

Quantifying Counts, Costs, and Trends Accurately via Machine Learning

George Forman
Business Optimization Lab
HP Laboratories Palo Alto
HPL-2007-164 (R.1)
March 26, 2007*

supervised
machine
learning,
classification,
prevalence
estimation, class
distribution
estimation, cost
quantification,
quantification
research
methodology,
minimizing
training effort,
detecting and
tracking trends,
concept drift,
class imbalance,
text mining

In many business and science applications, it is important to track trends over
historical data, for example, measuring the monthly prevalence of influenza
incidents at a hospital. In situations where a machine learning classifier is needed
to identify the relevant incidents from among all cases in the database, anything
less than perfect classification accuracy will result in a consistent and potentially
substantial bias in estimating the class prevalence. There is an assumption
ubiquitous in machine learning that the class distribution of the training set
matches that of the test set, but this is certainly not the case for applications
where the goal is to measure changes or trends in the distribution over time. The
paper defines two research challenges for machine learning that address this
distribution mismatch problem. The ‘quantification’ task is to accurately estimate
the number of positive cases (or class distribution) in an unlabeled test set via
machine learning, using a limited training set that may have a substantially
different class distribution. The ‘cost quantification’ task is to estimate the total
cost associated with the positive class, where each case is tagged with a cost
attribute, such as the hours of labor needed to resolve the case. Obtaining a
precise quantification estimate over a set of cases has a very different utility
model from traditional classification research, whose goal is to obtain an accurate
classification for each individual case. For both forms of quantification, the paper
describes a suitable experiment methodology and evaluates a variety of methods.
It reveals which methods give more reliable estimates, even when training data is
scarce and the testing class distribution differs widely from training. Some
methods function well even under high class imbalance, e.g. 1% positives. These
strengths can make quantification practical for business use, even where
classification accuracy is poor.

* Internal Accession Date Only Approved for External Publication
To be published in international journal Data Mining and Knowledge Discovery in a special issue on Utility-Based
Data Mining
© Copyright 2008 Hewlett-Packard Development Company, L.P.

Quantifying Counts, Costs, and Trends Accurately
via Machine Learning

George Forman
Hewlett-Packard Labs

Palo Alto, CA

ABSTRACT
In many business and science applications, it is important to track trends over historical data, for example, measuring
the monthly prevalence of influenza incidents at a hospital. In situations where a machine learning classifier is needed
to identify the relevant incidents from among all cases in the database, anything less than perfect classification
accuracy will result in a consistent and potentially substantial bias in estimating the class prevalence. There is an
assumption ubiquitous in machine learning that the class distribution of the training set matches that of the test set, but
this is certainly not the case for applications where the goal is to measure changes or trends in the distribution over
time.

The paper defines two research challenges for machine learning that address this distribution mismatch problem. The
‘quantification’ task is to accurately estimate the number of positive cases (or class distribution) in an unlabeled test set
via machine learning, using a limited training set that may have a substantially different class distribution. The ‘cost
quantification’ task is to estimate the total cost associated with the positive class, where each case is tagged with a cost
attribute, such as the hours of labor needed to resolve the case.

Obtaining a precise quantification estimate over a set of cases has a very different utility model from traditional
classification research, whose goal is to obtain an accurate classification for each individual case. For both forms of
quantification, the paper describes a suitable experiment methodology and evaluates a variety of methods. It reveals
which methods give more reliable estimates, even when training data is scarce and the testing class distribution differs
widely from training. Some methods function well even under high class imbalance, e.g. 1% positives. These
strengths can make quantification practical for business use, even where classification accuracy is poor.

Keywords
supervised machine learning, classification, prevalence estimation, class distribution estimation, cost quantification, quantification research
methodology, minimizing training effort, detecting and tracking trends, concept drift, class imbalance, text mining.

1. Introduction
At Hewlett-Packard our employees have trained thousands of text classifiers to examine the written notes of our voluminous technical
support logs. We then use these classifiers to quantify the prevalence of specific support issues and monitor for changes or trends in the
class distribution over time (Forman, Kirshenbaum and Suermondt, 2006). For example, in the iPAQ handheld product line, one classifier
focuses on detecting customer calls where the battery is not holding a charge, while another focuses on cracked screens. By quantifying
the prevalence for each of twenty to fifty issues for different product lines, we can determine their relative and absolute priorities. By
tracking the prevalence of each type of issue over time, we can identify trends even among lesser issues, such as an increase in cracked
screens reported after the July 4th US Independence holiday. More importantly, rising problems can be identified before they become

 0

 5

 10

 15

 20

 0 5 10 15 20 25

%
 p

os
it

iv
es

days

truth
quantifier

classifier

 0

 5

 10

 15

 20

 0 5 10 15 20 25

%
 p

os
it

iv
es

days

truth
quantifier

classifier

(a) (b)

Figure 1. A fictitious trend tracked by a normal classifier and by a quantifier. (a) Each is trained with 100 positives and 900
negatives sampled from day 1, and the classifier averaged 94% correct on the rest of day 1. (b) Each is trained with just one tenth
of the effort: 10 positives and 90 negatives. The classifier still averaged 93% correct on day 1.

epidemics, and the Pareto ordering of issues enables the business to efficiently improve support and products. Such analyses are needed in
many business and science applications, e.g. monitoring for disease epidemics or for trends in customer demand. In most cases, such
analyses assume that the individual cases have been explicitly labeled with the correct class, or that these class labels can be accurately
generated by a classifier. To determine the class distribution then, one simply counts the number of cases in each class, yielding a
histogram.
However, for many classification tasks, it is either impossible or costly to develop an accurate classifier. The cost of having domain
experts label sufficiently many training cases can be substantial, especially when there are thousands of classifiers to train. Real-world
concepts can be difficult to distinguish even for state-of-the-art classifiers. The effort to develop special purpose features or classifiers
could increase the cost significantly, with no guarantee of an accurate classifier. Thus, an imperfect classifier is often all that is available.
Using an imperfect classifier to generate a class histogram will result in some degree of error that leads, perhaps surprisingly, to a
systematic and sometimes large bias if the test class distribution changes from that of the training set. Although this distribution mismatch
is expected and fundamental to applications that track trends, the vast majority of machine learning methods assume that the training set is
a random sample of the test distribution. We illustrate the severity of the resulting bias with a brief example. Figure 1a shows a trend line
for a single fictitious issue. It begins at 10% prevalence of the daily case volume for the first three days, decreases to 2% over the next few
days, and eventually climbs to 20%. On day 1 we train a state-of-the-art SVM text classifier with a training set of 100 positives and 900
negatives. On the remaining test cases of day 1, it achieved good accuracy: 94% correct predictions, with balanced precision and recall.
(Each measurement here is averaged over 100 randomly selected training sets.) The solid diamonds (♦) show the average percentage of
cases predicted positive each day. Observe at the low point that it overestimated by a factor of two, and later substantially underestimated
the peak. One may suggest that some other learning model might have been more accurate, but the general problem remains. We rarely
obtain 100% accurate classifiers, and the imperfection leads to a systematic bias that overestimates when the prevalence goes down, and
worse, underestimates during an epidemic (proof in Section 2.1). For some applications, simply detecting any change or knowing its
direction may be enough. But for most business applications, precise estimates are desired, especially when comparing many non-
exclusive classes against each other, such as different technical support issues.
It is sufficient but not necessary to have a perfect classifier in order to estimate the class distribution well. If the number of false positives
balances against false negatives, then the overall count of predicted positives is nonetheless correct. Intuitively, the estimation task is
easier for not having to deliver accurate predictions on individual cases. An insurance company can estimate how many cars will have
accidents next year, without having to predict which ones. The nature of the uncertainty is shifted from the individual cases to the
aggregate count of cases. To illustrate, the hollow circles (○) in Figure 1a show the class distribution estimates by one of the quantifier
methods described in Section 2.2. It approximates the ground truth curve much more closely. Moreover, the benefits for business use are
even greater—it also performs well with less training data. Figure 1b shows the same experiment, but using only one tenth the training
effort: just 10 positives and 90 negatives. Compared with the previous figure, the class distribution estimates by the quantifier method are
almost as good, but those of the classifier have degraded considerably, even though it still has 93% classification accuracy on day 1.
Advanced methods stand to improve estimates as well as reduce the demand for training data, which is often proportional to labeling effort
by domain experts. Moreover, some of the methods we propose are able to operate effectively even under high class imbalance, e.g. 1%
positives, which has traditionally been very difficult for machine learning classification.
For many applications that track trends in business or science, the objective is to accurately estimate the count or cost of cases that belong
to each class, with minimal burden. Note that this utility is quite different from needing an accurate classification for each individual case,
regardless whether measured by error rate, F-measure, etc. Altogether, the radically different utility, the opportunity for improvement with
less training data, and the ability to address the distribution mismatch problem even under class imbalance bring about a valuable challenge
for ongoing research. We define two forms of the task:
1. The quantification task for machine learning: given a limited training set with class labels, induce a quantifier that takes an

unlabeled test set as input and returns its best estimate of the number of cases in each class. In other words, the quantification
task is to accurately estimate the test class distribution via machine learning, but without assuming a large training set that is
sampled at random from the test distribution. The input to a quantifier is a batch of cases, whereas a traditional classifier takes a
single case at a time and predicts its single class (or a distribution of classes reflecting its uncertainty about that one case).
The recognition of this as an important and distinct research objective may have been delayed for several reasons. First, on the
surface, this task might seem trivial—although our experiences have taught us otherwise. Second, the problem does not naturally
surface in machine learning research. The ubiquitous practices of random sampling and cross-validation ensure that the training class
distribution matches the test class distribution, a fundamental assumption in most machine learning theory. Third, quantification
research calls for a more complicated evaluation methodology, which we address in Section 3. Finally, the extent of machine learning
research where the test distribution differs from training has focused on improving the correctness of the individual classifications, not
on the estimate of the class distribution itself. The literature has successfully applied ROC analysis from the medical statistics field of
diagnostic test evaluation in order to adjust the classification threshold once the test distribution is known, e.g. by a labeled calibration
sample from the test cases (e.g. Provost & Fawcett, 2001; Fawcett, 2003). While this research is related, it is not directly applicable
for measuring the test class distribution.

The second form of the quantification task is for a common situation in business where a cost or value attribute is associated with each
case. For example, a customer support log has a database field to record the amount of time spent to resolve each individual issue, or the
total monetary cost of parts and labor used to fix the customer’s problem. Note that this type of cost has nothing to do with any of the
misclassification costs or attribute measurement costs identified by Turney (2000).
2. The cost quantification task for machine learning: given a limited training set with class labels, induce a cost quantifier that takes

an unlabeled test set as input and returns its best estimate of the total cost associated with each class. In other words, return the
subtotal of cost values for each class.
For example, given a trained cost quantifier for customer support logs, one could determine the total time spent by technical support
dealing with calls for each type of issue. Sometimes an expensive support issue that occurs rarely can exceed the total cost of a
common, inexpensive issue. Thus, whenever an appropriate cost attribute is available, cost quantification may be preferred over
simply quantifying the number of cases in each class.
The obvious solution is to train a classifier and subtotal the cost attributes according to the hard class label predictions. For a binary
problem, this simply sums the costs of test cases predicted to be positive. This naïve approach performs very poorly. Furthermore,
the problem is more challenging than basic quantification, because false positives and false negatives do not cancel each other out
unless their costs are identical. We address this task and propose methods in Section 4, comparing their performance empirically in
Section 5.

