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Abstract. The OWL Web Ontology Language is endowed with two
model theories, reflecting its origins as a compromise between two differ-
ent communities. By design these model theories give rise to very similar
semantics, and a precise statement of the correspondence between the
model theories is conjectured with a sketch proof at the end of the OWL
semantics specification document. We have filled in the details of this
sketch proof using the Isabelle/HOL proof assistant, and developed ma-
chinery for further study of the formal semantics of OWL. Our study
was sufficiently detailed to find a handful of minor errors in the specifi-
cation of the semantics of OWL that previous work had overlooked. We
also sought a stronger result by showing a partial converse to the known
correspondence, but it proved impossible to achieve this within our time
constraints; instead we conjecture a possible method for strengthening
the correspondence.

1 Introduction

The two foundational recommendations of the Semantic Web are the Resource
Description Framework (RDF)[1] and the Web Ontology Language (OWL)[2].
RDF is based on the earlier RDF Model and Syntax recommendation[3] while
OWL is based on the DAML+OIL ontology language[4], which in turn was
derived from more than a decade of research into description logics, e.g. [5].

The two recommendations were developed concurrently, with good commu-
nication between the two groups, and indeed several participants were in both
groups. However, there were some key differences in world-view caused by the
backgrounds of the specifications.

RDF is intended to provide a simple and uniform method for describing
“things” (or “resources” in RDF parlance). It is intended to be Web-friendly,
following the mantra that “anyone can say anything about anything”[6]. When
taken to an extreme this idea can give rise to paradoxes and, in some sense, was
dropped during the standardisation process, but it remains a powerful state-
ment of the vision behind RDF. One of its consequences is that the concepts
that can be used to make statements about resources are themselves describable
in the same way: aspects which a traditional logic would view as part of the
metalanguage are instead part of the object language.

The Description Logic (DL) community did not take this approach, and
instead developed sophisticated syntaxes for describing resources following the
usual approach that the primitives of the language are not themselves available



as the objects of discussion. Such syntaxes also divide the universe of discourse
into disjoint categories of individuals, classes and properties, and restrict the
permissible statements to be well-typed with respect to these categories. From
the point of view of the RDF mantra, these are unwarranted limitations on the
descriptive power of the language. For example, in RDF everything has type
rdf:Resource, including the concept rdf:Resource itself, but a DL would view
such a statement as ill-typed and would forbid it.

Both RDF and OWL are equipped with formal semantics, described model-
theoretically[7, 8]. The resolution of the conceptual mismatch between the two
languages is made principally in the OWL semantics specification, although his-
torically the two languages were developed roughly in parallel. We sketch the
resolution in the next section. For the purposes of our introduction it suffices to
note the following issues with the resolution:

1. Its details are very complicated.
2. The proofs included in the specifications skip over certain details to reduce

their complexity and aid their presentation.
3. The main result is not as strong as one might have hoped: only one direction

of implication holds.

We believe that the complexity is largely unavoidable. We note that one of the
drivers behind the current work on OWL 1.1[9] is to increase expressivity which
will inevitably increase complexity. Our work aimed to produce more compelling
proofs of the main results by making use of Isabelle/HOL, a computer-assisted
higher-order logic (HOL) proof tool, to ensure that we had considered all the
details missed in a hand proof. We briefly describe this approach in section 3,
and the full source code of our proofs is included as a Web appendix to this
report which may be found at the following address.

http://www.hpl.hp.com/techreports/2007/HPL-2007-146/sourcecode

The contribution of this paper is to present a detailed method for the proof of
Theorem 2 of the OWL semantics specification, which asserts a correspondence
between the semantics of OWL viewed as a DL and of OWL viewed as an
extension of RDF. We begin with definitions in section 4, state the main theorems
and lemmas in section 6, and discuss the proofs themselves in section 7. As a
side effect of our detailed study we found a number of minor defects in the OWL
and RDF semantics specifications which we outline in section 5.

We also present our efforts towards showing a partial converse to this theorem
in section 8. These efforts were unsuccessful because of time constraints, but we
discuss the main difficulties that we encountered and some possible methods for
overcoming them.

2 Outline of OWL DL/OWL Full Resolution

The resolution of the conceptual mismatch between RDF and DL was decided
by the Web Ontology Working Group as part of their issue 5.3[10].



The basic idea is that OWL has two syntaxes: the OWL Abstract Syntax is
a traditional abstract syntax tree (AST) approach, and the RDF Graph syntax
is a collection of RDF triples.

Section 4 of the OWL Semantics and Abstract Syntax (S&AS)[8] specification
defines a relation T between these two syntaxes in the form of a collection of
nondeterministic mapping rules. Not every RDF graph has a related abstract
syntax representation. There are then two main strands of model theory: the
Direct Semantics (OWL S&AS section 3) gives a semantics to OWL ontologies
represented as ASTs, and the RDFS-compatible Semantics (OWL S&AS section
5) gives a semantics to OWL ontologies represented as RDF graphs.

The intent of the resolution was that there is a strong correspondence between
the entailments sanctioned by the two semantics for ontologies that correspond
under the relation T . Originally it was intended that this strong correspondence
should be an “if-and-only-if” statement: If a′ and b′ are respective translations
of a and b under T , then a entails b if and only if a′ entails b′.

Unfortunately, it proved too difficult for the working group to arrange for
this correspondence to hold in the time available, so the final resolution was
to weaken it to a single implication: If a′ and b′ are RDF graphs which are
respective translations of the ASTs a and b under T , then a entails b implies
that a′ entails b′. Indeed, the OWL Test Cases includes a number of tests[11–14]
to demonstrate that the converse is indeed false.

3 Using Isabelle/HOL

Due to the complexity of both OWL and RDF, we found it implausible that a
hand-proof of this correspondence would not contain errors, and without being
able to identify those errors it is difficult to assess their importance. Therefore
we decided to use the proof tool Isabelle/HOL to ensure that we had checked
all the necessary details. The philosophical concerns with computer-proof over
human-proof are mostly outside the scope of this paper, and we take a very
pragmatic viewpoint: our computer proof found genuine errors that previous
human proofs had missed, and demonstrates a method that a human could also
follow, so we consider it to be a reasonably sound method.

