

Business-driven IT for SAP - The Model Information Flow

Guillaume Belrose, Klaus Brand, Nigel Edwards, Sven Graupner,
Jerry Rolia, Lawrence Wilcock
Enterprise Systems and Software Laboratory
HP Laboratories Palo Alto
HPL-2007-143
August 23, 2007*

business-driven IT,
SAP, automated
management, ITIL,
ITSM, SOA

Enterprises rely on efficient and flexible IT services. While complexity of
services is increasing, personnel to provide and manage services will remain
limited. At the same time, IT environments are becoming more dynamic, from
the business side as well as from the infrastructure side. The ability to
incorporate change faster, more efficiently and reliably has become a measure of
quality of enterprise IT organizations.

IT responds to these challenges by decoupling functions into services and by
improving the linkages between business processes and the supporting IT
systems. Service-oriented Architecture has become the accepted pattern for
modern enterprise IT.

This paper presents the Model Information Flow. It is part of a collaboration
between HP Labs and SAP Research. The goal of the collaboration is to explore
new approaches of model-driven planning, design and management of
enterprise applications in a shared and virtualized IT infrastructure. The goal is
to substantially improve the linkage between the business and the IT layer and
the ability to manage and accommodate change more efficiently and in a largely
automated manner.

* Internal Accession Date Only
 Published in BDIM 2007, 21 May 2007, Munich, Germany
 Approved for External Publication
© Copyright 2007 IEEE

Business-driven IT for SAP – The Model
Information Flow

Guillaume Belrose, Klaus Brand, Nigel Edwards, Sven Graupner, Jerry Rolia, Lawrence Wilcock

Hewlett-Packard Labs
Filton Road, Stoke Gifford, Bristol, UK and 1501 Page Mill Rd, Palo Alto, CA 94304, USA

Abstract — Enterprises rely on efficient and flexible IT services.
While complexity of services is increasing, personnel to provide
and manage services will remain limited. At the same time, IT
environments are becoming more dynamic, from the business
side as well as from the infrastructure side. The ability to
incorporate change faster, more efficiently and reliably has
become a measure of quality of enterprise IT organizations.
IT responds to these challenges by decoupling functions into
services and by improving the linkages between business
processes and the supporting IT systems. Service-oriented
Architecture has become the accepted pattern for modern
enterprise IT.
This paper presents the Model Information Flow. It is part of a
collaboration between HP Labs and SAP Research. The goal of
the collaboration is to explore new approaches of model-driven
planning, design and management of enterprise applications in a
shared and virtualized IT infrastructure. The goal is to
substantially improve the linkage between the business and the
IT layer and the ability to manage and accommodate change
more efficiently and in a largely automated manner.

Keywords: business-driven IT; enterprise IT management;
business to IT linkage; model-driven management; automated
management; enterprise IT resource planning; IT design; service-
oriented architecture; virtualization.

I. INTRODUCTION
While automation has made substantial progress on the
business side of IT, such as in business process automation
[1], automation in IT management has been lagging behind.
On the business side of IT, enterprise software such SAP is
widely been used to automate the business processes in
enterprises. Tools such as Aris [2] are used to design
automated business processes that are executed on the SAP
platform. In IT management, in contrast, people still carry out
management tasks and processes ranging from higher-ordered
planning stages to the lowest levels of managing machines,
networks and storage. Management tools are used that support
those tasks. But the degree of automation is low.
Accommodating change has always been a challenge in IT.
Change may originate from the business side such as changes
to business processes when switching partners in a supply
chain. Change may also originate from within IT such as when
IT systems need to be maintained, updated or upgraded or
need to comply with latest regulations.
Virtualization helps to decouple applications from resources
enabling new opportunities to operate IT more effectively by

consolidating applications, sharing resources and improving
overall utilization. However, benefits emerging from
virtualization also introduce another layer of management. In
order to leverage advantages, virtualization itself must be
managed effectively, ideally fully transparently and
automatically like in an operating system.
Service-oriented Architecture (SOA) allows the decoupling of
consumers and providers of IT functions by well-defined
interfaces and open protocols. Formerly monolithic
applications are broken apart such that they can be provided
and consumed more flexibly as services. SOA can be applied
at any layer, from businesses and organizations to processes;
from applications to systems and resources. But the higher
degree of modularity, choice and flexibility comes again to a
price of increased effort in management. Services must be
orchestrated and coordinated, eventually across domains when
a service is provided in another than the consumer’s domain.
With growing complexity, scale and connectivity of IT at all
levels, management and in particular managing change has
become a limiting factor for business efficiency in enterprises.
Model-driven approaches to IT management aim to improve
and accelerate the design, management and change processes
in IT. Models are used to formally represent information about
IT systems at the various stages of their lifecycle, from
planning and design to deployment, management, maintenance
and final retirement. Availability of formal information as
opposed to information informally carried by people can
enable the use of advanced tools and the automation of design
and management stages of IT systems. But despite the fact that
models and model-driven processes have become prevalent in
most modern industries, such as in chip or car manufacturing,
model-driven approaches to IT management are at the
beginning and remain subject to continued research.
SAP is a major provider of enterprise applications that need to
be managed in IT. Hewlett-Packard is a major provider of IT
infrastructure and management systems as well as services.
Substantial effort is spent to plan, design, implement and
manage SAP applications along with infrastructure throughout
enterprises around the world. In a joint research collaboration
between HP Labs and SAP Research, new approaches of
model-driven planning, design and management are being
developed and investigated. The goal is to link business
processes better with the infrastructure supporting them.
Models are used to reflect the different stages of requirements,

