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Abstract — Controllers in computer systems have mainly been 
explored for automating regulative tasks such as admission 
control or resource supply control. The majority of IT 
management tasks, however, relies on discrete management 
states and coordinated transitions between those states. 

The paper shows how the concept of a feedback system can also 
be applied to automate operational management tasks. The paper 
introduces the concept and a realization of an IT Management 
Automation Controller, which operates on discrete management 
states expressed as a pair of models for desired and observed 
state. Models are represented as a special form of Place-
Transition Nets (PTN or Petri Nets). Controller logic directly 
executes PTN in order to achieve and maintain alignment 
between desired and observed state in a managed domain. In 
contrast to workflow systems, PTN combine the description of 
state and actions in one model (graph). 

Three operational database management tasks have been 
implemented as a proof of concept in a blade server automation 
infrastructure using the Management Automation Controller. 
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I.  INTRODUCTION 
Enterprises streamline their IT environments by unifying, 

consolidating and centralizing IT processes, platforms and 
organizations in order to improve efficiency. Reducing the 
diversity in IT not only simplifies management, it also supports 
the introduction of systematic processes such as ITSM [1] and 
automation by creating more elements and processes of the 
same kind. Unification and consolidation reduces cost and 
leads to better aligned IT processes and organizations. 

II. AUTOMATION IN IT MANAGEMENT 
The reality of IT management is dominated by a legacy of 

management systems which have been designed as tools for 
human operators, not for automation and self-management. 
Today, IT management can be seen as at a stage of 
mechanization where operators use management systems as 
tools to carry out management tasks. Management systems are 
designed as tools for operators and facilitate operations through 
consoles. Some tools, and lately more and more tools, also 
provide API to allow programmatic control and scripting for 
integration in process automation chains. 

The 1st Stage of Automation: Scripts and Workflows.  
Automation at this stage is characterized by management tools 
that can be accessed through API or command lines enabling 
scripts and workflows to describe action sequences of 

repeatable management tasks. The operator initiates the script 
or workflow execution as opposed to actions individually. 

The 2nd Stage of Automation: ECA Policies. Initiation of 
action sequences can be triggered by conditions reported as 
events from the managed system. Definitions of Event-
Condition-Action ECA triples are also often referred to as ECA 
polices. As events are reported from the managed environment, 
they pass through a sequence of conditions, and for each 
condition evaluating to true, the associated action sequence is 
executed. ECA policies are widely used IT management. 

First and second stage automation have no knowledge 
about the changes executions cause in the managed 
environment. An action sequence runs once when initiated. 
There is no inherent ability to detect whether the goal which 
caused the execution actually has been achieved in the 
managed environment or not. 

To some extent, conditions in ECA policies can be seen as 
representations of a desired state such as thresholds that should 
not be passed. However, an ECA system relies on external 
events to trigger evaluation for executing actions, which is the 
difference to a controller that autonomously evaluates 
conditions and triggers actions in order to maintain a managed 
environment aligned to its desired state.  

The 3rd Stage of Automation: Controllers. A controller has a 
description (model) about a desired status of its controlled 
domain. It also has a reflection (model) of the current status 
that is observed from the controlled domain. Both models, 
which are called the Desired State Model (DSM) and the 
Observed State Model (OSM), are constantly evaluated by the 
controller. Corrective actions are deducted and executed as 
differences occur between the two models. 

Intended change in the controlled domain is achieved by 
changing the desired state model, either manually by an 
operator or programmatically by another system or controller. 
Unintended change can occur any time the system that is 
reflected back into the observed state model such as in case of a 
failure. Both kinds of changes may initiate actions in the 
controller in order to maintain alignment between observed and 
desired state. Controllers may not be able to achieve alignment 
under all conditions. Those cases need to be detected and 
reported to a superior instance as uncorrectable conditions.  

III. CONTROLLERS IN IT MANAGEMENT 
In general, a controller adjusts conditions of a controlled (or 

managed) element or domain by altering control knobs as a 
function of measured parameters and controller settings. 
Measured parameters can be interpreted as a form of observed 



state. Controller settings can be seen as a form of desired state. 
Controller settings or desired state represents a goal according 
to which the controller aligns the controlled element by 
adjusting its control knobs according to the result of the 
evaluation of the control function. A large body of literature 
exists on feedback control in computing systems [2].  

Controllers have been introduced to computer systems in a 
variety of ways: 

Regulative Controllers operate based on numeric input for 
measurements and settings to their control functions, which 
produces numeric output for control knobs in the controlled 
environment. Examples are admission controllers, which 
throttle incoming workload when it surpasses processing 
capacity [3], or flex controllers, which expand or shrink 
resource supply based on workload [4]. Controller settings can 
only be altered from outside, not by the controller itself. 

Adaptive Controllers can alter (tune) the control settings or 
even the control function as result of reasoning upon observed 
behavior in the past and deriving predictions for the future 
[5][6]. Adaptive admission controllers have been shown in [7]. 
Adaptive flex controllers have been presented in [8]. 

Autonomic Manager is a basic concept of Autonomic 
Computing [9]. It defines a closed loop with stages: monitor, 
analyze, plan, execute for a managed element or domain. A 
number of controllers have been implemented based on this 
concept, mainly regulative and adaptive controllers [10]. 

