculate access time and random cycle time of a
memory array.

6.1 Access Time Equations

Taccess = Trequest-network + Tmat + Treply-network (42)

Trequest-network = Tarr-edge-to-bank-edge-htree + Tbank-addr-din-hor-htree + Tbank-addr-din-ver-htree (43)

Tmat = max(Trow-decoder-path, Tbit-mux-decoder-path, Tsense-amp-decoder-path) (44)

Treply-network = Tbank-dout-ver-htree + Tbank-dout-hor-htree + Tbank-edge-to-arr-edge (45)

The critical path in the mat usually involves the wordline and bitline access. However, Equation 44 also
must include a max with the delays of the bitline mux decoder and sense amp mux decoder paths as these
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circuits operate in parallel with the row decoding logic, and in general may act as the critical path for certain
partitions of the data array. Usually when that happens, the number of rows in the subarray would be too
few and the partitions would not get selected.

Trow-decoder-path = Trow-predec + Trow-dec-driver + Tbitline + Tsense-amp (46)

Tbit-mux-decoder-path = Tbit-mux-predec + Tbit-mux-dec-driver + Tsense-amp (47)

Tsenseamp-mux-decoder-path = Tsenseamp-mux-predec + Tsenseamp-mux-dec-driver (48)

Trow-predec = max(Trow-predec-blk-1-nand2-path, Trow-predec-blk-1-nand3-path,

Trow-predec-blk-2-nand2-path, Trow-predec-blk-2-nand3-path) (49)

Tbit-mux-sel-predec = max(Tbit-mux-sel-predec-blk-1-nand2-path, Tbit-mux-sel-predec-blk-1-nand3-path,

Tbit-mux-sel-predec-blk-2-nand2-path, Tbit-mux-sel-predec-blk-2-nand3-path) (50)

Tsenseamp-mux-sel-predec = max(Tsenseamp-mux-sel-predec-blk-1-nand2-path, Tsenseamp-mux-sel-predec-blk-1-nand3-path,

Tsenseamp-mux-sel-predec-blk-2-nand2-path, Tsenseamp-mux-sel-predec-blk-2-nand3-path) (51)

The calculation for bitline delay is based on the model described in [28]. The model considers the effect
of the wordline rise time.

Tbitline =

{ √

2Tstep
VDD−VTH

m
if Tstep <= 0.5V DD−VTH

m

Tstep + VDD−VTH

2m
if Tstep > 0.5V DD−VTH

m

(52)

Tstep = (Rcell-pull-down + Rcell-acc)(Cbitline + 2Cdrain-bit-mux + Ciso + Csense + Cdrain-senseamp-mux) +

Rbitline(
Cbitline

2
+ 2Cdrain-bit-mux + Ciso + Csense + Cdrain-senseamp-mux) +

Rbit-mux(Cdrain-bit-mux + Ciso + Csense + Cdrain-senseamp-mux) + Riso(Ciso + Csense +

Cdrain-senseamp-mux) (53)

m =
VDD − VTH

2Tstep

(54)

The calculation of sense amplifier delay makes use of the model described in [26].

Tsense = τln(
VDD

Vsense

) (55)

τ =
Csense

Gm

(56)

6.2 Random Cycle Time Equations

Typically, the random cycle time of an SRAM would be limited by wordline and bitline delays. In order to
come up with an equation for lower bound on random cycle time, we consider that the SRAM is potentially
pipelineable with placement of latches at appropriate locations.

Trandom-cycle = max(Trow-dec-driver + Tbitline + Tsense-amp + Twordline-reset +

max(Tbitline-precharge, Tbit-mux-out-precharge, Tsenseamp-mux-out-precharge),

Tbetween-buffers-bank-hor-htree, Tbetween-buffers-bank-ver-dataout-htree, Trow-predec-blk,

Tbit-mux-predec-blk + Tbit-mux-dec-driver,

Tsenseamp-mux-predec-blk + Tsenseamp-mux-dec-driver) (57)
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We come up with an estimate for the wordline reset delay by assuming that the wordline discharges
through the NMOS transistor of the final inverter in the wordline driver.

Twordline-reset = ln(
VDD − 0.1VDD

VDD
)(Rfinal-inv-wordline-driverCwordline +

Rfinal-inv-wordline-driverCwordline

2
)

Tbitline-precharge = ln(
VDD − 0.1Vbitline-swing

VDD − Vbitline-swing

)(Rbit-preCbitline +
RbitlineCbitline

2
) (58)

Tbit-mux-out-precharge = ln(
VDD − 0.1Vbitline-swing

VDD − Vbitline-swing

)(Rbit-mux-preCbit-mux-out +

Rbit-mux-outCbit-mux-out

2
) (59)

Tsenseamp-mux-out-precharge = ln(
VDD − 0.1Vbitline-swing

VDD − Vbitline-swing

)(Rsenseamp-mux-preCsenseamp-mux-out +

Rsenseamp-mux-outCsenseamp-mux-out

2
) (60)

7 Power Modeling

In this section, we present the equations used in CACTI to calculate dynamic power and leakage power of a
data array. Here we present equations for dynamic read power; the equations for dynamic write power are
similar.

Pread =
Edyn-read

Trandom-cycle

+ Pleak (61)

where Edyn-read is the dynamic read energy per access of the array, Trandom-cycle is the random cycle time
of the array and Pleak is the leakage power in the array.

7.1 Calculation of Dynamic Energy

7.1.1 Dynamic Energy Calculation Example for a CMOS Gate Stage

We present a representative example to illustrate how we calculate the dynamic energy for a CMOS gate
stage. Figure 33 shows a CMOS gate stage composed of a NAND2 gate followed by an inverter which drives
the load. The energy consumption of this circuit is given by:

Edyn = Edyn-nand2 + Edyn-inv (62)

Edyn-nand2 = 0.5(Cintrinsic-nand2 + Cgate-inv)VDD2 (63)

Edyn-inv = 0.5(Cintrinsic-inv + Cgate-load-next-stage + Cwire-load)VDD2 (64)

Cinstrinsic-nand2 = draincap(nand2, Wnand-pmos, Wnand-nmos) (65)

Cgate-inv = gatecap(inv, Winv-pmos, Winv-nmos) (66)

Cdrain-inv = draincap(inv, Winv-pmos, Winv-nmos) (67)

The multiplicative factor of 0.5 in the equations of Edyn-nand2 and Edyn-inv assumes consecutive charging
and discharging cycles for each gate. Energy is consumed only during the charging cycle of a gate when its
output goes from low to high.
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Figure 33: A simple CMOS gate stage composed of a NAND2 followed by an inverter which is driving a
load.

7.1.2 Dynamic Energy Equations

The dynamic energy per read access consumed in the data array is the sum of the dynamic energy consumed
in the mats and that consumed in the request and reply networks during a read access.

Edyn-read = Edyn-read-request-network + Edyn-read-mats + Edyn-read-reply-network (68)

Edyn-read-mats = (Edyn-predec-blks + Edyn-decoder-drivers + Edyn-read-bitlines +

Esenseamps)NbanksNsubbanksNmats-in-subbank (69)

Edyn-predec-blks = Edyn-row-predec-blks + Edyn-bit-mux-predec-blks +

Edyn-senseamp-mux-predec-blks (70)

Edyn-row-predec-blks = Edyn-row-predec-blk-1-nand2-path + Edyn-row-predec-blk-1-nand3-path +

Edyn-row-predec-blk-2-nand2-path + Edyn-row-predec-blk-2-nand3-path (71)

Edyn-bit-mux-predec-blks = Edyn-bit-mux-predec-blk-1-nand2-path + Edyn-bit-mux-predec-blk-1-nand3-path +

Edyn-bit-mux-predec-blk-2-nand2-path + Edyn-bit-mux-predec-blk-2-nand3-path (72)

Edyn-senseamp-mux-predec-blks = Edyn-senseampmux-predec-blk-1-nand2-path +

Edyn-senseamp-mux-predec-blk-1-nand3-path +

Edyn-senseamp-mux-predec-blk-2-nand2-path +

Edyn-senseamp-mux-predec-blk-2-nand3-path (73)

Edyn-decoder-drivers = Edyn-row-decoder-drivers + Edyn-bitmux-decoder-driver +

Edyn-senseampmux-decoder-driver (74)

Edyn-row-decoder-drivers = 4Edyn-mat-row-decoder-driver (75)

Edyn-read-bitlines = Nsubarr-colsEdyn-read-bitline (76)

Edyn-read-bitline = CbitlineVbitline-swingVDD (77)

Vbitline-swing = 2Vsense (78)

Edyn-read-request-network = Edyn-read-arr-edge-to-bank-edge-request-htree + Edyn-read-bank-hor-request-htree +

Edyn-read-bank-ver-request-htree (79)

Edyn-read-reply-network = Edyn-read-bank-ver-reply-htree + Edyn-read-bank-hor-reply-htree +

Edyn-read-bank-edge-to-arr-edge-reply-htree (80)

Equation 79 assumes that the swing in the bitlines rises up to twice the signal that can be detected by
the sense amplifier [20]. Edyn-read-request-network and Edyn-read-reply-network are calculated by determining the
energy consumed in the wires/drivers/repeaters of the H-trees. The energy consumption in the horizontal
and vertical H-trees of the request network within a bank for the example 1MB bank discussed in Section
4.5 with 4 subbanks and 4 mats in each subbank may be written as follows (referring to Figures 9 and 10 in
Section 3.2):

Edyn-read-bank-hor-request-htree = Edyn-read-req-network-H0-H1 + Edyn-read-req-network-H1-H2 +

Edyn-read-req-network-read-H2-V0 (81)

Edyn-read-bank-ver-request-htree = Edyn-read-req-network-V0-V1 + Edyn-read-req-network-V1-V2 (82)
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The energy consumed in the H-tree segments depends on the location of the segment in the H-tree
and the number of signals that are transmitted in each segment. In the request network, during a read
access, between nodes H0 and H1, a total of 15 (address) signals are transmitted; between node H1 and
both H2 nodes, a total of 30 (address) signals are transmitted; between all H2 and V0 nodes, a total of 60
(address) signals are transmitted. In the vertical H-tree, we assume signal-gating so that the address bits are
transmitted to the mats of a single subbank only; thus, between all V0 and V1 nodes, a total of 56 (address)
signals are transmitted; between all V1 and V2 nodes, a total of 52 (address) signals are transmitted.

Edyn-read-req-network-H0-H1 = (15)EH0-H1-1-bit (83)

Edyn-read-req-network-H1-H2 = (30)EH1-H2-1-bit (84)

Edyn-read-req-network-H2-V0 = (60)EH2-V0-1-bit (85)

Edyn-read-req-network-V0-V1 = (56)EV0-V1-1-bit (86)

Edyn-read-req-network-V1-V2 = (52)EV1-V2-1-bit (87)

The equations for energy consumed in the H-trees of the reply network are similar in form to the above
equations. Also, the equations for dynamic energy per write access are similar to the ones that have been
presented here for read access. In case of write access, the datain bits are written into the memory cells at
full swing of the bitlines.

