

Automation Controller for Operational IT Management

Sven Graupner
Enterprise Systems and Software Laboratory
HP Laboratories Palo Alto
HPL-2007-144
August 23, 2007*

IT Management,
automation,
workflow engine,
operational
management, ITSM,
ITIL

Controllers in computer systems have mainly been explored for automating
regulative tasks such as admission control or resource supply control. The
majority of IT management tasks, however, relies on discrete management
states and coordinated transitions between those states.

The paper shows how the concept of a feedback system can also be applied to
automate operational management tasks. The paper introduces the concept and a
realization of an IT Management Automation Controller, which operates on
discrete management states expressed as a pair of models for desired and
observed state. Models are represented as a special form of Place-Transition
Nets (PTN or Petri Nets). Controller logic directly executes PTN in order to
achieve and maintain alignment between desired and observed state in a
managed domain. In contrast to workflow systems, PTN combine the
description of state and actions in one model (graph).

Three operational database management tasks have been implemented as a
proof of concept in a blade server automation infrastructure using the
Management Automation Controller.

* Internal Accession Date Only
 Published in IM 2007, 21-25 May 2007, Munich, Germany
 Approved for External Publication
© Copyright 2007 IEEE

Automation Controller for Operational IT
Management

Sven Graupner
HP Labs, 1501 Page Mill Rd, Palo Alto, CA 94304, USA

sven.graupner@hp.com

Abstract — Controllers in computer systems have mainly been
explored for automating regulative tasks such as admission
control or resource supply control. The majority of IT
management tasks, however, relies on discrete management
states and coordinated transitions between those states.

The paper shows how the concept of a feedback system can also
be applied to automate operational management tasks. The paper
introduces the concept and a realization of an IT Management
Automation Controller, which operates on discrete management
states expressed as a pair of models for desired and observed
state. Models are represented as a special form of Place-
Transition Nets (PTN or Petri Nets). Controller logic directly
executes PTN in order to achieve and maintain alignment
between desired and observed state in a managed domain. In
contrast to workflow systems, PTN combine the description of
state and actions in one model (graph).

Three operational database management tasks have been
implemented as a proof of concept in a blade server automation
infrastructure using the Management Automation Controller.

Keywords: IT management, automation, controller.

I. INTRODUCTION
Enterprises streamline their IT environments by unifying,

consolidating and centralizing IT processes, platforms and
organizations in order to improve efficiency. Reducing the
diversity in IT not only simplifies management, it also supports
the introduction of systematic processes such as ITSM [1] and
automation by creating more elements and processes of the
same kind. Unification and consolidation reduces cost and
leads to better aligned IT processes and organizations.

II. AUTOMATION IN IT MANAGEMENT
The reality of IT management is dominated by a legacy of

management systems which have been designed as tools for
human operators, not for automation and self-management.
Today, IT management can be seen as at a stage of
mechanization where operators use management systems as
tools to carry out management tasks. Management systems are
designed as tools for operators and facilitate operations through
consoles. Some tools, and lately more and more tools, also
provide API to allow programmatic control and scripting for
integration in process automation chains.

The 1st Stage of Automation: Scripts and Workflows.
Automation at this stage is characterized by management tools
that can be accessed through API or command lines enabling
scripts and workflows to describe action sequences of

repeatable management tasks. The operator initiates the script
or workflow execution as opposed to actions individually.

The 2nd Stage of Automation: ECA Policies. Initiation of
action sequences can be triggered by conditions reported as
events from the managed system. Definitions of Event-
Condition-Action ECA triples are also often referred to as ECA
polices. As events are reported from the managed environment,
they pass through a sequence of conditions, and for each
condition evaluating to true, the associated action sequence is
executed. ECA policies are widely used IT management.

First and second stage automation have no knowledge
about the changes executions cause in the managed
environment. An action sequence runs once when initiated.
There is no inherent ability to detect whether the goal which
caused the execution actually has been achieved in the
managed environment or not.

To some extent, conditions in ECA policies can be seen as
representations of a desired state such as thresholds that should
not be passed. However, an ECA system relies on external
events to trigger evaluation for executing actions, which is the
difference to a controller that autonomously evaluates
conditions and triggers actions in order to maintain a managed
environment aligned to its desired state.

The 3rd Stage of Automation: Controllers. A controller has a
description (model) about a desired status of its controlled
domain. It also has a reflection (model) of the current status
that is observed from the controlled domain. Both models,
which are called the Desired State Model (DSM) and the
Observed State Model (OSM), are constantly evaluated by the
controller. Corrective actions are deducted and executed as
differences occur between the two models.

Intended change in the controlled domain is achieved by
changing the desired state model, either manually by an
operator or programmatically by another system or controller.
Unintended change can occur any time the system that is
reflected back into the observed state model such as in case of a
failure. Both kinds of changes may initiate actions in the
controller in order to maintain alignment between observed and
desired state. Controllers may not be able to achieve alignment
under all conditions. Those cases need to be detected and
reported to a superior instance as uncorrectable conditions.

III. CONTROLLERS IN IT MANAGEMENT
In general, a controller adjusts conditions of a controlled (or

managed) element or domain by altering control knobs as a
function of measured parameters and controller settings.
Measured parameters can be interpreted as a form of observed

state. Controller settings can be seen as a form of desired state.
Controller settings or desired state represents a goal according
to which the controller aligns the controlled element by
adjusting its control knobs according to the result of the
evaluation of the control function. A large body of literature
exists on feedback control in computing systems [2].

Controllers have been introduced to computer systems in a
variety of ways:

Regulative Controllers operate based on numeric input for
measurements and settings to their control functions, which
produces numeric output for control knobs in the controlled
environment. Examples are admission controllers, which
throttle incoming workload when it surpasses processing
capacity [3], or flex controllers, which expand or shrink
resource supply based on workload [4]. Controller settings can
only be altered from outside, not by the controller itself.

Adaptive Controllers can alter (tune) the control settings or
even the control function as result of reasoning upon observed
behavior in the past and deriving predictions for the future
[5][6]. Adaptive admission controllers have been shown in [7].
Adaptive flex controllers have been presented in [8].

