

An IMAP plugin for SquirrelRDF

Eynard, Davide; Recker, John; Sayers, Craig
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2007-161
October 5, 2007*

Semantic Web, RDF,
IMAP, Email

The Semantic Web aims to make information accessible to both humans
and machines, using standard formats for data and making information
available in a formal and structured way. Since the advent of RDF
(Resource Description Framework) there have been many efforts to
extract and convert existing information in this format. In this paper we
describe an adapter tool for the IMAP protocol, developed as a plugin
of SquirrelRDF1, which allows users to query IMAP mailboxes using
SPARQL. The information returned looks like RDF, is always current,
and can be reused and integrated inside other applications.

* Internal Accession Date Only
 Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.

An IMAP plugin for SquirrelRDF

D. Eynard, J. Recker, C. Sayers

Hewlett-Packard
Palo Alto, CA, USA

davide.eynard@hp.com

Abstract. The Semantic Web aims to make information accessible to
both humans and machines, using standard formats for data and making
information available in a formal and structured way. Since the advent of
RDF (Resource Description Framework) there have been many efforts to
extract and convert existing information in this format. In this paper we
describe an adapter tool for the IMAP protocol, developed as a plugin
of SquirrelRDF1, which allows users to query IMAP mailboxes using
SPARQL. The information returned looks like RDF, is always current,
and can be reused and integrated inside other applications.

1 Introduction

The Semantic Web is a new Web paradigm that aims to make information ac-
cessible to both humans and machines [1], using standard formats for data and
making information available in a formal and structured way. This means that
to make it work inside the current Web it is necessary, on the one hand, to
publish new information so it’s meaningful for machines, and on the other hand
to convert old data so they’re available in new, more standard and structured
formats.

While both of these approaches are currently being studied by the Semantic
Web community, the latter is probably the one which seems more challenging
from a technical point of view. And while the task might be difficult for free,
unconstrained text, it becomes much easier for information already published
in a structured way. This is, fortunately, the case of many standard file formats
and protocols.

This kind of conversion can be usually done in two ways: the first one is a
batch conversion, and is run once (or periodically) on the whole data source,
while the second one is an online conversion, which is run on the fly on the
single pieces of information which need to be accessed. To be more precise, tools
of this last kind allow users to query the knowledge base as if it already was
described in the destination format, and translate only the results of the query
while they are given as an answer to the user.

Each of the two approaches has its pros and cons: batch conversion is better
suited if the data source is not going to be updated and whenever there’s the need

1 http://jena.sourceforge.net/SquirrelRDF

2 Davide Eynard

to work offline (that is, disconnected from the original source of data); online
conversion requires a live connection to the data source, however the information
it returns is always current and consistent with the data source.

In this paper we describe a conversion tool which allows IMAP mailboxes to
be queried with SPARQL, as if they originally contained information in RDF
format. The tool has been developed as a plugin of SquirrelRDF, an application
which is part of the Jena Semantic Web Framework2. As an IMAP mailbox is a
source of data that is often updated, we perform an online conversion, providing
users results which are always current.

The following section is devoted to a brief description of the state of the
art and SquirrelRDF. In Section 3 we describe the limits we had to face when
developing the IMAP plugin and the solutions we devised to address them.
Section 4 shows with a higher detail the actual implementation of the plugin.
Inside Section 5 we describe the tests that we ran on the application and the
evaluations of their results. Finally, in Section 6, we draw our conclusions about
the project and propose some possible future developments.

2 Related work

Since the advent of RDF [2] there have been many efforts to extract and convert
existing information to this format. The World Wide Web consortium has set
up wiki pages3 to keep track of them through a list of links. The MIT SIMILE
project has developed many offline conversion tools, calling them RDFizers4,
which range from e-mail to BibTex, JPEG metadata, and XML [3]. They also
provide a Web service, called Babel5, which allows for the conversion between
different formats.

The SIOC project [4] aims at interconnecting different online communities
(such as the ones which gather around forums and weblogs) through a common
ontology and a collection of tools (called exporters) that convert published in-
formation into a common format. These tools can work not only on Web-based
sources like RSS feeds, blogs and forums, but also on email based ones like
mailing lists (see for instance the SWAML6 research project [5]).

The D2R project [6, 7] uses a declarative language to describe mappings be-
tween relational database schemata and OWL/RDFS ontologies. The mappings
can then be used to export data from a relational database to RDF (as a batch
conversion tool) or to access the content of non-RDF databases as an online tool,
using Semantic Web query languages like SPARQL7.

2 http://jena.sourceforge.net
3 http://esw.w3.org/topic/ConverterToRdf

http://www.w3.org/2005/Incubator/mmsem/wiki/Tools and Resources
4 http://simile.mit.edu/wiki/RDFizers
5 http://simile.mit.edu/babel
6 http://swaml.berlios.de
7 http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2rmap/D2Rmap.htm

http://sites.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/

An IMAP plugin for SquirrelRDF 3

The Gnowsis Email project8 provides an adapter to extract RDF information
from emails. Thanks to this adapter it’s possible to transform any IMAP email
object (such as a store, a folder or a message) into a standard RDF model, or
extract attachments from an imap message. In a paper [8] about the Gnowsis
Adapter Framework (on which the Email project is built) the authors provide an
interesting classification of adapter tools. According to the paper, adapters are
software tools that can, on request, extract data from existing structured data
sources and represent them as RDF. They can follow three basic approaches:

– Graph and query adapters, which implement the interface of an RDF graph
or a query language like RDQL, SPARQL or TRIPLE

– Concise Bounded Description adapters, that can return a small subgraph
that describes exactly one resource in detail

– File extractors, that read files, parse them and return some meta-data that
was extracted from the data stream

According to this classification, SquirrelRDF [9] is a Graph and Query adapter,
as it allows non-RDF data stores to be queried using SPARQL. It currently
includes support for relational databases (via JDBC) and LDAP servers (via
JNDI). It provides an ARQ QueryEngine (for Java access), a command line
tool, and a servlet for SPARQL http access. For instance, running the command
line tool with the following query (directed to HP LDAP server):

prefix foaf: <http://xmlns.com/foaf/0.1/>

prefix hp: <http://jena.hpl.hp.com/schemas/hpcorp#>

SELECT ?mbox ?manager_name

WHERE

{

?person foaf:name "Davide Eynard" .