7.2 Calculation of Leakage Power

We estimate the standby leakage power consumed in the array. Our leakage power estimation does not
consider the use of any leakage control mechanism in the array. We make use of the methodology presented
in [29][24] to simply provide an estimate of the drain-to-source subthreshold leakage current for all transistors
that are off with VDD applied across their drain and source.

7.2.1 Leakage Power Calculation for CMOS gates

We illustrate our methodology of calculation of leakage power for the CMOS gates that are used in our
modeling. Figure 34 illustrates the leakage power calculation for an inverter. When the input is low and
the output is high, there is subthreshold leakage through the NMOS transistor whereas when the input is
high and the output is low, there is subthreshold leakage current through the PMOS transistor. In order to
simplify our modeling, we come up with a single average leakage power number for each gate. Thus for the
inverter, we calculate leakage as follows:

Pleak-inv =
Winv-pmosIoff-pmos + Winv-nmosIoff-nmos

2
(88)

where Ioff-pmos is the subthreshold current per unit width for the PMOS transistor and Ioff-nmos is the
subthreshold current per unit width for the NMOS transistor.

Figure 35 illustrates the leakage power calculation for a NAND2 gate. When both inputs are high, the
output is low and for this condition there is leakage through the PMOS transistors as shown. When either
of the inputs is low, the output is high and there is leakage through the NMOS transistors. Because of the
stacked NMOS transistors [29][24], this leakage depends on which input(s) is low. The leakage is least when
both inputs are low. Under standby operating conditions, for NAND2 and NAND3 gates in the decoding
logic within the mats, we assume that the output of each NAND is high (deactivated) with both of its inputs
low. Thus we attribute a leakage number to the NAND gate based on the leakage through its stacked NMOS
transistors when both inputs are low. We consider the reduction in leakage due to the effect of stacked
transistors and calculate leakage for the NAND2 gate as follows:

Pleak-nand2 = Winv-nmosIoff-nmosSFnand2 (89)

where SFnand2 is the stacking fraction for reduction in leakage due to stacking.
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Figure 34: Leakage in an inverter.

Figure 35: Leakage in a NAND2 gate.

7.2.2 Leakage Power Equations

Most of the leakage power equations are similar to the dynamic energy equations in form.

Pleak = Pleak-request-network + Pleak-mats + Pleak-reply-network (90)

Pleak-mats = (Pleak-mem-cells + Pleak-predec-blks + Pleak-decoder-drivers +

Pleak-senseamps)NbanksNsubbanksNmats-in-subbank (91)

Pleak-mem-cells = Nsubarr-rowsNsubarr-colsPmem-cell (92)

Pleak-decoder-drivers = Pleak-row-decoder-drivers + Pleak-bitmux-decoder-driver +

Pleak-senseampmux-decoder-driver (93)

Pleak-row-decoder-drivers = 4Nsubarr-rowsPleak-row-decoder-driver (94)

Pleak-request-network = Pleak-arr-edge-to-bank-edge-request-htree + Pleak-bank-hor-request-htree +

Pleak-bank-ver-request-htree (95)

Pleak-reply-network = Pdyn-ver-reply-htree + Pdyn-hor-reply-htree + Pdyn-bank-edge-to-arr-edge-reply-htree (96)

Figure 36 shows the subthreshold leakage paths in an SRAM cell when it is in idle/standby state [29][24].
The leakage power contributed by a single memory cell may be given by:

Pmem-cell = VDDImem-cell (97)

Imem-cell = Ip1 + In2 + In3 (98)

Ip1 = Wp1Ioff-pmos (99)

In2 = Wn2Ioff-nmos (100)

In3 = Wn2Ioff-nmos (101)
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Figure 36: Leakage paths in a memory cell in idle state. BIT and BITB are precharged to VDD.
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Figure 37: Leakage paths in a sense amplifier in idle state.

Figure 37 shows the subthreshold leakage paths in a sense amplifier during an idle/standby cycle [29][24].

36



8 Technology Modeling

Version 5.0 makes use of technology projections from the ITRS [7] for device data and projections from [6][12]
for wire data. Currently we look at four ITRS technology nodes (we use MPU/ASIC metal 1 half-pitch to
define the technology node) – 90, 65, 45 and 32 nm – which cover years 2004 to 2013 in the ITRS. Section
8.1 gives more details about the device data and modeling and Section 8.2 gives more details about the wire
data and modeling.

8.1 Devices

Table 3 shows the characteristics of transistors modeled by the ITRS that are incorporated within CACTI.
We include data for the three device types that the ITRS defines - High Performance (HP), Low Standby
Power (LSTP) and Low Operating Power (LOP). The HP transistors are state-of-the-art fast transistors
with short gate lengths, thin gate oxides, low Vth and low VDD whose CV/I is targeted to improve by
17% every year. As a consequence of their high on-currents, these transistors tend to be very leaky. The
LSTP transistors on the other hand are transistors with longer gate lengths, thicker gate oxides, higher Vth

and higher VDD. The gate-lengths of the LSTP transistors lag the HP transistors by 4 years. The LSTP
transistors trade off high on-currents for maintenance of an almost constant low leakage of 10 pA across the
technology nodes. The LOP transistors have performance that lie in between the HP and LSTP transistors.
They use the lowest VDD to control the operating power and their gate-lengths lag those of HP transistors
by 2 years. The CV/I of the LSTP and LOP transistors improves by about 14% every year.

Parameter Meaning Units

VDD Voltage applied between drain and source, gate and source V
Lgate physical length of the gate micron
Vth Saturation threshold voltage V
Meff Effective mobility cm2/V s
Vdsat Drain saturation voltage V
Cox-elec Capacitance of gate-oxide in inversion F/µ2

Cgd-overlap Gate to drain overlap capacitance F/µ
Cgd-fringe Gate to drain fringing capacitance F/µ
Cj-bottom Bottom Junction capacitance F/µ2

Cj-sidewall Sidewall junction capacitance F/µ2

Ion On-current (saturation) A/µ
Ioff Channel leakage current (for Vgate = 0 and Vdrain = VDD) A/µ

Table 3: Technology characteristics of transistors used in the model.

Technology-node 90 nm 65 nm 45 nm 32 nm

Lgate (nm) 37/75/53 25/45/32 18/28/22 13/20/16
EOT (Equivalent oxide thickness) (nm) 1.2/2.2/1.5 1.1/1.9/1.2 0.65/1.4/0/9 0.5/1.1/0.8
VDD (V) 1.2/1.2/0.9 1.1/1.2/0.8 1/1.1/0.7 0.9/1/0.7
Vth (mV) 237/525/318 195/554/315 181/532/256 137/513/242
Ion (µA/µ) 1077/465/550 1197/519/573 2047/666/749 2496/684/890
Ioff (nA/µ) 32.4/8E-3/2.0 196/9E-3/4.9 280/10E-3/4.0 1390/21E-3/65
Cox-elec (fF/µ2 ) 17.9/12.2/16.0 18.8/13.6/18.7 37.7/20.1/28.2 45.8/22.9/31.2
τ (Intrinsic switching delay) (ps) 1.01/2.98/1.78 0.64/1.97/1.17 0.4/1.33/0.79 0.25/0.9/0.53
FO1 delay (ps) 7.3/25.1/19.9 4.8/18.1/10.0 2.75/11.5/6.2 1.63/7.13/3.51

Table 4: Values of key technology metrics of HP, LSTP and LOP NMOS transistors for four technology-nodes
from the 2005 ITRS[7].

Table 4 shows values of key technology metrics of the HP, LSTP and LOP NMOS transistors for four
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technology nodes. The data is obtained from MASTAR [9] files. According to the 2003 ITRS2, the years
2004, 2007, 2010 and 2013 correspond to 90, 65, 45 and 32 nm technology-nodes. Because the 2005 ITRS
does not include device data for the 90 nm technology-node (year 2004), we obtain this data using MASTAR
and targeting the appropriate CV/I. Note that all values shown are for planar bulk devices. The ITRS
actually makes the assumption that planar high-performance bulk devices reach their limits of practical
scaling in 2012 and therefore includes multiple parallel paths of scaling for SOI and multiple-gate MOS
transistors such as FinFETs starting from the year 2008 which run in parallel with conventional bulk CMOS
scaling. We however use MASTAR to meet the target CV/I of the 32 nm node with planar bulk devices. For
all technology nodes, the overlap capacitance value has been assumed to be 20% of ideal (no overlap) gate
capacitance. The bottom junction capacitance value for the planar bulk CMOS transistors has been assumed
to be 1fF/µ2, which is the value that MASTAR assumes. As MASTAR does not model sidewall capacitance,
we compute values for sidewall capacitance in the following manner: we use process data provided at the
MOSIS website [30] for TSMC and IBM 130/180/250 nm processes and compute average of the ratios of
sidewall-to-bottom junction capacitances for these processes. We observe that average error in using this
average value for projecting sidewall capacitance given bottom junction capacitance is less than 10%. We
use this average value in projecting sidewall capacitances for the ITRS processes.

We calculate the drive resistance of a transistor during switching as follows:

Ron =
VDD

Ieff

(102)

The effective drive current is calculated using the following formula described in [31][32]:

Ieff =
IH + IL

2
(103)

where IH = IDS (VGS = VDD, VDS = VDD
2

) and IL = IDS (VGS = VDD
2

, VDS = VDD).
For PMOS transistors, we find the width of the transistor that produces the same Ioff as a unit-width

NMOS transistor. Using this width, we compute the PMOS effective drive current (Ieff-pmos) and the PMOS-
to-NMOS sizing ratio that is used during the application of the method of logical effort:

Spmos-to-nmos-logical-effort =
Ieff-nmos

Ieff-pmos

(104)

Table 5 shows technology data that we have assumed for an SRAM cell.

Parameter Value Reference

Asram-cell (Area of an SRAM cell) (µ2) 146F 2 [17]
Wsram-cell-acc (Width of SRAM cell access transistor) (µ) 1.31F [17]
Wsram-cell-pd (Width of SRAM cell pull-down transistor) (µ) 1.23F [17]
Wsram-cell-pu (Width of SRAM cell pull-up transistor) (µ) 2.08 [17]
ARsram-cell (Aspect ratio of the cell) 1.46 [17]

Table 5: Technology data assumed for an SRAM cell.