designs, deployments and management environments. The
ability to incorporate and evaluate consequences of change
faster in models than in the real environment and driving
actual changes in an IT environment automatically from
models, is expected to deliver more efficient IT management
processes and improved responsiveness of IT to change.

II. PROBLEM STATEMENT
The speed and cost of creating new applications in IT and
incorporating change has become a major factor for IT for
supporting the business of the enterprise. Experiences have
shown that addressing only isolated domains of the problem
space, such as infrastructure management or applications
management, has limited effect. The main problem remains
how the different processes, people and organizations that are
involved at different stages can cooperate and exchange
information more efficiently than they can today such that the
entire chain from planning, design, implementation (including
testing) to deployment, management and final retirement can
be processed in a much better integrated manner based on
formalized information that is being consumed and produced
at each stage. Establishing such an information supply chain
across the different stages in an integrated manner is one of
the significant problems in enterprise IT today.

III. APPROACH
The novel aspect of our approach is the formalization, linkage
and coherent interoperability of models and transformations
along the several stages of business process customization to
application and infrastructure design, and from there to the
stages of deployment and management of a finally operating
application. Models are conceptually and logically linked
beginning from the business process and its customization,
then leading to a choice of application components needed to
support the customized processes, to the proper “sizing” of
these application components in order to meet an anticipated
workload. Information about sized application components
then in turn provides requirements for infrastructure
components and their configurations (servers, networks,
storage) including eventual layers of virtualization.
Models are used to accurately capture the needed information
at each stage. Transformations occur in order to derive a
model of a subsequent stage from the information available at
a prior stage. Transformations establish the linkages between
the models. The linkages between models then allow
incorporating change at potentially any stage and re-
performing respective transformations only for the stages
following the stage where a change had occurred. For
example, in case that only infrastructure changes (e.g. caused
by an equipment replacement cycle), the requirements from
the business process and its breakdown into application
components would remain unaffected. Sizing might change
because newer equipment will likely have improved
performance. The newly sized design then provides the
information for the subsequent transformations into proper
infrastructure configurations and application deployments. In

case of a business process change, the entire chain of linked
models may need to be recomputed and recreated.

IV. THE MODEL INFORMATION FLOW
The Model Information Flow represents a number of models
that have been identified for capturing the information needed
at the different stages. The Model Information Flow also
represents a flow of information from "the left to the right".
This flow of information exists today when enterprise
applications are being planned, designed, implemented and
managed. The difference to today’s practice is that, in the
Model Information Flow, formalized information flows in the
form of models from the left to the right as opposed to
informal information in the form of documents or other means
of communication among people.
The information in the Model Information Flow includes:
- A general process pattern is chosen that matches the kind

of process to be built. A customization steps follows.
- The customized business process then determines the

application components that are needed to perform the
transactions used by the process.

- Non-functional requirements are taken into account such
as performance, security and availability. Application
sizing is an established step in enterprise application
design which determines the capacity or the amount of
resources needed for the anticipated workload.

- Functional requirements (business processes and process
steps) and non-functional requirements (performance,
security and availability) then provide the input for an
initial application design including the actual application
components with numbers or ranges of instances.

- Infrastructure must then be chosen and configured such
that it can support the application design. While in the
past this step was largely a matter of choosing resources
(networks, machines, storage), this is changing and
becoming more and more a matter of exploring configu-
ration choices and virtually creating the needed resources
in shared IT environments. This means, resources need to
be allocated from pools and virtual resources (networks,
machines, storage) may need to be created in them.
Exploring infrastructure design choices based on
application requirements and reflecting those choices in
form of infrastructure designs is becoming more and more
relevant. An infrastructure design is the result that is
tailored for the requested application design in the
targeted data center environment.

- Once an infrastructure design has been created, it can be
instantiated by applying configuration parameters from
the design to the physical environment in the data center.

- Once the resource infrastructure has been brought into
existence, the application design can be deployed and
configured in the desired form as specified.

- Once the application is deployed, its management
lifecycle becomes effective through which then both, the
infrastructure and the application are managed.