IT Management Automation Controller which is discussed 
in this paper is similar to a regulative controller. In contrast, it 
is not based on numeric control parameters, settings and 
function, it uses two discrete state models associated with a 
managed domain, the desired state model and the observed 
state model. The control function represents discrete state logic 
that evaluates the two models and produces a sequence of 
actions based on differences. An IT Management Automation 
Controller also meets the general criteria of the Autonomic 
Manager concept. It is a specific form directed to IT task 
automation and composition of automated IT management 
process chains. 

IV. IT MANAGEMENT AUTOMATION CONTROLLER 
HP has developed a concept of an IT Management 

Automation Controller [11], which is shown in Figure 1. with 
following components: 
- DSM Interface through which the desired state model is 

accessed (read/write); 
- OSM Interface through which the observed state model is 

accessed (read only, subscriptions to change events); 
- Controller function (logic) which consists of: 

- Differencer logic which compares the desired and 
the observed state model; 

- Action sequencer logic which derives actions from 
the difference; 

- Observer Connector through which the observed state mo-
del is updated from the managed environment (polled by 
the controller and/or event-based from the environment); 

- Actuator Connector through which actions are passed into 
the managed environment for execution. 

 
Figure 1.  IT Management Automation Controller. 

Control information flows into the controller in form of 
desired state definitions and changes to those definitions 
through the DSM interface. It also flows into the controller as 
changes to the observed state model through the observed 
connector. The controller's internal control loop aims to 
maintain the alignment between observed and desired state by 
deriving and issuing actions through its actuator connector. If 
this cannot be achieved, superior instances can subscribe to 
event types at the observed state model interface to be notified 
when those conditions occur. 

A. Controller Implementation Toolkit 
A toolkit [12] was developed for implementing controllers 

based on web services management standards. This toolkit was 
used for building the controllers for the database use cases 
described later. Controller interfaces employ web service 
management standards [13]. Web services management 
standards WSRF [14] and WSDM [15] were initially employed 
using the open source WSRF implementation from Globus 
GT4 [16] as basis for the toolkit supplemented with WSDM 
schema. The controller toolkit is currently being refactored to 
support the more recent WS-Management [17] standard. All 
web services management standards provide similar operations 
to access XML representations of models as well as event 
notifications. 

B. Model Representation 
Web services management standards achieve 

interoperability at the interface level. In regard to models, they 
only require that models are or can be rendered in XML. They 
do not impose a specific modeling framework. Interoperability 
at the model exchange level requires additional agreement. In 
the current controller realization, models are defined as XML 
schema and are proprietary. Compliance with the recently 
emerging modeling framework Service Modeling Language 
(SML) [18] is desirable and will be factored into controller 
models as its common and core model definitions mature. 
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V. PROBLEM STATEMENT 
The modeling framework determines the expressiveness of 

models. It also determines the mechanisms that are required for 
interpretation (the controller logic in this case). 

Using sole declarative models entirely hides the logic for 
interpretation inside the controller. A declarative model only 
describes a desired or observed state (data). It does neither 
describe how this state should be interpreted, nor how it came 
to this state and what should happen in that state. Current 
model-driven approaches to IT management favor the use of 
declarative models [19]. 

While this seems desirable at a fist glance, it has a number 
of shortcomings: 
- Logic is built into controllers, typically hard-coded and 

cannot be customized. 
- Logic is not modeled, hence remains unclear and hard to 

trace. 
- Since logic depends on the structure and semantics of 

models, changes to those will likely break the controller 
logic requiring code replacement in all controller 
instances. 

- Controllers depend on interactions with the managed 
environment. Sole declarative models do not provide 
means to describe those interactions and dependencies. 

- Controller composition and automated IT management 
process chains require coordination among controllers. 
Again, when logic is built into the code of the controller, it 
cannot be customized making automated IT management 
process chains difficult to build and maintain. 

Using declarative models in combination with built-in 
controller logic may be desirable for lower-level resource 
controllers with a fixed behavior. It is not sufficient for higher-
ordered controllers that operate at a level of automated IT 
management process chains that require customization and 
adaptation in a customer environment. 

A. Alternatives 
To overcome the problem of separation of the model from 

its interpretation (logic), models can be supplemented with the 
interpretation logic to avoid hard-coded logic in controllers. 
Some modeling frameworks support the representation of 
interpretation rules. An example is the Resource Description 
Framework (RDF). A rules engine like the Jena Rules engine 
could execute the model interpretation rules that are part of the 
model. However, dynamic behavior is hard to integrate in rule 
engines. 

Workflows are typically used to describe configurable, 
dynamic behavior across systems and execute on it. However, 
it is difficult to represent state in workflows, such as observed 
or desired state of a managed element. Once again, it leads to 
the separation between “state models” and “execution logic”, 
although the execution logic is now configurable in a workflow 
engine and not built into the controller. 

Another aspect with workflow languages such as BPEL is 
that they are designed for business transactions, which may suit 
higher-level, more transactional IT management processes, but 
is not a good match for the asynchronous and partially 

unpredictable behavior that occurs in a dynamic management 
environment such as asynchronous events, race conditions or 
critical sections. 