It may be useful to know that while currently we provide device data for just the three ITRS device types,
it is not difficult to incorporate device data from other sources into CACTI. Thus, published data of various
industrial fabrication processes or data from sources such as [33] may also be utilized. Also, by making use
of MASTAR, it is possible to obtain device data for scaling models and assumptions that are different from
those of the ITRS. As an example, while the ITRS device data for its High Performance device type is based
on an improvement in device CV/I of 17 % every year, one may obtain alternative device data by targeting
a different CV/I improvement and/or Ioff. Another example is to start off with the ITRS High Performance
device type and use MASTAR to come up with higher Vt or longer channel variations of the base device.

2Because of ambiguity associated with the “technology-node” term, the 2005 ITRS has discontinued the practice of using
the term, however, for the sake of convenience, we continue to use it in CACTI.
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8.2 Wires

Wire characteristics in CACTI are based on the projections made in [6][12]. The approach followed in [6][12]
is to consider both aggressive (optimistic) and conservative (pessimistic) assumptions regarding interconnect
technology. The aggressive projections assume aggressive use of low-k dielectrics, insignificant resistance
degradation due to dishing and scattering, and tall wire aspect ratios. The conservative projections assume
limited use of low-k dielectrics, significant resistance degradation due to dishing and scattering, and smaller
wire aspect ratios. For these assumptions, [6][12] looks at two types of wires, semi-global and global. Wires
of semi-global type have a pitch of 4F (F = Feature size) whereas wires of global type have a pitch of 8F. We
incorporate the properties of both these wire types into CACTI. The values of the semi-global and global
wire characteristics under aggressive and conservative assumptions are presented in Table 6 for 90/65/45/32
technology nodes. The resistance per unit length and capacitance per unit length values are calculated based
off Equations 5 and 6 respectively. For the capacitance per unit micron calculation, we assume a Miller factor
of 1.5 as a “realistic worst-case” value [11]. For material strength, we assume that low-k dielectrics are not
utilized between wire layers as suggested in [11].

Technology-node 90 nm 65 nm 45 nm 32 nm

Common wire characteristics (aggressive/conservative)
ρ(mΩ.µ) 0.022/0.022 0.018/0.022 0.018/0.022 0.018/0.022
ǫrforCc 2.709/3.038 2.303/2.734 1.958/2.46 1.664/2.214

Semi-global wire properties (aggressive/conservative)
Pitch(nm) 360 280 180 128
Aspect ratio 2.4/2.0 2.7/2.0 3.0/2.0 3.0/2.0
Thickness (nm) 432/400 351/280 270/200 192/140
ILD (nm) 480/480 405/405 315/315 210/210
Miller factor 1.5/1.5 1.5/1.5 1.5/1.5 1.5/1.5
Barrier (nm) 10/8 0/6 0/4 0/3
Dishing (%) 0/0 0/0 0/0 0/0
αscatter 1/1 1/1 1/1 1/1
Resistance per unit length (Ω/µ) 0.33/0.38 0.34/0.73 0.74/1.52 1.46/3.03
Capacitance per unit length (fF/µ) 0.314/0.302 0.302/0.282 0.291/0.265 0.269/0.254

Global wire properties (aggressive/conservative)
Pitch(nm) 800 560 400 280
Aspect ratio 2.7/2.2 2.8/2.2 3.0/2.2 3.0/2.2
Thickness (nm) 1080/880 784/616 600/440 420/308
ILD (nm) 960/1100 810/770 630/550 420/385
Miller factor 1.5 1.5 1.5 1.5
Barrier (nm) 10/8 0/6 0/4 0/3
Dishing (%) 0/10 0/10 0/10 0/10
αscatter 1/1 1/1 1/1 1/1
Resistance per unit length (Ω/µ) 0.067/0.09 0.095/0.17 0.19/0.36 0.37/0.72
Capacitance per unit length (fF/µ) 0.335/0.315 0.308/0.298 0.291/0.281 0.269/0.267

Table 6: Aggressive and conservation wire projections from [6].

8.3 Technology Exploration

As an additional feature in version 5.0, we allow the user to map different device and wire types to different
parts of the array. We divide the devices in the array into two parts: one, devices used in the memory cells
and wordline drivers, and two, the rest of the peripheral and global circuitry. Different device types such as
the ITRS HP, LSTP, LOP or other user-added device types may be mapped to the devices in the two parts
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of the array. 3 We divide the wires in the array also into two parts, wires inside mats and wires outside
mats. Different wire types such as the semi-global or global wire types or other user-defined wire types may
be mapped to the wires inside and outside mats.

9 Embedded DRAM Modeling

In this section, we describe our modeling of embedded DRAM.

9.1 Embedded DRAM Modeling Philosophy

We model embedded DRAM and assume a logic-based embedded DRAM fabrication process [13][14][15]. A
logic-based embedded DRAM process typically means that DRAM has been embedded into the logic process
without affecting the characteristics of the original process much [37]. In our modeling of embedded DRAM,
we leverage the similarity that exists in the global and peripheral circuitry of embedded SRAM and DRAM
and model only their essential differences. We also use the same array organization for embedded DRAM
that we used for SRAM. By having a common framework that, in general, places embedded SRAM and
DRAM on an equal footing and emphasizes only their essential differences, we would be able to compare
relative tradeoffs involving embedded SRAM and DRAM.

We capture the following essential differences between embedded DRAM and SRAM in our area, delay
and power models:

9.1.1 Cell

The most essential difference between SRAM and DRAM is in their storage cell. While SRAM typically
makes use of a 6T cell and the principle of positive feedback to store data, DRAM typically makes use of
a 1T-1C cell and relies on the charge-storing capability of a capacitor. Because it makes use of only one
transistor, a DRAM cell is usually laid out in a much smaller area compared to an SRAM cell. For instance
the embedded DRAM cells presented in [38] for four different technology nodes – 180/130/90/65 nm have
areas in the range of 19–26F 2 where F is the feature size of the process. In contrast, a typical SRAM cell
would have an area of about 120–150F 2.

9.1.2 Destructive Readout and Writeback

When data is read out from a DRAM cell, the charge stored in the cell gets destroyed because of charge
redistribution between the cell and its capacitive bitline. Because of the destructive readout, there is a need
for data to be written back into the cell after every read access. This writeback takes time and increases the
random cycle time of a DRAM array. In an SRAM there is no need for writeback because the data is not
destroyed during a read.

9.1.3 Sense amplifier Input Signal

In a DRAM, the maximum differential signal that is developed on the bitlines is limited by the amount of
charge transferred between the DRAM cell and the bitline which in turn depends on the capacitance of the
DRAM cell and the bitline. The lower the differential signal, the greater the sense amplifier delay. In an
SRAM, there is no charge-based limit on the differential signal developed on the bitlines. In any case, in
modern technologies the sense amplifiers of SRAMs or DRAMs are operating at signal level inputs of more
or less the same amplitude [37], so the delay of the sense amplifier in either SRAM or DRAM can come out
to have similar values.

3It is important to note that in reality, SRAM cell functionality and design does depend on device type [34][35][36], however,
we do not model different SRAM cell designs for the different device types.
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9.1.4 Refresh

In a DRAM cell, charge cannot be stored for an infinite time in the capacitor and the charge leaks out
because of various leakage components. If charge from a DRAM cell is allowed to leak out for a sufficient
period of time, the differential voltage developed on the bitline pair becomes so small that the data stored
in the cell can no longer be detected by the sense amplifier. Thus there is an upper bound on the time
for which data may be retained in a DRAM cell without it being refreshed, and this time is known as the
retention time. Because of a finite retention time, the DRAM cell needs to be refreshed periodically.

9.1.5 Wordline Boosting

In a DRAM cell, because the access takes place through an NMOS pass transistor, there is a VTH drop
during the write/writeback of a 1 into the cell. In order to prevent this VTH drop, DRAM wordlines are
usually boosted to a voltage, VPP = VDD + Vth. In commodity DRAMs, Vth is relatively high in order to
maintain the high refresh period (64 ms) that requires extremely low leakage. This means that VPP is also
high and forces the use of high voltage (thicker gate-oxide) slower transistors in the wordline driver. For the
embedded DRAMs that we have modeled, however, VTH is not very high, consequently VPP is also not very
high.

9.2 DRAM Array Organization and Layout

For DRAM, we assume a folded array architecture [39] in the subarray, shown in Figure 38. In the folded
array architecture, the bitline that is being read (true bitline) and its complement are laid out next to each
other, similar to the dual bitlines of an SRAM cell. The difference here is that the true and complement
bitlines connect to alternate rows of the array and not to the same row as in SRAM. This has an impact on
bitline capacitance calculation. Assuming drain contacts are shared, the bitline capacitance for DRAM may
be given by the following equation:

Cbitline =
Nsubarr-rows

2
Cdrain-cap-acc-transistor + Nsubarr-rowsCbit-metal (105)nopnoqnornos
tuvwu xyz
{| {|} {~ {~}

Figure 38: Folded array architecture from [39].
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9.2.1 Bitline Multiplexing

In DRAM, the read access is destructive. This means that during a read access after data is read from a
DRAM cell, it needs to be written back into the cell. This writeback is typically accomplished by using the
sense amplifier which detects the data stored in the cell during a read. During a read access, because each
cell that is connected to a wordline is read out through its associated bitline, this means that there needs
to be a sense-amplifier associated with each cell that is connected to a wordline. Hence bitline multiplexing,
which is common is SRAMs to connect multiple bitlines to a single sense amplifier, is not feasible in DRAMs.
Thus in DRAMs, there needs to be a sense amplifier associated with every bitline that can carry out the
writeback. With respect to the bitline peripheral circuitry shown in Figure 7 this means that DRAM arrays
do not have a bitline mux between the bitlines and sense amplifiers.

9.2.2 Reference Cells for VDD Precharge

We assume that the bitlines are precharged to VDD (GND) just like the DRAM described in [40][15]. As in
[40], we assume the use of reference cells that store VDD/2 and connect to the complement bitline during a
read. Figure 39 shows the bitline peripheral circuitry with the reference cells. For each subarray, we assume
an extra two rows of reference cells that store VDD/2. One of the rows with reference cells is activated during
read of even-numbered rows in the subarray and the other row is activated during read of odd-numbered
rows in the subarray.

Figure 39: DRAM bitline circuitry showing reference cells for VDD precharge.

9.3 DRAM Timing Model

9.3.1 Bitline Model

In DRAM the differential voltage swing developed on a bitline pair that acts as input to the sense amplifier
is limited by the ratio of charge transferred between the bitline and DRAM cell, and given by the following
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equation:

Vsense-max =
VDD

2

Cdram

Cdram + Cbitline

(106)

The delay for the above differential signal to develop may be given by the following equation [41] (ignoring
the effect of wordline rise time):

Tstep = 2.3Rdev

CdramCbitline

Cdram + Cbitline

(107)

where Rdev is the resistance in series with the storage capacitor of the DRAM cell and may be given by
the following equation:

Rdev =
VDD

Icell-on

(108)

It is important to note that use of Equations 107 and 108 assumes that the impact of bitline resistance on
signal development time is negligible. This approximation works well for contemporary logic-based embedded
DRAM processes. When bitline resistance becomes significant, as in the case of commodity DRAM processes
that do not make use of copper bitlines, more sophisticated models need to be used.

