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We present a correction for an error that occurs in the following papers:
• HPL-2004-170 (R.2); 

• Formal Aspects of Computing (2006)18: 495-517; and 

•  Electronic Notes in Theoretical Computer Science 172: 545-587, 2007. 

 At first sight, the error appears to be simply a misplaced quantifier in the
definition of bisimulation. We explain, however, that the error and its correction
reveal a subtle interaction between the substructural connectives of MBI and the 
resource-process calculus SCRP.  

We begin with a specific example which illustrates the error. We include also
the known typographical errors. 
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ERRATA: HPL-2004-170R2, FORMAL ASPECTS OF

COMPUTING (2006) 18:495–517, AND ELECTRONIC NOTES IN

THEORETICAL COMPUTER SCIENCE 172, 545–587, 2007

MATTHEW COLLINSON, DAVID PYM, AND CHRIS TOFTS

Abstract. We present a correction for an error that occurs in the following

papers:
• HPL-2004-170R2;

• Formal Aspects of Computing (2006) 18:495–517; and

• Electronic Notes in Theoretical Computer Science 172, 545–587, 2007.
At first sight, the error appears to be simply a misplaced quantifier in the def-

inition of bisimulation. We explain, however, that the error and its correction
reveal a subtle interaction between the substructural connectives of MBI and

the resource–process calculus SCRP.

We begin with a specific example which illustrates the error. We include
also the known typographical errors.

1. Example

We begin with an example that illustrates an error in the definition of bisimula-
tion used in [PT06].

We start with the resource monoid (N,+, 0,=) and the action monoid

Act = {ipzq | p, q ∈ N}

generated freely from two primitive actions z and i. Note that, for simplicity,
we take here just individual resources rather than sets of resources. This is an
inessential change with no impact on the theory.

We take

µ(ipzq, n) =

 n + p if p 6= 0
0 if n = p = 0
↑ if n 6= p = 0

for all n ∈ N. In particular, write 1 = i0z0. This defines a modification function.
Note that i is the incrementation action whilst z says ‘if zero then tick’.

Consider the processes E and F defined by

E = i : E′ E′ = i : E + z : F
F = i : F ′ F ′ = F

using auxilliary processes E′ and F ′. These processes generate transition structures
that look as follows:

n, E
i→ n + 1, E′ i→ n + 2, E

i→ . . .

n, F
i→ n + 1, F ′ i→ n + 2, F

i→ . . .

starting from any n.
1
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Now n, E and n, F have identical operational behaviour. Since 0, E′ is unreach-
able, it is clear that

∀n. n,E ∼µ n, F

holds. We also have n + 1, E′ ∼µ n + 1, F ′, for all n. However, 0, E′ and 0, F ′ have
distinct operational behaviour since we have 0, E′ z→ 0, E as a transition.

Consider an atomic φ such that and n, G � φ if and only if n = 0 and G is 1, the
unit process. Using the semantic clauses for −∗ and 〈−〉, we can verify that 1, E′ �
φ−∗ 〈z〉> and 1, F ′ 2 φ−∗ 〈z〉> since only 0, 1 � φ and 1, 1×E′ z→ 1, 1×E � > but
0, 1× F ′ makes no z-transition. We therefore have that

0, E � 〈i〉(φ−∗ 〈z〉>) 0, F 2 〈i〉(φ−∗ 〈z〉>)

hold.
This tells us that Theorem 9.1 of [PT06] fails as stated in the presence of both

〈−〉 and −∗ . It also tells us that the operational equivalence ∼µ is not contained
in (or equal to) the logical equivalence relation.

2. Corrections to HPL-2004-170R2

We must amend Definition 1, and make the necessary consequent amendments.
The significance of the amendment is explained in § 5.

Definition 1, page 10, should be stated as follows:

Bisimulation, ∼µ, is the largest binary relation on processes E such that if E ∼µ F ,
then

(i) for all R, R,E
a−→ µ(a,R), E′ implies, for some F ′,

R,F
a−→ µ(a,R), F ′ and E′ ∼µ F ′, and

(ii) for all R, R,F
a−→ µ(a,R), F ′ implies, for some E′,

R,E
a−→ µ(a,R), E′ and E′ ∼µ F ′.

We refer to this bisimulation as global bisimulation.
For Theorem 9.2, however, we need the original definition of bisimulation. We

use the symbol ≈µ instead of ∼µ, and call it local bisimulation, to avoid confusion,
as follows:

Local bisimulation, ≈µ, is the largest binary relation on resource–process pairs R,E
such that if R,E ∼µ R,F , then

(i) R,E
a−→ µ(a,R), E′ implies, for some F ′,

R,F
a−→ µ(a,R), F ′ and µ(a,R), E′ ≈µ µ(a,R), F ′, and

(ii) R,F
a−→ µ(a,R), F ′ implies, for some E′,

R,E
a−→ µ(a,R), E′ and µ(a,R), E′ ≈µ µ(a,R), F ′.