Autonomic Manager is a basic concept of Autonomic
Computing [9]. It defines a closed loop with stages: monitor,
analyze, plan, execute for a managed element or domain. A
number of controllers have been implemented based on this
concept, mainly regulative and adaptive controllers [10].

IT Management Automation Controller which is discussed
in this paper is similar to a regulative controller. In contrast, it
is not based on numeric control parameters, settings and
function, it uses two discrete state models associated with a
managed domain, the desired state model and the observed
state model. The control function represents discrete state logic
that evaluates the two models and produces a sequence of
actions based on differences. An IT Management Automation
Controller also meets the general criteria of the Autonomic
Manager concept. It is a specific form directed to IT task
automation and composition of automated IT management
process chains.

IV. IT MANAGEMENT AUTOMATION CONTROLLER
HP has developed a concept of an IT Management

Automation Controller [11], which is shown in Figure 1. with
following components:
- DSM Interface through which the desired state model is

accessed (read/write);
- OSM Interface through which the observed state model is

accessed (read only, subscriptions to change events);
- Controller function (logic) which consists of:

- Differencer logic which compares the desired and
the observed state model;

- Action sequencer logic which derives actions from
the difference;

- Observer Connector through which the observed state mo-
del is updated from the managed environment (polled by
the controller and/or event-based from the environment);

- Actuator Connector through which actions are passed into
the managed environment for execution.

Figure 1. IT Management Automation Controller.

Control information flows into the controller in form of
desired state definitions and changes to those definitions
through the DSM interface. It also flows into the controller as
changes to the observed state model through the observed
connector. The controller's internal control loop aims to
maintain the alignment between observed and desired state by
deriving and issuing actions through its actuator connector. If
this cannot be achieved, superior instances can subscribe to
event types at the observed state model interface to be notified
when those conditions occur.

A. Controller Implementation Toolkit
A toolkit [12] was developed for implementing controllers

based on web services management standards. This toolkit was
used for building the controllers for the database use cases
described later. Controller interfaces employ web service
management standards [13]. Web services management
standards WSRF [14] and WSDM [15] were initially employed
using the open source WSRF implementation from Globus
GT4 [16] as basis for the toolkit supplemented with WSDM
schema. The controller toolkit is currently being refactored to
support the more recent WS-Management [17] standard. All
web services management standards provide similar operations
to access XML representations of models as well as event
notifications.

B. Model Representation
Web services management standards achieve

interoperability at the interface level. In regard to models, they
only require that models are or can be rendered in XML. They
do not impose a specific modeling framework. Interoperability
at the model exchange level requires additional agreement. In
the current controller realization, models are defined as XML
schema and are proprietary. Compliance with the recently
emerging modeling framework Service Modeling Language
(SML) [18] is desirable and will be factored into controller
models as its common and core model definitions mature.

+

_

Diff Action
 Sequence

Managed Environment

Desired
State Model
(DSM)

Observed
State Model
(OSM)

Observer
Connector
(OC)

Actuator
Connector

OSM / DSM Interfaces

(AC)

V. PROBLEM STATEMENT
The modeling framework determines the expressiveness of

models. It also determines the mechanisms that are required for
interpretation (the controller logic in this case).

Using sole declarative models entirely hides the logic for
interpretation inside the controller. A declarative model only
describes a desired or observed state (data). It does neither
describe how this state should be interpreted, nor how it came
to this state and what should happen in that state. Current
model-driven approaches to IT management favor the use of
declarative models [19].

While this seems desirable at a fist glance, it has a number
of shortcomings:
- Logic is built into controllers, typically hard-coded and

cannot be customized.
- Logic is not modeled, hence remains unclear and hard to

trace.
- Since logic depends on the structure and semantics of

models, changes to those will likely break the controller
logic requiring code replacement in all controller
instances.

- Controllers depend on interactions with the managed
environment. Sole declarative models do not provide
means to describe those interactions and dependencies.

- Controller composition and automated IT management
process chains require coordination among controllers.
Again, when logic is built into the code of the controller, it
cannot be customized making automated IT management
process chains difficult to build and maintain.

Using declarative models in combination with built-in
controller logic may be desirable for lower-level resource
controllers with a fixed behavior. It is not sufficient for higher-
ordered controllers that operate at a level of automated IT
management process chains that require customization and
adaptation in a customer environment.

A. Alternatives
To overcome the problem of separation of the model from

its interpretation (logic), models can be supplemented with the
interpretation logic to avoid hard-coded logic in controllers.
Some modeling frameworks support the representation of
interpretation rules. An example is the Resource Description
Framework (RDF). A rules engine like the Jena Rules engine
could execute the model interpretation rules that are part of the
model. However, dynamic behavior is hard to integrate in rule
engines.

Workflows are typically used to describe configurable,
dynamic behavior across systems and execute on it. However,
it is difficult to represent state in workflows, such as observed
or desired state of a managed element. Once again, it leads to
the separation between “state models” and “execution logic”,
although the execution logic is now configurable in a workflow
engine and not built into the controller.

Another aspect with workflow languages such as BPEL is
that they are designed for business transactions, which may suit
higher-level, more transactional IT management processes, but
is not a good match for the asynchronous and partially

unpredictable behavior that occurs in a dynamic management
environment such as asynchronous events, race conditions or
critical sections.

A balance needs to be found that brings all those aspects
together: the representation of desired and observed
management states, the description of dynamic interactions and
dependencies with other controllers, and the representation of
interpretation logic in a form which allows to execute on a
generic engine as opposed to built-in code in controllers.

VI. APPROACH: PTN
Place-Transition Nets provide a good approximation:

- State can be represented in a Place-Transition Net,
- Interactions with the managed environment leading to state

changes can be expressed,
- Dynamic behavior, coordination and synchronization with

other controllers can be represented,
- Synchronous and asynchronous interactions can be

modeled,
- Place-Transition Nets can be executed (interpreted) by a

generic execution engine.
Place-Transition Nets are well proven in domains such as

manufacturing and supply chains. They have also been used in
telecommunications for modeling and verifying protocols. A
large body of experience and knowledge exists, from formal
techniques for proving liveliness or reachability to simulation
environments. However, despite favorable properties, PTN
have not widely been leveraged in IT management and
automation, which may partially be due to a lack of tooling and
experience with PTN in the domain of IT management.