A balance needs to be found that brings all those aspects 
together: the representation of desired and observed 
management states, the description of dynamic interactions and 
dependencies with other controllers, and the representation of 
interpretation logic in a form which allows to execute on a 
generic engine as opposed to built-in code in controllers. 

VI. APPROACH: PTN 
Place-Transition Nets provide a good approximation: 

- State can be represented in a Place-Transition Net, 
- Interactions with the managed environment leading to state 

changes can be expressed, 
- Dynamic behavior, coordination and synchronization with 

other controllers can be represented, 
- Synchronous and asynchronous interactions can be 

modeled, 
- Place-Transition Nets can be executed (interpreted) by a 

generic execution engine. 
Place-Transition Nets are well proven in domains such as 

manufacturing and supply chains. They have also been used in 
telecommunications for modeling and verifying protocols. A 
large body of experience and knowledge exists, from formal 
techniques for proving liveliness or reachability to simulation 
environments. However, despite favorable properties, PTN 
have not widely been leveraged in IT management and 
automation, which may partially be due to a lack of tooling and 
experience with PTN in the domain of IT management. 

The realization of the IT management automation controller 
presented in this paper applies Place-Transition Nets as the 
modeling framework for representing the models for desired 
and observed states and for executing controller logic by 
interpreting PTN. A generic Place-Transition Net execution 
engine was built and included in controllers replacing their 
hard-coded logic. All interactions with the managed 
environment as well as with other controllers are driven by 
interpreting PTN. 

A. Place-Transition Nets 
Place-Transition Nets (PTN) or Petri Nets were first 

introduced in [20]. A Petri Net is defined as a 6-tuple (S, T, F, 
M0, W, K) where S is a set of places and T is a set of transitions. 
F is a set of arcs between either a place and a transition or a 
transition and a place: )()( STTSF ×∪×⊆ . A token is a 
construct that represents state in a place.  

A distribution of tokens over the places in a net is called a 
marking. M0 is the initial marking, M0 : S → N with each place 
s∈S having n∈N  initial tokens. W : F → N is a set of arc 
weights Nn ∈ assigned to each arc f∈F denoting how many 
tokens are consumed from a place by a transition and how 
many tokens are produced by a transition and added to a 
subsequent place. K : S → N is a set of capacity restrictions 
which assigns to each place s∈S some positive number n∈N 
denoting the maximum number of tokens that can occupy that 



place. A net in which each of its places has some capacity k is 
known as a k-bounded Petri Net. 

Places may contain any number of tokens up to the capacity 
restriction k∈K. A marking is altered mi → ti,j → mj, mi∈M, 
mj∈M when transition ti,j∈ T fires. Firing a transition is an 
atomic operation. 

Transitions may fire, when they are enabled. Transitions are 
enabled when they have at least the amount of tokens in each 
input place specified by the inbound weight of the transition 
(default is 1). When a transition fires, it consumes the weight 
amount of tokens from each inbound place and adds the 
amount of tokens specified by the outbound weight to each 
outbound place (default is 1). 

These fundamental properties of Petri Nets allow reasoning 
on properties such as reachability, liveness or boundedness. 

Execution of Petri Nets is nondeterministic. Multiple 
transitions can be enabled at the same time, any one of which 
can fire in any order or simultaneously. Transitions may not 
fire immediately when they become enabled or may not fire at 
all. Since firing is non-deterministic, Petri Nets are suited for 
modeling asynchronous and concurrent behavior of distributed 
systems [21]. 

However, some assumptions must be made in regard to 
non-determinism for the practical use of PTN for management 
automation. Furthermore, a combination of three extensions 
Colored Petri Nets (CP-Nets), Hierarchical Petri Nets and 
Timed Petri Nets is used. 

B. Colored Petri Nets (CP-Nets) 
In a basic Petri Net, tokens are indistinguishable (“black”) 

and themselves stateless. Only their assignment to a place at a 
time determines the state (marking) in the network. 

A number of examples in the domains of network protocols 
and manufacturing supply chains are shown in [22] where 
distinguishable items travel through a network as tokens 
following the PTN rules. Those items (represented as tokens) 
must carry own state ("color") in order to be distinguishable. 
Prof. Kurt Jensen from the University of Aarhus has developed 
Colored Petri Nets [23] by introducing following extensions: 
- assign state (a value) to tokens that is defined by a simple 

or complex type, 
- assign a type to places determining the type of tokens it 

can hold, 
- allow multi-sets of tokens of same type and value by 

specifying coefficients, and to 
- assign expressions (functions) to arcs that can be bound to 

token values and evaluated when tokens pass through 
transitions during firing. 

Transitions in a CP-Net thus do not only alter the marking 
of the overall net and bring tokens to other places. Evaluation 
of arc expressions also allows altering the state within tokens 
when they pass through a transition. Those functions can alter 
token state. 

Tokens do not share their states. States of multiple tokens 
can be combined as result of evaluating arc expressions when 
they are part of the same transaction and hence part of the same 
evaluation process. Altering states in tokens by evaluating arc 

expressions allows “programming” in a CP-Net. Tools have 
been developed for CP-Nets that are widely used, such as 
CPNTools [24]. 