We believe this vein of research may have considerable economic value. A major benefit of sophisticated methods for quantification is
that a much less accurate classifier can be used to obtain reasonably precise quantification estimates. This enables some applications of
machine learning to be deployed where otherwise the raw classification accuracy would be unacceptable or the training effort too great.
Reducing the number of training cases required may not seem a substantial savings, however, for a large company like Hewlett-Packard
with many services and product lines, multiplied by the many issues to track within each, the savings in training effort should not be
undervalued. Further, the training needs may be ongoing because of concept drift in class character, as well as newly emerging support
issues and the introduction of new product lines. Therefore, labor savings from quantification improvements continue to accumulate over
time. For these reasons, research for quantification should focus on situations where labeled training data is limited, and should not
concentrate on saving computer training time, which is relatively inconsequential and becoming more so with Moore’s Law and
algorithmic improvements in induction. Operating an enterprise with accurate business intelligence can lead to tremendous opportunities
for optimization and/or new profit, dwarfing any cost savings in reduced training labor. Nonetheless, it is well to minimize the training
labor, since it is an up-front cost for uncertain future benefits. If the up-front cost appears too great, then the endeavor will likely not be
undertaken.
Real-world situations can also involve arbitrary concept drift, where the target concept may gradually or suddenly change. We limit our
scope to situations where the class distribution P(c) varies, but the conditional probability of the feature space given the class P(x|c) does
not. Fawcett and Flach (2005) provide an insightful discussion and examples of such situations, which they refer to as “Y X” domains.
We do not attempt to address concept drift in general.
We have defined the quantification tasks generally enough to cover multi-class settings. However, we primarily focus on binary tasks: a
positive class versus a majority negative class. This simplifies the exposition and resolves a key subproblem for decomposing a multi-
class setting into a series of binary “one class versus others” problems, as discussed in Section 6.1. When there are many classes, such a
decomposition naturally leads to binary class distributions that are highly imbalanced—one reason why research should focus on
imbalanced situations. This also corresponds with our experience in business settings, where it is often desirable to track many narrowly
defined issue types with a limited number of positive training examples for each class.
The bulk of the paper focuses on quantification of a single test set. In order to track trends over time, the natural problem decomposition is
to partition the dataset into discrete time buckets and quantify each bucket as a separate test set. There are a few nuances, which we
discuss in Section 6.2.
One purpose of this paper is the empirical comparison of many methods against each other, which cannot be determined well from a series
of papers each introducing one new method. For this reason, a number of quantification methods are introduced, and they are tested under
an array of experimental conditions over a baseline of 25 binary text classification problems. Omitting some methods would make the
exposition simpler, but would leave an incomplete statement about known methods and their performance.
The structure of the paper is as follows. Sections 2 and 3 describe a series of quantification methods of increasing complexity, and
respectively evaluate them with an appropriate experiment methodology. Likewise, sections 4 and 5 lay out a series of cost quantification
methods, and subsequently evaluate them. Section 6 briefly discusses the generalization to multi-class settings and trending over time.
Section 7 describes related work, and Section 8 gives conclusions and directions for future work.

2. Quantification Methods
In this section, we present a series of methods for quantification. We include discussions of their shortcomings to help explain the
motivation for subsequent methods of increasing complexity. In Section 3 we evaluate these methods experimentally. Until Section 6, we
restrict our scope to binary tasks and the quantification of a single test set only.

2.1 Basic Methods
The obvious method for quantification is to train the best available classifier on the training set and count its positive class predictions on
the test set. We call this method Classify & Count (CC). The observed count P’ of positives from the classifier will include both true
positives and false positives, P' = TP + FP, as characterized by the standard 2x2 contingency table:

Actual: Classifier Predictions:
P positives TP = tpr · P FN

N negatives FP = fpr · N TN

where tpr is the true positive rate characteristic of the classifier, the probability that the classifier outputs a positive prediction given the
case is actually positive, P(+ | pos) = TP / P, and fpr is its false positive rate, P(+ | neg) = FP / N. For the domains we consider, the tpr and
fpr characteristics are independent of changes to the class distribution, per Fawcett and Flach (2005). Unless the classifier is perfect (tpr=1
and fpr=0), which we shall assume is not the case henceforth, this simple CC method is not a good quantifier. For example, if the number
of positives P increases, only the fraction tpr of this increase will be observed in P'. We state the following theorem:

Theorem: For an imperfect classifier, the CC method will underestimate the true proportion of positives p in a test set
for p > p*, and overestimate for p < p*, where p* is the particular proportion where the CC method estimates correctly.

Proof: The probability that the binary classifier outputs a positive prediction on a random item of the test set is:
P(+) = P(+ | pos) · P(pos) + P(+ | neg) · P(neg)
 = tpr · P(pos) + fpr · (1 – P(pos))

where P(pos) reflects the ground truth prevalence of positives in the test set, hereafter renamed p.
We can write as a function of p the expected prevalence p' of positive classifier outputs over the test set:

p'(p) = tpr · p + fpr · (1 – p)
If the classifier correctly estimates the prevalence for a particular value p*, i.e. p'(p*) = p*, then for a strictly different
prevalence p + Δ, where Δ ≠ 0, it does not produce the correct prevalence:
 p'(p* + Δ) = tpr · (p* + Δ) + fpr · (1 – (p* + Δ))
 = p'(p*) + (tpr – fpr) · Δ
 = p* + (tpr – fpr) · Δ
Since the classifier is imperfect, (tpr – fpr) is a fraction less than one. Therefore, if Δ is positive, the estimate p' is less than
p* + Δ, and if Δ is negative, the estimate is greater than p* + Δ. QED

Hence, such a simple quantifier underestimates when the prevalence goes up, and overestimates when the prevalence goes down, as was
observed in Figure 1. However, we can derive an improved quantifier method as follows:

p'(p) = tpr · p + fpr · (1 – p)
 = (tpr – fpr) · p + fpr

Solving for p, the sought quantity, we get:

p =
fprtpr

fpr
−
− (p)p' (1)

Using this, we can estimate the true proportion of positives p from the observed proportion p'. This derivation is known in the medical
statistics literature, where sensitivity (tpr) and specificity (1-fpr) of a medical diagnostic test are determined from prior studies in which
ground truth medical conditions are known (Zhou, Obuchowski and McClish, 2002, p.389). In our case, these distribution-independent
characteristics must be estimated for the learned classifier. One option is to split the available training set: induce a classifier from one
portion, and then estimate tpr and fpr from the held-out set. However, the reduction in training cases results in poorer learning, especially
when there are not many positive training cases available (≤100 is our research focus). Instead, we can train on 100% of the labeled data
and estimate the characteristics of the learned classifier via standard cross-validation. For 10-fold cross-validation, each fold classifier
trains on 90% of the data. This difference could be substantial in the early part of the learning curve, i.e. when there is little training data

relative to the difficulty of the target concept. For this reason, we use 50-fold cross-validation so that the difference in training set size is
only 2%. One could potentially use leave-one-out cross-validation. Recall that we desire to minimize the cost of obtaining labeled
training cases from domain experts, rather than saving computation time, which is relatively inexpensive and becoming more so.
By assumption, there should be no fundamental change in the tpr and fpr characteristics between the training and testing distributions.
However, one should expect some amount of discrepancy between their estimates from the limited training set and their ground truth
values on the finite test sample. Particularly if either set is small, these discrepancies lead to error in the final estimation of p and can
occasionally lead to infeasible estimates, e.g. negative values. Thus, as a final step, we clip the estimate into the range 0% to 100%.
Altogether, we call this procedure the Adjusted Count (AC) quantification method (Forman, 2005): learn a binary classifier from the
entire training set, estimate its characteristics via many-fold cross-validation (tpr=TP/P and fpr=FP/N), apply the classifier to the test set,
count the number of test cases on which the classifier outputs positive, estimate the true percentage of positives via equation (1), and
finally, clip the output to the feasible range.
The AC method can estimate the class distribution well in many situations, but its performance degrades severely when the training class
distribution is highly imbalanced (Forman, 2006). If the positive class is rare enough in the training set, the classifier will learn to always
vote negative, i.e. tpr=0%. Although this gives optimal classification accuracy for such high class imbalance, it is useless for
quantification. Backing off from this extreme, either by training with less imbalance or by optimizing for F-measure instead, the classifier
would predict at least a few true positives, but would still remain conservative (low tpr) to avoid misclassifying a great many negatives.
And this results in a small denominator (tpr – fpr) in equation (1), making the quotient highly sensitive to any errors in the estimate of tpr
or fpr. This problem is amplified if the training set is small, but would occur even on a very large training set having high class imbalance.
The need to operate well under these conditions is important. Class imbalance is widespread in practice, especially in business
applications where the rare class is often most interesting or profitable. In some situations, a surfeit of negative training cases is freely
available. A well known and often successful technique is to select only a limited sample of the available negatives to reduce the training
imbalance, either by random or systematized undersampling (Van Hulse, Khoshgoftaar and Napolitano, 2007). Except where this yields a
perfect classifier, we can do better for the purpose of quantification. Having investigated the reason for the degradation, we next introduce
quantification methods devised to be resilient under class imbalance.

2.2 Imbalance Tolerant Methods via Classifier Threshold Selection
The solution to the class imbalance problem lies in recognizing that trying to minimize the expected loss of individual classifications has
little bearing on the objective of quantification. Rather than use a classifier decision threshold optimized for accuracy, we should explicitly
select the threshold to provide better quantifier estimates from equation (1). This means avoiding thresholds where estimates of tpr and fpr
have greater variance or where the denominator (tpr – fpr) is small. Under class imbalance, the default threshold may yield zero or
extremely few true positives or false positives in cross-validation, which leads to greater uncertainty in the tpr and fpr estimates. Instead,
we will select a threshold that admits more true positives and many more false positives, yielding worse classifier accuracy but better
quantifier accuracy.
The remaining question is what policy to use for selecting the threshold. To consider the possibilities, see the illustration in Figure 2,
which shows a typical tradeoff between tpr and fpr. The x-axis represents the spectrum of thresholds, i.e. the scores generated by the raw
classifier. In general, they are uncalibrated and may take any range, e.g. the signed distance from the separating hyperplane of an SVM, or
the probability output by Naïve Bayes, which is notorious for its poor probability calibration. Any method that calibrates or normalizes the
classifier scores merely changes the x-axis scale, but otherwise has no effect on the curves.
The descending curve shows the false positive rate fpr and the ascending curve shows the true positive rate, inverted (1 – tpr) to better
visualize the tradeoff with fpr. For a perfect classifier, there would exist thresholds where the curves do not overlap. This never occurred
in the many text classification tasks we studied. These particular curves represent an SVM classifier whose natural threshold delivers 92%
classification accuracy for a training set having 50 positives and 1000 negatives. Because negatives abound, the classifier naturally

0%

25%

50%

75%

100%

raw classifier scores (uncalibrated)

 X

 A
C

de
fa

ul
t

 M
ax

 T
50

fpr of
1000 negatives

(1 - tpr) of
50 positives

Figure 2. Various threshold selection policies.

optimized for a very low false positive rate, even at the cost of a ‘few’ misclassified positives: 28. This default threshold is used by the
basic AC method. If the number of negatives were much greater, it would select a threshold further to the right in the tails of the curves,
where estimates of fpr and tpr are less certain.
An intuitive policy for selecting a threshold is where the two curves cross, where fpr = 1-tpr (labeled X). This variant of AC we shall call
method X, which avoids the tails of both curves. Considering the earlier discussion of small denominators, another likely policy is where
the denominator (tpr–fpr) is maximized: method Max. More traditionally, a Neyman-Pearson criterion would select the threshold at a
particular false positive rate or true positive rate. We have empirically tested various such policies, but only report here on a particularly
successful one. The method T50 selects the threshold where tpr=50%, avoiding the tails of the tpr curve, which is especially important to
do for the positive class, since it has many fewer data samples than the fpr curve. Thus, we might expect this method to perform well
when training examples are scarce.
Any threshold selection method runs the risk that the tpr and fpr estimates from cross-validation at the chosen threshold do not happen to
match the actual rates due to sampling variation. For this reason, we consider an additional approach: obtain an estimate by equation (1) at
every threshold, and return a mean or median of these estimates. Median is preferred, as it is less sensitive to outliers. Specifically, the
Median Sweep (MS) method performs cross-validation to estimate tpr and fpr for all thresholds on the training set, and then on the test set
it computes the estimate via equation (1) for all thresholds, and returns the median of these. This bears some relation to the area under the
ROC curve (AUC) measure, which considers every classification threshold. A theoretical justification for expecting MS to perform well is
that by taking the median of many threshold estimates, it gets the variance-reduction benefits of a bootstrap method. One detail of the
method remains. Since we know that some of these thresholds yield poor estimates when the denominator (tpr–fpr) becomes small, we
exclude thresholds where the denominator is less than ¼. We validated that this exclusion improved the estimates, and no experimental
tuning of this constant was performed.

2.3 Mixture Model Method
For thoroughness and comparison, we also include a robust quantification method from our earlier work, which is based on very different
principles. The full details of its design choices are given in Forman (2005), as well as a lesion study where we systematically disabled or
varied each design choice and confirmed that performance was worse in each case. The Mixture Model (MM) method trains a binary
classifier on the training set, discarding the decision threshold. It later applies this classifier to each test case and records the distribution
DU of raw classifier scores. This observed distribution on the unlabeled test set is modeled as a mixture of two distributions: the
distribution of classifier scores on positive cases, D+, and that of negative cases, D–. These two distributions are determined via many-fold
cross-validation performed once at training time. Figure 3 illustrates these three sample distributions to communicate the graphical
intuition. The method outputs the estimate of p that gives the best match between the observed distribution DU and the mixture
distribution—that is, where DU ≈ p · D+ + (1–p) · D– and the distributions are each normalized to percentages.
Determining the optimal value of p requires a search and, more significantly, a distance metric for comparing the observed distribution to
the mixture distribution. While Kolmogorov-Smirnov is a logical choice for comparing cumulative distributions, the MM method uses a
new metric we developed that performs better: PP-Area. Given two cumulative distribution functions (CDFs), a well-known visual
comparison method is to plot one against the other while varying their input threshold, yielding a Probability-Probability plot, a.k.a.
P-P plot. An example is illustrated in Figure 4, shown as a wavy curve. If the two CDFs yield the same probability at each threshold, then
they generate a perfect 45° line. By sighting down this line, one can get an intuitive feel for the level of agreement between two CDFs.
This is commonly done to decide whether an empirical distribution matches a parametric model of the distribution. In order to distill this
visual linearity test to computation, it would be natural to measure the mean-squared-error (MSE) of the points on the PP curve versus the
45° ideal line. But MSE is highly sensitive to the maximal difference, as is Kolmogorov-Smirnov. The PP-Area metric measures the
difference between two CDFs as the area where the PP curve deviates from the 45° line, as indicated in the figure. This has well defined
behavior. The curve always begins at (0,0), ends at (1,1), and is monotonic in both x and y. It also has the intuitive property of being
commutative, unlike MSE or mean error. And unlike Kolmogorov-Smirnov, it is sensitive to the entire shape of the curve, rather than just
the maximal difference.
There is one additional detail to the MM method. Some test cases may generate a score that is greater than (or less than) any score
observed in cross-validation. In this case, they are removed from the DU distribution and treated separately as positives (or negatives) that
are completely certain with respect to the final quantification estimate.