The realization of the IT management automation controller
presented in this paper applies Place-Transition Nets as the
modeling framework for representing the models for desired
and observed states and for executing controller logic by
interpreting PTN. A generic Place-Transition Net execution
engine was built and included in controllers replacing their
hard-coded logic. All interactions with the managed
environment as well as with other controllers are driven by
interpreting PTN.

A. Place-Transition Nets
Place-Transition Nets (PTN) or Petri Nets were first

introduced in [20]. A Petri Net is defined as a 6-tuple (S, T, F,
M0, W, K) where S is a set of places and T is a set of transitions.
F is a set of arcs between either a place and a transition or a
transition and a place:)()(STTSF ×∪×⊆ . A token is a
construct that represents state in a place.

A distribution of tokens over the places in a net is called a
marking. M0 is the initial marking, M0 : S → N with each place
s∈S having n∈N initial tokens. W : F → N is a set of arc
weights Nn ∈ assigned to each arc f∈F denoting how many
tokens are consumed from a place by a transition and how
many tokens are produced by a transition and added to a
subsequent place. K : S → N is a set of capacity restrictions
which assigns to each place s∈S some positive number n∈N
denoting the maximum number of tokens that can occupy that

place. A net in which each of its places has some capacity k is
known as a k-bounded Petri Net.

Places may contain any number of tokens up to the capacity
restriction k∈K. A marking is altered mi → ti,j → mj, mi∈M,
mj∈M when transition ti,j∈ T fires. Firing a transition is an
atomic operation.

Transitions may fire, when they are enabled. Transitions are
enabled when they have at least the amount of tokens in each
input place specified by the inbound weight of the transition
(default is 1). When a transition fires, it consumes the weight
amount of tokens from each inbound place and adds the
amount of tokens specified by the outbound weight to each
outbound place (default is 1).

These fundamental properties of Petri Nets allow reasoning
on properties such as reachability, liveness or boundedness.

Execution of Petri Nets is nondeterministic. Multiple
transitions can be enabled at the same time, any one of which
can fire in any order or simultaneously. Transitions may not
fire immediately when they become enabled or may not fire at
all. Since firing is non-deterministic, Petri Nets are suited for
modeling asynchronous and concurrent behavior of distributed
systems [21].

However, some assumptions must be made in regard to
non-determinism for the practical use of PTN for management
automation. Furthermore, a combination of three extensions
Colored Petri Nets (CP-Nets), Hierarchical Petri Nets and
Timed Petri Nets is used.

B. Colored Petri Nets (CP-Nets)
In a basic Petri Net, tokens are indistinguishable (“black”)

and themselves stateless. Only their assignment to a place at a
time determines the state (marking) in the network.

A number of examples in the domains of network protocols
and manufacturing supply chains are shown in [22] where
distinguishable items travel through a network as tokens
following the PTN rules. Those items (represented as tokens)
must carry own state ("color") in order to be distinguishable.
Prof. Kurt Jensen from the University of Aarhus has developed
Colored Petri Nets [23] by introducing following extensions:
- assign state (a value) to tokens that is defined by a simple

or complex type,
- assign a type to places determining the type of tokens it

can hold,
- allow multi-sets of tokens of same type and value by

specifying coefficients, and to
- assign expressions (functions) to arcs that can be bound to

token values and evaluated when tokens pass through
transitions during firing.

Transitions in a CP-Net thus do not only alter the marking
of the overall net and bring tokens to other places. Evaluation
of arc expressions also allows altering the state within tokens
when they pass through a transition. Those functions can alter
token state.

Tokens do not share their states. States of multiple tokens
can be combined as result of evaluating arc expressions when
they are part of the same transaction and hence part of the same
evaluation process. Altering states in tokens by evaluating arc

expressions allows “programming” in a CP-Net. Tools have
been developed for CP-Nets that are widely used, such as
CPNTools [24].

C. Hierarchical Petri Nets
The idea behind hierarchical Petri Nets is to introduce

scope, reusable building blocks and a modular structure in
larger nets. Each place can be expanded into a (sub-) net into
which tokens flow via inbound transitions, internally travel
through the subnet and finally return or produce tokens in the
surrounding net. Nets and places within nets can be made self-
similar such that they can be composed hierarchically [25].

Inbound and outbound arcs to a (subnet-) place also define
the interface to an underlying net. The structure of this net can
remain hidden as long as the interface is known. Properties of
Hierarchical Petri Nets and examples of reusable subnets (such
as for critical sections or the reader-writer problem) are
discussed in [26].

D. Timed Petri Nets
Petri Nets are non-deterministic in terms of when enabled

transitions fire or if they fire at all. Again for practical reasons,
Timed Petri Nets allow to define an interval within which an
enabled transition must fire. The lower bound of the interval
defines the minimal and the upper bound the maximal time an
enabled transition must or can wait to fire.

E. Combination of Colored, Hierarchical, Timed Petri Nets
A combination of the three Petri Net extensions has been

chosen as foundation for the PTN used in the Management
Automation Controller. In addition, following assumptions are
made, which are explained later in the text:
- Two types of places are introduced: regular places and

connector places.
- Two types of tokens are introduced: regular and activity

tokens.
- Two special transition rules are introduced called bonding

and detaching.
- The ambiguity of a conflict (“confusion”) in a PTN is

resolved by labeling outbound arcs from places with
disjunctive values and introducing a choice field as part of
a tokens data type. In case of a conflict, the outbound arc
with a matching choice label determines the next enabled
transition.

- CP-Net multi-sets are not allowed.
- The default firing interval for transitions is [min=0,

max=0], which means that transitions fire immediately as
soon as they become enabled. The firing order of multiple
simultaneously enabled transitions is arbitrary (undefined).
The firing interval can be redefined for transitions.