By formalizing this information, some of the transformations
can be automated and hence accelerated such that they can be
performed and re-performed faster. Formalization also allows
exploring larger design spaces using techniques such as
Layered Queuing Models [3], policy-based design [4] or
genetic algorithms [5].
Figure 1 gives an overview of the identified models and
transformation for the Model Information Flow.

Figure 1: Model Information Flow with transformations.

The following section explains the individual, constituent
models of the Model Information Flow in more detail.

V. CONSTITUENT MODELS
The following models have been identified for the stages of
the Model Information Flow:
- The General Process Model.
- The Customized Process Model.
- The Application Packaging Model.
- The Constraints Model.
- The Application Performance Model.
- The Unbound Model.
- The Infrastructure Capability Model.
- The Grounded Model Design.
- The Grounded Model.
- The Bound Model.
- The Deployed Model.

A. The General Process Model
As General Model we understand a number of blueprints that
exist for general SAP environments that can be reused and
customized. The General Process Model represents the
standard business process blueprint that is delivered with SAP
for a number of standard business processes for a number of
business domains such as Supply Chain Management (SCM),
Customer Relationship Management (CRM), Enterprise
Resource Planning (ERP), Product Lifecycle Management
(PLM) or Supplier Relationship Management (SRM) as well
as industry segments such as Financial Services, Public
Services, Service Industries, Process Industries, Consumer
Industries or Discrete Industries [6]. The spectrum and
classification of these domains and industries is defined by
SAP in the Enterprise Service Architecture (ESA) [7]. A large
library of those blueprints exists in SAP/R3 Solution Manager.

Work is organized in projects. Steps to define projects and
processes are documented in [8].
Selection of a General Process Model from the library of
blueprints is the first step of designing a business process. This
blueprint is then subject of customization leading to the
Customized Process Model.

B. The Customized Process Model
The Customized Process Model represents the customization
of a business process for a project. The business process
consists of a number of steps that also can be hierarchical.
Tools such as Aris [2] can be used to define and customize
processes.
A customized business process represents a sequence of
activities that is initiated in a client, which can be a user in
front of a terminal or another program. Steps of a business
process may lead to transactions in the associated SAP/R3
server. Steps in a process that only describe user activity on
the terminal, such as filling in information, do not cause
transactions and are not relevant for the server.

Figure 2: Customized process for Sales and Distribution (SD).

Figure 2 shows the customized process for the Sales and
Distribution (SD) process, which is often used as a benchmark
for SAP applications. The SD process consists of 17 steps that
are executed as a sequence by a user. Steps in the right-most
column cause transactions on the SAP/R3 server. Transactions
used in the SD process are: VA01, VL01N, VA03, VL02N,
VA05 and VF01.

Figure 3: Three-tier client-server architecture of SAP/R3.

Figure 3 shows the client-server architecture of a typical
SAP/R3 system where users execute dialog steps as defined by
the customized business process which lead to transactions on
the SAP server, which in turn cause transactions on the
database. While steps are executed on the client side (by a user
or another program), transactions caused by steps are executed
on the (SAP/R3) server side in application components. Each
application component typically offers one type of transaction.
Multiple steps may invoke the same transaction type, and
hence the same application component.
While the Customized Process Model primarily defines the
functional requirements of the process, it also includes non-
functional requirements such as requirements for performance,
availability or security that are required for that process.
Performance requirements, for instance, describe how many
clients or users are expected to use the system executing the
customized process. The number of expected concurrent users
is an important measure of the capacity for which a SAP
system will be sized.
Figure 4 shows the formal representation of the Customized
Process Model in the Model Information Flow as UML class
diagram. The model shows business processes and their steps
and how they relate to application components, particularly
which application components will execute business process
steps, and which performance requirements will be imposed
on components.

Figure 4: Formal representation of the Customized Process Model as UML

class diagram.

The model shows a one to one correspondence between an
instance of an AI_Service and an AI_BusinessProcess. The
AI_Service is the information service that implements the
business process. It is the general anchor class for the entire
Model Information Flow model chain.
A business process can be decomposed into a number of
business process steps. Instances of the AI_BusinessProcess
class contain one or more AI_BPSteps. An instance of an
AI_BPStep may be broken up into multiple smaller
AI_BPSteps when involving branches or loops. Once a
business process step is decomposed into sufficient detail each
of the lowest level steps can be associated with an
AI_ApplicationComponent that will execute the step. An
application component is the program or function that