?person foaf:mbox ?mbox .

?person hp:manager ?manager .

?manager foaf:name ?manager_name .

}

returns the following result:

--

| mbox | manager_name |

==

| <mailto:davide.eynard@hp.com> | "Craig Sayers" |

--

The servlet tool, instead, generates an XML file containing SPARQL query
results and then uses an XSLT script to format them into XHTML. The output
is shown in Figure 1, while the XML code looks like this:

8 http://www.gnowsis.org/Projects/gnowsis email

4 Davide Eynard

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="xsl/result2-to-html.xsl"?>

<sparql

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xs="http://www.w3.org/2001/XMLSchema#"

xmlns="http://www.w3.org/2005/sparql-results#" >

<head>

<variable name="mbox"/>

<variable name="manager_name"/>

</head>

<results ordered="false" distinct="false">

<result>

<binding name="mbox">

<uri>mailto:davide.eynard@hp.com</uri>

</binding>

<binding name="manager_name">

<literal>Craig Sayers</literal>

</binding>

</result>

</results>

</sparql>

Fig. 1. The HTML output of a SPARQL query, as returned by SquirrelRDF servlet.

The advantages of such a tool are quite clear: information looks like RDF and
query results can be easily integrated inside other applications. As an example, in
[10] SquirrelRDF is used to solve the real-life problem of automatically extracting
complex information from an LDAP directory. In [11] the techical details about
this project have been described, together with a tutorial about setting the
system up and expanding it to provide support to different types of SPARQL
queries and output formats.

An IMAP plugin for SquirrelRDF 5

3 Current limits and a proposed solution

Of the many different formats which were already available on the Internet, we
decided to focus on e-mails because they provide useful information not only
about their actual content, but also about the people who wrote them, the
relations between these people (ie. who wrote to whom) and their dynamics (ie.
who replied about what).

Current adapters for emails can be roughly divided in two categories: those
which work on information saved on the client side (for instance on mailboxes
in mbox format, or some application-dependant tools), and those which work by
downloading data from servers (connecting to IMAP or POP3 servers).

We decided to work on information stored on the server and not on the client
side, because we didn’t want to stick with some specific application or format.
Also, as we wanted to access current information, we chose to build a query
adapter for IMAP servers. Gnowsis Email project looks very similar to the one
we had in mind, but it apparently does not allow to directly query the IMAP
server with SPARQL. With this premises, SquirrelRDF instead seemed to satisfy
all our prerequisites, so we chose it as a starting point to develop our adapter.

3.1 The Data Model

To write our IMAP plugin we chose to first study how the existing ones (RDB
and LDAP) worked. In particular, the mapping used by the LDAP plugin is very
compact and efficient and allows to simultaneously specify search constraints and
extract the right attributes from the results returned by the LDAP server.

Unfortunately, this kind of mapping is not usable for the IMAP plugin. In
fact, there’s a huge asymmetry between the way messages are searched and
how fields are extracted from search results, that requires us to describe the
two operations in different ways. Moreover, we wanted to develop something
flexible enough to allow programmers to create new plugins in an easy way, given
similar kinds of problems. So we thought about a different mapping model (albeit
inspired by the LDAP one), which maps properties specified in the SPARQL
query with methods that are called by our application.

The details of our mapping model can be found in Figure 2. Every imap:Map
can have one or more server profiles and one or more property mappings. The first
ones are used to describe the properties of the different servers the application
can connect to: each server has an alias (which is used inside SPARQL queries
to refer to it), an address and a port to connect to, a username, a password, and
a default folder to connect to if no folder is specified inside the query.

Property mappings are used to match properties with methods: every map-
ping contains the name of the property which has to be mapped; a property type
can be specified, so it’s possible to run specific actions over it; also, every prop-
erty can be matched with three methods (through imap:method, imap:extract,
and imap:parse) which are called inside the application (more details on it in
Section B.3).

6 Davide Eynard

Fig. 2. A description of the IMAP Map and its properties.

An IMAP plugin for SquirrelRDF 7

3.2 The Email Ontology

As described above, our mapping describes connections between predicates used
inside SPARQL queries and methods. These predicates come from an ontology
which describes every single piece of information we can query: in our specific
case, the ontology describes emails and their different fields.

Field name Predicate name SearchTerm (JavaMail) Extract Method (JavaMail)

Body email:body BodyTerm getContent, getBodyPart
Subject email:subject SubjectTerm getSubject
From email:from FromStringTerm getFrom
To email:to RecipientStringTerm getRecipients
Cc email:cc RecipientStringTerm getRecipients
Bcc email:bcc RecipientStringTerm getRecipients

MessageID email:messageID MessageIDTerm getMessageNumber
headers email:header HeaderTerm getAllHeaderLines
flags email:flag* FlagTerm getFlags
Date email:date ReceivedDateTerm getReceivedDate
Sent email:sdate SentDateTerm getSentDate

Fig. 3. Mapping between email field names, predicates from our email ontology, Java-
Mail SearchTerm subclasses and JavaMail extract methods.