F. Workflow Patterns with Petri Nets
Figure 2. shows common workflow patterns in terms of

PTN. Case (a) shows a simple sequence. Since the default
weight of arcs is 1, the token in place s1 enables transition t1,2.
Firing t1,2 brings the token to place s2 by reducing the number
of tokens in s1 by 1 and increasing it by 1 in s2. Case (b) is
similar, except that 1 token is added to both places s2 and s3.

This means that the one token from s1 becomes duplicated in
places s2 and s3. Both tokens in s2 and s3 are independent,
which semantically corresponds to forking a process.

Figure 2. Basic workflow patterns as Petri Nets.

In case (c), transition t1.2,3 is only enabled when both
inbound places have at least one token each. Following the
normal transition rule, 1 token is removed from each inbound
place s1 and s2 and 1 token is added to s3. This means, two
tokens from s2 and s3 join at this transition. Two independently
traveling tokens are synchronized.

The literature refers to case (d) as conflict or as “confusion”
because both transitions t1,2 and t1,3 are enabled. Only one
transition can fire since the one enabling token cannot be
reduced twice by two firing transitions. Classic Petri Nets
define this case as non-deterministic choice for selecting the
firing transaction. One common approach to turn this case into
a deterministic choice is to label outbound arcs (such as with
“success” or “failure” in the figure) and determine the firing
transition by computing a result against which the labels are
compared. This results into the known branching pattern.

Case (e) shows a convention which is often used in Petri
Nets to abbreviate bidirectional arcs. Both notations are
semantically equivalent. Note that the bidirectional transition
actually represents two transitions.

VII. INTERPRETATION FOR THE IT MANAGEMENT
AUTOMATION CONTROLLER

In context of the Management Automation Controller, two
main domains are modeled as PTN: one is the model of
Desired State (DS) and one is the model of Observed State
(OS) for a managed environment.

A place represents a desired or observed state in the
managed environment. Examples of such states are: [system is
down], [server is down], [application is running], or
[maintenance is in progress]. States of a typical lifecycle
diagrams correspond to places in a PTN. (A notation is used in
the following for describing [states] and <transitions>).

A transition represents a change between those states.
When the prior state was [server is down], and the subsequent
state in the model is [server is up], then the transitions between

the two states is <boot>. Since booting of a server is a longer
term operation, it by itself can be modeled as a state: [server is
booting]. It is good practice to model rather “short” or
“timeless” indications as transitions such as <ignite server
boot>, followed by the [server is booting] state (place),
followed by a transition <bootstrap finished successfully>
before entering the [server is up] state.

Figure 3. shows the expansion of a regular PTN transition
into a transition state s2, which is a regular PTN place. The
transition [s1=DOWN] → <t1,2=BOOT> → [s2=UP] expands to
[s1=DOWN] → <t1,2=IGNITE BOOT> → [s2=BOOTING] → <t2,3=BOOT

FINISHED> → [s3=UP].

Figure 3. Expansion of a transition into a "transition state".

A token represents a managed element. The place in which
a token resides defines the (either desired or observed) status of
the associated managed element. Since tokens can carry own
state, multiple managed entities (e.g. multiple servers) can be
represented and transition in the same PTN, each independent
from the others. Each managed element is represented by a pair
of tokens, one representing its desired and one representing its
observed state in the two PTN models, respectively.

The equivalent of a token in the workflow language BPEL
would be a BPEL message. However, messages in workflow
languages are meant to be received and processed according to
the workflow definition.

A. Representing Desired and Observed State Models as PTN
Figure 4. shows a simple lifecycle model for class of

servers as pair of PTN for desired and observed states. A pair
of tokens (md, mo) represents the managed element, which is a
particular server instance. Position of token md in a place in the
desired state model represents the desired status of the
managed element. Position of token mo in a place in the
observed state model represents the observed status of the
element in the managed environment.

Figure 4. Simple lifecycle model for a server expressed as Petri Nets

(The transitions in Figure 4. are not yet controlled.)

so1
so2

so3
t1,2 t2,3

t3,2 t2,1
down

booting

up

down up

sd1 sd2 Desired
State
Model
(DSM)

t1,2

t2,1

Observed
State
Model
(OSM)

t1,2 – bootstrap
t2,3 – bootstrap
t3,2 – shutdown
t2,1 – shutdown

t1,2 – start
t2,1 – shutdown

correlated places

token:
md

token:

mo

so4
shutdown

ignited

finished

ignited

finished

server

server

s2=UP

t2,3
s2=BOOTING

s1=DOWN

t1,2

t1,2=BOOT

s3=UP s1=DOWN

(b) fork

(d) choice

(a) sequence

(c) join

(e) bidirectional arcs

[success]

[failure]

s1 s2

s2

s2

s2

s2

s2

s1

s3

s3

s1

s1 s1

s1

t2,1

t1,3

t1,2

t1,2

t1,2 t1,2.3

t1.2,3

t2,1

t1,2

s3

<==>

A token md in place sd1 in the desired state model (as
shown in the figure) means that the server is supposed to be up.
The token in sd2 would mean that the server is desired to be
down. A token mo in place so1 in the observed state model
indicates that the server is observed as down (as shown in the
figure). A token in so2 would mean the server would be in the
process of booting. The token in so3 would mean that the server
would be observed as up, and the token in so4 would indicate
the server is shutting down.

There are correlations between certain places in the desired
and the observed state models such as sd1 and so1 [down] and
sd2 and so3 [up]. Those correlated places represent alignment
between desired and observed state when the two tokens (md,
mo) reside in those correlated places. Correlated places
represent the same management status, either as desired or
observed. Correlated places are defined as one-to-one
relationships between pairs of places from the desired state
model: SDS = { sdi }, i=1…n and from the observed state model
SOS = { soj }, j=1…m, j ≥ i.