implements the execution of a business process step such as
the SAP transaction named VA01 in the SD process.
The relation AI_BPStepToApplicationComponentMapping is
a mapping that details how the business process step is
mapped to the application component. It provides the linkage
between specific steps to the transactions invoked within the
application component. It also provides details of parameters,
such as the average number of line items in a sales order, etc.
Not all steps require interaction with application components
such as certain interactions with a user that control the flow of
steps (e.g. choices a user makes in the UI). In those cases, no
transactions are performed on SAP application components
and hence no association exists between this step and an
application component.
A business process step may have a set of non-functional
requirements (class AI_NonFunctionalRequirements) associat-
ed with it that are imposed on application components when
steps are executed. Requirements include: performance,
availability and security requirements. In the current version,
availability and security requirements are modeled as a string
holding an expression such as, in the simplest case, “high”,
“medium”, “low”. Performance requirements are specified in
terms of numbers of registered users (NoUsersReq), numbers
of concurrent users of the system, the expected response time
in seconds and a throughput requirement for the number of
transactions per second. Many steps may share the same set of
non-functional requirements by aggregating them to instances
of AI_NonFunctionalRequirements. A time function is also
denoted by a string expression in class AI_TimeFunction.
Instances of that class can be attached to individual instances
of performance, availability or security requirements. These
specify when the non-functional requirements apply, so
different requirements can apply during office hours or outside
normal office hours. Richer time varying functions are also
possible to capture end of months peaks and the like.
In summary, the Customized Process Model specifies a
customized business process consisting of steps that each may
carry different non-functional requirements that are imposed
on the transactions each step poses onto the server(s)
containing the application components that are actually
executing the transactions. This fine-grained modeling allows
a detailed capture of business requirements in combination
with non-functional requirements.

C. The Application Packaging Model
Figure 5 shows Application Packaging Model, which further
expands the Customized Process Model starting with an
AI_ApplicationComponent. The Application Packaging
Model describes the internal structure of the software: what
products are needed and what modules are required from
which products. The model describes that an AI_Application-
Component is associated with an AI_ApplicationModule. An
application module might correspond to a JAR file for an
application server. In the case of SAP/R3, it might be the
module to be loaded from a specific product into an
application server such as SD or FI.

One or more application modules can be included in a
software product. For example, the SAP/R3 Enterprise product
contains the modules for SD. Application modules can be
dependent on other application modules. For example, the SD
code module for the application server depends on the SD data
being loaded into the database.

Figure 5: The Application Packaging Model.

An application component is executed by an AI_Application-
ExecutionComponent. This could be a servlet running in an
application server or a web server. It could also be a process
such as a Unix process. In the case of SD’s VA01 transaction,
it is a Dialog Work Process that is executing the component.
When it executes, the application component may indirectly
use or invoke other application components in order to run.
SD transactions need to access other application components
as well such as the Enqueue Work Process and the Update
Work Process, as well as the database application execution
component. This is why there are two relations between
AI_ApplicationComponent and AI_ApplicationExecution-
Component. The “indirectly uses” association shows which
additional application execution components might be used
whenever an application component is executed. This is useful
for determining the components that need to be installed in
order to produce a working service.
To summarize, the Application Packaging Model contains the
information in which application modules application
components are included and where they will be executed. An
application execution service (such as a SAP application
server) loads or contains application modules (such as SD)
that execute in application execution components (such as
Dialog WP) which, in turn, execute the application component
(such as VA01) in order to deliver a business process step.
Note, that the Application Packaging Model describes the
topology as part of the requirements for the service to be
created. It itself is a design rather than a current status of the
environment.

D. The Constraints Model
Constraints are needed by transformations and tools or people
carrying out transformations to drive models from one step in
the Model Information Flow to the next. There is a need to
express arbitrary constraints on classes and instances for each
of the various models. Constraints can be “soft” constraints

such as preferences, guidelines or hints or can express “hard”
constraints such as impossible or undesired combinations.
Policy-based design has been explored in the past for
modeling valid or preferred hardware configurations and
driving configuration generation processes solely from
constraints [4]. Constraints were included as strings in
modeled classes using a constraint language [9]. The problem
with the approach was that constraints turned out to be case
and even for the same case time specific, while models were
supposed to be reusable over time as well as across
deployments for similar configurations.
From this experience we learned to not include constraint
expressions directly into models, rather make them attachable
to elements in models (classes and instances). This is the
approach taken in the Model Information Flow. Constraints
expressions are factored out from being contained in model
classes. They are described as separate instance data that can
be attached to (and potentially be shared with) any instance or
any class in the other Model Information Flow models.
Constraints are expressed as instances of class AI_Constraint,
as shown in Figure 6, which is capable of holding arbitrary
constraint expressions as strings.

Figure 6: The Constraints Model.

The class diagram Figure 6 shows that there are two constraint
classes, one for so-called class-scoped constraints and one for
instance-scoped constrains. Instances of those classes can hold
constraint expressions that can be attached to either any other
instance or any class to which they are attached. Constraints
may also apply to associations.
Constraints are used by tools to generate new models and
model information as the Model Information Flow progresses
from left to right. Examples of constraints include:
- How to scale up application servers – which application

execution components are replicated and which are not?
- Installation and configuration information for application

components, application execution components and
application execution services.