 0 0.5 1

co
un

t

classifier score s

D+

D-

DU

Figure 3. Distributions of classifier scores

0%

100%

0% 100%

O
bs

er
ve

d
C

D
F

 D
U

Mixture CDF

 area

Figure 4. P-P plot comparing two CDFs

2.4 Non-Solution: Summing a Probability Estimating Classifier
It is sometimes suggested that quantification might be performed by a small variant of Count & Classify: train a calibrated, probability-
estimating classifier, which estimates P(+|x) for a given case x, and then sum these probability estimates for all cases in the test set. This
has an intuitive appeal compared with merely counting positives from a binary classifier, whose hard decisions lose information about the
uncertainty of individual predictions. Nonetheless, this is an ill-conceived method. The calibration of such a classifier depends critically
on the class distribution, and its estimates are no longer calibrated if the test class distribution changes. For example, for a well calibrated
classifier, the output value y=70% indicates that, among the training cases that score similarly, approximately 70% were positive.
Supposing a large test set contains the same proportion of positives, then among the cases that score y=70% ± ε, roughly 70% would be
positive. But if we repeat the test with most of the negative cases removed at random, then the proportion of positives among the
remaining test cases scoring in this bin (y=70% ± ε) would be much greater. Thus, the output of 70% would greatly underestimate the new
P(+|y=70%); and likewise for every bin. The end effect is again that this method would underestimate at high prevalence, and
overestimate at low prevalence, just as the CC method. Moreover, most calibration techniques add the additional complexity of
determining an appropriate bin granularity and, additionally, have difficulties calibrating with small training sets or under high class
imbalance. We therefore do not include this method in the experiments.

3. Empirical Evaluation of Quantification Methods
In this section we experimentally evaluate the quantification methods introduced in the previous section. There are three subsections. We
begin by explaining the need for a new experiment methodology and describe that which we used. The central subsection details the
results of the many experiments, highlighting methods that estimate well under a variety of circumstances. We conclude with a more
general discussion that steps back from the many graphs and individual findings.

3.1 Experiment Methodology
As mentioned in the introduction, the methodology to evaluate quantification methods is substantially different than that of traditional
classification research. In traditional classification, an individual prediction for a test case can be judged right or wrong independently of
others, and the overall success of a method can be judged on a test set of cases. In contrast, quantification outputs a single number for a
whole set of test cases. Many such estimates over subsets of a large benchmark must be aggregated to evaluate a method. Hence, the
research methodology is unusual. It bears a superficial resemblance to the batching of cases used in research for probability estimating
classifiers and in calibrating classifiers. For example, if a perfect meteorologist predicts the chance of rain at 20% on certain days of the
year, we expect rain on 20% of those days. The correctness of a prediction on a single day cannot be judged in isolation. Some methods
even require examination of the entire test set before producing any output. However, probability estimation, like traditional classification,
continues to make individual predictions on each item and then judges them in aggregate. By contrast, quantification makes a single
prediction based on an entire batch—a single scalar for binary tasks. This batching requirement calls for a unique research methodology.
In particular, the class distribution must be varied independently and dramatically between the training set and the test set. Further, since
each test set produces only a single estimate, we must test on many different batches and aggregate their measurements of error to identify
which methods are better than others. The ideal quantification method will generate accurate estimates, despite wide variation in training
and testing conditions.
To vary the training conditions, we randomly select P=10…100 positive training cases and N=100 or 1000 negative training cases from
the benchmark dataset at hand. These sizes are selected to cover common operating ranges of interest to our business applications, and are
reasonable for many other situations. The larger number of negatives represents a common multi-class case where we consider one class at
a time against many others that each has 10…100 example cases.
Our prior study measured performance on test sets ranging from p=5%…95% positive. While reasonable scientifically, this does not focus
on the area of interest for typical business problems: 1…20% positives is a more challenging and more important range in which to
estimate well. Why? First, it is common to have several mutually exclusive classes, e.g. each news article is printed in only a single
section of the newspaper. If there are many classes, most of them must be relatively rare in order to sum to 100%. Second, for datasets

where positives are the majority, one may merely reverse the naming of positive and negative to draw insight from this study. Third, when
positives are <10% prevalent, class imbalance is a greater problem for traditional classifiers, and yet we show that quantifiers can operate
quite successfully in this region. Finally, the labor savings of quantification by machine learning compared with traditional manual
labeling is greater under class imbalance. As imbalance increases, the number of items that need to be manually labeled increases greatly
in order to maintain tight confidence intervals on the final estimate.

Table 1. Benchmark classification tasks.
Dataset Class Positives Negatives %Positive Total
1 fbis 3 387 2076 16% 2463
2 fbis 7 506 1957 21% 2463
3 fbis 10 358 2105 15% 2463
4 la1 0 354 2850 11% 3204
5 la1 1 555 2649 17% 3204
6 la1 2 341 2863 11% 3204
7 la1 3 943 2261 29% 3204
8 la1 4 273 2931 9% 3204
9 la1 5 738 2466 23% 3204

10 la2 0 375 2700 12% 3075
11 la2 1 487 2588 16% 3075
12 la2 2 301 2774 10% 3075
13 la2 3 905 2170 29% 3075
14 la2 4 248 2827 8% 3075
15 la2 5 759 2316 25% 3075
16 ohscal 0 1159 10003 10% 11162
17 ohscal 1 709 10453 6% 11162
18 ohscal 2 764 10398 7% 11162
19 ohscal 3 1001 10161 9% 11162
20 ohscal 4 864 10298 8% 11162
21 ohscal 5 1621 9541 15% 11162
22 ohscal 6 1037 10125 9% 11162
23 ohscal 7 1297 9865 12% 11162
24 ohscal 8 1450 9712 13% 11162
25 ohscal 9 1260 9902 11% 11162

To vary the testing conditions, we select positives and negatives from the remaining benchmark dataset such that the percent of test
positives matches our target p. For example, for a dataset having 864 positives and 10298 negatives, we first remove 100 positives and
1000 negatives for training (subsetting these for the varied training situations), leaving 764 positives and 9298 negatives. When targeting
p=20% positive, we test with all 764 positives and a random subset of 3056 negatives. When targeting p=1%, we use a random subset of
94 positives against all 9298 negatives. At the extremes, this can lead to having only a few training cases in one class or the other, and it
requires large datasets for reasonable experimentation. The business datasets we work with at Hewlett-Packard often have >100,000 cases
to quantify, but they are not publishable for research.
The benchmark text classification tasks are drawn from OHSUMED abstracts (ohscal), Los Angeles Times articles of 1989 and 1990 (la),
and the Foreign Broadcast Information Service (fbis) (Han and Karypis, 2000). The feature vectors are publicly available for download
from the Journal of Machine Learning Research (Forman, 2003). For this suite of experiments, we consider the binary classification tasks
of one class versus all others. Some of the fbis classes had too few labeled positives to suit our needs, but we still use them as negatives for
the other classes. Table 1 above shows the number of positive and negative cases available for each binary task. The natural percentage of
positives averages 14% and the central two quartiles range from 9% to 16%, which corroborates our earlier discussion about the
importance of studying quantification for < 20% positives. As an indicator of the difficulty of these text classification problems, SVM
classifiers average in the mid-70’s with respect to F-measure, the harmonic mean of precision and recall.
A natural error metric for quantification is the estimated percent positives minus the actual percent positives. By averaging across
benchmark tasks, we can determine whether a method has a positive or negative bias. But even a method that guesses five percentage
points too high or too low equally often will have zero bias. For this reason, absolute error is also a useful measure. But it is
unsatisfactory in this way: estimating 41% when the ground truth is 45% is not nearly as ‘bad’ as estimating 1% when the ground truth is
5%. Hence, cross-entropy is often used as an error measure. To be able to average across different test class distributions, however, it
needs to be normalized so that a perfect estimate yields zero error. We use normalized cross-entropy, defined as:

normCE(p,q) = CE(p,q) – CE(p,p)
CE(p,q) = -p log2(q) – (1–p) log2(1–q) (2)

where q is the estimate of the actual percent positives p in testing. Cross-entropy goes to infinity as q goes to 0%. When this happens in
an experiment, it would overwhelm the average, yielding no useful data. Instead, we back off of zero by half a count. That is, we

Table 2. Summary of quantification methods evaluated

Method Training Testing

CC:
Classify & Count

Train a binary classifier BC with all P positives and
N negatives p' = ∑

∈testx

x
test

)(BC
||

1 , the proportion of the test

set on which BC outputs positive

AC:
Adjusted Count

Also perform 50-fold cross-validation, estimating
tpr = TP / P and fpr = FP / N p'' =

fprtpr
fprp

−
−'

Output 0 if p'' < 0,
 1 if p'' > 1,
 p'' otherwise

T50:
tpr = 50

Determine tpr and fpr for each potential decision threshold
Set the decision threshold of BC where tpr = 50%

Same as AC

X:
tpr crosses fpr

Same as T50, but set the threshold where (1 – tpr) = fpr Same as AC

Max:
max tpr - fpr

Same as T50, but set the threshold where tpr – fpr is
maximized

Same as AC

MS:
Median Sweep

Determine tprt and fprt for each threshold t and record the
values where tprt – fprt > ¼

Same as AC, but compute p'' for each recorded
threshold t

Output the median p'' estimate

MM:
Mixture Model

Train a binary classifier BC that outputs a real-valued score.
Perform 50-fold cross-validation, recording the distribution
of scores for the positives D+ and for the negatives D–

Apply BC to test set, saving score distribution DU

Output p' for which the PP-Area metric is
minimized between DU and the mixture
distribution p' · D+ + (1 – p') · D–

substitute q=0.5/(size of test set). We avoid the same problem with q=100% likewise. Matching our intuition, this back-off will
increasingly penalize a method for estimating zero positives for larger test set sizes. It is worse to mistakenly estimate zero positives
among thousands of test cases than among ten.
The Adjusted Count variants and the Mixture Model all require cross-validation on the training set to generate the distribution of scores for
positives and negatives, used to characterize tpr and fpr at each threshold. We chose 50-fold stratified cross-validation. Although this
computational cost may seem undesirable, in practice we usually find that computer time is inexpensive compared to the employee time to
label training cases and compared to the overall business benefit of quantification. If very large training sets were available, one could
instead split the training data and use the held-out portion to determine tpr and fpr.
The various quantification methods we evaluated are summarized in Table 2. As the base classifier, we use the linear Support Vector
Machine (SVM) implementation provided by the WEKA library v3.4 (Witten and Frank, 2005). We repeated the experiments using the
multinomial Naïve Bayes classifier, which is also used regularly in text classification. However, we do not present its results because
every quantification method under every condition performed substantially better with SVM. It is well established that SVM usually
obtains better text classification accuracy than Naïve Bayes, but this finding further suggests its tpr and fpr characteristics might be more
stable as well.

3.2 Results of the Quantification Experiments
Table 3 summarizes the dimensions that we varied in our study of the quantification methods. Given its high dimensional nature, we break
down the results into sections where we hold some conditions constant as we vary others. For each figure, we will have a pair of graphs
varying the degree of class imbalance in the training set: N=100 negatives and N=1000 negatives. We take care that the y-axis range is
identical in each pair for easy comparison. Every data point represents an average performance over 250 evaluations: 25 benchmark text
classification tasks times 10 random splits.