In the first two columns of Table 3, the field names for a generic email and
the predicate names we chose for our ontology are shown. In the third column
SearchTerm classes are specified: these are the classes used by JavaMail (see
Appendix B, “The JavaMail API”) to specify the search terms inside an IMAP
query. In the fourth column, extract methods are shown: these are all methods
provided by the JavaMail Message object, which allow to extract information
from the messages returned by the IMAP server.

Looking at the table, a direct mapping between the predicates and the
classes/methods from JavaMail might seem the most intuitive and the easiest
one. However, we decided to put one more layer of abstraction in the process,
creating mappings between predicates and methods which use these objects to
search and extract information. One of the main advantages of this approach is
the possibility to create many different methods which get the same pieces of
information, but then convert them in different ways.

For instance, the getFrom method is able to extract the sender from an email
message. However, the From field is built up of a name and an email address:
in some cases we might be interested in both, while in others we might want to
extract only one of them. Using our approach it is possible to create three differ-
ent methods (ie. extractFrom, extractFromName, and extractFromAddress)
and match them with three different properties; also, one might just keep one
property and update the mappings depending on what kind of information a
particular query has to return.

8 Davide Eynard

Actually, mappings can be changed quite easily: they’re saved in RDF format
inside a configuration file (called imap map.n3 - see Section C.4 for an example)
and changing them is just a matter of editing this text file. Even creating a
new mapping from scratch is rather easy. Once a predicate name is chosen, its
mapping can be described like in the following example:

imap:mapsProp [imap:property email:body ;

imap:method "searchBody" ;

imap:extract "extractBody" ;

a imap:ExactStringProperty ;

] ;

In this case, for instance, we chose to map the email:body property with
two different methods: searchBody to search the IMAP server for a particular
body, and extractBody to extract body information from the results. Also, this
property requires the specified search term to be matched not as a substring,
but as an exact string.

As it appears in the table, the email ontology is very simple and flat and
it doesn’t reuse already existing ontologies. However, as it is described only
through mappings inside one text file, it’s very easy to change it and make it
more complex and compatible with other ontologies. For instance, it is possible
to map the subject with a dc:subject, the sender with a dc:creator, and the
date with a dcterms:dateSubmitted.

4 System design and implementation

The plugin has a structure which is very similar to the other SquirrelRDF compo-
nents: an RDF configuration file describes the mappings and all the parameters
needed to connect to the server(s); an RDF schema describes how the config-
uration file can be built; different classes provide different ways to access the
data (ARQ QueryEngine, command line, servlet). In this section we describe
the main choices we made during the design phase and how we implemented
them, highlighting the differences between our plugin and the already existing
ones.

The structure of SquirrelRDF is shown in Figure 4. From a user perspec-
tive, there are two ways to use the application: the command line tool and the
servlet. Both of them access a configuration file whose name can be specified as
a parameter during startup: this file contains the mappings and the parameters
needed for the plugin to run (for the IMAP plugin, this is the same imap map.n3

file we previously described) and its vocabulary is defined inside another RDF
file containing its schema (ie. ImapMap.n3 in our case).

As the configuration defines the type of the mapping, once it is loaded Squir-
relRDF can choose which plugin has to be used. Then it parses the SPARQL
queries according to the mappings, retrieving information from the servers when
needed and binding them with the variables used inside the queries. Depending
on the plugin, SquirrelRDF uses different protocols and APIs to connect to the

An IMAP plugin for SquirrelRDF 9

Fig. 4. SquirrelRDF structure

servers; also, the methods used to extract information from search results change
from one plugin to another. However, all these differences are invisible to the
user, who can just query the data sources as if they were RDF graphs.

4.1 Multiserver queries and preparsing

One of the main purposes of describing email messages with RDF is the pos-
sibility of integrating their information with different and heterogeneous data
sources. However, of course, we also wanted to provide ways to integrate the
same information with other homogeneous sources, that is other IMAP accounts,
folders, and servers.

For example, one user might have different email accounts from different
providers, and want to find a particular message without remembering where it
is saved. In another use case, one might want to be able to see at a glance all his
new emails, without having to care about where they are stored. A researcher
might need to search in different mailing lists (folders) if people are writing about
the same subjects, or if the same writers appear in different communities, and
so on.

Allowing users to specify servers and folders inside a SPARQL query means
specifying new properties for messages: given a message as a subject, two new
predicates imap:server and imap:folder have been created. Two main prob-
lems arise from this feature extension: the first one is related to where and

10 Davide Eynard

how connection data (server IP, port, login and password) have to be specified;
the second is related to how we want to manage predicates like these inside a
SPARQL query.

We decided to associate connection information with a server alias, so that
users just have to specify servers and folders as string literals inside their own
queries. The alias is saved inside the configuration or, in the case of the servlet
application, can be specified at runtime. An example of a multiserver query is
shown in Section A.6.

The management of “special” predicates or triples is done with a preParseQuery
method. This method is called before the actual parsing inside the ImapSubQuery
class: it checks all the triples in the subquery and if one of them has a prop-
erty whose type is ParseProperty then it calls (using reflection) the matching
method from the ParseMethod class. If the method returns true then the triple
has to be deleted from the query, otherwise it can be kept.

For instance, suppose we have the following lines in the configuration file:

imap:hasServer [a imap:Server ;

imap:serverAlias "server1" ;

imap:serverAddress "localhost" ;

imap:serverUsername "user01" ;

imap:serverPassword "pass01" ;

imap:serverFolder "INBOX" ;];

imap:mapsProp [imap:property email:server ;

imap:parse "setServerAlias" ;

a imap:ParseProperty ;] ;

and suppose the user enters the following query:

select *

where{

?x email:subject ?subj1 .

?x email:server "server1" .