C. Hierarchical Petri Nets 
The idea behind hierarchical Petri Nets is to introduce 

scope, reusable building blocks and a modular structure in 
larger nets. Each place can be expanded into a (sub-) net into 
which tokens flow via inbound transitions, internally travel 
through the subnet and finally return or produce tokens in the 
surrounding net. Nets and places within nets can be made self-
similar such that they can be composed hierarchically [25]. 

Inbound and outbound arcs to a (subnet-) place also define 
the interface to an underlying net. The structure of this net can 
remain hidden as long as the interface is known. Properties of 
Hierarchical Petri Nets and examples of reusable subnets (such 
as for critical sections or the reader-writer problem) are 
discussed in [26]. 

D. Timed Petri Nets 
Petri Nets are non-deterministic in terms of when enabled 

transitions fire or if they fire at all. Again for practical reasons, 
Timed Petri Nets allow to define an interval within which an 
enabled transition must fire. The lower bound of the interval 
defines the minimal and the upper bound the maximal time an 
enabled transition must or can wait to fire. 

E. Combination of Colored, Hierarchical, Timed Petri Nets 
A combination of the three Petri Net extensions has been 

chosen as foundation for the PTN used in the Management 
Automation Controller. In addition, following assumptions are 
made, which are explained later in the text: 
- Two types of places are introduced: regular places and 

connector places. 
- Two types of tokens are introduced: regular and activity 

tokens. 
- Two special transition rules are introduced called bonding 

and detaching. 
- The ambiguity of a conflict (“confusion”) in a PTN is 

resolved by labeling outbound arcs from places with 
disjunctive values and introducing a choice field as part of 
a tokens data type. In case of a conflict, the outbound arc 
with a matching choice label determines the next enabled 
transition. 

- CP-Net multi-sets are not allowed. 
- The default firing interval for transitions is [min=0, 

max=0], which means that transitions fire immediately as 
soon as they become enabled. The firing order of multiple 
simultaneously enabled transitions is arbitrary (undefined). 
The firing interval can be redefined for transitions. 

F. Workflow Patterns with Petri Nets 
Figure 2. shows common workflow patterns in terms of 

PTN. Case (a) shows a simple sequence. Since the default 
weight of arcs is 1, the token in place s1 enables transition t1,2. 
Firing t1,2 brings the token to place s2 by reducing the number 
of tokens in s1 by 1 and increasing it by 1 in s2. Case (b) is 
similar, except that 1 token is added to both places s2 and s3. 



This means that the one token from s1 becomes duplicated in 
places s2 and s3. Both tokens in s2 and s3 are independent, 
which semantically corresponds to forking a process. 

 
Figure 2.  Basic workflow patterns as Petri Nets. 

In case (c), transition t1.2,3 is only enabled when both 
inbound places have at least one token each. Following the 
normal transition rule, 1 token is removed from each inbound 
place s1 and s2 and 1 token is added to s3. This means, two 
tokens from s2 and s3 join at this transition. Two independently 
traveling tokens are synchronized. 

The literature refers to case (d) as conflict or as “confusion” 
because both transitions t1,2 and t1,3 are enabled. Only one 
transition can fire since the one enabling token cannot be 
reduced twice by two firing transitions. Classic Petri Nets 
define this case as non-deterministic choice for selecting the 
firing transaction. One common approach to turn this case into 
a deterministic choice is to label outbound arcs (such as with 
“success” or “failure” in the figure) and determine the firing 
transition by computing a result against which the labels are 
compared. This results into the known branching pattern. 

Case (e) shows a convention which is often used in Petri 
Nets to abbreviate bidirectional arcs. Both notations are 
semantically equivalent. Note that the bidirectional transition 
actually represents two transitions. 

VII. INTERPRETATION FOR THE IT MANAGEMENT 
AUTOMATION CONTROLLER 

In context of the Management Automation Controller, two 
main domains are modeled as PTN: one is the model of 
Desired State (DS) and one is the model of Observed State 
(OS) for a managed environment. 

A place represents a desired or observed state in the 
managed environment. Examples of such states are: [system is 
down], [server is down], [application is running], or 
[maintenance is in progress]. States of a typical lifecycle 
diagrams correspond to places in a PTN. (A notation is used in 
the following for describing [states] and <transitions>). 

A transition represents a change between those states. 
When the prior state was [server is down], and the subsequent 
state in the model is [server is up], then the transitions between 

the two states is <boot>. Since booting of a server is a longer 
term operation, it by itself can be modeled as a state: [server is 
booting]. It is good practice to model rather “short” or 
“timeless” indications as transitions such as <ignite server 
boot>, followed by the [server is booting] state (place), 
followed by a transition <bootstrap finished successfully> 
before entering the [server is up] state. 

Figure 3. shows the expansion of a regular PTN transition 
into a transition state s2, which is a regular PTN place. The 
transition [s1=DOWN] → <t1,2=BOOT> → [s2=UP] expands to 
[s1=DOWN] → <t1,2=IGNITE BOOT> → [s2=BOOTING] → <t2,3=BOOT 

FINISHED> → [s3=UP]. 

 
Figure 3.  Expansion of a transition into a "transition state". 