Equation 107 assumes that 90% of the data stored in the cell is read out and corresponds to the devel-
opment of approximately Vsense-max (given by Equation 106) on the bitline pair. In order to improve the
random cycle time of a DRAM macro further, nowadays less than 90% of the data stored in a cell is read out
[42], just enough to generate the required input signal of the sense amplifier (Vsenseamp-input). To accomodate
this case, Equation 107 may be generalized as follows:

Tstep-generalized = 2.3Rdev

CdramCbitline

Cdram + Cbitline

Vsenseamp-input

Vsense-max

(109)

When Vsenseamp-input is equal to Vsense-max, Equation 109 reduces to Equation 107. In CACTI, we assume
a certain value for Vsenseamp-input (such as 80 mV) and use Equation 109 to compute the signal development
delay.

When rise time of the wordline is also considered, the bitline delay (Tbitline) of DRAM may be calculated
using the same methodology that was used for SRAM (Equation 52 in Section 6).

The time taken to write data back into a DRAM cell after a read depends on the time taken for the
charge transfer to take place between the bitline and the DRAM and thus may be given by the following
equation:

Twriteback = Tstep (110)

9.3.2 Multisubbank Interleave Cycle Time

For a DRAM array, we consider three timing characteristics: random access time, random cycle time and
multibank interleave cycle time.

Calculation of random access time makes use of the same equations that were used for calculation of
random access time of an SRAM array (in Section 6).

For a DRAM array, typically there are two kinds of cycle time: random cycle time and multibank
interleave cycle time. Random cycle time has the same meaning as the random cycle time of an SRAM viz.
it is the time interval between two successive random accesses. This time interval is typically limited by the
time it takes to activate a wordline, sense the data, write back the data and then precharge the bitlines.
Random cycle time can thus be calculated using the following equation:
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Trandom-cycle = Trow-dec-driver + Tbitline + Tsense-amp + Twriteback + Twordline-reset + (111)

max(Tbitline-precharge, Tbit-mux-out-precharge, Tsenseamp-mux-out-precharge)

In order to improve the rate at which a DRAM array is accessed so that it is not limited by the random
cycle time of the array, DRAM arrays usually employ the concept of multibank interleaving. Multibank
interleaving takes advantage of the fact that while random access to a particular bank is limited by the
random cycle time, accesses to other banks need not be. With multibank interleaving, accesses to multiple
DRAM banks that are on the same address/data bus are interleaved at a rate defined by the multibank

interleave cycle time. In our terminology, each bank in an array has its own address and data bus and
may be concurrently accessed. For our array organization, the concept of multibank interleaved mode is
relevant to subbank access and not bank access, so in the rest of this discussion we use the terminology of
multisubbank interleave mode and multisubbank interleave cycle. Thus, the multisubbank interleave cycle
time is the rate at which accesses may be interleaved between different subbanks of a bank. The multisubbank
interleave cycle time depends on the degree of pipelining employed in the request and reply networks of a
subbank, and is limited by the pipelining overhead. We assume minimum pipeline overhead and use the
following simple equation to calculate multisubbank-interleave cycle time:

Tmultisubbank-interleave = max(Trequest-network + Trow-predec, Treply-network) (112)

9.3.3 Retention Time and Refresh Period

An equation for the retention time of a DRAM array may be written as follows [43]:

Tretention =
Cdram-cell∆Vcell-worst

Iworst-leak

(113)

where ∆Vcell-worst is the worst-case change in the voltage stored in a DRAM cell which leads to a read
failure, and Icell-worst-leak is the worst-case leakage in a DRAM cell.

We assume that ∆Vcell-worst is limited by Vmin-sense, the minimum input signal that may be detected by
the bitline sense amplifier. Thus, for a given array organization, ∆Vcell-worst may be calculated by solving
the following equation for ∆Vcell-worst:

Vmin-sense =
Cdram-cell

Cdram-cell + Cbitline

(
VDD

2
− ∆Vcell-worst) (114)

If we assume that the differential voltage detected by the sense amplifier is independent of array organi-
zation, then this means that different array partitions would have different retention times depending on the
charge transfer ratio between the DRAM cell and the bitlines. For each array organization, it’s thus possible
to calculate the value for ∆Vcell-worst using Equation 114, which may then be plugged into Equation 113 to
find the retention time for that array organization.

The upper bound on the refresh period of a DRAM cell would be equal to its retention time. We assume
that a safety margin of 10% with respect to the retention time is built into the refresh period and thus
calculate the refresh period using the following equation:

Trefresh = 0.9Tretention (115)

9.4 DRAM Power Model

During the read of a 0 from a DRAM cell, the true bitline is pulled down to GND during the writeback.
Energy is then consumed in restoring the bitline to VDD during the precharge operation. During the read of
a 1 from a DRAM cell, because of our assumption of VDD-precharge, the voltage of the true bitline does not
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change but the voltage of the complementary bitline gets pulled down to GND and needs to be restored to
VDD. So for DRAM, the power consumed in a bitline during a read may be approximated by the following
equation:

Edyn-read-bitline = CbitlineVDD2 (116)

9.4.1 Refresh Power

Refreshing the data in each cell of the array consumes power. In order to carry out refresh, every cell in the
array needs to be accessed, its data read out, and then written back.

Prefresh =
Erefresh

Trefresh

(117)

Erefresh = Erefresh-predec-blks + Erefresh-row-dec-drivers + Erefresh-bitlines (118)

Erefresh-predec-blks = NbanksNsubbanksNmats-in-subbankEdyn-mat-predec-blks (119)

Erefresh-row-dec-drivers = 4NbanksNsubbanksNmats-in-subbankEdyn-mat-row-dec-drivers (120)

Erefresh-bitlines = 4NbanksNsubbanksNmats-in-subbankNsubarr-colsEdyn-read-bitline (121)

9.5 DRAM Area Model

9.5.1 Area of Reference Cells

As mentioned earlier in Section 9.2.2, the use of VDD-precharge leads to the use of reference cells in the
array [40]. For our array organization, this means that there are two additional wordlines per subarray.

9.5.2 Area of Refresh Circuitry

In order to enable continued scaling of a logic-based embedded DRAM cell in terms of performance and
cell area, [38] describes a new scalable embedded DRAM cell that makes use of an access transistor with an
intermediate gate-oxide of moderate thickness (2.2 nm for 90/65 nm). This transistor is a standard offering
in the logic process which incorporates the embedded DRAM. Conventional cells [17] in earlier technologies
made use of access transistors with much thicker gate-oxides. An effect of the scalable embedded DRAM cell
described in [38] is that it results in the cell having a lower retention time and a lower refresh period (because
of higher worst-case leakage - 10s of pAs compared to 1 fA for commodity DRAM). The macro discussed in
[44] that makes use of the cell described in [38] has a refresh period of 64 µs compared to conventional macros
which have refresh period of 64 ms. This low refresh period required innovation at the circuit level through
the development of a concurrent refresh scheme described in [44] in order to guarantee high availability of the
DRAM macro. This concurrent refresh scheme adds an extra bank select port to each bank (subbank in our
terminology) thereby allowing for concurrent memory access and bank refresh operations in different banks.
Each bank is equipped with a row address counter that contains the address of the row to be refreshed. A
concurrent refresh scheduler composed of an up-shift-register and a down-shift-register is required in order
to generate the bank select signals.

Because we loosely base the parameters of our logic-based embedded DRAM technology on information
presented in [38][40][44], we model the overhead of the concurrent refresh scheme on area. For our organiza-
tion in which each subbank has multiple mats, we assume that each mat incurs overhead of a row address
counter placed at the center of the mat. Because of the requirements of the design of the concurrent refresh
scheme, for our organization, we assume Nsubbanks-in-mat number of concurrent refresh schedulers per bank.

9.6 DRAM Technology Modeling

9.6.1 Cell Characteristics

Similar to the SRAM technology assumptions, we assume two types of transistors in the DRAM array. One
transistor type is used in the DRAM cell and wordline driver, while the other is used in the rest of the
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peripheral and global circuitry. Table 3 showed a list of transistor characteristics that are used in CACTI.
Table 7 shows characteristics of the DRAM cell and wordline driver that we consider in our model.

Parameter Meaning Unit

Cdram Storage capacitance of a DRAM cell F
Adram-cell Area occupied by the DRAM cell mm2

ARdram-cell Aspect ratio of the DRAM cell
VDDdram-cell Voltage representing a 1 in a DRAM cell V
Vth-dram-acc-transistor Threshold voltage of DRAM cell access transistor mV
Ldram-acc-transistor Length of DRAM cell access/wordline transistor nm
Wdram-acc-transistor Width of DRAM cell access transistor nm
EOTdram-acc-transistor Equivalent oxide thickness of DRAM access transistors nm
Ion-dram-cell DRAM cell on-current under nominal conditions µA
Ioff-dram-cell DRAM cell off-current under nominal conditions pA
Iworst-off-dram-cell DRAM cell off-current under worst-case conditions A/µ
VPP Boosted wordline voltage applied to gate of access transistor V
Ion-dram-wordline-transistor On-current of wordline transistor µA/µ

Table 7: Characteristics of the DRAM cell and wordline driver.

Parameter 90 nm 65 nm

Cdram (F) 20 20
Adram-cell (F - Feature size) 20.7F 2 25.6F 2

VDDdram-cell 1.2 1.2
Vth-dram-acc-transistor 350 350
Ldram-acc-transistor (nm) 120 120
Wdram-acc-transistor 140 90
Ion-dram-cell (µA) 45 36
Ioff-dram-cell (pA) 2 2
VPP 1.5 1.5

Table 8: DRAM technology data for 90 nm and 65 nm from [38][44].