}

When the second triple is evaluated this is what happens: given that email:server
is a ParseProperty, the preParseQuery method will call its matching method
(that is setServerAlias, from the ParseMethod class). This method reads the
server alias from the current triple (“server1”) and whenever the program has
to connect to an IMAP server it will do it using the parameters specified in the
configuration file (that is, it will connect to localhost using “user01” as a login
and “pass01” as a password). Finally, as the method returns the boolean value
true, the triple will be deleted from the query.

4.2 SPO queries

An SPO query is a single triple pattern, with optional subject (parameter ”s”),
predicate (parameter ”p”), and object (parameter ”o”). This is usually inserted

An IMAP plugin for SquirrelRDF 11

in SPARQL queries as a test pattern, or to get all the triples for the available
resources. As the other two SquirrelRDF plugins didn’t support these kinds
of queries, we wanted to work on this to see if we could provide some useful
contribution to the project we borrowed so much from.

The default behavior of SquirrelRDF (at least for its LDAP plugin) is to
build a mapping between the variables that appear inside the SPARQL query
and the values that are extracted from the data source.

The mapping is done inside the ImapSubQuery class using a list of HashMap
objects. Their keys are String objects containing the variable names; their values
are Jena Nodes (com.hp.hpl.jena.graph.Node) containing the pieces of infor-
mation extracted from email messages. According to this model, the results can
be seen as many rows inside a database table, where each binding specifies in
which column a particular value has to be saved (Figure 5).

Fig. 5. A result from a normal SPARQL query.

Fig. 6. A result from an SPO query.

12 Davide Eynard

When an SPO query is issued, the results cannot fit into rows anymore, but
rather in blocks: in our particular case, every email message has many rows de-
scribing all its properties one by one and their values. So we decided to translate
this with a multiple bindings data structure (Figure 6), which can hold all the
results returned by every single message (and which, in the simplest case, can
just be a block made of one row).

To manage this kind of queries we took advantage of the preparsing feature:
the variable triple is detected in advance, deleted from the query and a flag
is set to warn that a special query has been issued. Then, for each message
that satisfies the search constraints (potentially all messages), a set of fields is
extracted and transformed into bindings. It is possible to change how this set is
built just by toggling the CheckProperty type inside the configuration file: this
allows to limit data transfer and optimize performances.

As an example, suppose we have the following lines in the configuration file:

imap:mapsProp [imap:property email:subject;

...

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:from;

...

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:date;

...

a imap:CheckProperty ;];

and that all the other properties are not of this type. Then the results of the
query will include only these three predicates, when present.

According to this model, the main limit in the implementation of SPO queries
is the server providing the information. In case of unconstrained queries, it should
return all the elements it contains: while this is feasible with IMAP, it could be
impossible with other servers.

5 Tests and evaluations

To test the application, we chose to feed it different families of queries (see
Appendix A for some examples):

– basic ones, which just ask for properties of email messages;
– queries using OPTIONAL clauses;
– queries using FILTER clauses;
– SPO queries;
– multiserver queries, mixing information between different servers and
– folders or merging it with UNION clauses.

The application returns the expected results; however, during the tests we
had to face some IMAP limits and found some workarounds for them.

An IMAP plugin for SquirrelRDF 13

Exact String Search The search function within IMAP does not match exact
strings, but just searches for substrings within email fields. This is particularly
limiting because, for instance, when you write the triple

?x email:subject "This is a test" .

you expect only messages whose subject is (and not contains) the specified
string. A workaround for this problem consists of checking the result messages
before extracting information from them: if a particular field matches with a
property defined as ExactStringProperty inside the configuration file, then it
is compared with the result and if the strings do not match exactly the message
is dropped before any other evaluation.

Date Search The date search function provided by IMAP is not precise, that
is it doesn’t take into account time but just returns all the messages received
or sent on one particular day. Of course, a fix similar to the previous one could
be implemented for date fields. However, an alternative workaround is shown
in the “FILTER with dates and strings” section of Appendix A: specifying the
date constraint both in the query triple and in the FILTER allows to obtain the
expected result.

Server lag Usually, filtering results with just a FILTER clause is not very
efficient: this is due to the fact that in this case all the messages are downloaded,
then the filter is applied on them. What we would like to have, instead, is a
preliminary filter on the IMAP side which would allow us to download only
the messages we’re interested in. To accomplish this task on message bodies
(which are usually the heaviest part of emails to download), we created an ad-hoc
predicate that we called imap:bodyfilter (for an example, look at Section A.4).
This predicate maps to the very same method used for imap:body, but it doesn’t
require the string match to be exact. In this way, messages are first filtered with
a normal substring search on the IMAP server, then they’re FILTERed with a
regular expression. Of course, this solution cannot be easily applied with very
complex regular expressions, but is useful in most common cases.

OPTIONAL subqueries Queries which contain an OPTIONAL clause are
usually managed in a more complex way than in the basic case: the non-optional
part is first evaluated, then for all the results the OPTIONAL ones are, resulting
in our case in N × M searches on the IMAP server (where N is the number of
results, and M the number of optional clauses). This raises a big performance
problem, which can become more serious depending on the connection speed
between the client on which SquirrelRDF runs and the IMAP server. Our solu-
tions worked primarily on disabling optionals when possible and trying to return
empty results instead of null ones, but we think that further study is needed on
this topic.

14 Davide Eynard

5.1 A mashup test

One of the main advantage of SquirrelRDF is that the information extracted
from the IMAP server is provided in very standard and common formats such
as RDF and XML, so it can be easily reused within other applications. As an
example, we developed some very simple mashups with Yahoo Pipes9 which get
email data from the servlet, augment them with Internet searches, and then
publish everything in standard formats such as RSS.

Fig. 7. A Pipe extracting email authors from a mailbox and searching for them on
Yahoo.