A token represents a managed element. The place in which 
a token resides defines the (either desired or observed) status of 
the associated managed element. Since tokens can carry own 
state, multiple managed entities (e.g. multiple servers) can be 
represented and transition in the same PTN, each independent 
from the others. Each managed element is represented by a pair 
of tokens, one representing its desired and one representing its 
observed state in the two PTN models, respectively. 

The equivalent of a token in the workflow language BPEL 
would be a BPEL message. However, messages in workflow 
languages are meant to be received and processed according to 
the workflow definition. 

A. Representing Desired and Observed State Models as PTN 
Figure 4. shows a simple lifecycle model for class of 

servers as pair of PTN for desired and observed states. A pair 
of tokens (md, mo) represents the managed element, which is a 
particular server instance. Position of token md in a place in the 
desired state model represents the desired status of the 
managed element. Position of token mo in a place in the 
observed state model represents the observed status of the 
element in the managed environment. 

 
Figure 4.  Simple lifecycle model for a server expressed as Petri Nets 

(The transitions in Figure 4. are not yet controlled.) 
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A token md in place sd1 in the desired state model (as 
shown in the figure) means that the server is supposed to be up. 
The token in sd2 would mean that the server is desired to be 
down. A token mo in place so1 in the observed state model 
indicates that the server is observed as down (as shown in the 
figure). A token in so2 would mean the server would be in the 
process of booting. The token in so3 would mean that the server 
would be observed as up, and the token in so4 would indicate 
the server is shutting down. 

There are correlations between certain places in the desired 
and the observed state models such as sd1 and so1 [down] and 
sd2 and so3 [up]. Those correlated places represent alignment 
between desired and observed state when the two tokens (md, 
mo) reside in those correlated places. Correlated places 
represent the same management status, either as desired or 
observed. Correlated places are defined as one-to-one 
relationships between pairs of places from the desired state 
model: SDS = { sdi }, i=1…n and from the observed state model 
SOS = { soj },  j=1…m, j ≥ i. 

A set of correlated places C is defined as set C = { ( sdi , soj 

) } with ∀ sdi ∈  SDS : sdi → soj and soj ∈  SOS : sdj → soi . For 
each place in a desired state model, there must be a correlated 
place in the observed state model. There may be more places in 
the observed state model that represent intermediate stages of a 
managed element (such as booting). The correlated places for 
the example in Figure 4. are: C = { ( sd1 , so1 ), ( sd2 , so3 ) }. 

A managed element is aligned when its pair of tokens (md, 
mo) is residing in a pair of correlated places. The subset of 
markings that represent alignment between desired and 
observed states is MALIGN : md → sdi, mo →soj with ( sdi, 
soj)∈C. Any other marking represents non-alignment between 
desired and observed state for the managed element. 

B. Deriving Actions from Desired State Changes 
A state of alignment can only change when either new 

desired state is defined or when a change occurs in the 
managed environment that reflects back to a change in 
observed state. Both changes lead to non-alignment since at 
least one token must transition from the correlated pair of 
places to another place, and one place can only be in one 
correlation according to the definition of C. 

In case desired state is changed (intended change), the 
controller must determine a sequence of actions that brings the 
managed environment into new alignment. In the example, 
when desired state of a server is changed from [down] to [up], 
the boot process must be ignited and completed before the 
observed state can indicate that the server is up. 

Aligned state: c1=DOWN = (sd1, so1). 
  1.)  md → sd2 with t1,2 firing in DSM leading to: 
  2.)  mo → so2 with t1,2 firing in OSM (igniting the server  

              boot and booting the server), 
  3.) mo → so3 with t2,3 firing in OSM (server boot  

              completed). 
Aligned state: c2=UP = (sd2, so3). 
Server shutdown follows the same pattern. It will later be 

shown how error conditions can be taken into account and 
eventual corrective actions can be derived from error states. 

Errors and failures are examples of unintended changes that 
may occur in the observed state model. 

All activity of the controller depends on firing transitions in 
DSM and/or OSM. In order to control firing, DSM and OSM 
need to be extended by connector places and activity tokens. 

C. Connector Places 
Connector places supplement DSM and OSM to provide 

the interfaces with the environment. Tokens can be generated 
or consumed in connector places as effects of interactions with 
the environment. Those interactions occur with the managed 
environment, with a user interacting through a console or with 
other controllers. Connector places may be source connector 
places or terminal connector places. The union of source and 
terminal connector places represents the interface of the PTN.  

A source connector is a place that interacts with the 
environment and creates new activity tokens as effect of this 
interaction. A source connector has only outbound arcs. A 
terminal connector is a place that interacts with the 
environment when it receives an activity token and initiates an 
action. Activity tokens may be consumed during this 
interaction. Connector places may exist that are neither source 
nor terminal to represent intermediate stages. Connector places 
supplement PTN for DSM and OSM allowing so-called 
activity tokens to travel. 

D. Activity Tokens 
While tokens so far have been introduced to represent 

managed elements, activity tokens represent actions or state 
changes associated with managed elements. Activity tokens are 
the only cause of transitions for regular tokens in a DSM or 
OSM. Activity tokens are used to initiate and control the 
transitions in DSM and OSM nets. Activity tokens are 
associated with a specific managed element (and the 
representing token) to which the interaction applies. 