The language of Isabelle/HOL is a strongly-typed predicate calculus, similar
to the usual metalanguage of mathematicians. Furthermore, it has powerful tools
for constructing definitions by structural recursion and performing proofs by
structural induction, which makes it well suited for studying OWL from its
Abstract Syntax viewpoint. The input for Isabelle consists of “proof scripts”
which contain definitions and statements of lemmas, and descriptions of the
steps required to construct a proof. These descriptions are written in the high-
level language Isar, and resemble the way that mathematicians describe proofs
on paper: with practice it is straightforward to translate a sufficiently detailed
hand-proof into Isar. Isabelle may check a proof script interactively, line-by-line,
keeping track of what is to be proved, reporting fallacious steps and permitting



the user to correct errors and build proofs incrementally. Alternatively, Isabelle
may check a collection of proof scripts non-interactively.

We have formalised a large proportion of the proof of the correspondence
between OWL DL and OWL Full within Isabelle/HOL[15], and we are confident
that the specified correspondence holds between the two semantics. We have
also laid much of the groundwork for formalising further proofs of properties of
OWL and RDF, such as the correspondence between the direct semantics and
the RDF semantics of OWL DL ontologies.

We have not formalised the proofs of certain ‘obvious’ results, particularly
those regarding the distinctness of BNodes, because it turns out that the usual
line of informal reasoning hides a large amount of formal complexity and our
time was better spent elsewhere. The ‘impedance mismatch’ between formal
and informal arguments regarding distinctness of named variables is a general
problem, not specifically anything to do with Isabelle/HOL, that current research
elsewhere is trying to solve[16]. Instead of a formal proof in these cases, we
appeal to the reader’s understanding of the informal argument to justify the
missing steps. The reader may use our published proof scripts to formally fill
in the blanks, if desired: this task would be time-consuming, but should not be
difficult.

The complexity of OWL and RDF is reflected in the complexity of the proof,
which consists of over 60,000 lines of code. We will, obviously, not present the
complete proof here, but will give a guide to the key points and methods that
were used, with pointers to the relevant parts of the proof script for readers in-
terested in seeing greater detail. We believe that it would be possible to translate
our formal proof into an acceptably convincing paper proof simply by omitting
some of the tinier details. The complete proof scripts are avilable at

http://www.hpl.hp.com/techreports/2007/HPL-2007-146/sourcecode

We used the version of Isabelle called Isabelle2005: October 2005, which is
available for download from

http://isabelle.in.tum.de/

4 Definitions

4.1 Literals and Datatypes

A plain literal is either a string, or the ordered pair of a string and a language
tag. Plain literals always denote themselves. A typed literal is the ordered pair
of a string and a URI. A literal is either a plain literal or a typed literal.

A datatype d is a tuple 〈v(d), lex(d), l2v(d)〉 where v(d) is the set of values of
d, lex(d) is a set of strings representing the well-formed lexical representations of
values of d, and l2v(d) : lex(d) → v(d) takes lexical forms to their corresponding
values.



Table 1. Abstract Syntax of data ranges, descriptions and individuals

dataRange ::= DatatypeID(datatypeID)
| rdfsLiteral
| oneOfd(dataLiteral∗)

cardinality ::= minCardinality(nat)
| maxCardinality(nat)
| cardinality(nat)

dataRC ::= allValuesFromd(dataRange)
| someValuesFromd(dataRange)
| valued(dataLiteral)
| cardinality

individualRC ::= allValuesFromi(description)
| someValuesFromi(description)
| valuei(individualID)
| cardinality

restriction ::= restrictiond(datavaluedPropertyID
dataRC dataRC∗)

| restrictioni(individualvaluedPropertyID
individualRC individualRC∗)

description ::= ClassID(ClassID)
| restriction

| unionOf([description])
| intersectionOf([description])
| complementOf(description)
| oneOfi(individualID∗)

individual ::= individual(IndividualID? annotation∗
type(description)∗ value∗)

annotation ::= annotationuri(annotationPropertyID URI)
| annotationlit(annotationPropertyID dataLiteral)
| annotationind(annotationPropertyID individual)

value ::= valueuri(individualvaluedPropertyID individualID)
| valuelit(datavaluedPropertyID dataLiteral)
| valueind(annotationPropertyID individual)



Table 2. Abstract syntax of facts, axioms and ontologies

fact ::= individual

| SameIndividual(individualID individualID individualID∗)
| DifferentIndividuals(individualID individualID individualID∗)

axiom ::= Class(classID Deprecated ? (Complete | Partial )
annotation∗ description∗)

| EnumeratedClass(classID Deprecated ?
annotation∗ individualID∗)

| DisjointClasses(description description description∗)
| EquivalentClasses(description description description∗)
| SubClassOf(description description)
| Datatype(datatypeID Deprecated ?

annotation∗)
| DatatypeProperty(datavaluedPropertyID Deprecated ?

annotation∗ super(datavaluedPropertyID)∗ Functional ?
domain(description)∗ range(dataRange)∗)

| ObjectProperty(individualvaluedPropertyID Deprecated ?
annotation∗ super(individualvaluedPropertyID)∗
inverseOf(individualvaluedPropertyID)?
Symmetric ? Functional ? InverseFunctional ? Transitive ?
domain(description)∗ range(description)∗)

| AnnotationProperty(annotationPropertyID annotation∗)
| OntologyProperty(ontologyPropertyID annotation∗)
| EquivalentPropertiesi(individualvaluedPropertyID

individualvaluedPropertyID individualvaluedPropertyID∗)
| EquivalentPropertiesd(datavaluedPropertyID

datavaluedPropertyID datavaluedPropertyID∗)
| SubPropertyOfi(individualvaluedPropertyID

individualvaluedPropertyID)
| SubPropertyOfd(datavaluedPropertyID

datavaluedPropertyID)

directive ::= axiom

| fact

| annotationuri(annotationPropertyID URI)
| annotationlit(annotationPropertyID dataLiteral)
| annotationind(annotationPropertyID individual)

| annotationont(ontologyPropertyID ontologyID)

ontology ::= Ontology(ontologyID? directive∗)



4.2 OWL Syntax and Semantics

The abstract-syntax representation of an OWL DL ontology is a collection of
mutually recursive datatypes as defined in the OWL S&AS and summarised
in tables 1 and 2. The theory AbstractSyntax.thy contains the translation of
this definition into Isabelle. The shape of this definition is important, because
much of the following work will be by induction over the abstract syntax, and the
shape of a proof by induction is dictated by the shape of the associated recursive
definition. In particular, notice that the datatypes description, restriction
and individualRC are mutually recursive, as are the datatypes annotation,
value and individual; therefore proofs regarding these datatypes will follow
by mutual induction.