A set of correlated places C is defined as set C = { (sdi , soj

) } with ∀ sdi ∈ SDS : sdi → soj and soj ∈ SOS : sdj → soi . For
each place in a desired state model, there must be a correlated
place in the observed state model. There may be more places in
the observed state model that represent intermediate stages of a
managed element (such as booting). The correlated places for
the example in Figure 4. are: C = { (sd1 , so1), (sd2 , so3) }.

A managed element is aligned when its pair of tokens (md,
mo) is residing in a pair of correlated places. The subset of
markings that represent alignment between desired and
observed states is MALIGN : md → sdi, mo →soj with (sdi,
soj)∈C. Any other marking represents non-alignment between
desired and observed state for the managed element.

B. Deriving Actions from Desired State Changes
A state of alignment can only change when either new

desired state is defined or when a change occurs in the
managed environment that reflects back to a change in
observed state. Both changes lead to non-alignment since at
least one token must transition from the correlated pair of
places to another place, and one place can only be in one
correlation according to the definition of C.

In case desired state is changed (intended change), the
controller must determine a sequence of actions that brings the
managed environment into new alignment. In the example,
when desired state of a server is changed from [down] to [up],
the boot process must be ignited and completed before the
observed state can indicate that the server is up.

Aligned state: c1=DOWN = (sd1, so1).
 1.) md → sd2 with t1,2 firing in DSM leading to:
 2.) mo → so2 with t1,2 firing in OSM (igniting the server

 boot and booting the server),
 3.) mo → so3 with t2,3 firing in OSM (server boot

 completed).
Aligned state: c2=UP = (sd2, so3).
Server shutdown follows the same pattern. It will later be

shown how error conditions can be taken into account and
eventual corrective actions can be derived from error states.

Errors and failures are examples of unintended changes that
may occur in the observed state model.

All activity of the controller depends on firing transitions in
DSM and/or OSM. In order to control firing, DSM and OSM
need to be extended by connector places and activity tokens.

C. Connector Places
Connector places supplement DSM and OSM to provide

the interfaces with the environment. Tokens can be generated
or consumed in connector places as effects of interactions with
the environment. Those interactions occur with the managed
environment, with a user interacting through a console or with
other controllers. Connector places may be source connector
places or terminal connector places. The union of source and
terminal connector places represents the interface of the PTN.

A source connector is a place that interacts with the
environment and creates new activity tokens as effect of this
interaction. A source connector has only outbound arcs. A
terminal connector is a place that interacts with the
environment when it receives an activity token and initiates an
action. Activity tokens may be consumed during this
interaction. Connector places may exist that are neither source
nor terminal to represent intermediate stages. Connector places
supplement PTN for DSM and OSM allowing so-called
activity tokens to travel.

D. Activity Tokens
While tokens so far have been introduced to represent

managed elements, activity tokens represent actions or state
changes associated with managed elements. Activity tokens are
the only cause of transitions for regular tokens in a DSM or
OSM. Activity tokens are used to initiate and control the
transitions in DSM and OSM nets. Activity tokens are
associated with a specific managed element (and the
representing token) to which the interaction applies.

While regular tokens (representing managed elements) can
only travel through regular (non-connector) places, activity
tokens may travel both under two special transition rules:
- Join transition (bonding): an activity token enables a join

transition only for the associated (managed element) token
and bonds with it during the transition. It remains bonded
until it is detached from the regular token.

- Fork transition (detaching): if a bonded token arrives at a
fork transition where following places include both
connector places and non-connector places, activity tokens
detach from carrying regular tokens and pass along the
arc(s) to the connector place(s), while the regular token
passes along the other arc(s) to non-connector places.

E. Deriving Actions from Desired State Changes
Figure 5. shows the desired state model from Figure 4.

supplemented with connector places sc[1,2,3,4] in a state before
and after transition t1,2 has fired.

An activity token is shown in a source connector place sc1
before t1,2 has fired. This activity token might have been
created as effect of a user interaction to change the desired state
from [down] to [up]. The occurrence of the activity token in sc1
enables and fires transition t1,2 (under the assumption that the

activity is associated with the managed element represented by
the token in sd1).

(Non-connector places are shown with grey shading in the
following figures. Connector places are without shading.)

Figure 5. Desired state model before and after firing transition t1,2.

The join rule applies to transition t1,2 (multiple inbound arcs
into t1,2), which means that the activity token in sc1 bonds with
the one in sd1. Transition t1,2 is also a fork transition (multiple
outbound arcs from t1,2 leading to connector and non-connector
places) such that the bonded tokens immediately separate. The
activity token transitions into sc4 while the token of the
managed element transitions into sd2 (new desired state [up]).

The arrival of the activity token in terminal connector place
sc4 can trigger an action in the managed environment to ignite
the boot process.. Connector states sc2 and sc3 have the reverse
effect when desired state is changed from [up] to [down].

Source connector places in DSM such as sc1 and sc2
provide the control elements for altering the desired state for a
managed element. Terminal connector places in DSM such as
sc3 and sc4 represent actions that are initiated for a managed
element when an activity token arrives.

F. Reflecting Observed State Changes
Observed state changes as effect of reported changes from

the managed environment. The same concept of connector
places and activity tokens is applied. Source connector places
are associated with sensors in the managed environment
creating activity tokens when change is observed for a
managed element. Activity tokens bond with the tokens of the
managed elements for which changes were observed.
Transitions of bonded tokens then lead to changes in the
observed state model.

Figure 6. Observed state model with connector places.

Figure 6. shows the observed state model from Figure 4.
supplemented with connector places for responding to changes
in the managed environment. The token of a managed element
resides in place so1 ([down]). When the boot sequence is
initiated (as effect of an activity token arriving in place sc4 in

Figure 5. and triggering ignition), this ignition can be observed
in the managed environment and reported as an activity token
arriving in sc5, which enables transition t1,2 and, during firing,
bonds the activity token to token mo. The bonded token then
resides in place so2 ([booting]). When the boot sequence was
completed successfully, an activity token is reported to so6
enabling t2,3. Based on the rules for bonded tokens, the token
separates from the activity token during t2,3, bringing the
regular token to so3 ([up]) and the activity token to sc7 where it
is consumed. Place so3 is a place that is correlated with place
sd2 in the desired state model. The state of the managed
element is now aligned with its desired state.