These tests gave us some very interesting results: first of all, as SquirrelRDF
allows to automatically convert structured information into RDF, querying the
IMAP server and connecting the results to a mashup tool like Yahoo Pipes is
really easy and fast. In fact, the Fetch Data widget allows users to load any
XML page and extract information from it: we used this feature to download
SquirrelRDF servlet results page and automatically extract the list of bindings.
Then, information can be parsed, filtered, and reused inside other plugins.

This chance of redirecting information from one service to another immedi-
ately proved to be quite useful: for instance, we used it to automatically extract
all the authors from the emails, search them on the internet and provide the re-
sults of these searches as additional information about them. The final product

9 http://pipes.yahoo.com

An IMAP plugin for SquirrelRDF 15

is a document which contains the list of authors, followed by a link to a page
which is related to them, and a brief summary of that page.

Finally, as these new data can be published in very common formats such as
RSS, they can be read, shown or furtherly processed by many different applica-
tions. As an example, we imported the results of the previously described pipe
as Firefox Live Bookmarks, so the additional information about email authors
is always available within the browser.

6 Conclusions and future work

The plugin we developed gives the expected results and integrates well with
the SquirrelRDF application. Performances are good on the local IMAP server,
and they’re expected to be more than acceptable on a remote one. Information
returned by the application is current and provided in a standard (RDF/XML)
format, so it can be easily shared and reused inside other applications.

As a planned future work, as there are still some limitations in the model
(in this very moment it only works with flat email ontologies), we’ve begun to
implement a new version which will enable more complex ones. By flat, we mean
that we still can’t deal with second-level relationships: for instance, while we can
answer a query like

select ?from where

{

?x email:from ?from .

}

where ?from is a variable containing an email address, we can’t answer another
like the following:

select ?realname ?address where

{

?x email:from ?from .

?from email:realname ?realname .

?from email:address ?address .

}

where ?from is an anonymous node linking to a real name and an address value.
Our test queries showed that connections to the IMAP server are the bottle-

neck in performances of SquirrelRDF: for this reason we’re planning to optimize
them with caching (both of connections themselves and of search results). Also,
we’ve already started to work on a new plugin which would use the same kind
of predicate-to-method mapping: this plugin will connect via HTTP on a Twiki
website and allow users to access wiki contents with SPARQL queries. Finally ,
we’re planning to experiment more with mashup services and build some custom
ones to enrich and merge all the information we can extract thanks to Squirrel-
RDF.

16 Davide Eynard

A Test queries

A.1 Basic query

With this SPARQL query we try to ask as many properties as we can

(almost all the ones which are defined inside the imap_map file. The

reason of the "almost" will be explained in detail inside next queries)

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

prefix email: <http://davide.eynard.it/rdf/email#>

select * where

{

?x email:messageID ?messageID .

?x email:from ?from .

?x email:to ?to .

?x email:subject ?subject .

?x email:body ?body .

?x email:date ?date .

?x email:sdate ?sdate .

?x email:header ?headers .

?x email:flagAnswered ?flagAns .

?x email:flagDeleted ?flagDel .

?x email:flagDraft ?flagDra .

?x email:flagFlagged ?flagFla .

?x email:flagRecent ?flagRec .

?x email:flagSeen ?flagSee .

?x email:flagNew ?flagNew .

}

A.2 OPTIONAL fields

Some fields, like Cc and Bcc, are often empty: this means that most

of the times you query for "?message email:cc ?cc" you will have

very few results. This is the reason why fields like this have to

be kept OPTIONAL (try the difference taking away the OPTIONAL clauses

from the query).

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

prefix email: <http://davide.eynard.it/rdf/email#>

select * where

{

?x email:subject ?subject .

?x email:from ?from .

?x email:to ?to .

An IMAP plugin for SquirrelRDF 17

OPTIONAL{ ?x email:cc ?cc }.

OPTIONAL{ ?x email:bcc ?bcc }.

}

A.3 FILTER with dates and strings

Now on to special examples: date is the first property that has to

be used in a particular way. If you send a query like the following,

you might happen to receive not only the message sent at that particular

date and time, but all the ones sent the very same day. This is due to

IMAP server inner working and cannot be changed on the IMAP side.

However, the desired result can be obtained just by uncommenting the

FILTER constraint.

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

prefix email: <http://davide.eynard.it/rdf/email#>

select ?date ?subject where

{

?x email:subject ?subject .

?x email:date ?date .

?x email:date "2007-07-06T22:48:18Z"^^xsd:dateTime .

#FILTER (xsd:dateTime(?date) = "2007-07-06T22:48:18Z"^^xsd:dateTime) .

}

NOTE that the same result is obtained also if you comment the line

above the FILTER constraint. However, if you have logging enabled

for INFO messages you’ll notice that the number of downloaded messages

changes much. In fact, when you specify a date a search is done on the

IMAP server and the results are "pre-filtered", so performance is better.

A more specific example on this in the next query

A.4 FILTER with strings

In this query a search for the BODY content is run on the IMAP server.

The "bodyfilter" property has been created to prefilter bodies on server

side, while "body" will contain the full message body. Note that the

first search done on IMAP server is just a normal substring search,

while the second one is a full working regular expression run over the

downloaded messages

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

prefix email: <http://davide.eynard.it/rdf/email#>

select * where

{

18 Davide Eynard

?x email:subject ?subject .

?x email:bodyfilter "http://en.wikipedia.org/wiki/Semantic_Wiki" .

?x email:body ?body .

FILTER regex(?body, "http://en.wikipedia.org/wiki/Semantic_Wiki[\\s]", "i") .

}

A.5 SPO Queries

The following is a very simple SPO query, used to have a list of the predicates

in our email ontology that are actually used inside the application.

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

prefix email: <http://davide.eynard.it/rdf/email#>

select distinct ?p where{

?s ?p ?o.