We obtain embedded DRAM technology data for four technology nodes – 90, 65, 45 and 32 nm – by
using an approach that makes use of published data, transistor characterization using MASTAR and our
own scaling projections. For 90 nm and 65 nm, we use technology data from [38][44]; Table 8 shows this
data. We obtain the transistor data by using MASTAR with input data from Table 8. In order to obtain
technology data for the 45 nm and 32 nm technology nodes, we make the following scaling assumptions:

1. Capacitance of the DRAM cell is assumed to remain fixed at 20 fF;

2. The nominal off-current is assumed to remain fixed at 2 pA for the cell;

3. Gate oxide thickness is scaled slowly in order to keep gate leakage low and subthreshold current as the
dominant leakage current. It has a value of 2.1 nm for 45 nm and 2 nm for 32 nm;

4. VDDdram-cell is scaled such that the electric field in the dielectric of the DRAM (VPP/EOTdram-acc-transistor)
access transistor remains almost constant;

5. There is excellent correlation in the 180–130 nm (for conventional thick-oxide device) and 90–65 nm (for
the intermediate-oxide device) scaling-factors for width and length of the DRAM cell access transistor.
We assume that there would be good correlation in the 130–90 nm and 65–45 nm scaling-factors as
well. For 32 nm, we assume that the width and length are scaled in the same proportion as feature
size;
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6. We calculate area of the DRAM cell using the equation Adram-cell = 10Wdram-acc-transistorLdram-acc-transistor.
This equation has good correlation with the actual cell area of the 90 and 65 nm cells that made use
of the intermediate-oxide based devices; and

7. We simply assume that nominal on-current of the cell can be maintained at the 65 nm value. This
would require aggressive scaling of the series parasitic resistance of the transistor.

The transistor data that is obtained with these scaling assumptions is input to MASTAR and transistor
data is obtained It is assumed that the resulting channel doping concentrations that are calculated by
MASTAR would be feasible. Table 9 shows the characteristics of the transistor used in the DRAM cell and
wordline driver that we have used for the four technology nodes.

Parameter 90 nm 65 nm 45 nm 32 nm

Cdram (F) 20 20 20 20
Adram-cell (F - Feature size) 20.7F 2 25.6F 2 30.4F 2 30.6F 2

VDDdram-cell (V) 1.2 1.2 1.1 1.1
Vth-dram-acc-transistor (mV) 455 438 446 445
Ldram-acc-transistor (nm) 120 120 78 56
Wdram-acc-transistor (nm) 140 90 79 56
Ion-dram-cell (µA) 45 36 36 36
Ioff-dram-cell (pA) 2 2 2 2
Iworst-off-dram-cell (pA) 21.1 19.6 19.5 18.9
VPP (V) 1.6 1.6 1.5 1.5
Ion-dram-wordline-transistor (µA/µ) 45 36 36 36

Table 9: Values of DRAM cell and wordline driver characteristics for the four technology nodes.

10 Cache Modeling

In this section we describe how a cache has been modeled in version 5.0. The modeling methodology is
almost identical to earlier versions of CACTI with a few changes that simplify the code.

10.1 Organization

As described in [1], a cache has a tag array in addition to a data array. In earlier versions of CACTI the
data and tag arrays were modeled separately with separate code functions even though the data and tag
arrays are structurally very similar. The essential difference between the tag array and the data array is that
the tag array includes comparators that compare the input tag bits with the stored tags and produce the
tag match output bits. Apart from the comparators, the rest of the peripheral/global circuitry and memory
cells are identical for data and tag arrays. In version 5.0, we leverage this similarity between the data and
tag arrays and use the same set of functions for their modeling. For the tag array, we reuse the comparator
area, delay and power models.

Figure 40 illustrates the organization of a set-associative tag array. Each mat includes comparators at
the outputs of the sense amplifiers. These comparators compare the stored tag bits with the input tag bits
and produce the tag match output bits. These tag match output signals are the way-select signals that serve
as inputs to the data array. The way-select signals traverse over the vertical and horizontal H-trees of the
tag array to get to the edge of the tag array from where they are shipped to the data array. For a cache
of normal access type, these way-select signals then enter the data array where, like the address and datain
signals, they travel along the horizontal and vertical H-tree networks to get to mats in the accessed subbank.
At the mats, these way-select signals are ‘anded’ with sense amplifier mux decode signals (if any) and the
resultant signals serve as select signals for the sense amplifier mux which generates the output word from
the mat.

47



Figure 40: Organization of a set-associative tag array.

10.2 Delay Model

We present equations for access and cycle times of a cache. The access time of a cache depends on the type
of cache access (normal, sequential or fast [4]).

The equation for access time of a normal cache which is set-associative is as follows:

Taccess-normal-set-associative = max(Ttag-arr-access + Tdata-arr-request-network + Tdata-arr-sense-amp-mux-decode,

Tdata-arr-request-network + Tdata-arr-mat) + Tdata-arr-reply-network (122)

Ttag-arr-access = Ttag-arr-request-network + Ttag-arr-mat + Ttag-arr-reply-network (123)

In the above equation, Ttag-arr-access, the access time of the tag array, is calculated using the following
equation.

Ttag-arr-access = Ttag-arr-request-network + Ttag-arr-mat + Ttag-arr-reply-network + Tcomparators (124)

The equation for access time of a normal cache which is direct-mapped is as follows:

Taccess-normal-direct-mapped = max(Ttag-arr-access, Tdata-arr-access) (125)

The equation for access time of a sequentially accessed (tag array is accessed first before data array access
begins) cache is as follows:

Taccess-sequential = Ttag-arr-access + Tdata-arr-access (126)
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The equation for access time of a ‘fast’ cache (late way-select multiplexing) cache is as follows:

Taccess-fast = max(Ttag-arr-access, Tdata-arr-access) + Tway-select-mux (127)

where Tway-select-mux is the delay through the way-select mux. The way-select mux is assumed to be
placed at the edge of the data array and selects the appropriate output word corresponding to the correct
way (which is selected based on the way-select signals from the tag array).

10.3 Area Model

Total area of the cache is calculated by simply adding the areas occupied by the tag and data arrays.

Acache = Adata-array + Atag-array (128)

Atag-array is calculated using the equations presented in Section 5 with the area of the comparators also
added.

10.4 Power Model

The dynamic energy consumed in the cache and its standby leakage power are calculated by simply adding
their values for the data and tags arrays. For the tag array, the leakage in the comparators is also considered.

Edyn-energy-cache = Edyn-energy-data-array + Edyn-energy-tag-array (129)

Pleak-cache = Pleak-data-array + Pleak-tag-array (130)

11 Quantitative Evaluation

In this section we evaluate the impact of new CACTI 5.0 features. We also compare results from CACTI
5.0 with version 4.2 in order to give users an idea of what to expect when upgrading to CACTI 5.0.

11.1 Evaluation of New CACTI 5.0 Features

Table 10 shows the default parameters that we have used while carrying out the evaluation of new CACTI
5.0 features. For this evaluation we use plain RAMs instead of caches. In the next section on validation
of CACTI, we show results for caches. For each study, we present charts that show the following metrics:
access time, random cycle time, area, dynamic energy per read access and standby leakage power.

11.1.1 Impact of New CACTI Solution Optimization

Figure 41 shows the impact of varying maxareaconstraint (that was described in Section 2.5.1) for a 16MB
SRAM. As maxareaconstraint is increased, the number of subarrays in the SRAM is allowed to grow, and so
the area grows steadily. As the number of subarrays increases, the components of delay within a mat decreases
and the access time falls up to a point after which it starts to increase again. The random cycle time keeps
decreasing as the number of subarrays increases because the wordline and bitline delays keep getting smaller.
The trend for dynamic read energy per access shows some up-and-down variation. For our assumed CACTI
cache organization, an increase in Ndwl typically increases the dynamic energy consumption because more
wordlines are activated per read access, while an increase in Ndbl typically decreases the dynamic energy
consumption because of reduction in bitline power. The standby leakage power keeps growing as the area of
the RAM increases.

Figure 42 shows the impact of varying ‘maxacctimeconstraint’. For the assumed set of SRAM parameters,
it can be seen that the solution with best access time (corresponding to maxacctimeconstraint of 0) also has
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Parameter Value

Capacity (MB) 16
Output width (bits) 512
Number of banks 1
Number of read/write ports 1
Number of exclusive read ports 0
Number of exclusive write ports 0
Technology-node (nm) 65
DRAM No
maxareaconstraint 40
maxacctimeconstraint 10
maxrepeaterdelayconstraint 10
Optimize for dynamic energy No
Optimize for dynamic power No
Optimize for leakage power No
Optimize for cycle time Yes
Temperature (K) 360
SRAM cell/wordline technology flavor ITRS HP
Peripheral/Global circuitry technology flavor ITRS HP
Interconnect projection type Conservative
Wire type inside mat Semi-global
Wire type outside mat Semi-global

Table 10: CACTI input parameters

the best dynamic read energy per access. So further relaxation of the maxacctimeconstraint does not lead
to any energy reduction benefits in this case.

Figure 43 shows the impact of varying maxrepeaterdelayconstraint. The maxrepeaterdelayconstraint
changes the separation distance and sizing of repeaters/buffers in the H-tree networks and is useful for trad-
ing off delay for energy benefits. It can be seen here that varying maxrepeaterdelayconstraint does not lead
to energy savings much unless the access time is allowed to degrade heavily. Initially, as maxrepeaterdelay-
constraint is increased from 0 to 20%, it can be seen that the access time does not change and there are no
energy savings. This is because of the maximum limit that we have imposed on transistor size in CACTI. For
values of maxrepeaterdelayconstraint between 0 and 20%, the sizing of the repeater comes out to be larger
than the maximum allowed transistor size and is therefore being fixed at the maximum allowed transistor
size (the maximum allowed transistor size was fixed at 100F (F = Feature size) for NMOS transistors).
For a maxrepeaterdelayconstraint of 400% there is significant energy savings but with a disproportionate
degradation of access time.

Figure 44 shows the impact of optimizing the solution generated by CACTI for a 16MB SRAM in different
ways. Table 11 shows the different optimization scenarios targeting metrics of random cycle time, dynamic
read energy per access, dynamic power and standby leakage power. The percentage variation between the
worst and best values for each metric shown in Figure 44 is as follows: access time (5%), random cycle
time (296%), area (27%), dynamic read energy per access (21%), and standby leakage power (36%). These
variations illustrate the dependence of RAM and cache performance estimation on the kind of optimization
that is applied.

11.1.2 Impact of Device Technology

Figure 45 illustrates the tradeoffs associated with assuming different types of devices in the memory cells/-
wordline drivers and the rest of the peripheral/global circuitry. Three scenarios are considered:

1. ITRS HP only;

2. ITRS LSTP (memory cells/wordline drivers) + ITRS HP (peripheral/global circuitry);
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Optimization Optimize for Optimize for Optimize for Optimize for
Scenario random cycle time dynamic energy dynamic power leakage power
A Yes No No No
B Yes Yes No No
C No Yes No No
D No No Yes No
E No No No Yes
F Yes Yes Yes Yes

Table 11: Different solution optimization scenarios targeting metrics of random cycle time, dynamic read
energy per access, dynamic power and standby leakage power.