An OWL vocabulary is a tuple 〈VL, VC , VD, VI , VDP , VIP , VAP , VOP , VO, VAR〉
where VL is a set of literals and the remaining components are sets of URIs com-
prising respectively the names of classes, datatypes, individuals, datatype prop-
erties, individual-valued properties, annotation properties, ontology properties,
ontologies, and untyped referents of annotations. Some of the components have
required members and some sets of components are mutually disjoint, as set out
in the OWL S&AS.

The concept of a direct OWL interpretation is defined in the OWL S&AS. By
slightly modifying this definition we obtain the conditions for a infinite OWL in-
terpretation; both of these definitions are set out in table 3 and defined formally
in DirectSemantics.thy and NewDirectSemantics.thy respectively. The dif-
ference of interest between direct OWL interpretations and infinite OWL in-
terpretations is condition 17. The intention is that the semantics derived from
infinite OWL interpretations corresponds more closely to the semantics of OWL
Full (in which O = EC(owl:Thing) = R), and the differences between the two
versions of condition 17 are ‘almost’ unobservable. Notice that the set O may be
finite in a direct OWL interpretation, but it cannot be finite in an infinite OWL
interpretation since O = R ⊇ LV ⊇ {lp | lp is a plain literal}, and there are
infinitely many plain literals. This motivates the name ‘infinite’, and highlights
one of the known divergences between OWL Full and OWL DL.

There are other minor differences between direct and infinite OWL interpre-
tations that arise from slight inconsistencies in the definitions of RDF and OWL
which are unimportant in anything less than a totally formal proof. The two
versions of condition 18 differ only on literals not in VL, so it will not be possible
to observe any difference between these conditions. Condition 19 is present to
ensure it is possible to define an appropriate L in the presence of illformed lit-
erals. Notice that if there is an illformed literal in VL then condition 18 implies
condition 19, so this condition only has an effect on literals outside VL. Again,
this behaviour will not be observable.

Finally, we work in HOL, a strongly typed logic which has universal sets
(of each type). For one of the constructions in the following work we will need
to extend the universe R with a disjoint copy of LV , and this may not be
possible if R is the universal set. Condition 20 ensures that this construction is



Table 3. Definition of OWL interpretations

A direct OWL pre-interpretation is a tuple 〈V, D, R, EC, ER, L, S, LV, O〉 where

– V = 〈VL, VC , VD, VI , VDP , VIP , VAP , VOP , VO, VAR〉 is an OWL vocabulary.
– D is a partial function from URIs to datatypes.
– R is a set of resources to be thought of as the ‘universe’ of the interpretation.
– EC : URI → PR is a class-extension function.
– ER : URI → P(R ×R) is a property-extension function.
– L : TypedLiteral → R interprets typed literals as resources.
– S : URI → R interprets URIs as resources.
– LV ⊆ R is the set of all the literals in R.
– O = EC(owl:Thing) ⊆ R is the set of all individuals in R.

and such that

1. R 6= ∅.
2. {lp | lp is a plain literal} ⊆ LV .
3. For all d in the range of D, the value space v(d) ⊆ LV .
4. For all u in the domain of D, u ∈ VD.
5. For all u ∈ VC , EC(u) ⊆ O.
6. For all u ∈ VD, EC(u) ⊆ LV .
7. For all u ∈ VDP , ER(u) ⊆ O × LV .
8. For all u ∈ VIP , ER(u) ⊆ O ×O.
9. For all typed literals lt ∈ VL, L(lt) ∈ LV .

10. For all u ∈ VI , S(u) ∈ O.
11. O 6= ∅.
12. EC(owl:Nothing) = ∅.
13. EC(rdfs:Literal) = LV .
14. For all u in the domain of D, EC(u) = v(D(u)).
15. For all u in the domain of D and for all strings s, if Typed(s, u) ∈ VL then

L(Typed(s, u)) ∈ v(D(u)).
16. For all u in the domain of D and for all strings s in the lexical space lex(D(u)),

L(Typed(s, u)) = l2vD(u)(s).

A direct OWL interpretation is a direct OWL pre-interpretation such that additionally

17. O ∩ LV = ∅
18. For all u in the domain of D and for all strings s not in the lexical space lex(D(u)),

L(Typed(s, u)) ∈ R \ LV .

An infinite OWL interpretation is a direct OWL pre-interpretation such that addition-
ally

17. O = R
18. For all u in the domain of D and for all strings s not in the lexical space lex(D(u))

such that Typed(s, u) ∈ VL, L(Typed(s, u)) ∈ R \ LV .
19. O \ LV 6= ∅
20. There exists an injection with domain LV and range disjoint from R.



always possible. In a more traditional setting such as ZF , condition 20 is always
satisfied.

5 Uncovering Errors

The act of formalising the prose of the OWL S&AS forced us to look at the
specification extremely closely. In doing so, we discovered a number of minor
errors in the document. Whilst none of these discoveries is especially important,
and a reasonably knowledgable reader can see the intended meaning in each
case, each bug can be seen to be non-trivial. This helps to validate our formal
approach as a valuable one.