}

--

| p |

==

| "http://davide.eynard.it/rdf/email#flagSeen" |

| "http://davide.eynard.it/rdf/email#flagDraft" |

| "http://davide.eynard.it/rdf/email#messageID" |

| "http://davide.eynard.it/rdf/email#date" |

| "http://davide.eynard.it/rdf/email#flagRecent" |

| "http://davide.eynard.it/rdf/email#flagFlagged" |

| "http://davide.eynard.it/rdf/email#sdate" |

| "http://davide.eynard.it/rdf/email#flagNew" |

| "http://davide.eynard.it/rdf/email#subject" |

| "http://davide.eynard.it/rdf/email#to" |

| "http://davide.eynard.it/rdf/email#from" |

| "http://davide.eynard.it/rdf/email#flagAnswered" |

| "http://davide.eynard.it/rdf/email#body" |

| "http://davide.eynard.it/rdf/email#flagDeleted" |

| "http://davide.eynard.it/rdf/email#header" |

| "http://davide.eynard.it/rdf/email#cc" |

--

A.6 Multiserver query

The following query searches for email which share the same subjects and

come from two different servers and folders (actually, emails sent from

"server1" and emails received by "server3".

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

An IMAP plugin for SquirrelRDF 19

prefix email: <http://davide.eynard.it/rdf/email#>

select *

where{

?x email:subject ?subj1 .

?x email:server "server1" .

?x email:folder "Sent" .

?y email:subject ?subj1 .

?y email:server "server3" .

}

--

the following query shows all the subjects of messages contained in the INBOX

folders of server1, server2, and server3

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

prefix email: <http://davide.eynard.it/rdf/email#>

select *

where{

{ ?x email:server "server1" ;

email:subject ?subj }

UNION

{ ?x email:server "server2" ;

email:subject ?subj }

UNION

{ ?x email:server "server3" ;

email:subject ?subj }

}

20 Davide Eynard

B Software details

B.1 The JavaMail API

As described in [8], an adapter tool might depend on the data source (that is,
on its format and the ways to access it), so a preliminary analysis is needed.
Fortunately, email is a mature standard and IMAP protocol is well described by
its RFC [12]. Moreover, the JavaMail API10 provides an easy way to access an
IMAP server which is compliant enough with the protocol, so we chose it as a
gateway between our tool and IMAP servers.

The main JavaMail API classes we used are IMAPStore and IMAPFolder:
the first one is used to manage connection (plain or SSL, with IMAPSSLStore)
and authentication, and to specify which is the current folder; the second one
offers all the methods needed to manage messages saved inside a particular
folder. Between these, the search method proved to be particularly useful for
our purpose of building a SPARQL-to-IMAP translation. In fact, even if filtering
can be done client-side by the SPARQL interpreter, we decided to take advantage
of advanced IMAP search features too: this allows users to pre-filter messages
on the server side, lowering the number of bytes they have to download.

The search method requires a SearchTerm object as input and returns an ar-
ray of Message objects as an output. SearchTerms are objects which follow quite
straightly the RFC specifics: there’s one for each type of field one might want
to search and it is possible to join many of them through AND terms. Messages
are objects which provide all the methods needed to extract the different com-
ponents of an email message. The third and fourth columns of table 3 show the
mappings between the different email fields, SearchTerms and Message methods.

B.2 Class structure

The IMAP plugin for SquirrelRDF is composed of eight classes (plus two “main”
ones which implement the command line and the servlet tools). A brief descrip-
tion of them follows:

– ImapMap class defines the schema of the imap map.n3 configuration file. Ac-
tually, the RDF schema is defined inside the ImapMap.n3 RDF file, then the
class is created automatically by the schemagen tool. Once built, it provides
all the vocabulary definitions needed to describe the RDF mapping model
inside the Java application.

– ImapQueryEngine and ImapSparqlMap are mostly refactorizations of the
original classes used for the LDAP plugin. The first one extends the ARQ
QueryEngine object, providing access to the query plan elements; the sec-
ond one analyses them, dividing the queries in blocks of triples who share
the same subject, and calling the ImapSubQuery class (see below) to work
on these blocks. This grouping by subject comes very useful to us, as we’re
mostly dealing with email messages and it’s much more efficient to get all
the information about one message at once.

10 http://java.sun.com/products/javamail/

An IMAP plugin for SquirrelRDF 21

– ImapSubQuery is the heart of the IMAP adapter. It gets “subquery” elements
(that is, the groups of triples which share the same subject), builds the
IMAP queries, extracts the required fields from downloaded messages, and
finally creates and manages the bindings between SPARQL variables and
their values.

– MatchMethod, ExtractMethod and ParseMethod are the classes which con-
tain the methods used in the mappings. They’re all instantiated inside the
ImapSubQuery class, and their usage is better described in the following
section.

– CfgManager is the class used to manage the pieces of information which are
common between all the other different classes. Currently, it contains the
RDF Model object which describes the mapping and all the methods needed
to access it.

B.3 Reflection

In our particular case, reflection is used to manage the dynamic calling of meth-
ods from some particular classes, allowing users to specify the name of these
methods in the imap map.n3 configuration file that is loaded at runtime.

The three main uses of these methods are search, extraction and preparsing.
The MatchMethod class contains all the methods that build up the SearchTerms
used to search email messages on the IMAP server. The ExtractMethod class
contains the methods used to extract pieces of information from an email message
(such as the subject, the body and so on). The ParseMethod class contains
methods that are called in a subquery preparsing phase, for instance the ones
which set the server or the folder for the current query.