The appropriate notion of congruence for this equivalence is then the following:
if, for all R, R,E ≈µ R,F , then, for all evident terms, a, X, G, R, and S, we
have R, a : E ≈µ R, a : F , R,E + G ≈µ R,F + G, R,E × G ≈µ R,F × G, and
R, (νS)E ≈µ R, (νS)F .

This definition of local bisimulation should be inserted at the end of § 4.
The following amendments then arise as consequences:
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• All assertions of the form R,E ∼µ R,F should be replaced by the corre-
sponding E ∼µ F except those in Theorem 9.2 ;

• Theorem 9.1, p. 22, should be: ‘If E ∼µ F , then, for all R, it follows that
R,E ≡MBI R,F .’;

• The first sentence of the paragraph immediately before Theorem 9.2 should
be: ‘It follows that, for image-finite processes, the argument of Stirling
[Sti01] can be applied rather straightforwardly provided we use the local
bisimulation, ≈µ, including for the definition of the logical connectives as
given in Table 2.’;

• Theorem 9.2, p. 24, should be: ‘If, for all R, R,E and R,F are image-finite
and if, for all R, it is the case that R,E ≡MBI R,F , then E ≈µ F .’

Known typographical errors:
• p. 18, l. -20: ‘R v e’ should be ‘e v R’;
• p. 23, l. 1: ‘R v e’ should be ‘e v R’;
• p. 24, l. -17: ‘R’ should be ‘µ(a,R)’;
• p. 24, l. -16: ‘H’ should be ‘Hi’;
• p. 27: In [BT00a], ‘3:281–305’ should be ‘8(6–7):377–393, 2001’;
• p. 27: In [BT00b], ‘3:281–305’ should be ‘8(6–7):395–414, 2001’.

3. Corrections to Formal Aspects of Computing (2006) 18:495–517, [PT06]

We must amend Definition 1, and make the necessary consequent amendments.
The significance of the amendment is explained in § 5.

Definition 1, page 502, should be stated as follows:

Bisimulation, ∼µ, is the largest binary relation on processes E such that if E ∼µ F ,
then

(i) for all R, R,E
a−→ µ(a,R), E′ implies, for some F ′,

R,F
a−→ µ(a,R), F ′ and E′ ∼µ F ′, and

(ii) for all R, R,F
a−→ µ(a,R), F ′ implies, for some E′,

R,E
a−→ µ(a,R), E′ and E′ ∼µ F ′.

We refer to this bisimulation as global bisimulation.
For Theorem 9.2, however, we need the original definition of bisimulation. We

use the symbol ≈µ instead of ∼µ, and call it local bisimulation, to avoid confusion,
as follows:

Local bisimulation, ≈µ, is the largest binary relation on resource–process pairs R,E
such that if R,E ∼µ R,F , then

(i) R,E
a−→ µ(a,R), E′ implies, for some F ′,

R,F
a−→ µ(a,R), F ′ and µ(a,R), E′ ≈µ µ(a,R), F ′, and

(ii) R,F
a−→ µ(a,R), F ′ implies, for some E′,

R,E
a−→ µ(a,R), E′ and µ(a,R), E′ ≈µ µ(a,R), F ′.

The appropriate notion of congruence for this equivalence is then the following:
if, for all R, R,E ≈µ R,F , then, for all evident terms, a, X, G, R, and S, we
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have R, a : E ≈µ R, a : F , R,E + G ≈µ R,F + G, R,E × G ≈µ R,F × G, and
R, (νS)E ≈µ R, (νS)F .

This definition of local bisimulation should be inserted at the end of § 4.
The following amendments then arise as consequences:

• All assertions of the form R,E ∼µ R,F should be replaced by the corre-
sponding E ∼µ F except those in Theorem 9.2 ;

• Theorem 9.1, p. 512, should be: ‘If E ∼µ F , then, for all R, it follows that
R,E ≡MBI R,F .’;

• The first sentence of the paragraph immediately before Theorem 9.2 should
be: ‘It follows that, for image-finite processes, the argument of Stirling
[Sti01] can be applied rather straightforwardly provided we use the local
bisimulation, ≈µ, including for the definition of the logical connectives as
given in Table 2.’;

• Theorem 9.2, p. 513, should be: ‘If, for all R, R,E and R,F are image-finite
and if, for all R, it is the case that R,E ≡MBI R,F , then E ≈µ F .’

Known typographical errors:
• p. 509, l. -19: ‘R v e’ should be ‘e v R’;
• p. 513, l. 6: ‘R v e’ should be ‘e v R’;
• p. 514, l. 12: ‘R’ should be ‘µ(a,R)’;
• p. 514, l. 13: ‘H’ should be ‘Hi’;
• p. 516: In [BT00a], ‘3:281–305’ should be ‘8(6–7):377–393, 2001’;
• p. 516: In [BT00b], ‘3:281–305’ should be ‘8(6–7):395–414, 2001’.