- Performance constraints on application execution services
such as avoid running an application server on a machine
with greater than 60% CPU utilization.

E. The Application Performance Model
Figure 7 shows the class diagram of the Application
Performance Model. The purpose of this model is to define the

resource demands required for business process steps (as
direct demands) and for demands application components
impose on other application components (as indirect demands)
in effect of executing transactions.

Figure 7: The Application Performance Model.

There are two types of resource demand to consider.
1. The demand for resources generated directly by the

application execution component (e.g. a Dialog WP)
using CPU, storage I/O, network I/O, memory and other
metrics when it executes a business process step – this
demand is modelled by class AI_DirectComponent-
ResourceDemand.

2. The demand for resources generated by components that
the above application execution component uses when it
calls or invokes other components (e.g. a Dialog WP
using an Update WP) – this demand is modelled by class
AI_IndirectComponentResourceDemand.

AI_IndirectComponentResourceDemand can be recursive (e.g.
the UpdateWP might invoke a database process), which means
there are further instances of that class between further
instances of AI_ApplicationComponents.
The following is explanatory text for some of the properties
that appear in AI_IndirectComponentResourceDemands and
AI_DirectComponentResourceDemands. The properties are
inherited from the common superclass AI_ResourceDemands.
CPUProperties may be expressed in a higher-ordered measure
such as SAPs [11]. Similar measures can be used for
expressing MEMProperties, NetIOProperties and DiskIO-
Properties. delayProperties allow to express any delay (e.g. a
wait or sleep) associated with the component’s activity which
does not consume any CPU, NetIO and DiskIO resources.
NbInvocation allows expressing the number of times the
component is invoked during the execution of a business
process step. InvocationType indicates whether an invocation
is synchronous if the caller is blocked or asynchronous if the
caller can immediately continue.
The AI_DirectComponentResourceDemands and AI_Indirect-
ComponentResourceDemands associations specify the unique
resource demands for each business process step in a fine-
grained manner. These demands properties are determined
from known characteristics of each application component.

They can be derived from known benchmarks and also from
traces of installed systems.
To summarize, the Component Performance Model allows
describing known performance characteristics for each
application component directly and indirectly that is invoked
in effect of a business process step. Information in this model
requires detailed knowledge about the performance behaviour
of the process and its application components. Part of this
information is available today for SAP in form of well-known
benchmarks. The remaining information needs either be
collected from existing deployments or can be estimated by
simulation such by the Layered Queuing Model tool [3] we
use for the Model Information Flow.

F. The Unbound Model
The Unbound Model conceptually aggregates the discussed
models: the Customized Process, the Application Packaging,
the Constraints and the Application Performance Model. No
new information is introduced that is not already contained in
one of these models. Figure 8 conceptually shows the Unbound
Model.

Figure 8: The Unbound Model.

The Unbound Model represents a marking point in the Model
Information Flow. It aggregates the mentioned models that
have in common that they represent requirements for an
enterprise application, from the business process to its break
down in application components and application execution
services that are required to execute them. It is also used to
determine the resource demands on those components from
performance requirements according to which application
execution components then need to be sized (which occurs in
the step to the Grounded Model Design, which is explained in
section H).
Requirements from the Unbound Model next need to be
matched with resources that need to be made available in an
infrastructure in order to deploy and run the application.
Since resource infrastructure itself has become configurable
and even may need to be created based on a specification, a
design of such a resource infrastructure is created first.
Creation of resources as part of the later deployment process
has become a major obstacle for traditional management
processes and systems when dealing with virtualized resources
that explicitly need to be created before they can be used.
For creating an appropriate resource infrastructure, a spectrum
of choices exists that needs to be explored in order to identify
a “good” match between the requirements from the Unbound
Model and the capabilities resource infrastructure offers.

It means that the resources are not simply allocated from an
existing inventory. The desired resource environment must be
designed according to the requirements expressed in the
Unbound Model for an application. Introducing this
intermediate step of creating a resource infrastructure design
first before the resources from that design are actually chosen
from resource pools in a data center for deployment is an
essential development introduced in the Model Information
Flow. It allows decoupling the matchmaking between
requirements to exploring choices of resource configurations
from actual resource assignments in a data center.
There are two stages of resource infrastructure designs, one is
called the Grounded Model Design, which is explained in
section H and the following stage is called the Grounded
Model, which is subsequentially explained in section I.