The first step we accomplish is instantiating the class with the right param-
eters: all of them require at least a CfgManager object and the current triple;
ExtractMethod also requires the current message to extract information from,
and ParseMethod needs the current ImapSubquery to change some of its param-
eters. Once an instance of the class is created, it is then possible to call its only
public method, called run.

The run method first finds the name of the right method to call, extracting
the predicate from the triple and then matching it with the configuration. Then
it gets the method from its name using getClass().getDeclaredMethod and
invokes it. Every single method has then access to the configuration model,
the triple, and the additional parameters, as they had been saved into private
attributes when the class was instantiated.

As an example, suppose we have the following lines inside the configuration
file:

imap:mapsProp [imap:property email:subject;

imap:method "searchSubject" ;

imap:extract "extractSubject" ;

a imap:ExactStringProperty ;];

22 Davide Eynard

imap:mapsProp [imap:property email:body ;

imap:method "searchBody" ;

imap:extract "extractBody" ;

a imap:ExactStringProperty ;

] ;

and suppose the user enters the following query:

select *

where{

?x email:subject "test" .

?x email:body ?body .

}

When the query is parsed, predicates are extracted from the triples and
the matching search methods are called if the object is not variable or if the
variable is bound to some value: in this case, only the subject has been speci-
fied so only the searchSubject method (from the MatchMethod class) is called.
Then, when the IMAP server returns the results of the search (in this case, all
the messages whose subject contains the string “test”), the extract methods
matching the specified predicates (extractSubject and extractBody from the
ExtractMethod class) are called. Moreover, as both the predicates are Exact-
StringProperties and the subject has been specified, the application will also
check that, of all the messages returned by the IMAP search, only the ones
whose subject actually is “test” will be returned.

The main advantage of this technique is that it’s very flexible and allows
users to change drastically the behavior of the application with few and simple
changes. For instance, alternative “searchFrom” methods can be built to extract
the whole From field, only the address or only the name of the sender; then the
user can change the method that has to be called just by updating the matching
string in the configuration file. Moreover, methods can be used not only to return
a value formatted in a particular way, but also to perform particular actions
inside the system (such as modifying the configuration or retrieving information
outside of the current triple).

This solution also has some drawbacks: in fact, to avoid managing too many
particular cases, during the design phase it’s better to define some standards
and constraints in method calls, losing part of their flexibility. For instance, we
decided to keep the type of the returned values fixed for all the methods in a
single class (SearchTerm for MatchMethod, String for ExtractMethod, Boolean
for ParseMethod) and we used roughly the same parameters for all of them.
Anyway this is not a huge limitation in our case, and we think it might be relaxed
in more complex cases, at the cost of more type checks inside the application
code.

An IMAP plugin for SquirrelRDF 23

C User Manual

C.1 Installation

The source code can be checked out from SVN (email the authors for the URL
of the SVN repository). Actually, on the repository a full version of SquirrelRDF
is present, together with the plugin. However, as the original SquirrelRDF files
have been modified for debugging purposes, it is strongly suggested that the
original version of SquirrelRDF is downloaded from their SVN repository and
only the new or modified files are merged with it:

– /build-user.xml, changed to compile ImapMap.java with schemagen
– /ImapMap.n3, the RDF schema for the IMAP plugin configuration
– /examples directory, which contains the RDF maps and a subdirectory

called queries, containing all the test queries
– /src/com.hp.hpl.squirrelrdf.imap, which contains all the classes needed

by the IMAP plugin
– /src/com.hp.hpl.squirrelrdf.imap.test, which contains the test files

for the plugin
– /squirrelrdf/Query.java, the command line client (updated to support

the IMAP plugin)
– /squirrelrdf/Servlet.java, the servlet application (updated to support

the IMAP plugin and to run under Windows)

All the needed libraries are available in the /lib directory:

– HSQLDB
– Jena 2.4
– JavaMail 1.4
– Jaf 1.1
– Servlet API 2.5

C.2 Running the command line application

The command line application can be run as follows:

squirrelrdf.Query <config file> "the query" or

squirrelrdf.Query <config file> [<query file>] (reads from stdin id no file)

for example:

squirrelrdf.Query examples/imap_map.n3 examples/queries/imap01.sparql

However, the command line application does not parse comments out of
the query files, so it will probably give an error if the default queries (which
all contain comments inside them) are used. A better approach is to use the
Scratch.java application inside /src/com.hp.hpl.squirrelrdf.imap.test,
saving the query file name inside the source code.

24 Davide Eynard

C.3 Running the servlet

The prerequisites for the servlet to run are the following ones:

– Tomcat (the application has been tested with version 5.5)
– Java 5
– Jena 2.4
– all the other libraries included in the /lib directory

Once deployed11, there are still some changes that have to be applied for the
IMAP servlet to work: first of all, the WEB-INF/map.ttl file content has to be up-
dated with the content of the imap map.n3 file. Then, the example index.html

page has to be changed to provide the user an example query which is compatible
with the IMAP configuration (you can copy one from the /examples/queries

directory). Finally, the needed libraries have to be copied to the WEB-INF/lib/

directory.
Once everything’s set, the servlet can be used quite easily: supposing you have

deployed it inside as “squirrel”, and that your local Tomcat installation answers
requests on port 8080, just connect to http://localhost:8080/squirrel to
access the Web application page.

Fig. 8. Connection to SquirrelRDF Web application

With the IMAP servlet, different server profiles can be specified as parameters
with a normal HTTP GET. That is, in the simplest case, they can be written
in the adddress bar as additional parameters to the query. For instance, if the
query is like the following one:

11 Some basic instructions about how to patch the original SquirrelRDF so it works
under Windows and how to deploy it can be found on HP internal wiki: just search
for the page called ”InstallingSquirrelRDFServlet”

An IMAP plugin for SquirrelRDF 25

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

prefix email: <http://davide.eynard.it/rdf/email#>

select *

where{

?x email:subject ?subj1 .