3. ITRS LSTP only;

It can be seen that the areas of RAMs for the 3 considered scenarios remain more or less the same. With
respect to “ITRS HP only”, on average over the considered capacities, “ITRS LSTP + ITRS HP” exhibits
an improvement of 86% in the standby leakage power. This improvement comes at the cost of 9% worse
access time and 72% worse random cycle time. “ITRS LSTP only” shows an improvement of almost 100%
in standby leakage power with respect to “ITRS HP only”, and this improvement comes at a cost of 166%
worse access time and 253% worse random cycle time.

11.1.3 Impact of Interconnect Technology

Figure 46 illustrates the dependence of RAM/cache performance on interconnect technology assumptions. As
described in Section 8 on “Technology Modeling”, instead of assuming a single set of scaling assumptions for
interconnect technology, we consider aggressive and conservative scaling projections as in [12][6]. From Figure
46, it can be seen that for the SRAM capacities and technology (65 nm) considered, the cache performance
is not very different under either conservative or aggressive interconnect technology assumptions. The lower
resistance per unit length of the aggressive projections leads to lowering of the access time by about 10% on
an average. For smaller technologies, the impact of interconnect technology assumptions would be more.

Figure 47 shows the impact of wire type on cache performance. As described in Section 8 on “Technology
Modeling”, wires outside a mat can be of either ‘semi-global’ or ‘global’ type. With respect to semi-global
type, global type wires outside mats lead to an improvement in access time of 30% on an average for more
or less the same investment in area. The global type wires take up greater area than the semi-global type
wires, so the number of mats in the bank with global wire type is fewer than that with semi-global wire type.
This leads to increase in the random cycle time because of greater wordline and bitline delays.

11.1.4 Impact of RAM Cell Technology

Figure 48 illustrates the dependence of cache performance on the type of RAM cell technology – SRAM or
logic-based embedded DRAM. For each capacity, the properties of SRAMs and DRAMs shown in Figure 48
are for CACTI solutions with the best access time amongst all solutions. It can be seen from this figure that
up to about 1 MB capacity, the access time of SRAM is lower after which the access time of DRAM becomes
lower. This is because of the decreased wire delay experienced in DRAMs which occupy a much smaller area
compared to the SRAMs. For the larger-capacity RAMs (≥ 1MB), on average over all capacities, the area
of the DRAMs is about a factor of 2.3 smaller than that of the SRAMs. Because of the destructive read out
from a capacitor and the subsequent writeback, it can be seen that the random cycle time of the DRAM is
much higher than that of the SRAM. On an average overall capacities it is higher by a factor of about 1.8.
However, it can be seen that the multisubbank interleave cycle time of the DRAMs can come close to the
random cycle time of SRAMs up to about 1MB. With further pipelining in the request and reply networks,
the multisubbank interleave cycle time can be improved further.

The standby leakage power of the DRAM is much lower than that of the SRAMs because of the use of
the low-leakage 1T cell. For the larger-capacity RAMs (≥ 1MB), on average the standby leakage power of
DRAMs is lower than that of SRAMs by a factor of about 6. For the larger-capacity RAMs, it can also be
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seen that the dynamic read energy per access of the DRAMs is more or less the same as that of the SRAMs.
It is important to note that the comparisons presented here were for SRAMs and DRAMs with the best
access time amongst all solutions.

11.2 Version 4.2 vs Version 5.0 Comparisons

We first present the differences in the technology metrics of versions 4.2 and 5.0. Figure 49 shows FO4
delays for versions 4.2 and 5.0. For version 5.0, the FO4 delay has been shown for the ITRS HP device type.
It can be seen that, surprisingly, there is good agreement between the FO4 delays of versions 4.2 and 5.0,
particularly at the 65 nm node.

Figures 50, 51 and 52 shows the trends for resistance per unit micron, capacitance per unit micron and
unbuffered delay for a wire of length 1-micron for versions 4.2 and 5.0. For version 4.2, trends are shown
for both ‘local’ and ‘global’ wire types which were discussed in Section 2.3. For version 5.0, trends are
shown for both ‘semi-global’ and ‘global’ wire types and for both aggressive and conservative assumptions
of interconnect technology as discussed in Section 8.2. It can be seen that the unbuffered wire delay of the
local wire type of version 4.2 is greater than that of the semi-global wire type of version 5.0 by a factor of
about 3.5.

Figure 53 compares results generated by CACTI version 4.2 and version 5.0. For version 5.0, we show
three solutions – solutions with best access time, best area and best dynamic read energy per access. We also
show results from a modified version of version 4.2. In the modified version, we increase the limits defined
for Ndwl, Ndbl, Nspd, number of subarrays and number of segments allowed in the H-trees. Increasing these
set limits allows a richer exploration of the search space of array partitions, particularly for large SRAMs.
We call this version, version 4.2-limits-removed.

Because of significant modeling differences between versions 4.2 and 5.0, it is not easy to compare and
analyze the behavior of the two versions, but we make general observations and present high-level plausible
reasons for the trends. Firstly, regarding area, we observe that the areas of solutions produced by version
5.0 are much greater than that of the version 4.2 solution. Version 5.0 has made a major update to the area
model and has introduced new features such as inclusion of ECC and redundancy overheads which increase
area overhead. Also version 5.0 makes use of a bigger SRAM cell at 146F 2 compared to the 120F 2 cell used
in version 4.2. For the 32 MB SRAM, the solution generated by version 4.2-limits-removed has an area of
343 mm2 which is greater than the areas of all version 5.0 solutions.

Regarding access time, it can be seen that the access times for the best access time and best dynamic
energy solutions of version 5.0 are much lower and scale in a much better way compared to the version 4.2
solution. The access time of the 32 MB SRAM gets better with version 4.2-limits-removed, however, it’s
still much worse than the access time of the version 5.0 best access time and best dynamic energy solutions.
The main reason for the larger access times of version 4.2 is because of the high resistance per unit length
of the local wires in version 4.2.

Regarding dynamic energy, it can be seen that the dynamic energy per read access of the version 5.0
best access time and best dynamic energy solutions are greater than that of version 4.2 by a factor of about
5 on an average. This is mainly because of the organization that has been assumed in version 5.0 in which
wordlines and bitlines in multiple mats are activated per access. Also, as described in Section 2.2, bugs in
version 4.2 with respect to dynamic energy of routing in the H-trees causes the dynamic energy per read
access to be underestimated.

Leakage power is heavily dependent on the underlying technology data. The standby leakage of version
4.2 is greater than that of the best access time and best dynamic energy solutions of version 5.0 by a factor
of about 3 on an average.
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Figure 41: Access time, random cycle time, area, dynamic energy and leakage power of a 16MB SRAM as
maxareaconstraint is varied.
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Figure 42: Access time, random cycle time, area, dynamic energy and leakage power of a 16MB SRAM as
maxacctimeconstraint is varied.
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Figure 43: Access time, random cycle time, area, dynamic energy and leakage power of a 16MB SRAM as
maxrepeaterdelayconstraint is varied.
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Figure 44: Access time, random cycle time, area, dynamic energy and leakage power of a 16MB SRAM
under different optimization function scenarios.
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Figure 45: Access time, random cycle time, area, dynamic energy and leakage power of SRAMs for different
65 nm device technology assumptions.
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Figure 46: Access time, random cycle time, area, dynamic energy and leakage power of SRAMs under
aggressive and conservative interconnect technology assumptions.
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Figure 47: Access time, random cycle time, area, dynamic energy and leakage power of SRAMs with “global”
interconnect type used for wires outside the mat.
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Figure 48: Access time, cycle time, area, dynamic read energy per access and standby leakage power of
SRAM and logic-based embedded DRAM for 65 nm technology. The area, dynamic read energy per access
and standby leakage power trends are split up into two charts based on capacities.
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Figure 49: FO4 delays for various technology nodes in versions 4.2 and 5.0. The version 5.0 FO4 delays are
for ITRS high-performance device type.
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Figure 50: Resistance per unit micron of wire at various technology nodes for versions 4.2 and 5.0.
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Figure 51: Capacitance per unit micron of wire at various technology nodes for versions 4.2 and 5.0.
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Figure 52: Unbuffered delays through a wire of length 1-micron for various technology nodes in versions 4.2
and 5.0. The wire delays for version 5.0 are for both aggressive and conservative projections.
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Figure 53: Access time, random cycle time, area, dynamic energy and leakage power obtained from versions
4.2 and 5.0 for SRAMs in 70 nm technology.
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12 Validation

In this section, we compare the published values of area, delay and power of real cache designs with the
projections of area, delay and power produced by CACTI. The area, delay and power of a real cache or
RAM design are influenced by various factors. The design process inherently makes certain area, delay and
power tradeoffs based on budgets and requirements. Area, delay and power are also influenced by design
methodology, human bias and other practical considerations such as availability of IP from past designs etc.
CACTI is based on generic assumptions of cache organization, circuits, design methodology, layout, design
rules and technology, whereas a real cache design is based on specific choices of all these. With CACTI 5.0,
however, as was shown in the previous section, we provide a number of knobs that can be turned in order to
try to emulate a real cache design in a better way. So it is interesting to see how the projections produced
by CACTI would compare with real designs.

We use information from real cache specifications to fix as many of the input parameters required by
CACTI as possible, such as capacity, associativity, line size, technology-node, etc. In order to understand
and explore area/delay/power tradeoffs, we vary parameters such as “Maximum percentage away from best
area solution” and “Maximum percentage away from best access time solution” within reasonable bounds.

12.1 Sun SPARC 90 nm L2 cache

[45] describes the implementation of a 90 nm SPARC 4MB L2 cache. Table 12 shows the area, access time,
random cycle time and power of the SPARC L2 cache. The clock frequency of the CPU core itself is 1.6
GHz but the L2 cache has a throughput of two clock cycles, so we fix the random cycle time of the L2 cache
as 800 MHz.

Table 13 presents the input parameters used with CACTI to model this cache. From the description
of the cache, we could not be sure whether the cache access mode is ‘normal’ or ‘fast’, so we try out both
scenarios. In order to explore a range of area/delay/power tradeoffs, we vary ‘maxareaconstraint’ between 0
and 50 and ‘maxdelayconstraint’ between 0 and 30. In order to meet the aggressive random cycle time of the
cache, we optimize the solution for random cycle time only. Because we do not have information about the
interconnect properties of the fabrication process, we consider both aggressive and conservative projections
for interconnect. Also, for ‘wire type outside mat’, we try out both ‘semi-global’ and ‘global’ wire types.

Figure 54 shows bubble charts showing access time, area and power of the SPARC L2 cache and the
various solutions generated by CACTI. The charts shown in Figure 54 are for CACTI solutions with ‘fast’
access mode, ‘conservative’ interconnect projections and ‘semi-global’ wire type outside mat. We believe that
these values for the parameters are likely to be closest to the actual cache design. Results of the validation
exercise with other configuration values are presented in the appendix. As we do not know the operating
conditions corresponding to the published value for power of the SPARC L2, we compute dynamic power
for the CACTI solutions for three activity factors – 0.1, 0.5 and 1.0. Also, we assume that the ratio of read
to write accesses is 3. Note that the solutions shown in Figure 54 are the ones that can meet the random
cycle time of the SPARC L2. It can be seen that many solutions have access time, area and power that are
quite similar to that of the L2 cache. Table 14 shows error percentages of prominent CACTI solutions with
respect to the SPARC L2.