Figure 7. Linkage between initiating change and observing it.

The nets for DSM and OSM are indirectly connected
through connector places. When a terminal connector place in
the desired state model receives an activity token, an effect in
the managed environment is triggered, which is reported back
as another activity token arriving in a connector place in the
observed state model. Occurrence of those activity tokens then
can enable transitions in the observed state model. Figure 7.
shows this indirect linkage between DSM and OSM. A direct
linkage between connector places in DSM and OSM can also
be established by connecting places through a direct transition.

G. Deriving Actions from Observed State Changes
In addition to intended changes in the managed

environment which are derived from changes in the desired
state model, error, failures and other conditions may occur in
the managed environment any time. When those are reported,
they also lead to the creation of activity tokens in connector
places. The observed state model must take these conditions
into account and must be designed accordingly.

For instance, the boot process of a server may end with a
failure or may not complete within an expected time. An
additional error place is introduced in the observed state model
(so5 in Figure 8.) to reflect those conditions.

The actual status of the server is unknown at this point. As
long as the desired state still in [up], the observed state Petri
Net may be designed in a way that it includes a sequence of
corrective actions by attempting to reboot the server by:

 1.) power cycle the server (bringing it into a defined state
 [down]) and

 2.) re-igniting the boot sequence.
Figure 8. shows the PTN which handles these cases. Two

new places so5 [error] and so6 [power cycle] have been
introduced as well as five new connector tokens sc11 [boot error
observed], sc12 [timeout], sc13 [retry], sc14 [initiate power cycle]
and sc15 [power cycle completed]. The figure shows the token
in place so2 [booting], which has three possible outcomes

so1
t1,2

down
booting

Managed Environment

so2

sc5

down up

sd1 sd2
t1,2

sc4
action:
ignite

ignition:
observedDSM OSM

so1 so3
t1,2 t2,3

t3,2 t2,1 down booting up
token:

mo

shutdown

sc9 sc8

sc7

sc10

so2

so4

sc6
bootstrap

successful

sc5
ignition

observed

shutdown

successful
shutdown

ignited

down up

sd1 sd2
t1,2

t2,1

sc2 sc1

sc3 sc4

down up

sd1 sd2
t1,2

t2,1

sc2sc1

sc3 sc4

 (before t1,2) (after t1,2) action: ignite

represented by three transitions t2,3, t2a,5 and t2b,5 which are
enabled by activity tokens arriving in places sc6 [bootstrap
successful], sc11 [boot error observed] or sc12 (timeout). Place
sc12 receives an activity token after t1,2 has fired, which starts
the timer as side effect.

Figure 8. Extended observed state model with error correction.

In case of error, the token in place so2 [booting] bonds with
an activity token arriving from connector places sc11 [boot error
observed] or sc12 [timeout] and transitions to place so5 [error].
An activity token in place sc13 indicates that the controller
should retry the boot cycle leading to the transitions to place
so6 [power cycle]. At this transition, activity tokens are
separated and placed into sc13 (to maintain the retry marking)
and sc14, which is a terminal connector place that starts the
power cycle. The end of the power cycle is indicated by an
activity token arriving in place sc15, which enables and fires
transition t6,1. This transition separates the activity token into
sc4 which ignites the bootstrap (see Figure 5.). The token now
resides in the initial place so1 [down] and the process repeats.

Whether or not the retry cycle will be performed in case of
error depends on the marking of sc13. This marking can be
made dependent on whether or not the desired state for the
server is still [up] or other conditions (not shown in the figure).

VIII. CONTROLLER COMPOSITION
Multiple controllers will interact in an automated IT

management process chain, each responsible for a specific task
or managed domain. Coordination among controllers is needed.
Higher-ordered controllers mainly perform coordination tasks.
They contain the composition models that span across
underlying controllers and constitute an automated IT
management process chain.

The self-similar structure of the IT management automation
controller allows the composition of controllers as shown in
Figure 9. Actions initiated by the upper controller are applied
as desired state changes to underlying controllers. And
reversely, observed state in underlying controllers constitutes

the observed state of a higher-ordered controller. The
interaction points among controllers are:
- higher Actuator Connector to lower DSM,
- lower OSM to higher Observer Connector to higher OSM.

Figure 9. Composition of IT Management Automation Controllers.

Source and terminal connector places are the “interfaces” at
the model level. Connector places are accessed through DSM
or OSM Interfaces. Activity tokens arriving in terminal
connector places can cause inter-controller activity. Activity
tokens arriving in source connector tokens can then cause
changes in PTN. Events can be issued to subscribers when the
OSM or the DSM changes, which also lead to the creation of
activity tokens in source connector places in PTN.

All those interactions are mediated through "get", “put”,
"transfer", and "push/subscribe" operations defined for web
service management standards [17].

IX. PTN EXECUTION ENGINE
A PTN Execution Engine was implemented (in Java) that

interprets DSM and OSM. It forms the core part of the IT
Management Automation Controller. PTN Schema have been
defined for DSM and OSM models which allows to represent
PTN models in XML. Places are static XML fragments which
can be addressed by xpath expressions in models. Tokens are
represented as dynamic XML fragments that are associated
with one place at a time.

The engine operates on the XML (SAX) trees of the DSM
and OSM PTN models and interacts with the web service
endpoint interfaces provided by the controller toolkit.
Operating directly on XML tree representations of models also
ensures that model state exposed through the DSM and OSM
interfaces is always up to date. The engine is triggered when a
new activity token arrives through one of the controller
interfaces. Only arrival of activity tokens can alter model state.

Java class names are associated with terminal connector
places, which are instantiated when activity tokens arrive.
Updates or events associated with DSM or OSM are directly
transformed into the creation of activity tokens in the addressed
places along with the invocation of the engine.