The most significant such discovery was that the mutual entailment between
the two RDF graphs

{ex : foo ex : bar Typed(”10”, xsd : integer)}

{ex : foo ex : bar Typed(”010”, xsd : integer)}

if xsd:integer were a known datatype, does not hold, despite this being the
content of the one of the RDF Test Cases[17]. The non-entailment arises if the
vocabulary contains one, but not both, of the lexical forms of the number 10.
We have published[18] and implemented the repair for this error, and also have
received agreement from the W3C to publish our repair as an official erratum
for the RDF Semantics[19].

We also discovered that the ‘EC Extension Table’ in section 3.2 of the
OWL S&AS was missing a row describing the extension of the abstract syn-
tax annotationlit(p l) where l is a literal. The same table also fails to cover
certain degenerate cases, such as the extension of the empty intersection and of
the syntax Individual( ): both of these extensions should be O.

We note that in section 3.4 of the OWL S&AS the definition of satisfaction of
an ontology is by recursion on the graph of owl:imports; however this relation is
not forced to be well-founded so ‘satisfaction’ is ill-defined. The intended reading
is to take the union of all the directives in the imports-closure of the ontology,
which would permit owl:imports to contain loops or even to contain an infinite
sequence.

Finally in section 5.2 of the OWL S&AS, in the subsection labelled ‘Fur-
ther conditions on owl:oneOf’, we believe that if l is a sequence over LVI and
〈x, l〉 ∈ EXTI(SI(owl:oneOf)) then x ∈ CEXTI(owl:DataRange), and also
that CEXTI(owl:DataRange) ⊆ IDC.

We have raised these three issues[20–22] as comments on OWL and believe
that they will be addressed by the new OWL working group.

6 Statement of Lemmas and Theorems

The semantics of OWL ontologies is defined in terms of model theory in a con-
ventional way. Write �I a if an interpretation (or model) I satisfies an ontology



a and write a � b if a entails b, or in other words if for every I such that �I a
it follows that �I b. The various different semantics of OWL are obtained by
varying the definitions of ‘interpretation’ and ‘satisfies’.

The definition of satisfaction of an OWL ontology by an direct OWL inter-
pretation is given in section 3.4 of the OWL S&AS. This definition rests on the
definition of a direct OWL interpretation, but does not depend on the presence
of condition 17 of that definition and hence can be appliee to to infinite OWL
interpretations too. If a and b are OWL DL ontologies in abstract-syntax form
then write �DL

I a and a �DL b for satisfaction and entailment with respect to di-
rect OWL interpretations, and �∞I a and a �∞ b for satisfaction and entailment
with respect to infinite OWL interpretations.

In order to convert an OWL DL ontology in abstract-syntax form into a
corresponding RDF graph, it is necessary to generate a number of distinct blank
nodes (BNodes) for use in the RDF graph. We perform this operation as a
separate step, by decorating the abstract-syntax tree with distinct BNodes where
appropriate. A decorated OWL DL ontology is assigned meaning essentially by
removing the decorations and considering the semantics of the resulting un-
decorated ontology. Write �∞+

I a and a �∞+ b for satisfaction and entailment
of decorated ontologies a, b with respect to infinite OWL interpretations.

Finally, the RDF model theory[7] and the OWL S&AS together define the
meaning of ontologies represented as RDF graphs. Write �DL-RDF and �Full

for the DL and Full entailment relations respectively.
Let A be the set of all abstract-syntax representations of decorated OWL DL

ontologies and G be the set of all RDF graphs. The conversion of a decorated
ontology between its abstract-syntax representation and its RDF graph form
is performed by a collection of nondeterministic mapping rules which define a
relation T ⊆ A×G, or equivalently a function T : A → PG. Given this function,
we may now state the semantic correspondence theorems quoted in the OWL
S&AS.

Theorem 1 (OWL S&AS Theorem 1). Subject to certain conditions on the
vocabulary of interpretations, if A and B are imports-closed, then

A �DL B if and only if T (dec(A)) �DL-RDF T (dec(B))

Theorem 2 (OWL S&AS Theorem 2). Subject to certain conditions on the
vocabulary of interpretations, if A and B are imports-closed, then

T (dec(A)) �DL-RDF T (dec(B)) implies that T (dec(A)) �Full T (dec(B))

We aim to prove theorem 2; in the presence of theorem 1 it is equivalent to
the following, which is the subject of our formal proof.

Theorem 3. Subject to certain conditions on the vocabulary of interpretations,
if A and B are imports-closed, then

A �DL B implies that T (dec(A)) �Full T (dec(B))



Our method of proof is to separate this implication into the following steps:

Lemma 1.

a �DL b implies that a �∞ b

Lemma 2.

a �∞ b implies that dec(a) �∞+ dec(b)

and that the BNodes of dec(a) and dec(b) are all distinct.

Lemma 3. If the BNodes of a and b are all distinct then

a �∞+ b implies that T (a) �Full T (b)

We have completely formalised lemma 1, showing that our ‘infinite’ seman-
tics for OWL ontologies in abstract syntax form corresponds to the specified
semantics. It is clear that lemma 2 holds, but our formalisation is only partial:
working with BNodes is straightforward at an informal level but the arguments
become very intricate when formalised, and for this reason we concentrated our
efforts elsewhere.

We have also partially formalised lemma 3. The method of proof is the same
as that followed in appendix A of the OWL S&AS, in particular in the proofs
of lemmas 1, 1.1, 1.9, 2 and 3 there. A reader who is familiar with the lem-
mas of the OWL S&AS and the correspondence between the semantics of the
abstract-syntax and the RDF representations of OWL DL ontologies should not
be concerned with the omitted steps in this proof.

7 Outline of Proof

7.1 Lemma 1: Direct vs. Infinite semantics

We follow the conventional method to show a statement of the form of lemma 1;
that is, we construct a function (−) from infinite OWL interpretations to direct
OWL interpretations, such that �∞I a if and only if �DL

I
a. Then the conclusion

follows, since if �∞I a and a �DL b then �DL
I

a and hence �DL
I

b which implies that
�∞I b as required. So suppose that a is an OWL ontology in abstract-syntax form
and let I = 〈V,D,R, EC, ER, L, S, LV,O〉 be a infinite OWL interpretation.