G. The Infrastructure Capability Model
Making requirements with capabilities is an inherently
complex process. Several approaches have been explored in
the past for assigning and allocating resources to requirements.
There is extensive literature on the topic [12], [13], [14]. Some
approaches applied complex optimization techniques; others
used simpler bin packing. Most were restricted to singular
resource types, which is insufficient in practical environments.
Alternatively, policy-based resource topology design
approaches have also been explored [4].
The approach taken in the Model Information Flow is simpler.
It is based on the idea to describe (enumerate) a finite number
of possible resource infrastructure configurations in a catalog
of so-called Infrastructure Capability Models, from which
possible resource configurations can be chosen and further
parameterized for final deployment. The catalog contains a
number of instances of Infrastructure Capability Models,
which are defined in Figure 10. Capabilities may vary from data
center to data center. Using a catalog from which resource
configurations can be chosen as capabilities simplifies the
matchmaking process to application requirements from the
Unbound Model.
Figure 9 shows the abstract transformation how a resource
design is derived from application requirements summarized
in the Unbound Model by choosing and parameterizing a
resource configuration chosen from the catalog of
Infrastructure Capability Models.

Figure 9: Deriving a resource design from requirements in the Unbound

Model using a catalog of Infrastructure Capability Models.

Presenting a finite catalogue of resources that can be
instantiated leads to a finite number of choices. This makes the
selection of resource types by a capacity planning tool simpler

[15]. It also makes the infrastructure management easier as
there is less complexity in resource configuration. Standard
templates can be used.
Another decision that has been made was to not expose the
hosting relationship for virtualized resources. The DMTF
Virtualization System Profile [10] models hosting relationship
as a “HostedDependency” association. This also keeps the
models simpler since it avoids dealing with recursion.

Figure 10: The Infrastructure Capability Model.

The Infrastructure Capability Models is defined as class
diagram in Figure 10. It contains classes for resource types such
as AI_ComputerSystem or AI_Device that can be deployed
and configured by the underlying resource fabric (which is a
management system in a modern data center that allows
automatically configuring and deploying resources based on a
formal specification).

H. The Grounded Model Design
As mentioned, the Grounded Model Design is an intermediate
stage in the Model Information Flow to represent an abstract
resource design that matches the requirements for an
application summarized in the Unbound Model. Figure 11
shows the class diagram for the Grounded Model Design.

Figure 11: The Grounded Model Design.

Characteristics of the Grounded Model Design are:
- There is an instance of an AI_GroundedExecution-

Component for each unique instance of an AI_-
ApplicationExecutionComponent in the Unbound Model.

- One or more AI_GroundedExecutionComponents are
executed by an AI_GroundedExecutionService. The
execution association is consistent with that expressed in
the Application Packaging Model.

- One or more AI_GroundedExecutionServices are run on
an AI_ComputerSystem whose type has been selected
from the Infrastructure Capability Model.

- A range attribute indicates the maximum and minimum
number of components that might be used in the
Grounded Model. Several different Grounded Models
with different numbers of components may be derived
from one Grounded Model Design.

- A rangePolicy attribute specifies how the appropriate
number of components is selected from a range. This
might be derived or influenced by the time varying
AI_NonFunctionalRequirements in the Customized
Process Model. It can be used by an infrastructure
management system to determine when and under what
conditions to switch between different Grounded Models.

- If the range and rangePolicy attributes are not set in an
element within the Grounded Model Design, then there
can be only one instance of the element of that type in any
corresponding Grounded Model.

The Grounded Model Design is calculated from the Unbound
Model using the catalogue of Infrastructure Capability
Models. The total capacity of the system must satisfy the time
varying performance requirements in the Customized Process
Model. The required capacity is determined by combining
these performance requirements with the aggregated resource
demands (direct and indirect) from the Application
Performance Model.

I. The Grounded Model
The Grounded Model is then the specification of a concrete
resource infrastructure and the applications to be deployed on
that infrastructure.

Figure 12: The Grounded Model.

Figure 12 shows the class diagram for the Grounded Model.
Classes that have already been introduced in earlier models are
shown in grey. It is apparent that it is very similar to the
Grounded Model Design. The main new element is the super

class AI_GroundedComponent. It was introduced to represent
the installation and configuration information for both
grounded execution components and grounded execution
services, as well as information about policies and start/stop
dependencies. Further properties define:
- AI_InfrastructureSettings contains threshold information

for the management components, for example MaxCPU-
Utilization – if it rises above a set figure such as 60%, an
alarm should be triggered.

- AI_ManagementPolicy specifies further information for
the management components – e.g. flex up if utilization
rises above 60%.

- AI_GroundedDeploymentSettings include command line
and configuration information so that the system can be
installed, configured and started in a fully functional state.

- AI_SettingData provides additional configuration
information that can override information provided in the
grounded deployment settings. This allows grounded
components to share the same set of deployment settings.

Not all attributes are set in the Grounded Model. For example,
it is not possible yet to set MAC addresses in the Grounded
Model, since there is not yet any physical resource assigned.

J. The Bound Model
The class diagram for the Bound Model is shown in Figure 13.

Figure 13: The Bound Model.