4. Consequences for the paper Electronic Notes in Theoretical Computer
Science 172, 545–587, 2007, [PT07]

In all sections except § 5, we need to make the same amendments as for [PT06].
Specifically:

Definition 3.1, p. 555, should be stated as follows:
Bisimulation, ∼µ, is the largest binary relation on processes E such that if E ∼µ F ,
then

(i) for all R, R,E
a−→ µ(a,R), E′ implies, for some F ′,

R,F
a−→ µ(a,R), F ′ and E′ ∼µ F ′, and

(ii) for all R, R,F
a−→ µ(a,R), F ′ implies, for some E′,

R,E
a−→ µ(a,R), E′ and E′ ∼µ F ′.

For § 5 and for Theorems 8.3 and 9.2, however, we need the original bisimula-
tion. We use the symbol ≈µ instead of ∼µ, and call it local bisimulation, to avoid
confusion, as follows:

Local bisimulation, ≈µ, is the largest binary relation on resource–process pairs R,E
such that if R,E ∼µ R,F , then

(i) R,E
a−→ µ(a,R), E′ implies, for some F ′,

R,F
a−→ µ(a,R), F ′ and µ(a,R), E′ ≈µ µ(a,R), F ′, and

(ii) R,F
a−→ µ(a,R), F ′ implies, for some E′,

R,E
a−→ µ(a,R), E′ and µ(a,R), E′ ≈µ µ(a,R), F ′.
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The appropriate notion of congruence for this equivalence is then the following:
if, for all R, R,E ≈µ R,F , then, for all evident terms, a, X, G, R, and S, we
have R, a : E ≈µ R, a : F , R,E + G ≈µ R,F + G, R,E × G ≈µ R,F × G,
R, (νS)E ≈µ R, (νS)F , and R,fixX.E ≈µ R,fixX.F .

This definition of local bisimulation should be inserted at the end of § 3.
The following amendments then arise as consequences:

• In § 5: Each occurence of ‘∼µ’ should be ‘≈µ’;
• All assertions of the form R,E ∼µ R,F should be replaced by the corre-

sponding E ∼µ F , except in § 5 and in Theorem 8.3 and its immediately
preceding paragraph;

• Theorem 8.2, p. 575, should be: ‘If E ∼µ F , then, for all R, it follows that
R,E ≡MBI R,F .’;

• p. 577, l. -4: ‘∼µ’ should be ‘≈µ’;
• p. 577, l. -3: The sentence beginning ’For now, ... ’ should be: ‘For now,

however, we establish the basic result for image-finite processes, with the
argument following that of Stirling [Sti01] rather straightforwardly provided
we use the local bisimulation, ≈µ, including for the definition of the logical
connectives as given in Table 5.’;

• Theorem 8.3, p. 578, should be: ‘If, for all R, R,E and R,F are image-finite
and if, for all R, it is the case that R,E ≡MBI R,F , then E ≈µ F .’

The extensions of Theorems 8.2 and 8.3 given in § 9, namely Theorems 9.1 and
9.2 require corresponding amendments.

• Theorem 9.1. p. 580, should be: ‘For all R, if E ∼µ F , then R,E ≡MBI

R,F .’
• Theorem 9.2, p. 580, should be: ‘Let R,E and R,F be image-finite. If, for

all R, R,E ≡MBI R,F , then E ≈µ F .’
The significance of these amendments is explained in § 5.
Finally, the following typographical corrections are known:

• p. 572, l. -21: ‘R v e’ should be ‘e v R’;
• p. 576, l. -15: ‘R v e’ should be ‘e v R’;
• p. 578, l. -13: ‘R’ should be ‘µ(a,R)’.

5. Discussion

Our (non-typographical) corrections are all based on the necessary correction
to the definition of bisimulation required for the logical equivalence theorems to
hold (for the full MBI logic). Notice, however, that our original definition of
bisimulation is the correct one for our denotational semantics, given in § 5 of [PT07],
which corresponds to the operational behaviour of SCRP.

So, there is a mismatch between between the operational behaviour of SCRP
and the logical strength of full MBI. In particular, as we have seen in § 1, a
mismatch occurs when −∗ and 〈−〉 are both present in the logic. There exist
fragments of MBI, however, for which the logical equivalence theorems hold for
both ∼µ and ≈µ: for example, MBI without −∗ and the multiplicative quantifiers
and modalities but, importantly, with ∗ and the additive modalities. Indeed, such
fragments appear to be useful in practical modelling work.

Notice that we have renamed the original notion of bisimulation, now denoted
≈µ, as ‘local’. This is in contrast to the ‘global’ form required for (one direction
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of) the logical equivalence result. For instance, in the example of § 1, the local
equivalence is available but the global one is not, so that logical equivalence fails.
The local equivalence holds because the states 0, E′ and 0, F ′ are not reachable in
the transition system and the global one fails because the quantification over all
resources includes 0.

The mismatch shows that the expressivity of MBI exceeds that which is captured
by the local equivalence. In particular, again referring to the example of § 1, the
local equivalence fails to distinguish the perturbations, 0, E′ and 0, F ′, of 1, E′ and
1, F ′ (which are not logically equivalent). The global equivalence distinguishes such
perturbations.

Finding a bisimulation that yields both the logical equivalence theorem for full
MBI and an internal full abstraction theorem, so that we might obtain an appro-
priate account of ‘domain theory in logical form’ in our setting, appears to be a
challenging problem.
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