While regular tokens (representing managed elements) can 
only travel through regular (non-connector) places, activity 
tokens may travel both under two special transition rules: 
- Join transition (bonding): an activity token enables a join 

transition only for the associated (managed element) token 
and bonds with it during the transition. It remains bonded 
until it is detached from the regular token. 

- Fork transition (detaching): if a bonded token arrives at a 
fork transition where following places include both 
connector places and non-connector places, activity tokens 
detach from carrying regular tokens and pass along the 
arc(s) to the connector place(s), while the regular token 
passes along the other arc(s) to non-connector places. 

E. Deriving Actions from Desired State Changes 
Figure 5. shows the desired state model from Figure 4.  

supplemented with connector places sc[1,2,3,4] in a state before 
and after transition t1,2 has fired. 

An activity token is shown in a source connector place sc1 
before t1,2 has fired. This activity token might have been 
created as effect of a user interaction to change the desired state 
from [down] to [up]. The occurrence of the activity token in sc1 
enables and fires transition t1,2 (under the assumption that the 



activity is associated with the managed element represented by 
the token in sd1). 

(Non-connector places are shown with grey shading in the 
following figures. Connector places are without shading.) 

 
Figure 5.  Desired state model before and after firing transition t1,2. 

The join rule applies to transition t1,2 (multiple inbound arcs 
into t1,2), which means that the activity token in sc1 bonds with 
the one in sd1. Transition t1,2 is also a fork transition (multiple 
outbound arcs from t1,2 leading to connector and non-connector 
places) such that the bonded tokens immediately separate. The 
activity token transitions into sc4 while the token of the 
managed element transitions into sd2 (new desired state [up]). 

The arrival of the activity token in terminal connector place 
sc4 can trigger an action in the managed environment to ignite 
the boot process.. Connector states sc2 and sc3 have the reverse 
effect when desired state is changed from [up] to [down]. 

Source connector places in DSM such as sc1 and sc2 
provide the control elements for altering the desired state for a 
managed element. Terminal connector places in DSM such as 
sc3 and sc4 represent actions that are initiated for a managed 
element when an activity token arrives. 

F. Reflecting Observed State Changes 
Observed state changes as effect of reported changes from 

the managed environment. The same concept of connector 
places and activity tokens is applied. Source connector places 
are associated with sensors in the managed environment 
creating activity tokens when change is observed for a 
managed element. Activity tokens bond with the tokens of the 
managed elements for which changes were observed. 
Transitions of bonded tokens then lead to changes in the 
observed state model. 

 
Figure 6.  Observed state model with connector places. 

Figure 6. shows the observed state model from Figure 4. 
supplemented with connector places for responding to changes 
in the managed environment. The token of a managed element 
resides in place so1 ([down]). When the boot sequence is 
initiated (as effect of an activity token arriving in place sc4 in 

Figure 5. and triggering ignition), this ignition can be observed 
in the managed environment and reported as an activity token 
arriving in sc5, which enables transition t1,2 and, during firing, 
bonds the activity token to token mo. The bonded token then 
resides in place so2 ([booting]). When the boot sequence was 
completed successfully, an activity token is reported to so6 
enabling t2,3. Based on the rules for bonded tokens, the token 
separates from the activity token during t2,3, bringing the 
regular token to so3 ([up]) and the activity token to sc7 where it 
is consumed. Place so3 is a place that is correlated with place 
sd2 in the desired state model. The state of the managed 
element is now aligned with its desired state. 

 
Figure 7.  Linkage between initiating change and observing it. 

The nets for DSM and OSM are indirectly connected 
through connector places. When a terminal connector place in 
the desired state model receives an activity token, an effect in 
the managed environment is triggered, which is reported back 
as another activity token arriving in a connector place in the 
observed state model. Occurrence of those activity tokens then 
can enable transitions in the observed state model. Figure 7. 
shows this indirect linkage between DSM and OSM. A direct 
linkage between connector places in DSM and OSM can also 
be established by connecting places through a direct transition. 

G. Deriving Actions from Observed State Changes 
In addition to intended changes in the managed 

environment which are derived from changes in the desired 
state model, error, failures and other conditions may occur in 
the managed environment any time. When those are reported, 
they also lead to the creation of activity tokens in connector 
places. The observed state model must take these conditions 
into account and must be designed accordingly.  

For instance, the boot process of a server may end with a 
failure or may not complete within an expected time. An 
additional error place is introduced in the observed state model 
(so5 in Figure 8. ) to reflect those conditions. 

The actual status of the server is unknown at this point. As 
long as the desired state still in [up], the observed state Petri 
Net may be designed in a way that it includes a sequence of 
corrective actions by attempting to reboot the server by: 

  1.)  power cycle the server (bringing it into a defined state  
              [down]) and 

  2.)  re-igniting the boot sequence. 
Figure 8. shows the PTN which handles these cases. Two 

new places so5 [error] and so6 [power cycle] have been 
introduced as well as five new connector tokens sc11 [boot error 
observed], sc12 [timeout], sc13 [retry], sc14 [initiate power cycle] 
and sc15 [power cycle completed]. The figure shows the token 
in place so2 [booting], which has three possible outcomes 
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represented by three transitions t2,3, t2a,5 and t2b,5 which are 
enabled by activity tokens arriving in places sc6 [bootstrap 
successful], sc11 [boot error observed] or sc12 (timeout). Place 
sc12 receives an activity token after t1,2 has fired, which starts 
the timer as side effect. 