Table 3. Parameters varied in the quantification experiments
P = 10...100 Positives in training set
N = 100...1000 Negatives in training set
p = 1...95% Percent positives in test set
Benchmark = 25 binary text classification tasks, x 10 splits
Learning Algorithms:
SVM linear Support Vector Machine
NB multinomial Naive Bayes
Performance Metrics:
Abs.Err |estimated p – actual p|
Bias estimated p – actual p
CE normalized Cross-Entropy

3.2.1 Stability as the Class Distribution of the Training Data is Varied
We begin by examining how resilient the various quantification methods are to wide variations in the training set, while we hold the test
conditions fixed at p=5% positive. Figure 5 shows the average error of the quantification estimates, as measured by absolute error from
the 5% test target. The x-axis varies the number of positive training cases P=10…100. Overall we see the Median Sweep (MS) method
dominates, giving consistently good results even under great variations in the training set. Note the absolute scale: on average it estimated
within two percentage points given only P=30 positives & N=100 negatives (left), and within one percent given P=30 & N=1000 (right).
Because the curve is relatively flat after P=40, there is little benefit to adding additional positives to the training set. This property can be
leveraged for significant labor savings in building up training sets.
By contrast, we see the Classify & Count (CC) method is unstable and often gives very poor estimates. There is a small region (far left)
where CC happened to achieve the least error, and it also appears to be competitive when given a large enough training set (far right), but
this is illusory. As we demonstrate later, deeper examination reveals that it simply underestimates for smaller P and overestimates for
greater P, as we might expect from our earlier analysis. Having more training positives simply yields more positive predictions on the test
set, and at some point it happens to be tuned with our current test prevalence.

 0

 1

 2

 3

 4

 5

 10 20 30 40 50 60 70 80 90 100

ab
so

lu
te

 e
rr

or

P training positives (N=100 negatives)

CC

AC

T50

MS

CC
AC

MM
X

Max
T50
MS

 0

 1

 2

 3

 4

 5

 10 20 30 40 50 60 70 80 90 100

ab
so

lu
te

 e
rr

or

P training positives (N=1000 negatives)

MM

CCAC

MS

Figure 5. Absolute error for test target p=5% positives only.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 10 20 30 40 50 60 70 80 90 100

cr
os

s-
en

tr
op

y

P training positives (N=100 negatives)

CCAC

T50
MS

MM

CC
AC

MM
X

Max
T50
MS

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 10 20 30 40 50 60 70 80 90 100

cr
os

s-
en

tr
op

y

P training positives (N=1000 negatives)

CC

AC

MM

MS

Figure 6. Cross-entropy error for test targets p=1…20% averaged.

The analysis so far is for a single target of p=5% test positives. To draw more general conclusions, in Figure 6 we average the
performance over the range p=1…20%. To average over different values of p requires that we use normalized cross-entropy given in
equation (2), as discussed in the methodology section. Although the y-axis scale is different and less interpretable than the absolute error
shown in Figure 5, the curve shapes and rankings are qualitatively similar. Median Sweep continues to dominate. Its superior
performance is statistically significant in both graphs. Its standard error is quite small: for P=50, it is 0.0002 for N=100 and 0.00005 for
N=1000—too small to see in the graph.
As we anticipated, the basic Adjusted Count (AC) method degrades rapidly under very high class imbalance, esp. for N=1000. Here it
selects a decision threshold with low tpr, making the denominator in equation (1) small and sensitive to variance in the tpr and fpr
estimates. And we expect especially poor estimates of tpr when there are few positive training cases. By contrast, T50 (recall tpr=50%)
mitigates the problem with a small denominator and avoids the tails of the tpr curve. We find its performance is nearly competitive with
Median Sweep. We return to this point in the discussion in Section 3.3.
Our prior work observed the remarkable stability of the Mixture Model (MM) in comparison to baselines AC and CC, even under great
training imbalance (Forman, 2005). However, with the broader suite of methods being compared here, we see that MM is consistently
dominated by other methods. These sorts of results would be impossible to predict analytically, partly because the MM method operates
so differently from the other methods.

3.2.2 Accuracy over a Wide Range of Class Distributions in the Test Set
Next we vary the percentage of positives p in the test set, holding the training set fixed. In each figure beginning with Figure 7, its first
graph fixes the training set at P=100 and N=100, while its second graph fixes it at P=100 and N=1000 (9% positive). Since we found that
Median Sweep had the best performance over a wide range, we expanded the study up to 95% test positives to see what happens with
extreme differences in the class distribution between training and testing. Even so, in order to keep the focus on the important lower p
region, we use a logarithmic x-axis in the figures. Since we are not averaging results across different values of p, the y-axis again shows
the absolute error, which is more intuitive than cross-entropy.
In the low p range, Median Sweep dominates other methods, especially with a balanced training set. Its absolute error climbs for the high
p range, where instead the Max and X methods excel consistently. (But in the analysis of bias below we shall see that the Max method
suffers from a strong systematic bias, much like CC. Thus, the X method performed better overall for high p.)

 0

 1

 2

 3

 1 2 5 10 20 50 100

ab
so

lu
te

 e
rr

or

target p% positives (N=100 negatives, 50% positive)

MS

T50

Max

AC,X

CC
AC

MM
X

Max
T50
MS

 0

 1

 2

 3

 1 2 5 10 20 50 100

ab
so

lu
te

 e
rr

or

target p% positives (N=1000 negatives, 9% positive)

MS

AC

Max,X

Figure 7. Absolute error for targets p=1…95% individually. P=100 training positives. The vertical line marks where the test
class distribution matches the training class distribution.

 0

 1

 2

 3

 1 2 5 10 20 50 100

ab
so

lu
te

 e
rr

or

target p% positives (N=1000 negatives, 5% positives)

CC

MM

MS
X,Max

CC
AC

MM
X

Max
T50
MS

 0

 1

 2

 3

 1 2 5 10 20 50 100

ab
so

lu
te

 e
rr

or

target p% positives (N=5000 negatives, 1% positives)

CC AC

MS
X,Max

Figure 8. Same as Figure 7, but on 17 classes of a held-out dataset allowing greater training class imbalance. P=50 positives.

Given the dominance of the Median Sweep method in the low p region of most interest, we would like to validate whether its performance
continues for situations with even greater class imbalance in training (~1%), as we sometimes face in practice. This study so far has been
limited to N=1000 training negatives, in order to have 25 benchmark tasks for study. Although we could increase class imbalance by
reducing P, small samples result in degenerate classifiers. Instead, we require a greater number of negatives. In addition, we want to
validate these results against other classification problems. For these two purposes, we use a separate dataset: new3 from Han and Karypis
(2000). It has 9558 text cases partitioned into 44 classes. We repeated our study on 17 of its classes that have at least 200 positives, setting
aside 5000 negatives for training. Whereas the two graphs of Figure 7 present results for 50% and 9% training positives, those of Figure 8
present results on the new dataset for 5% and 1% (P=50, N=5000). Considering all the curves, the gestalt is much like Figure 7. This
validates that the results are not particular to the individual text classification problems in the benchmark. And it is encouraging that the
earlier findings generalize to greater training imbalance. The Median Sweep method continues to estimate well for low p: it has absolute
error < 1% for p ≤ 10%. The Max and X methods generally become more competitive in the low p region with the increased training
imbalance. Finally, observe that the MM method continues to be remarkably stable through a wide range of training and testing situations,
though it is dominated by newer methods. Hereafter we return to the previous benchmark datasets in Table 1.
Interestingly, observe in Figure 7 that the curves of the competitive methods can be clustered into two shapes: concave upward (MS,T50)
and S-curve (Max,X,MM). The AC method under balanced training (left) belongs to the S-curve group, whereas under high imbalance
(right, and all of Figure 8) it belongs to the concave upward group. As discussed previously, the AC method trained under high class
imbalance uses thresholds with low tpr, i.e. closer to T50, which is in the concave upward group. But under more balanced conditions, AC
prefers thresholds with high tpr, closer to the X crossover point in Figure 2, which results in its S-curve grouping. Looking now at MS, its
grouping with T50 suggests the median may come from estimates derived from tpr rates nearer to 50% than near the cross-over point X.

3.2.3 Bias & Failure Analysis
Next we analyze the bias component of accuracy by measuring the average signed error for each method. A perfect method would have
zero bias across a broad range of conditions. Figure 9 shows the bias under varied training (left vs. right) and testing conditions (p%
positives on x-axis). We abandon the log-scale here in order to show the strongly linear bias of two methods: Max and Classify & Count.
For the classifier trained with 50% positives (P=N=100, at left), the CC method progressively overestimates when p<50%, and
underestimates when p>50%, as expected. When trained with 9% positives (P=100, N=1000, at right), this balance point is shifted
accordingly, but not proportionately—it is unbiased only at p=3% instead of 9%. This is known behavior. SVM exaggerates the training
class imbalance in testing even when the test class distribution matches. Although the frequent suggestion is to bias the SVM cost penalty
or complexity parameters, it generally proves ineffective and has been better addressed recently by Wu and Chang (2005). For more
general classifier models, one can set the decision threshold of a classifier via ROC analysis so that it matches the class distribution of the
training set (Lachiche and Flach, 2003). However, such adjustments do not avail quantification.
It is surprising that the Max method, being an Adjusted Count variant, also exhibits a linear bias, albeit to a lesser degree than CC. This
means that it consistently finds thresholds such that the tpr and fpr characterization is inaccurate and biased. For example, if it selects a
threshold that shows tpr=1 in cross-validation on the training set—the extreme of the tail—it may nevertheless produce some false
negatives on the test set, yielding lower recall than estimated. Most of the other methods have a relatively stable bias over a wide range,
mostly positive and less than 1%.
In all cases, we see greatly increasing bias at the tails, which is expected. If a method’s estimates vary by a few percent and p is close to
zero, any infeasible negative estimates are clipped to 0%, resulting in a positive bias, and likewise as we approach p=95% positives. To
provide test samples with 1% positives we end up providing small samples of positives, which leads to greater variance in the experiments.
This compounds with the bias effect of clipping.

-1

 0

 1

 0 10 20 30 40 50 60 70 80 90 100

bi
as

 (
av

er
ag

e
si

gn
ed

 e
rr

or
)

target p% positives (N=100 negatives, 50% positive)

CC Max

MM

X

T50

CC
AC

MM
X

Max
T50
MS

-1

 0

 1

 0 10 20 30 40 50 60 70 80 90 100

bi
as

 (
av

er
ag

e
si

gn
ed

 e
rr

or
)

target p% positives (N=1000 negatives, 9% positive))

CC Max

MM
X,MS

T50

Figure 9. Bias. Average signed error for targets p=1..95% individually. P=100 training positives. The vertical dotted line marks
where the test class distribution matches the training class distribution.

Finally, we consider failures. Although an induced classifier should learn to separate cases well enough that its true positive rate tpr is
greater than its false positive rate fpr, they nonetheless fail sometimes. This usually happens under great class imbalance in training. For
example, for one of the ten splits on one of the tasks trained with P=10 and N=100, the induced classifier’s natural threshold gave
tpr=fpr=0. It learned to classify everything as negative, which results in a troublesome zero denominator in the adjusted count method.
The commonness of this problem was partly the impetus for this research: tpr was less than or equal to fpr in 623 of 10,000 trial training
sets for AC. In most of these, tpr and fpr were both zero, but in a handful of cases tpr=0 and fpr was slightly greater than zero, e.g.
fpr=0.002, training on P=20 and N=1000. In progressively decreasing occurrence of failure, we have: AC, T50 and X. The Max method
never experienced a failure, exactly because it seeks to maximize the denominator. This is not a problem for CC and the Mixture Model,
which do not involve equation (1).

3.3 Discussion
One motivation for research in quantification is to reduce the training effort needed to obtain a given level of accuracy in quantification.
We would like to emphasize that this research has led to methods that estimate more accurately and with less training data (unlike active
learning research where all methods produce the same classification accuracy at the end of the learning curve). For example, observe in
Figure 6 that Median Sweep performs better than the older Mixture Model and Adjusted Count methods, even with less training data.
Furthermore, it is remarkable how little training data is required at minimum. Median Sweep performs decently with as few as P=20
positives and N=100 negatives for training. By contrast, supplying more training data does not lead to better estimates by the simple
Count & Classify method.
The reason that Median Sweep works so well is that instead of relying on the accuracy of the tpr and fpr estimate at a single threshold, it
uses information from all the thresholds. In some sense, it has the advantage of bootstrapping, without the heavier computational cost.
True bootstrapping for this application would involve repeating the 50-fold cross-validation for many different random samplings of the
available training set. That said, if it turns out that bootstrapping can yield significantly better estimates, then the computer time may
easily be worthwhile for many business and scientific applications.
Unfortunately, the Median Sweep method does involve some programming complexity, as well as storing the complete tpr and fpr curves
with the quantifier. For these reasons, some programmers may prefer the T50 method, which is simple and performed decently for the low
p range, albeit with more bias than some methods.
In cases where an application calls for tracking targets around 50% prevalence, one may wish to use the X method—or the simple AC
method if the training set is sure to be balanced and unlikely to stray far from 50%. If the target prevalence is very high, then one may
simply reverse the naming of positive and negative and use the Median Sweep method with a training set roughly matching the target
distribution.
Finally, although we are pleased to have reduced the absolute error of the estimate to less than 1% in many situations, some applications
need to quantify much rarer events, where the bias and the relative error both grow. To conduct experiments in the tail of the distribution
requires much larger labeled datasets available for research, and they must also have very few errors in the class labels in order to draw
correct conclusions.