X. AUTOMATION USE CASES
This section describes a controller-based automation

scenario that was built as joint effort between a team from HP

OSM DSM

OSM DSM DSM OSM

OC AC

OC AC OC AC

so1
so2

so3
t1,2 t2,3

t3,2 t2,1 down booting up
so4

shutdow

sc15 sc4

sc7

sc10

error
sc6

bootstrap

successful

boot error

observed

timeout

sc11
sc12

so5

sc9 sc8
shutdown

successful
shutdown

ignited

sc5
ignition

observed

power cycle

so6

power cycle

completed
action:
ignite

t2a,5

t2b,5

t5,6
t6,1

sc13
action:
power
cycle

sc14

retry?

and one from Oracle using the controller toolkit. The goal was
to demonstrate model-driven automation for selected IT task
automation use cases. The testbed consisted of HP blade
servers (eight servers of type BL20p, dual Pentium III, 3.2GHz,
4GB), HP SAN disk array with two fiber channel switches, and
a HP ProCurve 2848 LAN network.

The automation use cases demonstrated coordinated
lifecycle and auto-correction capabilities for error situations
that would require human attention during operation in a
traditional system. The three automation use cases were:

1.) Automated provisioning and coordinated lifecycle
control of an Oracle database on blade servers.

2.) A storage auto-correction capability by automatically
configuring and attaching new disks from the SAN to servers
when Oracle Enterprise Manager predicted storage shortage
due to growing table sizes in the database.

3.) Response-time auto-correction during operation by
flexing additional blades into the database pool when response
times increased above a threshold due to load increases.

All use cases required the direct interaction between the
two management systems from HP and Oracle. Neither system
could achieve them alone. All interactions between systems
were normalized as model exchanges between controllers.

To actuate actual changes in the managed environment, two
management systems were employed: HP blade server
automation software and Oracle Enterprise Manager. Both
systems had to cooperate in order to solve the automation use
cases, which would have required the point integration between
the two systems in a traditional approach. Instead, both systems
were wrapped into controllers using the controller toolkit.

Three controllers were created with models:
- HP blade automation controller,
- Oracle Enterprise Manager controller, and an additional
- Coordinator controller.

The first two controllers were implemented as wrappers
around HP blade automation infrastructure and Enterprise
Manager from Oracle. The third controller was created for
coordinating the two other controllers. It coordinated activities
and composed them into one management service achieving all
three use cases.

 The first use case allowed for basic provisioning of blade
servers, disks and networks using HP blade automation
infrastructure. It deployed Oracle 10g on bare servers and
configured it for management through Oracle Enterprise
Manager. Two template models were available for instantiating
the database representing three different configurations
(“sizes”) of the Oracle database deployment: small (one blade
server), medium (two servers) and large (4 servers). Templates
were chosen from the coordinator controller based on user
input. This specification was based on the number of users,
data set size and the transaction rate supported by a
configuration. After template selection, the coordinator
controller interacted with the underlying controllers to establish
the needed hardware infrastructure using the capabilities of
HP’s blade server automation software and, once this had been
achieved, to initiate the configuration of Oracle.

The second use case employed Oracle Enterprise
Manager’s ability to predict shortage of storage in a growing
database and triggering correction by notifying the HP blade
automation controller to attach another disk from the SAN
storage array. After completion, the Oracle controller was
initiated to reconfigure the database in order to utilize the
additional disk.

The third use case allowed to auto-correct server capacity
when slowing database response time was indicated by Oracle
Enterprise Manager, triggering a server flex-up operation to the
HP blade automation controller. After completion, database
instances configured into the database.

These use cases demonstrated automation scenarios
achieving self-correcting behavior. They also demonstrated
how controllers can be used to wrap legacy management
systems into a controller framework, normalizing their
interactions using common controller interfaces and model
exchange through interfaces. Use of PTN allowed describing
and executing the coordination needed between controllers
providing an example for an automated IT management
process chain.

XI. RELATED APPROACHES
While automation has made substantial progress on the

business side of IT, such as in business process automation
[27], automation in IT management has been lagging behind.
On the business side of IT, enterprise software such SAP is
widely been used to automate the processing and management
of enterprise information. Tools such as ARIS [28] are used to
design automated business processes. In IT management, in
contrast, people still carry out management processes from
higher-ordered planning stages to the lowest levels of
managing machines, networks and storage. Management tools
are used that support those tasks. Tools signal and report
conditions to a human operator, who then is in charge to
interpret those signals and eventually respond by making a
change in the system, which is again mediated through a tool.
The loop is not closed in IT management; the operator’s
attention is permanently required.

Workflow systems are predominantly used in IT
management automation. In contrast to workflow languages,
which describe sequences of parallel or sequential actions, Petri
Nets primarily represent state. State changes occur in effect of
transitions, which are also described in a Petri Net. State in a
workflow language is always external to the actual workflow
description. It typically occurs in form of a message that is
processed along the workflow statements (e.g. a purchase
order, which is the message, traveling through a purchase order
workflow, which is a graph of actions).

Cfengine was developed at University College in Oslo [29].
Its primary function is to provide automated configuration and
maintenance of computers, from a policy specification. It
emerged from the need to control the accumulation of complex
shell scripts used in the automation of key system maintenance.
In a heterogeneous environment, shell scripts are hard to
maintain: shell commands have differing syntax across
different operating systems, and the locations and names of key
files differ. The non-uniformity of Unix was a major problem.
Cfengine defined a new language which unified the

heterogeneity underneath. The aim was to absorb frequently
used coding paradigms into a declarative, domain-specific
language that would offer self-documenting configuration.
Cfengine has an agent-based infrastructure through which
scripts can be distributed and executed on machines.

While Cfengine allows to abstract and to unify scripts used
in system management, it does not posses the capabilities of a
controller. Cfengine needs to be activated by an administrator
in order to perform management tasks on remote systems.

XII. SUMMARY
The paper presented an IT Management Automation

Controller which adopts the concept of a feedback system to
automated IT management for operational tasks such as
lifecycle management. State of a managed environment is
represented in terms of a pair of models for desired and
observed states and transitions between those states. A
specialized form of a Place-Transition-Net (PTN or Petri Net)
is used to represent the static aspects (states) as well as
dynamic aspects (coordination) in one model. This overcomes
the problems that result from separating models from
interpretation and execution logic that is often found in model-
based management approaches.