 
Figure 8.  Extended observed state model with error correction. 

In case of error, the token in place so2 [booting] bonds with 
an activity token arriving from connector places sc11 [boot error 
observed] or sc12 [timeout] and transitions to place so5 [error]. 
An activity token in place sc13 indicates that the controller 
should retry the boot cycle leading to the transitions to place 
so6 [power cycle]. At this transition, activity tokens are 
separated and placed into sc13 (to maintain the retry marking) 
and sc14, which is a terminal connector place that starts the 
power cycle. The end of the power cycle is indicated by an 
activity token arriving in place sc15, which enables and fires 
transition t6,1. This transition separates the activity token into 
sc4 which ignites the bootstrap (see Figure 5. ). The token now 
resides in the initial place so1 [down] and the process repeats. 

Whether or not the retry cycle will be performed in case of 
error depends on the marking of sc13. This marking can be 
made dependent on whether or not the desired state for the 
server is still [up] or other conditions (not shown in the figure). 

VIII. CONTROLLER COMPOSITION 
Multiple controllers will interact in an automated IT 

management process chain, each responsible for a specific task 
or managed domain. Coordination among controllers is needed. 
Higher-ordered controllers mainly perform coordination tasks. 
They contain the composition models that span across 
underlying controllers and constitute an automated IT 
management process chain. 

The self-similar structure of the IT management automation 
controller allows the composition of controllers as shown in 
Figure 9. Actions initiated by the upper controller are applied 
as desired state changes to underlying controllers. And 
reversely, observed state in underlying controllers constitutes 

the observed state of a higher-ordered controller. The 
interaction points among controllers are: 
- higher Actuator Connector to lower DSM, 
- lower OSM to higher Observer Connector to higher OSM. 

 
Figure 9.  Composition of IT Management Automation Controllers. 

Source and terminal connector places are the “interfaces” at 
the model level. Connector places are accessed through DSM 
or OSM Interfaces. Activity tokens arriving in terminal 
connector places can cause inter-controller activity. Activity 
tokens arriving in source connector tokens can then cause 
changes in PTN. Events can be issued to subscribers when the 
OSM or the DSM changes, which also lead to the creation of 
activity tokens in source connector places in PTN. 

All those interactions are mediated through "get", “put”, 
"transfer", and "push/subscribe" operations defined for web 
service management standards [17]. 

IX. PTN EXECUTION ENGINE 
A PTN Execution Engine was implemented (in Java) that 

interprets DSM and OSM. It forms the core part of the IT 
Management Automation Controller. PTN Schema have been 
defined for DSM and OSM models which allows to represent 
PTN models in XML. Places are static XML fragments which 
can be addressed by xpath expressions in models. Tokens are 
represented as dynamic XML fragments that are associated 
with one place at a time. 

The engine operates on the XML (SAX) trees of the DSM 
and OSM PTN models and interacts with the web service 
endpoint interfaces provided by the controller toolkit. 
Operating directly on XML tree representations of models also 
ensures that model state exposed through the DSM and OSM 
interfaces is always up to date. The engine is triggered when a 
new activity token arrives through one of the controller 
interfaces. Only arrival of activity tokens can alter model state. 

Java class names are associated with terminal connector 
places, which are instantiated when activity tokens arrive. 
Updates or events associated with DSM or OSM are directly 
transformed into the creation of activity tokens in the addressed 
places along with the invocation of the engine. 

X. AUTOMATION USE CASES 
This section describes a controller-based automation 

scenario that was built as joint effort between a team from HP 
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and one from Oracle using the controller toolkit. The goal was 
to demonstrate model-driven automation for selected IT task 
automation use cases. The testbed consisted of HP blade 
servers (eight servers of type BL20p, dual Pentium III, 3.2GHz, 
4GB), HP SAN disk array with two fiber channel switches, and 
a HP ProCurve 2848 LAN network. 

The automation use cases demonstrated coordinated 
lifecycle and auto-correction capabilities for error situations 
that would require human attention during operation in a 
traditional system. The three automation use cases were: 

1.) Automated provisioning and coordinated lifecycle 
control of an Oracle database on blade servers. 

2.) A storage auto-correction capability by automatically 
configuring and attaching new disks from the SAN to servers 
when Oracle Enterprise Manager predicted storage shortage 
due to growing table sizes in the database. 

3.) Response-time auto-correction during operation by 
flexing additional blades into the database pool when response 
times increased above a threshold due to load increases. 

All use cases required the direct interaction between the 
two management systems from HP and Oracle. Neither system 
could achieve them alone. All interactions between systems 
were normalized as model exchanges between controllers. 

To actuate actual changes in the managed environment, two 
management systems were employed: HP blade server 
automation software and Oracle Enterprise Manager. Both 
systems had to cooperate in order to solve the automation use 
cases, which would have required the point integration between 
the two systems in a traditional approach. Instead, both systems 
were wrapped into controllers using the controller toolkit. 