Recall that the main difference between infinite and direct OWL interpreta-
tions lies in condition 17 of their definitions. Suppose that the ontology a refers
to a resource r ∈ LV : this could happen by explicitly mentioning a literal whose
denotation is r, or by using some other syntax that just happens to denote r.
For example, it may be that S(eg:x) = r ∈ LV , so that

Individual(eg:x type(owl:Thing))

denotes r. The syntax makes a reasonably strong distinction between this cases
and the case where r is explicitly referred to as a literal, and we exploit this



distinction to define I: we extend the universe R with a disjoint copy of LV and
use the syntactic distinction to pick the appropriate copy of r in each case.

Let f be an injection whose range is LV and whose domain is disjoint from
R, whose existence is ensured by condition 20 of the definition of an infinite
OWL interpretation. It is this function f that captures what we mean by the
action of ‘copying’ LV . Extend f to all of R by letting f(r) = r for r ∈ R \LV .
Write g‘X = {g(x) | x ∈ X} and (g × h)(x, y) = (g(x), h(y)). Define I =
〈V,D,R,EC,ER,L, S, LV,O〉 as follows.

– R = R ∪ f ‘LV .
– If u ∈ VD then EC(u) = EC(u) else EC(u) = f ‘EC(u).
– If u ∈ VDP then ER(u) = (f × 1)‘ER(u).
– If u ∈ VIP \ VDP then ER(u) = (f × f)‘ER(u).
– If u /∈ VIP ∪ VDP then ER(u) = (f × 1)‘ER(u) ∪ (f × f)‘ER(u).
– If lt is a typed literal and lt ∈ VL then L(lt) = L(lt).
– If lt = Typed(s, u) is a typed literal and lt /∈ VL and u is in the domain of D

and s ∈ lex(D(u)) then L(lt) = l2vD(u)(s).
– If lt = Typed(s, u) is not covered by the preceding cases then L(lt) is some

arbitrary element of R \ LV .
– S(u) = f(S(u)).
– O = f ‘O.

Then lemma strengthen strengthens shows that I is a direct OWL interpre-
tation, as required.

It remains to show that �∞I a iff �DL
I

a, subject to the following restrictions
on the vocabulary V .

– VC and VD are disjoint,
– VDP , VIP , VAP and VOP are pairwise disjoint,
– owl:Thing ∈ VC , and
– rdf:type /∈ VDP ∪ VIP .

The proof then proceeds by induction on the structure of a, using the following
induction hypotheses:

– If d is a data range then EC(d) = EC(d).
– If r is a restriction then EC(r) = f ‘EC(r).
– If d is a description then EC(d) = f ‘EC(d).
– If ds is a list of descriptions then EC(unionOf(ds)) = f ‘EC(unionOf(ds)).
– If ds is a list of descriptions then

EC(intersectionOf(ds)) = f ‘EC(intersectionOf(ds)).
– If a is an annotation then EC(a) \ LV = f ‘EC(a).
– If i is an individual construction then EC(i) = f ‘EC(i).
– If x is a fact then �DL

I
x iff �∞I x.

– If x is an axiom then �DL
I

x iff �∞I x.
– If a is an ontology annotation and (o, S(owl:Ontology)) ∈ ER(rdf:type)

then �DL
I

(f(o), a) iff �∞I (o, a).

Finally, the lemma Entails implies New Entails shows that if A and B are
imports-closed sets of ontologies such that A �DL B then A �∞ B, as required.



7.2 Lemma 2: Infinite vs. Decorated Semantics

The decorator function dec(t, g, s) takes as input a syntax tree t, a ‘gensym’
function g and a list of already-generated BNodes s, and returns a decorated
syntax tree t′ and an updated state s′. We omit g, s and s′ when they are
unimportant, such as in the statement of lemma 2 above. We require that t and
t′ have the same semantics, and that the BNodes of t′ are all distinct, in the
sense defined in the theory RDFTranslationTypes.thy.

It is reasonably straightforward to see that t and t′ have the same semantics,
since the semantics of t′ is defined to be that of the syntax obtained by removing
the generated BNodes. In DecoratedSemanticsMatch.thy we have formalised
the proof that if t and t′ are data ranges, descriptions, individual constructions
and annotations then EC(t) = EC(t′), but have not yet shown that the corre-
spondence extends to facts and axioms. Given the relative ease of formalising the
proof so far, we do not believe that this extension will present any difficulties.

It is also fairly straightforward to see that there exists a decorator which
generates distinct BNodes. A partial proof of this fact is contained in the file
GenerateBNodesCorrect.thy and runs as follows.

– Firstly, by induction on t we show that if dec(t, g, s) = (t′, s′) then s ⊆ s′.
– Secondly, also by induction on t we show that the BNodes of t′ are contained

within s′ \ s.
– Finally, we show that the BNodes of t′ really are distinct.

The first two steps have been fully formalised, and we have partially formalised
the third step. Again, we do not believe that the remainder of the proof will
present any difficulties.

7.3 Lemma 3: Decorated vs. RDF Semantics

We now wish to show that a �∞+ b implies that T (a) �Full T (b). As in section
7.1, it suffices to show that if I is an OWL Full interpretation then there exists
I such that �Full

I T (a) iff �∞+

I
a.

Recall from the RDF model theory[7] that a simple RDF interpretation is a
tuple 〈PI , RI , V, EXTI , SI , LI , LVI〉 where PI , RI and LVI are sets of resources,
the vocabulary V is a set of URIs and literals, the property extension function
EXTI : PI → P(RI×RI), and SI and LI interpret URIs and literals respectively,
subject to certain conditions. Define also CEXTI : RI → PRI by

CEXTI(r) = {x | (x, r) ∈ EXTI(rdf:type)}.

From the OWL S&AS, an OWL Full interpretation is a simple RDF interpreta-
tion that satisfies a long list of extra conditions. It was straightforward to for-
malise these conditions, and the full details can be found in RDFSemantics.thy.

Say that an RDF interpretation I and a direct OWL pre-interpretation J are
corresponding if the following conditions hold.