A PTN execution engine was built that directly executes
PTN and forms the core of the controller logic. This allows the
controller logic to be “generic” and driven by configurable
PTN models as opposed to hard-coded and built into the
controller. Web services management standards are used to
create uniform interfaces to controllers and that allow the
composition of controllers. It was shown how error correction
can be factored into PTN. It was also shown how coordination
between controllers in an automated IT management process
chain can be achieved.

Three automation tasks for a database system have been
implemented using the controller.

REFERENCES
[1] IT Service Management, The ITIL and ITSM Directory, http://www.itil-

itsm world.com.
[2] Hellerstein, J.L., Diao, Y., Parekh, S.S., Tilbury, D.: Feedback Control

of Computing Systems, John Wiley & Sons, New York, 2004.
[3] Hellerstein, J.L., Gandhi, N., Parekh, S.S.: Managing the Performance

of Lotus Notes: A Control Theoretic Approach, International CMG
Conference, 397-408, 2001.

[4] Wang, Z., Zhu, X., Singhal, S.: Utilization and SLO-Based Control for
Dynamic Sizing of Resource Partitions, Distributed Systems: Operations
and Management Workshop (DSOM 2005), Barcelona, Spain, October
24-26, 2005.

[5] Astrom, K.J., Wittenmark, B.: Adaptive Control (2nd Edition), Prentice
Hall, 1994.

[6] Xu, W., Zhu, X., Singhal, S., Wang, Z.: Predictive Control for Dynamic
Resource Allocation in Enterprise Data Centers, 2006 IEEE/IFIP
Network Operations and Management Symposium (NOMS 2006),
Vancouver, Canada, April 3-7, 2006.

[7] Welsh, M., Culler, D.: Adaptive Overload Control for Busy Internet
Servers, 4th USENIX Symposium on Internet Technologies and Systems
(USITS 2003), Seattle, March 2003.

[8] Liu, X., Zhu, X., Singhal, S., Arlitt, M.: Adaptive Entitlement Control of
Resource Containers on Shared Servers, IFIP/IEEE International
Symposium on Integrated Network Management (IM 2005), Nice,
France, May 2005.

[9] Kephart, J., Chess, D.M.: The Vision of Autonomic Computing, IEEE
Computer 36(1), 41-50, 2003. http://researchweb.watson.ibm.com/
autonomic.

[10] Smith, B.F., Kreitz, J., Wilson, M.M.: Autonomic IMS and IMS Tools,
The Mainstream The IBM eServer zSeries and S/390 Software
Newsletter, Issue 8, April 12, 2004.

[11] Coleman, D., Cook, N., Eidt, E., Fleck, J., Graupner, S., Mukerji, J.,
Singhal, S., Thompson, C.: Specification of the Service Delivery
Controller (SDC), Hewlett-Packard, July 2005.

[12] Graupner, S., Cook, N., Coleman, D., Nitzsche, T.: Management
Middleware for Enterprise Grids, 6th IEEE International Symposium on
Cluster Computing and the Grid (CCGrid 2006), Singapore, May, 2006.

[13] Sahai, A., Graupner, S.: Web Services in the Enterprise: Concepts,
Standards and Management, Springer Verlag, ISBN 0-387-23374-1, 310
Seiten, 2004.

[14] OASIS TC and Global Grid Forum: The Web Services Resource
Framework (WSRF) v1.2, April 2006, http://www.oasis-
open.org/specs/index.php#wsrfv1.2.

[15] OASIS: WSDM: Management Using Web Services (MUWS 1.0) and
Management Of Web Services (MOWS 1.0), March 2005.
http://www.oasis-open.org/specs.

[16] Globus Toolkit GT4, http://www.globus.org.
[17] Web Services for Management (WS-Management) v1.0, April 2006,

http://www.dmtf.org/standards/wsman.
[18] Service Modeling Language Specification v0.5, Draft Specification, July

2006. http://go.microsoft.com/fwlink/?LinkId=70293.
[19] Thompson, C., Coleman, D.: Model Based Automation and Management

for the Adaptive Enterprise, 12th Annual Workshop of HP OpenView
University Association, Porto, Portugal, July 10-13, 2005.

[20] Petri, C.A.: Kommunikation mit Automaten, Ph.D. Dissertation,
University of Bonn, Germany 1962.

[21] Petterson, J.L.: Petri Net Theory and the Modeling of Systems, Prentice-
Hall, Englewood Cliffs, 1981.

[22] Jensen, K.: An Introduction to the Practical Use of Coloured Petri Nets,
In: W. Reisig and G. Rozenberg (eds.): Lectures on Petri Nets II:
Applications, Lecture Notes in Computer Science vol. 1492, pages 237-
292, Springer-Verlag 1998.

[23] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use, Volumes 1-3, Monographs in Theoretical Computer
Science, Springer-Verlag, ISBN: 3-540-60943-1, 2nd corrected printing,
1997.

[24] CPN Tools, http://wiki.daimi.au.dk/cpntools/cpntools.wiki.
[25] Huber, P., Jensen, K., Shapiro, R.M.: Hierarchies in Colored Petri Nets,

In: G. Rozenberg (ed.): Advances in Petri Nets 1990, Lecture Notes in
Computer Science Vol. 483, pages 313-341, Springer-Verlag, 1991.

[26] Choo, Y.: Hierarchical Nets: A Structured Petri Net Approach to
Concurrency, Technical Report CaltechCSTR:1982.5044-tr-82,
California Institute of Technology, 1982.

[27] Scheer, A.W., Abolhassan, F., Jost, W., Kirchmer, M. (Ed.): Business
Process Automation, ISBN 3540207945, Springer Verlag, 2004.

[28] IDS Scheer: Aris, http://www.ids-scheer.com.
[29] Cfengine, http://www.cfengine.org.