?x email:server "server1" .

}

then the “server1” profile can be easily changed at runtime just by specifying
a different parameter in the address bar. The format for this parameter is

<serveralias>=<login>:<password>@<server>:<port>

For instance, as the URL of the results page is

http://localhost:8080/squirrel/model?stylesheet=

xsl%2Fresult2-to-html.xsl&query=<query>

if the user user01 with password mypass wants to connect to the server locahost,
default port, he can just add to the address of the results page the new param-
eter:

http://localhost:8080/squirrel/model?stylesheet=

xsl%2Fresult2-to-html.xsl&query=<query>&server1=user01:mypass@localhost

26 Davide Eynard

C.4 Example configuration file

@prefix imap: <http://jena.hpl.hp.com/schemas/imapmap#> .

@prefix email: <http://davide.eynard.it/rdf/email#> .

<> a imap:Map ;

imap:folder "INBOX" ;

imap:hasServer [a imap:Server ;

imap:serverAlias "server1" ;

imap:serverAddress "localhost" ;

imap:serverUsername "user01" ;

imap:serverPassword "pass01" ;

imap:serverFolder "INBOX" ;

];

imap:hasServer [a imap:Server ;

imap:serverAlias "server2" ;

imap:serverAddress "localhost" ;

imap:serverUsername "user02" ;

imap:serverPassword "pass02" ;

imap:serverFolder "INBOX" ;

];

imap:mapsProp [imap:property email:folder; imap:parse "setFolder" ;

a imap:ParseProperty ;];

imap:mapsProp [imap:property email:server; imap:parse "setServerAlias" ;

a imap:ParseProperty ;];

imap:mapsProp [imap:property email:body; imap:method "searchBody" ;

imap:extract "extractBody" ;

a imap:CheckProperty ;

a imap:ExactStringProperty ;];

imap:mapsProp [imap:property email:subject; imap:method "searchSubject" ;

imap:extract "extractSubject" ;

a imap:CheckProperty ;

a imap:ExactStringProperty ;];

imap:mapsProp [imap:property email:from; imap:method "searchFrom" ;

imap:extract "extractFrom" ;

a imap:CheckProperty ;

a imap:EmailProperty ;];

imap:mapsProp [imap:property email:to; imap:method "searchTo" ;

imap:extract "extractTo" ;

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:cc; imap:method "searchCc" ;

An IMAP plugin for SquirrelRDF 27

imap:extract "extractCc" ;

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:bcc; imap:method "searchBcc" ;

imap:extract "extractBcc" ;

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:messageID; imap:method "searchMessageID" ;

imap:extract "extractMessageID" ;

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:header; imap:method "searchHeader" ;

imap:extract "extractHeader" ;

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:date; imap:method "searchDate" ;

imap:extract "extractDate" ;

a imap:DateProperty ;

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:flagAnswered; imap:method "searchFlagAnswered" ;

imap:extract "extractFlagAnswered" ;

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:flagDeleted; imap:method "searchFlagDeleted" ;

imap:extract "extractFlagDeleted" ;

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:flagDraft; imap:method "searchFlagDraft" ;

imap:extract "extractFlagDraft" ;

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:flagFlagged; imap:method "searchFlagFlagged" ;

imap:extract "extractFlagFlagged" ;

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:flagRecent; imap:method "searchFlagRecent" ;

imap:extract "extractFlagRecent" ;

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:flagSeen; imap:method "searchFlagSeen" ;

imap:extract "extractFlagSeen" ;

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:flagNew; imap:method "searchFlagNew" ;

imap:extract "extractFlagNew" ;

a imap:CheckProperty ;];

.

28 Davide Eynard

List of References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5) (2001) 34–43

2. Lassila, O., Swick, R.: Resource description framework (rdf) model
and syntax specification (February 1999) http://www.w3.org/TR/1999/

REC-rdf-syntax-19990222/.
3. Butler, M.H., Gilbert, J., Seaborne, A., Smathers, K.: Data conversion, extraction

and record linkage using xml and rdf tools in project simile. research report (August
2004)

4. Breslin, J., Harth, A., Bojars, U., Decker, S.: Towards Semantically-Interlinked
Online Communities. In: Second European Semantic Web Conference, ESWC
2005, Heraklion,. (2005)

5. Flejter, D., ed.: Mailing Lists Meet The Semantic Web. In Flejter, D., ed.: Pro-
ceedings of the BIS 2007 Workshop on Social Aspects of the Web Poznan, Poland,
April 27, 2007. (2007)

6. Bizer, C.: D2r map - a database to rdf mapping language. In: WWW (Posters).
(2003)

7. Bizer, C., Seaborne, A.: D2rq - treating non-rdf databases as virtual rdf graphs.
In: ISWC2004 (posters). (November 2004)

8. Sauermann, L., Schwarz, S.: Gnowsis adapter framework: Treating structured
data sources as virtual rdf graphs. In Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A., eds.: Proceedings of the ISWC 2005. Number 3729 in LNCS, Galway, Ireland,
Springer (November 6-10, 2005 2005) p. 1016 ff.

9. Steer, D.: Squirrelrdf (2006) http://jena.sourceforge.net/SquirrelRDF/.
10. Yung, W.: Using sparql for good: Querying ldap with squirrel-

rdf. Blog post (May 2007) http://wingerz.com/blog/2007/05/10/

using-sparql-for-good-querying-ldap-with-squirrelrdf/.
11. Yung, W.: Bring existing data to the semantic web (May 2007) http://www-128.

ibm.com/developerworks/library/x-semweb.html.
12. Crispin, M.: Internet message access protocol - version 4rev1 (March 2003) http:

//tools.ietf.org/html/rfc3501.