1. LV = LVI .



2. R = RI .
3. For all u ∈ VC ∪ VD, EC(u) = CEXTI(SI(u)).
4. For all u ∈ VDP ∪ VIP ∪ VAP ∪ VOP , ER(u) = EXTI(SI(u)).
5. For all typed lt ∈ VL, L(lt) = LI(lt).
6. For all r, (r, S(owl:DeprecatedClass)) ∈ ER(rdf:type) iff

(r, SI(owl:DeprecatedClass)) ∈ EXTI(rdf:type).
7. For all r, (r, S(owl:DeprecatedProperty)) ∈ ER(rdf:type) iff

(r, SI(owl:DeprecatedProperty)) ∈ EXTI(rdf:type).
8. For all u ∈ V , S(u) = SI(u).
9. The vocabulary V of J is separated in the sense that

(a) VC , VD, VI , VDP , VIP , VAP , VOP , VO, and the disallowed vocabulary are
pairwise disjoint.

(b) VC contains the built-in OWL classes.
(c) VD contains the datatypes of D and rdfs:Literal.
(d) VAP contains the built-in OWL annotation properties.
(e) VOP contains the built-in OWL ontology properties.
(f) V \ VC contains none of the OWL class-only vocabulary.
(g) V \ VD contains none of the OWL datatype-only vocabulary.
(h) V \ (VDP ∪ VIP ∪ VAP ∪ VOP ) contains none of the OWL property-only

vocabulary.
10. The vocabulary of I is the vocabulary of J together with the built-in OWL

vocabulary.
11. The datatype map D of J contains xsd:nonNegativeInteger.
12. The vocabulary V of J is satisfied in the sense that

– If u ∈ VC then SI(u) ∈ CEXTI(SI(owl:Class)).
– If u ∈ VD then SI(u) ∈ CEXTI(SI(rdfs:Datatype)).
– If u ∈ VI then SI(u) ∈ CEXTI(SI(owl:Thing)).
– If u ∈ VDP then SI(u) ∈ CEXTI(SI(owl:DatatypeProperty)).
– If u ∈ VIP then SI(u) ∈ CEXTI(SI(owl:ObjectProperty)).
– If u ∈ VAP then SI(u) ∈ CEXTI(SI(owl:AnnotationProperty)).
– If u ∈ VOP then SI(u) ∈ CEXTI(SI(owl:OntologyProperty)).
– If u ∈ VO then SI(u) ∈ CEXTI(SI(owl:Ontology)).

Firstly, we show how to construct a infinite OWL interpretation I from an
OWL Full interpretation I = 〈PI , RI , V, EXTI , SI , LI , LVI〉 and a datatype map
D. We assume that V is separable, so that there exists an OWL vocabulary
V ′ = 〈VL, VC , . . .〉 such that V ′ ∪VOWL = V , and that I satisfies V ′ in the sense
defined above, where VOWL is the built-in OWL vocabulary. We also assume the
existence of an injection whose domain is LVI and whose range is disjoint from
RI . In this case, letting

I = 〈V ′, D, RI , CEXTI , EXTI , LI , SI , LVI , CEXTI(SI(owl:Thing))〉

gives a infinite OWL interpretation as required, as shown in the proof script
RDFIntToDirectInt.thy.

It is now a rather trivial observation that I and I are corresponding in-
terpretations in the sense defined above: see RDFSemanticsCorrespond.thy for
details.



Finally, we show that if I and J are corresponding interpretations then �Full
I

T (a) iff �∞+
J a. Because the mapping rule T is nondeterministic, T (a) is a set

of RDF graphs, and by �Full
I T (a) we mean that for each G ∈ T (a), �Full

I G.
The proof runs as two inductions over the structure of a, and follows the

pattern of the proof given in appendix A of the OWL S&AS. Let M(c) be the
main node of the syntax fragment c, where defined. Firstly, we show that if
G ∈ T (a) then �Full

I G implies that �∞+
J a. Recall that if �Full

I G then there
exists a BNode-interpretation function A which assigns resoures to each BNode
in G such that �Full

I+A G. We proceed by induction on the structure of a using the
following induction hypotheses.

– If d is a data range then (I +A)(M(d)) ∈ CEXTI(SI(rdfs:Datatype)) and
CEXTI((I + A)(d)) = EC(d).

– If d is a description then (I + A)(M(d)) ∈ CEXTI(SI(owl:Class)) and
CEXTI((I + A)(d)) = EC(d).

– If i is an individual construct then (I + A)(M(i)) ∈ EC(i).
– If annotation(p, x) is an annotation and (y, (I + A)(M(x))) ∈ EXTI(SI(p))

then y ∈ EC(annotation(p, x)).

We have formalised this far in the proof. It remains to show that if x is an
axiom or fact and �Full

I+A x then �∞+
J x which is essentially the content of Lemma

2 from Appendix A of the OWL S&AS. Thus �Full
I+A G implies that �∞+

J a, as
required.

Conversely, we must show that if �∞+
J a then there exists a BNode inter-

pretation function A such that �Full
I+A G. Firstly, we require that for any syntax

fragment s, the BNodes of any G ∈ T (s) are bounded by those of s, which is
proved in TranslationBNodePreservation.thy, for data ranges, descriptions,
individuals and annotations. Given this, we construct an A by making exten-
sive use of the fact that the BNodes in each branch of the syntax tree of a are
distinct. The proof runs by induction on the structure of a using the following
induction hypotheses.

– If d is a data range and G ∈ T (d) then there exists A such that �Full
I+A G and

such that A is defined for all BNodes in d.
– If d is a description and G ∈ T (d) then there exists A such that �Full

I+A G and
such that A is defined for all BNodes in d.

– If i is an individual construction and G ∈ T (i) and r ∈ EC(i) then there
exists A such that �Full

I+A G and such that A is defined for all BNodes in d,
and such that (I + A)(M(i)) = r.

– If annotation(p, x) is an annotation and G ∈ T (annotation(p, x)) and r ∈
EC(annotation(p, x))) then there exists A such that �Full

I+A G and such that
A is defined for all BNodes in d, and such that

(r, (I + A)(M(x))) ∈ EXTI(SI(p)).