4. Cost Quantification Methods
Estimating the number of cases belonging to a class may not accurately reflect its importance. A relatively uncommon class having a very
high cost can be more important overall than a frequent class with low cost. In cost quantification applications, each case is tagged with a
cost attribute, e.g. the cost of parts and labor to resolve the case. It can sometimes happen that the prevalence of the positive class stays
constant over time, but the cost attribute climbs substantially, e.g. when suppliers increase the cost of the needed parts. In either of these
cases, cost quantification is the appropriate task, not just quantification of the prevalence
Let C+ stand for the unknown average cost per positive case in the test set. If one knows a historical value for C+ and it is believed to be
unchanged in the test set, then it can simply be multiplied by the quantifier’s estimate of the number of positives Q in order to estimate the
total cost of positive cases. But this is unsatisfactory if the cost may change over time. Also, C+ is commonly not known in advance, and
we need to determine it by analyzing the cost attribute attached to only the positive cases.
Occasionally one’s goal is to determine the average cost of positives C+ from data, without concern for the total cost. This is needed in
forecasting, for example, where we have models that predict future volume, and need to parameterize them with the average cost in order
to predict future total costs. For the purposes of discussion, we will focus on determining the total cost. However, most of the methods
below estimate the average cost first, and then multiply by the best estimate available from a quantifier. The experiments in Section 5.2
evaluate the methods both with respect to total cost and with respect to average cost.

4.1 Basic Methods
We describe several methods that are straightforward. With each, we also describe some of its shortcomings, which motivate the more
complex methods that follow.
Classify & Total (Simple): The obvious, simple solution to cost quantification, akin to Classify & Count, is to train a binary classifier
and to compute the total of the cost attribute values associated with all cases that are classified as positive, i.e. the sum

S = , where c(x) is the cost attribute of case x, and BC(x) is an indicator function representing the binary classifier.

Unless the classifier is perfectly accurate, it will result in poor cost estimates that are systematically biased, for the reasons shown
previously regarding Classify & Count. Also, false positives and false negatives no longer cancel each other out in this domain, because
their cost attribute values are in general not equal.

∑
∈testx

xBCxc)(*)(

Grossed-Up Total (GUT): The next obvious solution is to compute the total S as above, but then to adjust it upwards or downwards
according to the best quantifier estimate Q available. That is, GUT estimates the total cost S’ = S · Q / ∑ BC(x). For example, if the
binary classifier predicted 502 positives and the quantifier estimated Q=598.3 positives, then the cost total from the Simple method would
be grossed up by the factor 598.3/502 = 119% to reflect the 19% positives that were missed by the binary classifier. But this method
suffers from similar problems as AC. It runs the risk that the binary classifier may select zero or very few cases to include in the total, if
positives happen to be rare in the training set or the test set. On the other hand, if positives were overly common in the training set, then
the induced classifier will liberally include many negatives in its total, polluting the average cost. This pollution occurs even if the class
distribution has not changed, as long as there are some false positives.
Conservative Average * Quantifier (CAQ): We can reduce the false-positive pollution above by setting the classifier decision threshold
to be more conservative—a classic precision-recall tradeoff. Using a smaller set of predictions with high precision, we average their costs
to estimate C+, and then multiply it by Q, the estimated size of the class from a quantifier—mathematically equivalent to the GUT method.
Ideally we would like a threshold with 100% precision, but sometimes there is no such threshold. Furthermore, a highly conservative
threshold may predict only a few cases as positive, especially if positives are rare. Given very few positive items to average over, the
uncertainty of the C+ estimate will be large. To avoid small samples, one might set the classifier threshold to take the top, say, 100 most
strongly predicted positives. But this does not ensure high precision. The classifier may only have high precision in the top 30. Or the test
set may have only 50 positives.
In the experiments in Section 5.2 we evaluate two variants: CAQ30 takes only the top 30 predicted positives, and for the purposes of a
controlled experiment, we ensure there are always more than 30 positives available in the test sets. The other variant is CAQhalf, which
takes the top half of the positives predicted by the binary classifier. Depending on the test set and the classifier, CAQhalf may sometimes
take fewer than 30 predicted positives to compose its average.

4.2 Precision Correction Methods
Trying to drive the classifier to have 100% precision is an ill-suited approach. It may not be possible in many cases, and it leads to
instability when few or even zero cases are predicted positive. Instead, we will attempt to characterize the imperfect precision and to
correct for it, analogous to the Adjusted Count method.
Precision-Corrected Average * Quantifier (PCAQ): To correct for imperfect precision, we will require that we have an estimate of the
precision of the classifier on the test set. Traditionally this has been done via cross-validation using the training set, but such a
characterization is dependent on the class distribution. Because of the class distribution mismatch problem in our applications, estimating
the classifier’s precision on the test set is a multi-step process. First, we characterize the distribution-independent measures tpr and fpr of
the classifier via cross-validation on the training set, as described previously. Then we estimate of the test class distribution q∈[0,1.0] via
the best quantifier technology available. Finally, we estimate the precision Pr of the classifier on the test set by modeling the percentage of
expected true positives divided by the expected true positives and false positives:

fprtpr

tpr
⋅−+⋅

⋅
=

q)(1q
qPr (3)

Given this, we can now model the average cost C of cases that are predicted positive by the classifier as the weighted average

 C = Pr · C+ + (1 - Pr) · C- (4)

where C-
 is the average cost of negatives. C+ and C- are both unknown. If only Pr were 100% precise, then C would equal C+

. We next
write an equivalent weighted average for the entire test set. The average cost Call of all cases in the test set is

 Call = q · C+ + (1 - q) · C- (5)

Both C and Call are easily computed directly. Given the two equations (4) and (5), and the two unknowns C+ and C-, we can solve for C+
and eliminate C- from the formula. First we solve equation (5) for C-, and then substitute it into equation (4):
 C = Pr · C+ + (1 – Pr) · [(Call – q C+) / (1 – q)]
We solve this equation to obtain the precision-corrected average C+:

 C+ =
q Pr

C Pr) 1(C)q 1(all
−
−−− (6)

Finally, to estimate the total cost, this estimate of the average is then multiplied by the quantifier’s estimate Q of the number of positives.

But there remains a familiar problem. Under high training class imbalance, the classifier’s default decision threshold may again select
only a few cases to include in the average C. Furthermore, if the classifier’s threshold is highly conservative, then the estimation of the
true positive rate tpr may depend on the cross-validation results of very few of the training positives. That is, it may be an unreliable
estimate.
In perfect analogy to the first part of this paper, we solve this problem by selecting a less conservative classification threshold, which has
worse precision, but has more stable characterization of its precision, as well as providing a greater number of predicted positives over
which to compute the average C. This works because under PCAQ we can adjust for the false-positive pollution of lower precision.
The remaining design decision is which threshold policy to use—for example, the T50 or X thresholds shown in Figure 2. T50 uses the
threshold where tpr=50%, which avoids the specific concern mentioned above about unreliable tpr estimates. We suggest not using the
Max threshold, given our earlier bias discussion about its choosing thresholds having poor tpr and fpr characterization. For the
experimental section ahead we selected the X threshold (where fpr ≈ 1-tpr, the false negative rate), given its good experimental
performance for quantification.
Median Sweep of PCAQ (mPCAQ): Rather than use a single threshold and hope that its precision characterization is reliable, we can
instead sweep over many classifier decision thresholds, and return the median of the many PCAQ estimates for C+. The variables above
that depend on the threshold t are tprt, fprt, Prt, and Ct, the average cost of cases predicted positive up to the threshold t. The others remain
scalars: C, Call, and q.
As with Median Sweep earlier, we expect this to have similar benefits as bootstrapping. Furthermore, just as the MS method excludes
estimates that are likely to have high variance, a potential variant on this method might exclude estimates from thresholds where (a) the
number of predicted positives falls below some minimum, e.g. 30, (b) the confidence interval of the estimated C+ is overly wide, and/or (c)
the precision estimate Pt was calculated from fewer than, say, 30 training cases predicted positive in cross-validation. For our experiments
below, we used the median estimate of all thresholds.
Mixture Model Average * Quantifier (MMAQ): Finally, rather than try to determine an estimate at each threshold, we can model the
shape of the Ct curve over all thresholds as the mixture model in equation (4), and solve for C+ and C- using linear algebra. Specifically, if
we re-write equation (4) in the form y = m·x + b:

 ++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⋅−= C

tP
)tP(1

C
tPr
tC (7)

then we can solve for C+ (the y-intercept) using basic linear regression over the many (xt,yt) data points.
The same thresholds omitted by Median Sweep could be omitted here as well, in order to eliminate some outliers that may have a strong
effect on the linear regression. Alternately, one may use regression techniques that are less sensitive to outliers, e.g. those that optimize for
L1-norm instead of mean squared error. We used neither of these extensions in the experimental evaluation.

4.3 Non-Solution: Regress and Sum
An alternative method that suggests itself for cost quantification involves regression rather than classification. One would train a
(calibrated) regression model for the cost attribute c(x), with the cost of negative training cases set to zero. This trained regressor would
then be applied to each test item, and the total cost estimate is the sum of these regression estimates. This solution, however, is ill-
conceived, in analogy to the method of quantifying with a calibrated classifier discussed in Section 2.4. Unless the regressor is able to
distinguish positives and negatives perfectly, its output reflects the uncertainty between the two classes and their relative proportion in the
training set. A given output reflects the average cost of mixed training positives and negatives that have “similar” feature vectors. If the
proportion of positives changes in the test set, the regressor is no longer calibrated. Moreover, if the average cost of a positive C+ rises
drastically in testing, the regressor will be blind to this—just as a classifier must not use the class label field in testing. We exclude this
method from further consideration.

5. Empirical Evaluation of Cost Quantification Methods
The next logical step is to evaluate all these cost quantifier methods against one another on a large benchmark. Any such empirical
experiment depends strongly on the distribution of the cost attributes for positives versus negatives, in addition to the factors that affect
basic count quantification. For this, we would like to have a large publishable benchmark with real-world cost values of reasonable
interest to a family of applications. This is an open invitation to the scientific and business communities.
In this section we begin by describing our methodology, including how we create a suitable dataset in lieu of a publically available dataset
including appropriate cost attributes. The second subsection details the results of the experiments, and the third subsection contains a
discussion of these results at a higher level, and describes practical issues in their application.

5.1 Experiment Methodology
We supply artificial cost attributes to the cases of our text classification benchmark. In order to limit the dimensionality of the experiments
and simplify the interpretation of results, we set C+ = 1.0 and C- = 0.5. These being constants, the variance of the results is reduced
somewhat, helping to expose the consistent differences between methods.
The experiment methodology proceeds much as before, but with the addition of the cost attributes. For each of the 25 binary text
classification tasks x 10 random splits, we select a limited training set of P=10…100 positives and N=100…1000 negatives. We vary the
testing percent positives p=1%...45% by removing as few positives or negatives from the remaining cases. (We tried to expand out to
p=1…95% to match the quantification study above. But when training with low prevalence and then testing with high prevalence, we
encountered stability problems with the precision-corrected methods, because the denominator in equation (6) became zero or negative
with large q estimates. We choose to simply avoid this region, since the most interesting region for business purposes tends to be below
20% anyway.)
For each of these train and test pairs, each cost quantification method is run. For these experiments we used the same base learner as
before, a linear SVM, and 50-fold stratified cross-validation to estimate tprt and fprt at each threshold t. Most of the cost quantification
methods also rely on a quantifier subroutine to estimate the class distribution. For this we used Median Sweep (MS) solely, since it
performed well in the empirical evaluation. We also repeated the experiment using an Oracle quantifier that always supplies the true test
distribution q. This gives an upper bound on how much better these cost quantifier methods might do with future advances in
quantification methods to estimate the counts.
Table 4 summarizes the methods we evaluated. We compare them based on (a) their total cost estimate, and (b) their estimate of the
average cost C+

 of positives. In order to average together different benchmark runs with different total costs, we first normalize the
estimate by dividing by the ground-truth total cost. For example, 0.95 represents an under-estimate of the total cost by 5%. To evaluate
the bias of a method, we use the average of the signed estimates. While useful, it does not give the whole picture. Zero bias may also be
achieved by a method that equally often over-estimates and under-estimates by 5%. We would prefer a method with the same perfect bias
and less variance. Given so many methods and experimental conditions, it becomes quite difficult to present the standard deviations of all
these averages. Instead, we opt to show a much more readable representation: graphs of their average absolute errors, which detect both
bias and variance problems. Note that we do not recommend mean squared error, for it is highly sensitive to outliers among the estimates.
We would prefer to know which method(s) work well most of the time, than to rule out any method that occasionally makes a very poor
estimate.