Parameter Value

Area (mm2) 128
Access time (ns) 5
Clock frequency (MHz) 800
Total power (W) 8

Table 12: Characteristics of Sun’s SPARC 90 nm L2 cache.

12.2 Intel Xeon 65 nm L3 cache

Table 15 shows the area, access time, dynamic power and leakage power of an Intel Xeon L3 cache in a
65 nm process. [46] mentions that the access time of the cache is less than 9 ns; we assume the access
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Parameter Value

Capacity (MB) 4
Line size (bytes) 32
Associativity 4
Number of read/write ports 1
Number of exclusive ports 0
Number of banks 1
Technology-node (nm) 90
Output width (bits) 256
Specific tag Yes
Tag width 34
Access mode Normal/Fast
Pure RAM No (cache)
DRAM No
Repeaters in bank H-trees Yes
maxareaconstraint 0 - 70
maxacctimeconstraint 0 - 30
maxrepeaterdelayconstraint 10
Optimize for dynamic energy No
Optimize for dynamic power No
Optimize for leakage power No
Optimize for cycle time Yes
Temperature (K) 360
SRAM cell/wordline technology flavor ITRS HP
Peripheral/Global circuitry technology flavor ITRS HP
Interconnect projection type Conservative
Wire type inside mat Semi-global
Wire type outside mat Semi-global/Global

Table 13: CACTI input parameters used for modeling 90 nm SPARC L2 cache

time to be 9 ns. The clock frequency of the core itself is given to be 3.4 GHz and the clock frequency of
the L3 is given to be half that of the core [47]. Also, because the output bus width of the L3 is 256 bits,
it would require two cycles to transmit a 64-byte line, so we fix the random cycle frequency of the L3 to
be one-fourth that of the CPU, i.e. 850 MHz. The dynamic power of the cache comes out to be 5.4W
based on information from [47][48], however [21] mentions that the cache consumes about 1.7W for “average
applications”. We speculate that these differences in dynamic power numbers that have been quoted are
because of different activity factors in the cache caused due to measurements or simulations of applications
with different characteristics. While carrying out comparisons of the area, delay and power of the Intel cache
with those of the solutions generated by CACTI, we use both values of power.

The 65 nm process offers transistors with 35 nm gate-lengths. The cache itself, however, makes use of
longer-channel devices with lengths that are about 10% longer than the nominal. The longer-channel devices
have on-currents that are about 10% less than the nominal devices but have leakage that is lower by a factor
of 3. The cache operates in a voltage domain different from that of the cores. The cores can operate at
1.25V while the cache operates at 1.1V.

In order to control leakage in the cache, the Intel cache implements n and p sleep transistors at the level
of ‘blocks’ within subarrays (Each subarray within the Intel cache is composed of multiple ‘blocks’ with one
block within a subarray activated per access. The ‘subarray’ of the Intel cache is not the same as that of
CACTI). The impact of these sleep transistors is that leakage power in all blocks that are not activated
during an access is cut down by half.

Table 16 shows the input parameters used with CACTI to model the Intel L3 cache. In order to compare
the power numbers produced by CACTI with those of the Intel cache in a fair manner, we assume the use
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Figure 54: Access time, area and power of the 90 nm SPARC L2 cache and of solutions generated by CACTI.
The CACTI solutions assume ‘fast’ access mode, ‘conservative’ interconnect projections and ‘semi-global’
wire type outside mat. The 3 plots correspond to 3 activity factors assumed while computing dynamic power
for the CACTI-generated solutions.

of leakage control mechanisms within CACTI similar to that used in the Intel cache. To model the longer-
channel devices that have been used in the Intel cache which reduce leakage by a factor of 3, we also reduce
the leakage of the CACTI 65 nm high-performance transistors by a factor of 3. Also, we assume the use of
sleep transistors that cut down the leakage of all mats that are not activated during an access by half.

Figure 55 shows bubble charts of access time, area, and power of the Intel cache and the various solutions
generated by CACTI. The charts shown in Figure 55 are for CACTI solutions with ‘conservative’ interconnect
projections and ‘semi-global’ wire type outside mat as we believe that these values for the parameters are
likely to be closest to the actual cache design. Results of the validation exercise with other configuration
values are again presented in the appendix. Again, as we do not know the operating conditions corresponding
to the published value for power, we compute dynamic power for the CACTI solutions for three activity
factors – 0.1, 0.5 and 1.0. Again, we assume that the ratio of read to write accesses is 3. There are two
targets for the Intel cache corresponding to the two values of dynamic power shown in Table 15. It can be
seen from Figure 55 that many CACTI solutions have area, access time and power that are quite similar to
that of the Xeon L3. Tables 17 and 18 show error percentages of prominent CACTI solutions with respect
to the Xeon L3.
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Solution % error in % error in % error in Avg of acc time, area
acc time area power and power % errors

Best % error in
acc time 0/0/0 -3/-3/-3 -67/-52/-33 23/18/12
Best % error in
area 0/0/0 -3/-3/-3 -67/-52/-33 23/18/12
Best % error in
power 0/0/0 -3/-3/-3 -67/-52/-33 23/18/12
Best average of
area, acc time and
power % errors 0/0/0 -3/-3/-3 -67/-52/-33 23/18/12
Best average of
area and acc time 0/0/0 -3/-3/-3 -67/-52/-33 23/18/12
% errors
Best average of
acc time and power 0/0/5 20/20/49 -63/-44/-14 28/22/23
% errors
Best acc time 0/0/0 -3/-3/-3 -67/-52/-33 23/18/12
Best area 0/0/0 -3/-3/-3 -67/-52/-33 23/18/12
Best power 0/0/0 -3/-3/-3 -67/-52/-33 23/18/12

Table 14: Error percentages of some prominent solutions generated by CACTI with respect to a 90 nm
SPARC L2 cache. The CACTI solutions assume ‘fast’ access mode, ‘conservative’ interconnect projections
and ‘semi-global’ wire type outside mat. We have used 3 activity factors of 0.1, 0.5 and 1, and so each entry
in the table has 3 values.

Area (mm2) 200 Measured from die photo [49]
Access time (ns) 9 ns [46]
Clock frequency (GHz) 850 MHz [47]
Dynamic power (W) 1.7/5.4 [47][48][21]
Leakage power (W) 6.6 [47][48]

Table 15: Characteristics of Intel Xeon’s 65 nm L3 cache.
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Parameter Value

Capacity (MB) 16
Line size (bytes) 64
Associativity 16
Number of read/write ports 1
Number of exclusive ports 0
Number of banks 2
Technology-node (nm) 65
Output width (bits) 512
Specific tag No
Access mode Serial
Pure RAM No (cache)
DRAM No
maxareaconstraint 0 - 50
maxdelayconstraint 0 - 30
maxrepeaterdelayconstraint 10
Optimize for dynamic energy No
Optimize for dynamic power No
Optimize for leakage power No
Optimize for cycle time Yes
Temperature (K) 360
SRAM cell/wordline technology flavor ITRS HP
Peripheral/Global circuitry technology flavor ITRS HP
Interconnect projection type Conservative
Wire type inside mat Semi-global
Wire type outside mat Semi-global/Global

Table 16: CACTI input parameters used for modeling 65 nm Intel Xeon L3 cache.
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Figure 55: Access time, area and power of the 65 nm Xeon L3 cache and of solutions generated by CACTI.
The CACTI solutions assume ‘conservative’ interconnect projections and ‘semi-global’ wire type outside
mat. The 3 plots correspond to 3 activity factors assumed while computing dynamic power for the CACTI-
generated solutions.
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Solution % error in % error in % error in Avg of acc time, area
acc time area power and power % errors

Best % error in
acc time -11/-11/-11 -23/-23/-23 -40/-19/7 24/18/14
Best % error in
area -11/-11/-11 -23/-23/-23 -40/-19/7 24/18/14
Best % error in
power -11/-11/-11 -23/-23/-23 -40/-19/7 24/18/14
Best average of
area, acc time and
power % errors 2/2/2 0/6/0 -31/0/21 11/3/8
Best average of
area and acc time 2/2/2 0/0/0 -31/-8/21 11/4/8
% errors
Best average of
acc time and power 2/2/-4 6/6/-14 -27/0/10 12/3/9
% errors
Best acc time -11/-11/-11 -23/-23/-23 -40/-19/7 24/18/14
Best area -11/-11/-11 -23/-23/-23 -40/-19/7 24/18/14
Best power -11/-11/-11 -23/-23/-23 -40/-19/7 24/18/14

Table 17: Error percentages of some prominent solutions generated by CACTI with respect to a 65 nm
Intel Xeon L3 cache when we assume that the dynamic power consumed by the cache is 1.7W. The CACTI
solutions assume ‘conservative’ interconnect projections and ‘semi-global’ wire type outside mat. We have
used 3 activity factors of 0.1, 0.5 and 1, and so each entry in the table has 3 values.

Solution % error in % error in % error in Avg of acc time, area
acc time area power and power % errors

Best % error in
acc time -11/-11/-11 -23/-23/-23 -58/-44/-26 31/26/20
Best % error in
area -11/-11/-11 -23/-23/-23 -58/-44/-26 31/26/20
Best % error in
power -11/-11/-11 -23/-23/-23 -58/-44/-26 31/26/20
Best average of
area, acc time and
power % errors 2/2/2 0/6/6 -52/-31/-7 18/13/5
Best average of
area and acc time 2/2/2 0/0/0 -52/-37/-17 18/13/6
% errors
Best average of
acc time and power 2/2/2 6/6/6 -49/-31/-7 19/13/5
% errors
Best acc time -11/-11/-11 -23/-23/-23 -58/-44/-26 31/26/20
Best area -11/-11/-11 -23/-23/-23 -58/-44/-26 31/26/20
Best power -11/-11/-11 -23/-23/-23 -58/-44/-26 31/26/20

Table 18: Error percentages of some prominent solutions generated by CACTI with respect to a 65 nm
Intel Xeon L3 cache when we assume that the dynamic power consumed by the cache is 5.4W. The CACTI
solutions assume ‘conservative’ interconnect projections and ‘semi-global’ wire type outside mat. We have
used 3 activity factors of 0.1, 0.5 and 1, and so each entry in the table has 3 values.
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13 Future Work

Non Uniform Cache Access (NUCA) is an interesting architecture that CACTI could support in the future.
Incorporation of models for low-swing interconnect into CACTI could also be an interesting enhancement.