Again, this is as far as our formalisation effort has pushed. The remaining
steps are again covered by Lemma 2 from Appendix A of the OWL S&AS. Thus,
a �∞+ b implies that T (a) �Full T (b) as required.



8 Strengthening the Correspondence

So far in this discussion we have demonstrated that every entailment in the
semantics of OWL DL is also an entailment of OWL Full. The converse of this
result is false, as demonstrated by tests[11–14] in the OWL Test Case suite.
However, these tests demonstrate the only known divergences between OWL DL
and OWL Full, and it may be that a partial converse of the correspondence holds
that captures exactly the collection of such divergences. Because of economic
constraints we have made little progress towards a result of this nature, so we
will conjecture a possible method and discuss its difficulties below. Firstly, on
a positive note, we fully expect that the converse of lemma 2 holds. We now
consider converses to lemmas 1 and 3.

8.1 A Converse to Lemma 1: Direct vs. Infinite semantics

The first pair of tests[11, 12] demonstrate that the class owl:Thing may be
finite in OWL DL but not in OWL Full. We claim that it is possible to rewrite
ontologies to permit owl:Thing to be infinite, by replacing all occurrences of
owl:Thing with another name, say my:Thing, and for each class description that
appears in the ontology, it is replaced by its intersection with EC(my:Thing).
In short, if a user wishes to consider a finite universe, they are forced to work
within a class other than the W3C-sanctioned owl:Thing. Notice that this is a
purely syntactic transformation, that it is merely polynomial in the size of the
ontology, and that it does not alter the expressive power of the language.

Additionally, one could insist that every ontology contains axioms that ex-
plicitly state that owl:Thing is infinite:

ObjectProperty(ex:PredecessorOf InverseFunctional
range(ex:PositiveInteger))

individual(ex:Zero type(complementOf(ex:PositiveInteger))
value(ex:PredecessorOfIndividual( )))

SubClassOf(ex:PositiveInteger
restriction(ex:PredecessorOf someValuesFrom owl:Thing))

In other words, ex:Zero is not a ex:PositiveInteger; ex:Zero has a successor,
as does every ex:PositiveInteger, and no two have the same successor.

The second pair of tests[13, 14] show that, in OWL Full, if an object s is an-
notated by an object o then it is also annotated by an individual o′ ∈ owl:Thing,
which follows from the trivial observation that o ∈ owl:Thing for all o. Again,
a polynomial syntactic transformation on the ontology forces this entailment to
hold. We call this transformation a ‘thingification’. Essentially, for every anno-
tating literal, add a plain annotating anonymous individual; for every annotating
URI u, add an annotating anonymous individual i with the same annotations as
u.

Now we conjecture a partial converse to lemma 1, namely that if a �∞ b then
a′ �DL b′ where a′ and b′ are the respective results of transforming a and b by



the processes shown above. If this conjecture were true, this would demonstrate
that the only observable semantic difference between �∞ and �DL is that
owl:Thing is infinite, and that annotation referents are all in owl:Thing. We
have not attempted to prove this conjecture, as there are bigger obstacles in the
way of demonstrating a relationship between �DL and �Full , as discussed in
the next section. We do not forsee any obstacles to a formal proof of this result,
but have not even started to construct such a proof.

8.2 A Converse to Lemma 3: Decorated vs. RDF semantics

We would now like to show that if T (a) �Full T (b) then a �∞+ b, which would
show that the model theory of infinite OWL interpretations gives rise to the
semantics of OWL Full. To recap, the standard method is to take an infinite
OWL interpretation I and construct an OWL Full interpretation J such that
�∞+

I a iff �Full
J T (a). In fact, we know that if I and J are corresponding inter-

pretations then the methods of section 7.3 show that �∞+
I a iff �Full

J T (a), so it
is sufficient to take an infinite OWL interpretation I and attempt to construct
a corresponding OWL Full interpretation J .

Unfortunately, it turns out that not every infinite OWL interpretation I has
a corresponding OWL Full interpretation J . To see this, let p be a property and
suppose that ⊆ = SJ(rdfs:subPropertyOf) and that ER(p) = R×R\{(⊆, p)}.
If (⊆, p) ∈ EXTJ(⊆) then, by the definition of rdfs:subPropertyOf it must
be that EXTJ(⊆) ⊆ EXTJ(SJ(p)) = ER(p), so that (⊆, p) /∈ EXTJ(⊆), which
is a contradiction. If, however, (⊆, p) /∈ EXTJ(⊆) then, by the iff-condition
for rdfs:subPropertyOf, it must be that EXTJ(⊆) * EXTJ(SJ(p)) = ER(p)
so that there exists (x, y) ∈ EXTJ(⊆) \ ER(p). However, the only possible
(x, y) is (⊆, p), which is also a contradiction; thus there can be no property p
with ER(p) = R × R \ {(⊆, p)}. It is not hard to construct an interpretation
I with enough properties like the p above to prevent any possible choice of
SJ(rdfs:subPropertyOf), and such an I can have no corresponding OWL Full
interpretation. It is likely that such a pathologically bad interpretation I could
almost certainly be replaced by a more pleasant I ′ with the same entailments as I
and which has a corresponding J , but it is not clear how one could construct such
an I ′. We have not demonstrated the result we seek is false, merely that a näıve
application of the standard method fails. In some sense, it fails because of an
inherent circularity in the semantics of OWL Full, namely that the iff-conditions
for rdfs:subPropertyOf apply to all properties, including rdfs:subPropertyOf
itself.

8.3 The Consistency of the RDF semantics

Given that it is difficult to construct an OWL Full interpretation that corre-
sponds to a given infinite OWL interpretation, we turned to the apparently
simpler problem of simply constructing any OWL Full interpretation I, which



would at least demonstrate that the RDF semantics of OWL Full is consis-
tent. For now, we ignore the presence of literals. The comprehension condi-
tions assert the existence of infinitely many elements of RI , and by definition
RI = CEXTI(SI(owl:Thing)) = IOT . We construct RI by Herbrand’s method:
elements of the universe are syntax-trees x representing the collection of com-
prehension principles that assert the existence of x. For example,

[owl:Thing, restriction(owl:inverseOf allValuesFrom owl:Thing)]

is in IOT by the second comprehension principle for lists, since it is a list of
elements of IOT (the first being obvious, and the second by the comprehension
principle for allValuesFrom restrictions).