Three controllers were created with models: 
- HP blade automation controller, 
- Oracle Enterprise Manager controller, and an additional 
- Coordinator controller. 

The first two controllers were implemented as wrappers 
around HP blade automation infrastructure and Enterprise 
Manager from Oracle. The third controller was created for 
coordinating the two other controllers. It coordinated activities 
and composed them into one management service achieving all 
three use cases. 

 The first use case allowed for basic provisioning of blade 
servers, disks and networks using HP blade automation 
infrastructure. It deployed Oracle 10g on bare servers and 
configured it for management through Oracle Enterprise 
Manager. Two template models were available for instantiating 
the database representing three different configurations 
(“sizes”) of the Oracle database deployment: small (one blade 
server), medium (two servers) and large (4 servers). Templates 
were chosen from the coordinator controller based on user 
input. This specification was based on the number of users, 
data set size and the transaction rate supported by a 
configuration. After template selection, the coordinator 
controller interacted with the underlying controllers to establish 
the needed hardware infrastructure using the capabilities of 
HP’s blade server automation software and, once this had been 
achieved, to initiate the configuration of Oracle. 

The second use case employed Oracle Enterprise 
Manager’s ability to predict shortage of storage in a growing 
database and triggering correction by notifying the HP blade 
automation controller to attach another disk from the SAN 
storage array. After completion, the Oracle controller was 
initiated to reconfigure the database in order to utilize the 
additional disk. 

The third use case allowed to auto-correct server capacity 
when slowing database response time was indicated by Oracle 
Enterprise Manager, triggering a server flex-up operation to the 
HP blade automation controller. After completion, database 
instances configured into the database. 

These use cases demonstrated automation scenarios 
achieving self-correcting behavior. They also demonstrated 
how controllers can be used to wrap legacy management 
systems into a controller framework, normalizing their 
interactions using common controller interfaces and model 
exchange through interfaces. Use of PTN allowed describing 
and executing the coordination needed between controllers 
providing an example for an automated IT management 
process chain. 

XI. RELATED APPROACHES 
While automation has made substantial progress on the 

business side of IT, such as in business process automation 
[27], automation in IT management has been lagging behind. 
On the business side of IT, enterprise software such SAP is 
widely been used to automate the processing and management 
of enterprise information. Tools such as ARIS [28] are used to 
design automated business processes. In IT management, in 
contrast, people still carry out management processes from 
higher-ordered planning stages to the lowest levels of 
managing machines, networks and storage. Management tools 
are used that support those tasks. Tools signal and report 
conditions to a human operator, who then is in charge to 
interpret those signals and eventually respond by making a 
change in the system, which is again mediated through a tool. 
The loop is not closed in IT management; the operator’s 
attention is permanently required. 

Workflow systems are predominantly used in IT 
management automation. In contrast to workflow languages, 
which describe sequences of parallel or sequential actions, Petri 
Nets primarily represent state. State changes occur in effect of 
transitions, which are also described in a Petri Net. State in a 
workflow language is always external to the actual workflow 
description. It typically occurs in form of a message that is 
processed along the workflow statements (e.g. a purchase 
order, which is the message, traveling through a purchase order 
workflow, which is a graph of actions). 

Cfengine was developed at University College in Oslo [29]. 
Its primary function is to provide automated configuration and 
maintenance of computers, from a policy specification. It 
emerged from the need to control the accumulation of complex 
shell scripts used in the automation of key system maintenance. 
In a heterogeneous environment, shell scripts are hard to 
maintain: shell commands have differing syntax across 
different operating systems, and the locations and names of key 
files differ. The non-uniformity of Unix was a major problem.  
Cfengine defined a new language which unified the 



heterogeneity underneath. The aim was to absorb frequently 
used coding paradigms into a declarative, domain-specific 
language that would offer self-documenting configuration.  
Cfengine has an agent-based infrastructure through which 
scripts can be distributed and executed on machines. 

While Cfengine allows to abstract and to unify scripts used 
in system management, it does not posses the capabilities of a 
controller. Cfengine needs to be activated by an administrator 
in order to perform management tasks on remote systems. 

XII. SUMMARY 
The paper presented an IT Management Automation 

Controller which adopts the concept of a feedback system to 
automated IT management for operational tasks such as 
lifecycle management. State of a managed environment is 
represented in terms of a pair of models for desired and 
observed states and transitions between those states. A 
specialized form of a Place-Transition-Net (PTN or Petri Net) 
is used to represent the static aspects (states) as well as 
dynamic aspects (coordination) in one model. This overcomes 
the problems that result from separating models from 
interpretation and execution logic that is often found in model-
based management approaches. 

A PTN execution engine was built that directly executes 
PTN and forms the core of the controller logic. This allows the 
controller logic to be “generic” and driven by configurable 
PTN models as opposed to hard-coded and built into the 
controller. Web services management standards are used to 
create uniform interfaces to controllers and that allow the 
composition of controllers. It was shown how error correction 
can be factored into PTN. It was also shown how coordination 
between controllers in an automated IT management process 
chain can be achieved. 

Three automation tasks for a database system have been 
implemented using the controller. 
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