Table 4. Summary of cost quantification methods evaluated

Method Training Testing

Simple:
Classify & Total

Train a binary classifier BC with all P
positives and N negatives

Output S = ∑
∈Tx

c(x) , where T is the set of all test cases

for which BC predicts positive

GUT:
Grossed-Up Total

Also train a quantifier Q(·) Output S · Q(test set) / |T|

CAQhalf:
Conservative-Average · Q
using top half

Same as GUT Output C+ · Q(test set), estimating the average cost as

C+ = ∑
′∈T

c(x)
|'T|

1

x

where T' contains half the cases of T for which BC
predicts more strongly positive

CAQ30:
Conservative-Average · Q
using top 30

Same as GUT Same as CAQhalf, but where T' contains only the top 30
test cases according to BC

PCAQ:
Precision-Corrected Avg. · Q

Also perform 50-fold cross-validation,
estimating tpr = TP / P and fpr = FP / N

Output C+ · Q(test set), estimating C+ by equation (6)

mPCAQ:
Median Sweep PCAQ

Same as PCAQ, but estimate tprt and fprt
at each occurring classifier threshold t

Estimate via PCAQ at each threshold t, then output the
median

MMAQ:
Mixture Model Average · Q

Same as mPCAQ Output C+ · Q(test set), estimating C+ via linear
regression on the values in equation (7)

5.2 Cost Quantification Experiment Results
There are multiple views to consider in such a high-dimensional experiment. We break down the results into sections where we hold some
conditions constant as we vary others. As before, each figure has a pair of graphs with matching y-axes: N=100 training negatives on the
left, and N=1000 training negatives on the right, representing greater imbalance. Every data point represents an average performance over
the 25 benchmark text classification tasks times 10 random splits.

5.2.1 Stability as the Class Distribution of the Training Data is Varied
We begin by holding the percentage of positives in the target set fixed at p=10% and vary the number of positive training cases from P=10
to 100. Hence, the percentage of training positives varies from 9% to 50% with N=100 (Figure 10 left), and from 1% to 9% with N=1000
(right). The y-axis shows the total cost, after normalizing to 1.0, averaged over the 250 benchmark runs. This reveals the bias of each
method. The ideal method would have a score near 1.0, and be as flat as possible across the whole range, even though the training set
varies substantially. Even if this is not possible, we would at least like the performance to consistently converge near 1.0 as we add more
positive training examples.
Three of the methods did not converge as we added training positives: Simple, GUT (Grossed-Up Total) and CAQhalf (Conservative
Average). This is an undesirable property and nearly rules them out for real-world use. Each of these methods is designed with an
assumption of high precision of the classifier, yet as we add more training positives, they accept more false positives. For the Simple
method, adding false positives increases the total cost estimate. With the imbalanced training set (right), Simple is far below the chart and
climbs with increasing P. For GUT and CAQhalf, admitting more false positives into the average brings their total estimates down. Each
negative has half the cost of a positive (C+=1, C-=0.5), so their average cost estimates plummet. By contrast, CAQ30 does not accept more
false positives, since it only takes the top 30 positives it can find in the test set.
The methods that use the precision-corrected average (PCAQ, mPCAQ, MMAQ) performed similarly. They generally over-estimated the
cost slightly, and they tended toward less bias as more training positives are given. These methods, rather than depending on high
precision classification, depend on stable estimates of their precision. Having more training positives helps establish a more confident
estimate of tpr. Errors from the underlying quantifier damage the estimate of precision within these methods, as well as affecting the total
cost after multiplying by Q. For an “upper” bound comparison, we replaced the fallible quantification estimates of MS by an Oracle.

0.90

0.95

1.00

1.05

1.10

 10 20 30 40 50 60 70 80 90 100

to
ta

l c
os

t
 (

no
rm

al
iz

ed
)

P training positives (N=100 negatives)

Simple

GUT CAQhalf

Oracle

CAQ30

Simple
GUT

CAQhalf
CAQ30
PCAQ

mPCAQ
MMAQ

Oracle

0.90

0.95

1.00

1.05

1.10

 10 20 30 40 50 60 70 80 90 100

to
ta

l c
os

t
 (

no
rm

al
iz

ed
)

P training positives (N=1000 negatives)

Simple below 70%
GUT

Oracle

CAQhalf

CAQ30

Figure 10. Total cost estimate, normalized to 1.0, as we vary the training set. The test set has p=10% positives.

0%

5%

10%

15%

20%

25%

30%

 10 20 30 40 50 60 70 80 90 100

ab
so

lu
te

 e
rr

or

P training positives (N=100 negatives)

Simple

Oracle

GUT

CAQ30
CAQhalf

Simple
GUT

CAQhalf
CAQ30
PCAQ

mPCAQ
MMAQ
Oracle

0%

5%

10%

15%

20%

25%

30%

 10 20 30 40 50 60 70 80 90 100

ab
so

lu
te

 e
rr

or

P training positives (N=1000 negatives)

Oracle

Simple

mPCAQ

GUT

Figure 11. Same as previous figure, but the y-axis is now the average absolute error of the normalized cost.

Rather than clutter the display with all the results, we only show the Oracle for the Mixture Model Average method (MMAQ, shown with
a dotted line), which tended to perform among the best in estimating the average. It converges to within 1% of a perfect score on the left in
Figure 10 and within 0.5% on the right. Even without the input from the Oracle quantifier, MMAQ averaged within ~3% (left) and ~1%
(right).
So far we have only examined bias. To get a perspective on both bias and variance together, we graph the absolute error averaged over the
250 runs in Figure 11, which is otherwise like the previous figure. Most striking is how poorly the Simple method performed versus all the
others; it is unstable and off the chart at the right. All four methods that do not compensate for imperfect classifier precision exhibited the
worst absolute error: Simple, GUT, CAQhalf, and CAQ30. Although CAQ30 showed very low bias in the previous figure, here it reveals
poor absolute error. Thus, it exhibited substantial variance centered on the true cost. Having large variance is expected with its approach
of depending on just a few items for its average.
The precision-corrected methods form a tight cluster. The Median Sweep idea emerged as a consistent winner, just as it did for count
quantification: mPCAQ showed a slight improvement over the others. Given just P=50 positives, it achieved within 12% of the true total
cost (left) and within 6% (right). Even so, we see a substantial margin between all these methods and the Oracle-MMAQ performance,
which achieved ~4% average absolute error on the left and ~2% on the right. This indicates that improvements in technology for
quantification could substantially improve cost quantification as well.

5.2.2 Accuracy over a Wide Range of Class Distributions in the Test Set
In this section we fix the number of training positives at P=50 and vary the percentage p of positives in the test set along the x-axis. This
naturally varies the total cost for each test set, but we normalize each to 1.0 for easier evaluation and proper averaging. Figure 12 shows
the average absolute error on the y-axis. The left has 33% positives in training (N=100) and the right has 5% (N=1000). Again, most
striking is how poorly and erratically the Simple method performed. With N=1000 its very conservative decision threshold made it badly
underestimate the total cost, putting it far off the chart.
We see the precision-corrected methods in a tight cluster, dominating the conservative average methods. Once again, the median sweep
method mPCAQ outperformed the others by a small amount over the entire range, especially with N=1000. Nonetheless, there is still a
substantial performance gap to the Oracle method, which simply corrects the quantifier estimate for MMAQ. Also to note, all methods do
much worse as the percentage p of testing positives gets small, even with the Oracle. At p=1%, some of the smaller datasets lead to test
situations that have only a dozen positives to count. This creates very difficult “hit-or-miss” situations, depending strongly on a stable
characterization of the classifier. This is, nonetheless, a useful region for many real-world purposes, so we include it in the x-axis range
partly to inspire future research.
Next we turn from estimating the total cost of positives to estimating the average cost of positives, C+. Why study this? First, some
applications seek the average instead of the total, e.g. when the total population of the target is not known. Second, it gives a perspective
on how well the methods estimate the average before they multiply by the quantifier’s count Q. This analysis factors out the uncertainty
contributed by the quantifier for most methods, but not all. The methods that estimate their precision via equation (3) still require a
quantifier. We continue to provide the Median Sweep (MS) method as the quantifier subroutine. Thus, its quantification errors will
continue to affect the PCAQ, mPCAQ, and MMAQ methods.
Figure 13 shows the average absolute error for estimates of C+. In comparison with the previous figure, a major difference is that the
precision-corrected methods no longer dominate the other methods. Another difference is that the Simple method is far less erratic.
Indeed, although the Simple method is dominated by more advanced methods, note that it becomes competitive to the right in the right-
hand graph. In this region, where it has been trained to be conservative and yet test positives are abundant to select from, the classifier
yields high precision and hence the correct average. This high precision comes at the cost of low recall, but since C+ is a constant for these
experiments and here we are only concerned with the average cost, low recall does not harm the estimate. This analysis explains why
CAQ30 appears to be the dominant method for estimating average cost—its top thirty positives tend to be true positives.
A further observation can be made from Figure 13. The line labeled “Oracle” is the MMAQ method but with the ground truth
quantification used in estimating the precision correction. We see the Oracle and MMAQ curves converge at p=45% test positives. Here
the Oracle quantifications provide no benefit over the basic MMAQ method. But as p becomes small, we see a growing and substantial
performance gap. By this comparison, we see what proportion of the error might be eliminated by better count quantification technology
alone.
In an analysis of bias (not shown), the Simple, GUT and both the CAQ methods tended to substantially under-estimate the average, which
is reflective of admitting some false positives into the average—in this experiment, false positives have half the cost of true positives.
Despite this bias, the CAQ30 method appears to dominate consistently by having very low variance. Unfortunately, this is somewhat an
artifact of the unusual testing conditions, as discussed next.

0%

5%

10%

15%

20%

 0 10 20 30 40

ab
so

lu
te

 e
rr

or

p% testing positives (N=100 negatives, 33% positive)

Simple

Oracle

Simple
GUT

CAQhalf
CAQ30
PCAQ

mPCAQ
MMAQ
Oracle

0%

5%

10%

15%

20%

 0 10 20 30 40

ab
so

lu
te

 e
rr

or

p% testing positives (N=1000 negatives, 5% positive)

mPCAQ

Oracle

 Simple at 55% error

Figure 12. Absolute error as we vary the percentage of positives in testing p=1..45%. (P=50) The vertical line marks where the
test class distribution matches the training class distribution.

10%

5.3 Discussion
Stepping back from the many detailed results of the experiments, we generally have succeeded in producing methods that are much more
stable for cost quantification than the baseline method Simple. That said, the complexity of some of the methods does not appear
particularly worthwhile, since the uncomplicated CAQ30 method performs well. But because the design of our experiment had no
variance in the cost of positives (C+ = 1.0), CAQ30 faced no disadvantage by having only 30 cases from which to determine its average
cost. In real-world settings with substantial variance and perhaps errors in the cost attributes, averaging only 30 items can give a relatively
uncertain estimate for C+. Thus, we hypothesize a practical advantage for methods that consider the cost attributes of many more cases,
such as mPCAQ and MMAQ. We suggest this vein of study for future work. It could be performed with large, realistic datasets, or else by
supplementing labeled datasets with generated costs as we have done, but also systematically varying the means and variances of positives
and negatives. Such a high dimensional study could test our hypothesis that the estimates of simple methods would deteriorate much more
rapidly under increasing variance than methods mPCAQ or MMAQ.
To see whether the results are insensitive to the constant costs we used, we repeated our experiment with C- = 2.0. That is, positives are
half the cost of negatives. As expected, the false positive pollution of Simple, GUT, CAQhalf and CAQ30 each caused these methods to
over-estimate cost. The results were mostly similar and so we omit them. Overall, MMAQ tended to perform well with both sets of
constant costs.
When computing the precision-corrected average, it is possible to have a negative or zero denominator in equation (6) whenever the
estimated precision Pr is less than or equal to the class distribution q. This happens especially often for the median sweep method
mPCAQ, which tries many thresholds. We tested a variant method that ignored thresholds yielding negative estimates for C+, since all
costs are positive, as in most business datasets. But this only resulted in a strong positive bias for the median. In situations where Pr equals
q, we get a division by zero error. We leave these out of the set of thresholds considered by mPCAQ and MMAQ. But if it happens at the
single threshold chosen for the PCAQ method, then some fallback position needs to be taken. It happens seldom, so it has little effect for
an empirical study of this nature, but deployed software must be ready to cope with such situations. We had PCAQ fall back to another
method (GUT) where Pr=q exactly. Perhaps ideally it might fall back to using a different threshold, but if this threshold also fails, then
further software complexity proliferates to avoid failure.