Having constructed RI , we now seek to define the property-extension function
EXTI for each of the built-in properties, which includes rdf:type. Let R∈ =
EXTI(SI(rdf:type)), and consider an attempt to define R∈. Because class ex-
tensions are defined by recursion over the syntax of OWL, it would seem wise to
define R∈ by recursion too: in other words, define CEXTI(a) = {b | (a, b) ∈ R∈}
in terms of the class extensions of the components of the syntax-tree a. The class
extension of

restriction(rdf:type someValuesFrom c)

is the union of the class extensions of the elements of EC(c); thus to define this
restriction we must know the extensions of each x ∈ EC(c). But notice that we
are proceeding by recursion over the syntax of c, not by ∈-recursion, so we do
not a priori know the extension of x ∈ EC(c) and in particular either EC(c) or
its complement will contain c itself, so the obvious recursive techniques fail. In
some sense, this failure is caused by the negative nature of taking complements
which breaks the monotonicity of the recursive procedure, without which it is
not immediately clear that recursion gives a well-defined result. From another
viewpoint, permitting restrictions on rdf:type is a level of expressivity that
may be pushing the bounds of the ‘anyone can say anything about anything’
mantra too far.

Now consider the construction of Rcod = EXTI(SI(rdfs:range)), and in
particular note that the range of R∈ is the collection of all nonempty classes.
Thus Rcod cannot be defined before R∈, because without R∈ one does not know
which are the nonempty classes. However, nor can R∈ be defined first, because
to do so would fix the class extension of restrictions such as

restriction(rdfs:range hasValue c)

before the class extension of c were known.
Similarly, consider the construction of Rdom = EXTI(SI(rdfs:domain)),

and note that the domain of R∈ is the collection of all classes whose extension is
all of RI ; without knowning R∈ one cannot define Rdom, but without knowing
Rdom one cannot calculate the class extension of restrictions on rdfs:domain.

It gets worse: a restriction on rdfs:domain may or may not be nonempty,
which affect rdfs:range. Similar circularities exist regarding rdfs:subClassOf



and rdfs:subPropertyOf too; thus all these built-in property extensions must
be defined simultaneously, and this cannot happen by the obvious recursive tech-
nique. We do not assert that it is impossible to do so, but nor is it obviously
possible and it was too intricate to achieve within the bounds of the time avail-
able to us.

8.4 Possible Repairs

It is hard to know exactly what to blame for the difficulty in this consistency
proof. In one sense, it is the extensional ‘if-and-only-if’ semantics of the RDFS
built-in properties that cause the circularities. If this were weakened to the in-
tensional ‘only if’ style used by pure RDFS (and restrictions on rdf:type were
suitably restricted) no feedback would occur and it would be more straightfor-
ward to use standard techniques to show the consistency of OWL. It would be
possible to apply the intensional semantics just to the built-in properties them-
selves, and leave the extensional semantics in place elsewhere, which would have
minimal impact on the OWL reasoners that are currently in use.

From another viewpoint, it is the comprehension principles themselves that
are to blame. Carroll[23] suggests that taking a solipsistic stance and deleting
the comprehension principles altogether would solve this problem. In this case,
the only elements of the universe would be those that are explicitly mentioned.

It may, given sufficient time, be possible to complete the consistency proof
for OWL as it stands, but it is likely that it would be hard to extend this proof
to the correspondence result that we were originally seeking.

8.5 Consistency and OWL 1.1

At the time of writing, OWL 1.1 is under development and as yet has no RDF-
compatible model theory. Two of its main extensions over OWL are as follows.

– Qualified cardinality restrictions (QCRs), which allow you to define a class
such as

{x | card{y | 〈x, y〉 ∈ p ∧ y ∈ z} ≤ n}

for properties p, classes z and integers n. Unqualified cardinality restrictions
are similar, but do not have the condition that y ∈ z. An unqualified cardi-
nality restriction on rdf:type is trivial, since every individual has infinitely
many types, but QCRs on rdf:type are not as easy to deal with. Similarly,
every property has infinitely many domains and ranges and every class has
infinitely many (non-strict) superclasses, so unqualified cardinality restric-
tions on rdfs:domain, rdfs:range and rdfs:subClassOf are trivial, but
QCRs on these properties are not.

– Subproperty chains, which allow you to make statements such as

p1 ◦ p2 ◦ . . . ◦ pn ⊆ q



for properties p1, . . . pn and q. Note that owl:sameAs is the identity property,
so that

p ◦ ER(owl:sameAs) ⊆ p

for all properties p, and hence each property has infinitely many (non-strict)
subproperties, which will complicate the definition of rdfs:subPropertyOf,
especially in the presence of QCRs.

Because of these interactions, it is likely that any consistency proof for OWL 1.0
will be hard to directly extend to OWL 1.1.

9 Conclusions

We have designed a new semantics for OWL DL ontologies in abstract syntax
form, and used this as a stepping-stone to showing the unproved correspondence
between OWL DL entailment and OWL Full entailment. We have also developed
machinery for further formal study of OWL within Isabelle/HOL. A paper proof
of this correspondence could follow the method given here, but would almost
certainly skip over certain ‘obvious’ details and may not have discovered the
minor errors that we discussed in section 5. Although such discoveries cannot
show that our formalisation within Isabelle/HOL is sound, it does provide some
weight that our arguments are at least as valid as the paper proofs that missed
these details. It is convenient that the definitions of RDF and OWL may be
copied almost symbol-for-symbol into the language of Isabelle, which makes it
straightforward to look at our formalised definitions and check that we have not
‘cheated’ at this stage. Given a reasonable confidence in the correctness of our
definitions and in the veracity of Isabelle, we hope that the reader is convinced
of our results.

We have also tried to demonstrate a partial converse to this result, to give a
precise description of the difference between OWL DL and OWL Full. Unfortu-
nately, this proof was too intricate to complete within our time constraints.
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