The Bound Model represents the binding of the Grounded
Model to physical resources. It adds associations between the
classes of AI_ComputerSystem, AI_Disk, AI_StorageSystem,
AI_Network, and AI_NIC that are specified in the Grounded
Model to real physical components that are available in the
data center and that have been chosen for the application for
deployment. A deployment system such as SmartFrog [15] in
the prototype then deploys the bound model.

K. The Deployed Model
The Deployed Model differs from the Bound Model in only
one respect. It shows the binding information for the
management services running in the system. All the entities
shown in this class diagram have a management service

associated, which can be used to change state and/or observe
the current state. One example of this could be to manage a
virtual machine migration. The application managing the
migration would use the management service in order to
perform the migration. Once the migration is completed, the
management application would update the Deployed Model
and the Bound Model to reflect the new physical system.
Figure 14 shows the class diagram of the Deployed Model.

Figure 14: The Deployed Model.

VI. MODEL TRANSFORMATIONS
As information flows through the Model Information Flow,
transformations occur between the various stages. These
transformations occur in today’s practice, but are solely
manual and typically performed by different teams. Business
consultants work out business processes in an enterprise.
Solution architects then design and size an application based
on the consultants’ input. Integration teams build, test and
integrate the application into a customer’s data center.
The different transformations in the Model Information Flow
occur at three different time scales: at design, deployment and
run-time. Transformations are complex in nature and may not
be automatable. Even in those cases, tools can support the
exploration of design spaces, providing solution architects
with better information for making decisions.
The approach taken in the Model Information Flow is to
initially reflect today’s practice by gathering information and
describing it in models. Most transformations are initially
performed manually before they can be successively
supplemented and eventually replaced by tools.

A. Transformation: General Process Model to the
Customized Process Model.

This first transformation is made by a consultant who chooses
a business process blueprint from SAP’s library [6] matching a
customer’s business case. The blueprint is then customized to
the particular case. The result is a customized business process

describing the steps a user will perform when exercising the
process. Transactions are identified for steps. These describe
the functional aspects in the Customized Process Model. Non-
functional requirements need to be included such as the
expected number of concurrent users of the process.
Additional non-functional requirements can be captured as
well such as for availability and/or security. Those
requirements are included as text in the model, which could be
informal text for human interpretation at later transformation
stages, or could be expressed in a specification language for
eventual subsequent transformation tools.

B. Formulating the Unbound Model
Based on the Customized Process Model, two other models
need to be formulated.
The Application Packaging Model further details the
transactions from the Customized Process Model into
application modules and software packages based on
information provided by SAP. Application execution
components (e.g. work processes) and application execution
services (e.g. application servers) based on which the
application will run later need to be identified (see Figure 5).
The Application Performance Model then contains detailed
descriptions of resource demands transactions pose on
application components as well as among application
components themselves when they invoke each other (see
Figure 7). This detailed information about resource demands
may be obtained from detailed measurements in reference
installations. Estimates can also be used. It is one of the
research questions to what extent fine-grained resource
demands for transactions can be obtained in practice.
In addition, models can be supplemented with additional
constraints from the Constraints Model indicating preferences
or exclusions.
The entirety of General and Customized Process, Application
Packaging and Performance Models forms what is called the
Unbound Model. The Unbound Model summarizes all
requirements of an application design and provides the input
for the following transformation stage. The Unbound Model
reflects the application view independently of the
infrastructure in which it may be deployed. This independence
allows for reuse of the Unbound Model. The following
transformation links it to a particular target environment.

C. Transformation: Unbound Model to the Grounded Model
The transformation from the Unbound to the Grounded Model
is the most complex transformation and a two-stage process.
First, a Grounded Model Design is obtained, which is then
refined into the Grounded Model, which contains descriptions
of all the resources to which it can be bound and deployed.
Obtaining the Grounded Model Design as a first step means
determining a set of resource types for all the application
execution services that occur in the Application Packaging
Model. These resource types need to be matched against the
capabilities offered by the infrastructure of a data center. For
example, if an Oracle 10 database (as type) is required in the

Application Packaging Model, and the list of infrastructure
capabilities enumerates availability of Oracle 10 for HPUX on
a number of potential server platforms as well as on Linux and
Windows, all these capabilities will be taken into account.
Each combination of operating system and server platform
with availability of Oracle 10 also provides an estimate of the
capacity the platform will deliver as well as cost (e.g.
reflecting license cost). Both are included as properties in the
Infrastructure Capability Model (refer to section G).
Another dimension of choice comes into play in form of the
“size” of the platform to meet the performance requirements
from the Customized Process Model. In order to obtain a
database configuration of a proper capacity, certain server
platforms may be insufficient and will be excluded from the
list of valid choices. The number of instances may vary in case
of a clustered database. Detailed resource demands from the
Application Performance Model can be used to estimate
performance by simulation, e.g. by using Layered Queuing
Models [3]. For each platform choice, the number of instances
can be varied in order to find a balanced design. A final choice
must be determined by judgment of a solution architect based
on the choices evaluated and presented as result of the design
space exploration.
The Grounded Model Design then appears as a set of valid
platform choices for all application execution services from
the Unbound Model. For flexible deployments where
resources can be scaled up and down, ranges of resources are
determined within which the design remains balanced. From
there, initial numbers of resources are determined which are
then unfolded in multiple resource instance entities in the
Grounded Model that represent the final design that is ready
for binding and deployment.