14 Conclusions

In this technical report, we have described the various enhancements carried out in CACTI 5.0 while also
providing a comprehensive overview of the CACTI area, access time and power modeling. CACTI 5.0
includes a number of major improvements over CACTI 4.0. The base technology modeling has been changed
from simple linear scaling of the original 0.8 micron technology to models based on the ITRS roadmap. Data
for different ITRS device types has been incorporated into CACTI. Interconnect technology data has also
been updated so that it is now based off well-documented models and data. CACTI 5.0 has also added
support for modeling embedded DRAM in such a way that it now becomes possible to compare tradeoffs
involving the use of embedded SRAM or DRAM for identical input specifications. This has been achieved
by an extensive rewrite of the CACTI code base. Various organizational and circuit assumptions have been
clarified and updated. The modeling has also been restructured in such a way that it is now more modular
and easier to extend and evolve.

In the studies shown in this report, the impact of technology assumptions on cache performance has been
pointed out and emphasized. The importance of solution optimization techniques on memory and cache
performance has also been highlighted. Area, delay and power results obtained from version 5.0 have been
compared against published data available for two prominent caches. Taking into account the extremely
generic nature of CACTI, it was found that there is reasonable agreement between the results produced by
CACTI and the published data.

Finally, as in the original CACTI report, we would like to caution users against making too many
conclusions based on results shown in this report. It is important to know that CACTI is a simplified model
for memories and caches with various limitations at the various levels of modeling, so appropriate caution
and judgement needs to be exercised with its use. In general, it is best to use CACTI for studies that involve
relative optimization.
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APPENDIX

A Additional CACTI Validation Results for 90 nm SPARC L2
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Figure 56: Access time, area and power of the 90 nm SPARC L2 cache and of solutions generated by CACTI.
The CACTI solutions are for assumptions of ‘fast’ access mode, ‘conservative’ interconnect projections and
‘global’ wire type outside mat. The 3 plots correspond to 3 activity factors assumed while computing dynamic
power for the CACTI-generated solutions.
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Solution % error in % error in % error in Avg of acc time, area
acc time area power and power % errors

Best % error in
acc time -15/-15/-15 45/45/45 -68/-54/-36 43/38/32
Best % error in
area -15/-15/-15 45/45/45 -68/-54/-36 43/38/32
Best % error in
power -15/-15/-15 45/45/45 -68/-54/-36 43/38/32
Best average of
area, acc time and
power % errors -15/-15/-15 45/45/45 -68/-54/-36 43/38/32
Best average of
area and acc time -15/-15/-15 45/45/45 -68/-54/-36 43/38/32
% errors
Best average of
acc time and power -15/-15/-15 45/45/45 -68/-54/-36 43/38/32
% errors
Best acc time -15/-15/-15 45/45/45 -68/-54/-36 43/38/32
Best area -15/-15/-15 45/45/45 -68/-54/-36 43/38/32
Best power -15/-15/-15 45/45/45 -68/-54/-36 43/38/32

Table 19: Error percentages of some prominent solutions generated by CACTI with respect to a 90 nm
SPARC L2 cache under assumptions of ‘fast’ access mode, ‘conservative’ interconnect projections and ‘global’
wire type outside mat. We have used 3 activity factors of 0.1, 0.5 and 1, and so each entry in the table has
3 values.
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Figure 57: Access time, area and power of the 90 nm SPARC L2 cache and of solutions generated by
CACTI. The CACTI solutions are for assumptions of ‘normal’ access mode, ‘conservative’ interconnect
projections and ‘semi-global’ wire type outside mat. The 3 plots correspond to 3 activity factors assumed
while computing dynamic power for the CACTI-generated solutions.
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Figure 58: Access time, area and power of the 90 nm SPARC L2 cache and of solutions generated by CACTI.
The CACTI solutions are for assumptions of ‘normal’ access mode, ‘conservative’ interconnect projections
and ‘global’ wire type outside mat. The 3 plots correspond to 3 activity factors assumed while computing
dynamic power for the CACTI-generated solutions.
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Solution % error in % error in % error in Avg of acc time, area
acc time area power and power % errors

Best % error in
acc time 35/35/35 -38/-38/-38 -69/-63/-54 47/45/42
Best % error in
area 44/44/44 -41/-41/-41 -70/-62/-52 52/49/46
Best % error in
power 44/35/35 -41/-38/-38 -70/-63/-54 52/45/42
Best average of
area, acc time and
power % errors 48/48/48 -19/-19/-19 -69/-57/-43 45/42/37
Best average of
area and acc time 48/48/48 -19/-19/-19 -69/-57/-43 45/42/37
% errors
Best average of
acc time and power 37/37/37 -32/-32/-32 -67/-58/-47 46/43/39
% errors
Best acc time 35/35/35 -38/-38/-38 -69/-63/-54 47/45/42
Best area 44/44/44 -41/-41/-41 -70/-62/-52 52/49/46
Best power 44/35/35 -41/-38/-38 -70/-63/-54 52/45/42

Table 20: Error percentages of some prominent solutions generated by CACTI with respect to a 90 nm
SPARC L2 cache for a normal cache under assumptions of ‘normal’ access mode, ‘conservative’ interconnect
projections and ‘semi-global’ wire type outside mat. The CACTI solutions and errors depends on the activity
factor. We have used 3 activity factors of 0.1, 0.5 and 1, and so each entry in the table has 3 values.

Solution % error in % error in % error in Avg of acc time, area
acc time area power and power % errors

Best % error in
acc time 8/8/8 -31/-31/-31 -71/-65/-58 37/35/32
Best % error in
area 16/16/16 -35/-35/-35 -70/-63/-53 40/38/34
Best % error in
power 8/11/11 -31/-24/-24 -71/-65/-59 37/33/31
Best average of
area, acc time and
power % errors 20/20/11 -8/-8/-20 -68/-62/-49 32/30/27
Best average of
area and acc time 20/20/20 -8/-8/-8 -68/-62/-54 32/30/27
% errors
Best average of
acc time and power 8/11/11 -31/-20/-20 -71/-60/-49 37/30/27
% errors
Best acc time 8/8/8 -31/-31/-31 -71/-65/-58 37/35/32
Best area 16/16/16 -35/-35/-35 -70/-63/-53 40/38/34
Best power 8/11/11 -31/-24/-24 -71/-65/-59 37/33/31

Table 21: Error percentages of some prominent solutions generated by CACTI with respect to a 90 nm
SPARC L2 cache for a normal cache under assumptions of ‘normal’ access mode, ‘conservative’ interconnect
projections and ‘global’ wire type outside mat. We have used 3 activity factors of 0.1, 0.5 and 1, and so each
entry in the table has 3 values.
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B Additional CACTI Validation Results for 65 nm Xeon L3

Activity factor for dynamic power = 0.1

0

2

4

6

8

10

12

0 5 10 15 20 25 30
Power (W)

A
cc

es
s 

ti
m

e 
(n

s)


CACTI generated
solutions

Target Intel L3;
dyn pow = 1.7W 

Target Intel L3;
dyn pow = 5.4W

Activity factor for dynamic power = 0.5

0

2

4

6

8

10

12

0 5 10 15 20 25 30
Power (W)

A
cc

es
s 

ti
m

e 
(n

s)


CACTI generated
solutions

Target Intel L3;
dyn pow = 1.7W 

Target Intel L3;
dyn pow = 5.4W

Activity factor for dynamic power = 1.0

0

2

4

6

8

10

12

0 5 10 15 20 25 30
Power (W)

A
cc

es
s 

ti
m

e 
(n

s)


CACTI generated
solutions

Target Intel L3;
dyn pow = 1.7W 

Target Intel L3;
dyn pow = 5.4W

Figure 59: Access time, area and power of the 65 nm Xeon L3 cache and of solutions generated by CACTI.
The CACTI solutions are for assumptions of ‘conservative’ interconnect projections and ‘global’ wire type
outside mat.The 3 plots correspond to 3 activity factors assumed while computing dynamic power for the
CACTI-generated solutions.
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Solution % error in % error in % error in Avg of acc time, area
acc time area power and power % errors

Best % error in
acc time -29/-29/-29 2/2/2 -43/-25/-2 25/19/11
Best % error in
area -17/-17/-17 -11/-11/-11 -34/-9/24 21/12/17
Best % error in
power -29/-29/-29 2/2/2 -43/-25/-2 25/19/11
Best average of
area, acc time and
power % errors -15/-15/-29 -1/-1/2 -26/3/-2 14/7/11
Best average of
area and acc time -15/-15/-15 -1/-1/-1 -26/3/41 14/7/19
% errors
Best average of
acc time and power -15/-7/-25 -1/-10/7 -26/-8/5 14/8/12
% errors
Best acc time -29/-29/-29 2/2/2 -43/-25/-2 25/19/11
Best area -17/-17/-17 -11/-11/-11 -34/-9/24 21/12/17
Best power -29/-29/-29 2/2/2 -43/-25/-2 25/19/11

Table 22: Error percentages of some prominent solutions generated by CACTI with respect to a 65 nm
Intel Xeon L3 cache when we assume that the dynamic power consumed by the cache is 1.7W. The CACTI
solutions are for assumptions of “conservative’ interconnect projections and ‘global’ wire type outside mat.
We have used 3 activity factors of 0.1, 0.5 and 1, and so each entry in the table has 3 values.

Solution % error in % error in % error in Avg of acc time, area
acc time area power and power % errors

Best % error in
acc time -29/-29/-29 2/2/2 -61/-48/-32 31/27/21
Best % error in
area -17/-17/-17 -11/-11/-11 -55/-37/-14 27/21/14
Best % error in
power -29/-29/-29 2/2/2 -61/-48/-32 31/27/21
Best average of
area, acc time and
power % errors -15/-15/-15 -1/-1/-1 -49/-28/-3 22/15/65
Best average of
area and acc time -15/-15/-15 -1/-1/-1 -49/-28/-3 22/15/6
% errors
Best average of
acc time and power -7/-15/-15 -10/-1/-1 -55/-28/-3 24/15/6
% errors
Best acc time -29/-29/-29 2/2/2 -61/-48/-32 31/27/21
Best area -17/-17/-17 -11/-11/-11 -55/-37/-14 27/21/14
Best power -29/-29/-29 2/2/2 -61/-48/-32 31/27/21

Table 23: Error percentages of some prominent solutions generated by CACTI with respect to a 65 nm
Intel Xeon L3 cache when we assume that the dynamic power consumed by the cache is 5.4W. The CACTI
solutions are for assumptions of ‘conservative’ interconnect projections and ‘global’ wire type outside mat.
We have used 3 activity factors of 0.1, 0.5 and 1, and so each entry in the table has 3 values.
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