0%

5%

 0 10 20 30

Simple

 40

ab
so

lu
te

 e
rr

or

p% testing positives (N=100 negatives, 33% positive)

Simple = GUT

PCAQ

CAQ30 MMAQ,Oracle

GUT
CAQhalf

CAQ30
PCAQ

mPCAQ
MMAQ

Oracle

0%

5%

10%

 0 10 20 30 40

ab
so

lu
te

 e
rr

or

p% testing positives (N=1000 negatives, 5% positive)

Simple = GUT

mPCAQ

CAQ30

Figure 13. Same as previous figure, but for the task of quantifying the average cost C+ of positives in the test set. (P=50)

5.3.1 Cost-Confounded Prediction
The methods above implicitly assume that the cost of positive cases is not correlated with the prediction strength of the base classifier. As
an assurance, one may check the correlation between cost and the classifier scores over the positive cases of the training set. If the
classifier predicts the most expensive positives strongest, then the methods above will overestimate badly, especially CAQ. Likewise,
negative correlation results in underestimates. This problem could also arise if the classifier’s scores have substantial correlation with cost
for negative cases, so these can be checked separately.
To avoid these problems, we recommend the cost attribute not be given as a predictive feature to the classifier. If the average cost for the
positive class C+ is similar to the overall average, then this attribute will generally be non-predictive. But in the interesting case where it is
substantially different from the background, this feature will be strongly predictive, e.g. for a rare but relatively expensive subclass. In this
case, it is tempting to provide the cost attribute as a predictive feature to improve the classifier. However, it is better not to. The methods
are explicitly designed to compensate for imperfect classifiers, but cannot compensate for a bias that prefers the more expensive positives,
which would likely underestimate the total cost and average of positives. Even so, if the cost attribute is extremely predictive and helps
induce a near perfect classifier, then it would seem justified to include the cost as a predictive feature. Determining at what point it is
beneficial could be an avenue for future work. In any case, a predictive cost attribute may be employed as an input feature for non-cost
quantifiers, as well as for the quantifier subroutine used by the cost quantifier to estimate the prevalence of the positive class.

5.3.2 Missing Costs
In some settings, especially those where datasets are gathered across worldwide enterprises, cost values may be missing or detectably
invalid for some cases. Given that most of the above methods begin by estimating the average cost for positives C+, such cases with
missing cost may be omitted from the analysis. That is, the estimate of C+ is determined by the subset of cases having valid cost values,
and the count is separately estimated by a quantifier applied to all the cases, including those with missing costs.
This treatment assumes the costs are missing at random. To test this assumption, one can train a binary classifier to predict which cases do
not have a valid cost value; if it can achieve high precision and recall based on the rest of the record’s feature vector, then the process is
surely not random. Unfortunately, if such a binary classifier is inaccurate, it does not necessarily mean the costs are missing at random.

6. Extensions
Up to this point we have attacked only the problem of quantifying a single positive class of interest in a single test set. Yet in all settings
where we have applied this technology in practice, there have been many different issues to be quantified, and not only for a single test set
(Forman, Kirshenbaum and Suermondt, 2006). Instead, they are multi-class tasks, and we often wish to perform the quantification over
time in order to look for changes or monitor trends. For example, among many different types of support issues that occur with a particular
product, a rarely occurring issue that bears significant business costs may be becoming more frequent month to month. Naturally, it is
important to detect this trend early, long before the issue becomes one of the most frequent issues.
In the first subsection below we describe how we have generalized from the binary setting to multi-class settings. In the second subsection
we describe how we have applied the methods to track trends over time—the original impetus for this work. These extensions apply to
both count quantification and cost quantification. The treatment is not exhaustive, but expected to be useful guidance for other
practitioners and includes discussion of pitfalls to avoid.

6.1 Multi-Class Quantification
There are two types of multi-class tasks in traditional classification. Single-label tasks (also known as “1-of-n tasks”) have exhaustive,
mutually exclusive classes, where each item belongs to exactly one class. Multi-label tasks allow cases to be labeled with multiple classes.
These two task types carry across to both quantification tasks and cost quantification tasks. The deciding property for single-label versus
multi-label quantification tasks is whether the sum of the counts or costs for all classes must add up to the total of the whole test set. In
many settings, the classes are not mutually exclusive and do not necessarily cover the entire dataset. In our applied experience, multi-class
quantification tasks commonly have many cases that belong to none of the classes. For example, when tracking a variety of issues in
technical support logs at Hewlett-Packard, there may be 30 recognized issue types for a product line, but there may also be many one-off
incidents in the logs that never or rarely re-occur and do not warrant a separate class. For some complex product lines, these can amount to
nearly half the incidents. In such cases, it would not be worthwhile to define and build up training sets for enough classes to cover the
whole dataset. To treat such multi-label quantification tasks, each of the classes can simply be treated as a separate binary quantification
problem, mirroring the practice in multi-label classification.
Nonetheless, there are situations where the single-label setting is called for, e.g. when segmenting user populations into different classes of
customers (quantification), or estimating the total spent for the different customer segments (cost quantification). In such cases, we want
the quantification to sum to 100%. The obvious multi-class extension for a single-label version of Classify & Count would train a single-
label classifier, such as C4.5 or any other model, and count its test set predictions in each class. This bears instability problems similar to
the binary Classify & Count method. In a single-label setting with many classes, some classes are bound to be relatively rare, and just as
we saw for binary class imbalance, the default decision thresholds of a single-label classifier will tend to under-predict rare classes and
over-predict common classes. To illustrate this, Figure 14 (left) shows the true prevalence of 44 mutually exclusive classes in dataset

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%
pe

rc
en

t

44 classes, sorted by prevalence

truth
raw

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

pe
rc

en
t

44 classes, sorted by prevalence

truth
adjusted

Figure 14. A problem with multi-class classifiers used for quantification: rare classes are underestimated and vice versa.

new3, and the percentage that are predicted in each class by a standard single-label Naïve Bayes classifier. SVM exhibits a similar trend.
Observe that the rarer classes are predicted even more rarely. And this example is with a perfectly stratified split of the dataset, so the test
distribution exactly matches the training distribution.
Next, one may consider adapting the Adjusted Count method for single-label quantification tasks. This extension consists of the following
steps. Induce a single-label classifier on the training set, and estimate its tpr and fpr characteristics for each class via cross-validation on
the training set. Once given the test set, count the number of test cases predicted in each class, and finally adjust each of the class counts
using equation (1). We illustrate the results of this method in the right-hand graph of Figure 14. This extension does not work well for
three key reasons:

• As illustrated above, a single-label classifier selects very conservative thresholds for the many rare classes. Thus, the tpr and fpr
estimates for those classes are determined in the tail of the distribution, where there are few true positives or false positives. Such
estimates have high variance, yielding instability in the quantification. Observe in the right-hand graph that the adjusted estimates are
much less stable for the rare classes. Although most class estimates are reasonably accurate, four of the rarer classes have erratic
estimates.

• In some situations, the single-label classifier may never predict a certain class. In training, this may occur in cross-validation, yielding
tpr=fpr=0 for that class, which results in a division by zero in equation (1). In testing, if a zero count for a class is observed in the test
set and fpr>0 in training, then the numerator of equation (1) becomes negative. In the right-hand graph, one class exhibited the former,
division-by-zero type of error, depicted as a 0% estimate. Such an error is clearly independent of the test set.

• Although the expected behavior of this single-label method should yield a total sum of 100% on average with large data sets, it may
produce sums that do not total 100%, especially for smaller data sets where the estimates are less certain. Nothing in the method
forces the sum to 100%. In the example, the sum of the adjusted counts is 109% of the number of test cases. While the counts could
be normalized back to 100% by a simple division, we see from the wildly high predictions for some of the rare classes in the example
that normalization will bias the whole curve, even though we already have good precision for the larger classes. Generally, erratic
estimates for rare classes are biased on average to greatly over-predict. Negative predictions are clipped at zero and underestimates for
a rare class make little difference to the total. Conversely, large over-estimates can amount to a significant portion of the total. Thus,
if we normalize the estimates, we will tend to under-estimate almost all classes.

For binary quantification, we saw the solution was to set the classifier threshold to be more liberal in identifying positives, in order to
obtain better estimates of tpr and fpr and also avoid having too few predictions for the minority class in the test set. But for the multi-class
case, there is no way to cause a single-label classifier to increase the number of positives simultaneously for all the classes. Increasing
predictions for one class comes at the expense of others.
For theses reasons, we recommend performing independent binary quantifications for each class versus all others, and then normalizing the
final estimates so that they sum to 100%. In this way, each quantification compensates independently for its imperfect classification.
These binary subproblems may have high class imbalance, particularly if there are many classes. Fortunately, dealing with class
imbalance is a relative strong point for quantification. Thus, it is not a concern to decompose single-label problems into many binary 1-vs-
other-classes subproblems, unlike traditional classification. That said, other methods for treating single-label quantification tasks might be
devised that avoid the imbalance by pitting several classes together against all others, in analogy with error correcting code (ECC) matrices
for multi-class classification (Ghani, 2000). This is an open area for future work.

6.2 Quantifying Trends over Time
One of the primary motivations for our research was to accurately measure trends over time. We refer solely to measuring trends in
historical data, rather than forecasting into the future before data is available. Forecasting is an important business application, and can be
done with traditional time series methods. In any case, both forecasting and analyzing past trends require historical measurements over
time—our focus.
So far, we have only discussed quantification with respect to a single test set. To use a quantifier for trending is relatively straightforward
by traditional methods. The date-stamped test cases are partitioned into discrete bins—for example, daily or monthly batches—and a
single trained quantifier is applied to each batch separately to estimate the prevalence of positives in each. These measurements may then
be plotted together in one time series graph, optionally with a conventional moving average filter or fitted trend line to smooth the data or
project into the future.
In such applications, a common subproblem is to select an appropriate bin-width for the data set. If the bin-width is too coarse, little
information is revealed and sudden changes cannot be detected. If the bin-width is too granular for the available data, the number of
samples in each bin becomes small or even zero. This is a common issue in constructing a traditional histogram. But for quantification,
there is an additional factor at work here. Not only may there be high variability between adjacent bins due to the underlying phenomenon
being inconstant, but additionally the quantification will naturally have higher variance when estimating from only a few samples in a bin.
The quantification methods we presented are intended to work on large test sets and will produce noisy estimates on small batches. Thus,
to avoid narrow bin-widths in situations where the business desires a fine-grained trend line, we have used a sliding window technique to
aggregate cases from adjacent bins into each test set batch. This provides smoothing similar to a moving average, and we have used it to
mask uninteresting weekend variations. That is, each day is a bin and each test batch consists of 7 adjacent bins. If instead one were to
quantify each bin separately and then use a 7-period moving average to smooth over the weekends, then the very small number of incidents
reported on Sundays can sometimes produce highly erratic estimates of the prevalence, which disturb the moving average.
Another issue that has come up in our use of trending with quantifiers is that additional training cases can become available later. For
example, after a new batch of a month’s data arrives, a domain expert may label some of its cases. While we would like to use the larger,
cumulative training set to possibly produce a more accurate quantifier, it is important to recognize that the new quantifier may be
uncalibrated with respect to the previous quantifier. Thus, its estimates on new batches of data should not be appended to pre-existing time
series produced from previous quantifiers. It is best to throw out the old data, and apply the new quantifier over the entire time period. The
additional training data may improve the quantifier’s estimates on the old bins as well.
When trending over longer periods of time, general concept drift is often involved and can be difficult to cope with. For example, old
products may undergo name changes, new product models may be released under the same general product name, and the sets of issues
associated with a product may change drastically with major operating system upgrades, especially newly arising issues. In order to
accurately quantify a trend over time, we need the quantification estimate from each time bin to be reasonably calibrated with each other.
But under substantial concept drift, we may need to employ different quantifiers for different time periods. Each may be produced by a
training set appropriate to the class concept in effect for its time period, which would naturally require ongoing training data. For such a
difficult task, this may be the best that is possible.

7. Related Work
The majority of the literature in machine learning classification focuses on optimizing the correctness of individual predictions, whether
measured by error rate, F-measure, misclassification cost, etc. The problem of learning classifiers under highly imbalanced class
distributions is well known and various methods have been devised to improve individual predictions in these situations (e.g. Van Hulse,
Khoshgoftaar and Napolitano, 2007; Weiss and Provost, 2003; Vucetic and Obradovic, 2001; Lachiche and Flach, 2003). Regardless of the
degree of imbalance, in most machine learning literature, the class distribution for training and testing is assumed equal, and moreover,
enforced to be equal within experiments via random sampling and cross-validation. In less common work that acknowledges that the test
distribution may differ, the estimate of the class distribution is used only in order to improve the individual classifications, e.g. via ROC
analysis (Provost and Fawcett, 2001; Fawcett, 2003; Mei and Zhai, 2005; and Saerens, Latinne and Decaestecker, 2002).
The overall objective in all such research has been the correctness of the individual classifications. Except where improved methods
achieve perfect accuracy, they are not sufficient for the large family of quantification applications whose objective utility is different:
precise estimation of the class distribution. To our knowledge, there has not been work to empirically compare and determine machine
learning methods that excel in quantification, nor any work in cost quantification via classification. This paper extends our recent
publications (Forman, 2005; Forman, 2006) with superior methods, a more focused experiment protocol, and empirical evaluation of cost
quantification methods. Note that improvements in quantification methods can be used as a subroutine for the traditional purposes of
optimizing the classification decision threshold via ROC analysis and in calibrating probability estimating classifiers.
Outside the field of machine learning, the problem of estimating the class distribution of a target population is not new. In the medical
statistics literature, an imperfect binary diagnostic test with known sensitivity and specificity for a disease can be used to estimate the
prevalence of the disease in a test population (Zhou, Obuchowski and McClish, 2002, p.389). In fact, research by Valenstein (1990)
considers the problem of determining the sensitivity and specificity of a test when only noisy ground truth labels are available. By contrast,
our work leverages the flexibility of machine learning methods, and allows us to handle highly imbalanced class distributions more
gracefully. This also enables one to decompose single-label multi-class tasks into many highly imbalanced binary subproblems.