D. Transformation: Grounded Model to Bound Model
While prior transformations occurred at design time, the
transformation into the Bound Model occurs right before
deployment. It means the assignment of resources from a data
center to the resource instances represented in the Grounded
Model. The inventory of available resources needs to be
consulted in order to identify the available resources. Resource
assignment is still a logical step meaning that resources are
reserved for the application and cannot be reassigned
elsewhere. Actual configuration and use of resources for the
application occurs in the following step of deployment.

E. Transformation: Bound Model to Deployed Model
Once resource assignment has been completed, the resources
are known and ready for use. Deployment of the application
onto those resources can be carried out by a deployment
service. Management service endpoints are created and their
references are inserted into the Bound Model turning it into
the Deployed Model.

VII. SUMMARY
The Model Information Flow establishes a linked chain of
formal models reflecting all necessary information needed for
defining, deploying and managing a SAP application. The

initial approach taken was to identify and reuse the
information people create and use when designing, building
and integrating SAP applications. A set of transformations has
been identified which create new information from existing
information. Transformations in today’s practice are solely
carried out manually. By introducing formal definitions in the
form of models, tool support becomes more feasible. In the
current prototype, the deployment step is fully automated
using the SmartFrog framework [16], enabled by the
Grounded Model. Tools and techniques are being developed
for the preceding stages. The current prototype employs a
genetic algorithm for enumerating workload placement
combinations and a Layered Queuing Model tool [3] for
evaluation. In the future, use of a constraint solver [9] is
planned for incorporating constraints in designs.
The Model Information Flow is an effort to introduce the same
discipline into the definition, creation and management of
enterprise IT systems as it has occurred in the business layer
above where processes are defined, created and are managed
largely based on models and designs. The expectation is that
model-driven approaches in IT will also lead to shorter times
needed for introducing new services and also for incorporating
changes in IT faster and more accurately than today.

REFERENCES
[1] Scheer, A.W., Abolhassan, F., Jost, W., Kirchmer, M. (Eds.): Business

Process Automation, ISBN 3540207945, Springer Verlag, 2004.
[2] IDS Scheer: Aris, http://www.ids-scheer.com.
[3] Rolia, J., Sevcik, K.C.: The Method of Layers, IEEE Trans. on Software

Engineering, vol. 21, no. 8 pp. 689-700, August 1995.
[4] Graupner, S., Sahai, A.: Policy-based Resource Topology Design, 5th

IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid 2005), Cardiff, UK, May 9-12, 2005.

[5] Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory,
MIT Press, Cambridge, MA, 1999.

[6] Curran, T.A., Keller, G., Ladd, A.: SAP R/3 Business Blueprint:
Understanding the Business Process Reference Model, Enterprise
Resource Planning Series, 320 pages, Prentice Hall PTR, July 28, 1997.

[7] SAP Enterprise Service Architecture.
[8] SAP Business Blueprint Library for SAP Solution Manager, http://help.

sap.com/saphelp_sm40/helpdata/en/2a/62c33af63ae93ae10000000a1140
2f/content.htm.

[9] Ramshaw L, Sahai A, Saxe J, Singhal S.: Cauldron: A Policy based
Design Tool, In the proceedings of IEEE Policy 2006.

[10] DMTF: DMTF Virtualization System Profile (work in progress),
September 2006.

[11] SAP Standard Application Benchmarks: Measuring in SAPS,
http://www.sap.com/solutions/benchmark/measuring/index.epx.

[12] Santos, C., Flores, P., Pruyne, J., Salazar, N., Zhu, X.: Automated
Application Component Placement at a Computing Utility, INFORMS
2005 Annual Meeting, November, 2005.

[13] Santos, C.A., Sahai, A., Zhu, X., Beyer, D., Machiraju, V., Singhal, S.:
Policy-Based Resource Assignment in Utility Computing Environments,
DSOM 2004, Davis, CA, USA, November 15-17, 2004.

[14] Graupner, S., Andrzejak, A., Kotov, V., Trinks, H.: Adaptive Service
Placement Algorithms for Autonomous Service Networks, in Brueckner,
(Ed.): “Engineering Self-Organizing Systems”, LNCS 3464, Springer
Verlag, May 2005.

[15] Rolia, J., Cherkasova, L., Arlitt, M., Andrzejak, A.: A Capacity
Management Service for Resource Pools, WOSP 2005: 229-237.

[16] SmartFrog, http://www.smartfrog.org.