In biology, the capture-mark-recapture methods are well known for estimating the population size of animals—most famously, butterflies
(Seber, 1982). The Lincoln-Petersen method estimates the population of a species (number of positives) as n*M/R, where n is the total
captured on recapture day, M is the number of specimens marked initially, and R is the number of recaptured specimens, recognized by
their marks. In contrast with quantification, this procedure does not require knowing the total test set size, and it assumes a perfect
classifier. That is, no false positive mistakes are made in capturing specimens of unrelated species. Variations in biology include
estimating site occupancy of a species, e.g. what percentage of square acres contain a particular variety of toad. Work by MacKenzie et al.
(2002) addresses the problem of estimating site occupancy when the classifier—typically a biologist in the field—may make false negative
errors. In such a setting, the probability of false positives is assumed zero.
The cost quantification task is new to machine learning and data mining, despite the large body of literature that deals with various types of
cost, e.g. misclassification costs per class or per case. Where in the literature the ‘cost’ refers to some penalty that an algorithm needs to
minimize, in cost quantification it carries no connotation of cost avoidance. Turney (2000) developed an extensive taxonomy of types of
cost in machine learning, but none of the costs are related to the cost attribute in cost quantification. Our general concern for the labor cost
to label training examples he refers to as the “cost of teacher,” but unlike the literature in this area, we do not attempt to simultaneously
model this cost in conjunction with any sort of misclassification cost.
Regarding trending, there exists unsupervised work in tracking topic distributions as they shift over time (e.g. Mei and Zhai, 2005; and
Havre, et al., 2002). The idea is to cluster items, then plot the prevalence of the time-stamped cases over time. This can be used to identify
the ebb and flow of news topics, for example. Being unsupervised, this approach naturally has uncalibrated cluster boundaries and thus
has little bearing on the supervised task of quantification, which works very hard to get the quantity inside the boundary correct. As a side
note, we point out a potential connection between tracking trends over time and the growing field of learning from data streams (e.g.
Hulten, Spencer and Domingos, 2001). In most of these situations concept drift is involved, and this leads to the need to obtain additional
labeled training examples and retrain classifiers. While additional training examples are not required in the straightforward quantification
task, it is natural that in real-world settings we would expect some degree of concept drift. Most research to date deals with either
detecting when a concept has drifted, or in adapting the classifier to track the current target concept.

8. Conclusions and Future Work
We have articulated two new research challenges that are important to many business and scientific applications: (1) inducing a quantifier
to accurately estimate the test class distribution, and (2) inducing a cost quantifier to estimate the cost distribution—the per-class subtotal
of a cost value associated with each case. These capabilities are particularly needed for applications that track trends over time. For both
types of quantification, we have proposed a variety of methods, and compared them all experimentally with a new methodology suitable
for quantification research. The experiments showed the consistent strength of median sweep methods (MS and mPCAQ): returning the
median of estimates produced from many different thresholds of a classifier. This method smooths over estimation errors made at any
single decision threshold, much as the well known method of statistical bootstrapping.
It is fortunate that quantification and cost quantification can be made to compensate for the inaccuracy of a classifier, yielding substantially
more precise and less biased estimates. Moreover, this requires only small amounts of training data, which can reduce labor costs
compared with having to train highly accurate classifiers. These factors may lead to greater acceptance of machine learning technology for
business use, where paid labor is necessary to generate training sets at the outset, often for an uncertain business benefit. We have been
promoting machine learning within our company for years, but have never before experienced the business interest we find for
quantification (Forman, Kirshenbaum and Suermondt, 2006). To data mining researchers who desire to apply and develop advanced
predictive models, this comes as some surprise, since the task of counting seems so simple in comparison—at least on the surface.
Quantification technology and future improvements thereon can be folded back in to support traditional threshold selection via ROC
analysis, as well as calibrating probability estimating classifiers that have fallen out of calibration because of a change in the class
distribution. The estimates can also be used to calibrate certain detectors, e.g. to control the expected false alarm rate in certain monitoring
applications. The availability of effective and robust quantifiers can enable business and scientific tracking, and with little effort on the
part of domain experts. For example, imagine training a quantifier to track customer sentiment in blog posts over time about the products
of one’s company. This application involves a classification task that will never be perfect, yet quantification may provide good overall
estimates despite the inability to classify individuals well.
Future work will involve new, improved methods as well as experimentation under greater degrees of class imbalance. To set an ambitious
goal, we propose that within the next five years, quantification methods will be able to estimate within half a percent of the target across a
reasonably wide range of prevalence, as well as estimating well down to one part per thousand. Chemists easily talk about parts per
million, but machine learning is currently nowhere near up to the task. To perform research far into the tail of the probability distribution
will require very large benchmark datasets, ideally publishable ones for experimentation and repeatability by others. Studying high class
imbalance requires that the data set labels not have any mistakes, for the conclusions are more sensitive to any noise in the labels used as
ground truth. Ideally, such a dataset would include individual costs to support research in cost quantification, where estimates are
especially difficult when positives are rare. The most effective methods may depend strongly on the characteristics of the data, so
hopefully such a dataset would suit a popular family of applications in the real-world. And on datasets where the cost attribute is a highly
differentiating feature of the positive class, research will be needed to determine when and how to leverage it as a predictive feature and
yet avoid the problems of cost-confounded bias in the prediction, as we discussed. Other future research directions include advanced
multi-class methods, class hierarchies, missing cost attributes (often not missing-at-random), and quantification under various constraints,

such as having less tolerance for underestimating the size or cost of a subclass, as needed by some business applications. Finally, trending
over time naturally introduces general concept drift, which is a challenging and important area for future research. Currently we assume
that the distribution of features given the class P(x|class) is the same between training and testing, but future methods may further loosen
this assumption.

Acknowledgements
I wish to thank my colleagues Jaap Suermondt, Evan Kirshenbaum, Jim Stinger, Tom Tripp, Farzana Wyde and Jamie El Fattal for
contributions in conceiving and developing this application. Thanks also to Bin Zhang, Hsiu-Khuern Tang and Shyam Rajaram for their
input. Finally, I would like to thank Gary Weiss and the anonymous reviewers for their extensive work to review and improve this paper.

References
Fawcett, T. ROC graphs: notes and practical considerations for data mining researchers. Hewlett-Packard Labs, Tech Report HPL-2003-

4, 2003. www.hpl.hp.com/techreports/2003/
Fawcett, T. and Flach, P. A response to Webb and Ting’s ‘On the application of ROC analysis to predict classification performance under

varying class distributions.’ Machine Learning, 58(1):33-38, 2005.
Forman, G., Kirshenbaum, E., and Suermondt, J. Pragmatic text mining: minimizing human effort to quantify many issues in call logs.

In Proc. of the 12th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining (KDD, Philadelphia):852-861, 2006.
Forman, G. Quantifying Trends Accurately Despite Classifier Error and Class Imbalance. In Proc. of the 12th ACM SIGKDD Int’l Conf.

on Knowledge Discovery and Data Mining (KDD, Philadelphia):157-166, 2006.
Forman, G. Counting positives accurately despite inaccurate classification. In Proc. of the 16th European Conf. on Machine Learning

(ECML, Porto):564-575, 2005.
Forman, G. An extensive empirical study of feature selection metrics for text classification. J. of Machine Learning Research,

3(Mar):1289-1305, 2003.
Ghani, R. Using Error-Correcting Codes for Text Classification. In Proc. of the 17th Int’l Conference on Machine Learning (ICML):303-

310, 2000.
Han, E. and Karypis, G. Centroid-based document classification: analysis & experimental results. In Proc. of the 4th European Conf. on

the Principles of Data Mining and Knowledge Discovery (PKDD): 424-431, 2000.
Havre, S., Hetzler, E., Whitney, P., and Nowell, L. ThemeRiver: visualizing thematic changes in large document collections. IEEE

Transactions on Visualization and Computer Graphics, 8(1):9-20, 2002.
Hulten, G., Spencer, L., and Domingos, P. Mining time-changing data streams. In Proc. of the 7th ACM SIGKDD Int’l Conf. on

Knowledge Discovery and Data Mining (KDD, San Francisco):97-106, 2001.
Lachiche, N., Flach, P.A. Improving Accuracy and Cost of Two-class and Multi-class Probabilistic Classifiers Using ROC Curves. In

Proc. of the 20th Int’l Conf. on Machine Learning (ICML, Washington DC): 416-423, 2003.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., and Langtimm, C. A. Estimating site occupancy rates when

detection probabilities are less than one. Ecology, 83:2248–2255, 2002.
Mei, Q. and Zhai, C. Discovering evolutionary theme patterns from text: an exploration of temporal text mining. In Proc. of the 11th ACM

SIGKDD Int’l Conf. on Knowledge Discovery in Data Mining (KDD, Chicago): 198-207, 2005.
Provost, F. and Fawcett, T. Robust Classification for Imprecise Environments. Machine Learning, 42:203-231, 2001.
Saerens, M., Latinne, P., and Decaestecker, C. Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure.

Neural Computation, 14(1):21–41, 2002.
Seber, G. A. F. The Estimation of Animal Abundance and Related Parameters, 2nd Edition. Blackburn Press, New Jersey, 1982.
Turney, P.D. Types of cost in inductive concept learning. Workshop on Cost-Sensitive Learning at the Seventeenth International

Conference on Machine Learning (WCSL, ICML, Stanford University), 2000. Computing Research Repository, vol. cs.LG/0212034.
Valenstein, P. Evaluation diagnostic tests with imperfect standards. American Journal of Clinical Pathology, 93:252-58, 1990.
Van Hulse, J., Khoshgoftaar, T. M., and Napolitano, A. Experimental perspectives on learning from imbalanced data. In Proc. of the 24th

Int’l Conference on Machine Learning (ICML, Oregon):935-942, 2007.
Vucetic, S. and Obradovic, Z. Classification on data with biased class distribution. In Proc. of the 12th European Conf. on Machine

Learning (ECML, Freiburg):527-538, 2001.
Weiss, G. M., & Provost, F. Learning when training data are costly: the effect of class distribution on tree induction. Journal of Artificial

Intelligence Research, 19:315–354, 2003.

Witten, I. and Frank, E., Data mining: Practical machine learning tools and techniques (2nd edition), Morgan Kaufmann, San Francisco,
CA, 2005.

Wu, G. and Chang, E. KBA: kernel boundary alignment considering imbalanced data distribution. IEEE Trans. on Knowledge and Data
Engineering, 17(6):786-795, 2005.

Zhou, X.-H., Obuchowski, N. A. and McClish, D. K. Statistical Methods in Diagnostic Medicine, Wiley, New York, 2002.

	1. Introduction
	2. Quantification Methods
	2.1 Basic Methods
	2.2 Imbalance Tolerant Methods via Classifier Threshold Selection
	2.3 Mixture Model Method
	2.4 Non-Solution: Summing a Probability Estimating Classifier

	3. Empirical Evaluation of Quantification Methods
	3.1 Experiment Methodology
	3.2 Results of the Quantification Experiments
	3.2.1 Stability as the Class Distribution of the Training Data is Varied
	3.2.2 Accuracy over a Wide Range of Class Distributions in the Test Set
	3.2.3 Bias & Failure Analysis

	3.3 Discussion

	4. Cost Quantification Methods
	4.1 Basic Methods
	4.2 Precision Correction Methods
	4.3 Non-Solution: Regress and Sum

	5. Empirical Evaluation of Cost Quantification Methods
	5.1 Experiment Methodology
	5.2 Cost Quantification Experiment Results
	5.2.1 Stability as the Class Distribution of the Training Data is Varied
	5.2.2 Accuracy over a Wide Range of Class Distributions in the Test Set

	5.3 Discussion
	5.3.1 Cost-Confounded Prediction
	5.3.2 Missing Costs

	6. Extensions
	6.1 Multi-Class Quantification
	6.2 Quantifying Trends over Time

	7. Related Work
	8. Conclusions and Future Work
	Acknowledgements
	References

