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Abstr act

CPUsconsumetoo much power. Modern complex cores
sometimeswastepower on functions that arenot usefulfor
the code theyrun. In particular, operating system kernels do
not benefitfrom many power-consuming features that were
intendedto improve application performance. We propose
using asymmetric single-ISA CMPs (ASISA-CMPs),mul-
ticore CPUswhereall coresexecute the same instruction
set architecture but have different performance and power
characteristics, to avoid wastingpower onoperating systems
code.We describevariousdesign choicesfor both hardware
andsoftware, describeLinux kernel modifications to support
ASISA-CMP, and offer somequantified estimatesthat sup-
port ourproposal.

1 Intr oduction

While Moore's Law has delivered exponential increasesin
computation over the past few decades, two well-known
trends createproblems for computer systems: CPUscon-
sumemoreand more power, and operating systems do not
speed up as rapidly as mostapplication codedoes. Many
people have addressed these problemsseparately;we pro-
poseto addressthem together.

Until recently, designersof high-endCPUchipstendedto
improve single-streamperformanceasmuchaspossible, by
exploiting instruction-level parallelism anddecreasing cycle
times. Both of thesetechniquesarenow hardto sustain, so
recentCPUdesignsexploit shrinking VLSI featuresizesby
using multiple cores,rather thanfaster clocks.Examplesof
theseChip Multi-Processors(CMPs)includetheSun Niagra

processorwith eight cores, the quad-coreIntel Xeon, and
dual-coresystemsfrom several vendors.

All commercially-available general-purposeCMPs, asof
mid-2007, are symmetrical: eachCPUis identical, and typ-
ically, all run at thesameclock rate. However, in 2003 Ku-
mar et al. [13] proposed heterogeneous(or asymmetrical)
multi-coreprocessors,as a way of reducing power require-
ments. Their proposal retains the single-Instruction-Set-
Architecture (single-ISA) model of symmetrical CMPs: all
corescan execute the samemachine code. They observed
that different implementations of the same ISA hadorder-
of-magnitudedifferencesin powerconsumption(assuminga
single VLSI process). Theyfurtherobservedthatin a multi-
application workload, or even in phases of a single applica-
tion, onedoesnot alwaysneedthefull powerandfunctional-
ity of the mostcomplexCPUcore; if a CMP could switch a
processbetweencoreswith differentcapabil ities, onecould
maintain throughput while decreasingpowerconsumption.

Sincethe original study by Kumar et al., several other
studies [3, 8, 14] have highlighted the benefits from het-
erogeneity. (Keynote speakers from some major processor
vendors have also suggestedthat heterogeneity might be
commercially interesting [2, 22].) However, all thesestud-
ieslooked only at user-mode execution. But we know that
many workloadsspendmuch or mostof their cycles in the
operating system[23]. We also know thatoperating system
(OS)codediffers from application code: it avoids thefloat-
ing point processor, it branches moreoften, andit haslower
cache locality (all reasonswhy OS speedups lag applica-
tion speedupsonmodern CPUs).An asymmetric single-ISA
CMP (ASISA-CMP)mightthereforesavepower, withoutre-
ducingthroughput, by executing OScode on a simple, low-
powercore,whileusingmorecomplex, high-powercoresfor
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application code.
The main contribution of this paper is to proposeand

evaluatetheASISA-CMPmodel, in which (1) a multi-core,
single-ISA CPUincludessome“OS-friendly” cores,optim-
izedto execute OScodewithout wasting energy, and(2) the
OSstatically and/or dynamically decideswhich code to ex-
ecuteonwhich cores,so asto optimizethroughputper joule.

To optimally exploit ASISA-CMP, weexpect thatthe OS
and the hardware both must change. This paper explores
thevariousdesign considerationsfor co-evolvingtheOSand
hardware,andpresentsexperimentalresults.

2 Related work

Ousterhout[20] mayhavebeenthefirst to point out that“op-
erating systemperformancedoesnot seemto be improving
at the same rate as the basespeed of the underlying hard-
ware.” He speculated that causesinclude memorylatencies
andcontext-switching overheads.

Nellanset al. [19] measuredthefractionof cyclesspentin
theOSfor avarietyof applications, andre-examinedhow OS
performancescaleswith CPUperformance, suggesting that
interrupt-handling code interferes with caches and branch-
prediction history tables. Theyfoundthatmany applications
execute a large fraction of cycles in the OS, and observed
that “a classic5 stagepipeline [such as]a486 issurprisingly
closein performance to a modernPentium 4 when execut-
ing [OS code].” However, instead of proposingan ASISA-
CMP, theysuggestaddingadedicatedOS-specificcore. (It is
notentirely clearhow far theirproposal is from a single-ISA
CMP.) Theydid not evaluate this proposal in detail.

Chakraborty et al. [11] proposed refactoring software so
that similar “fragments” of codeareexecutedon the same
core of a CMP. Their initial study treatedthe OS and the
user-modeapplicationas two coarse-grained fragments,and
found speedupin some cases.However, they did not exam-
ine asymmetric CMPsor thequestion of power reduction.

SanjayKumar et al. [15] propose a “sidecore” architec-
ture to support hypervisor operations. In their approach, a
hypervisor is restructured into multiple components, with
somerunning on specializedcores.Their goal was to avoid
the expensive internal state changes triggered via traps(e.g.,
VMexit in Intel's VT architecture)to performprivilegedhy-
pervisor functions. Instead, thesidecore approach transfers
the operation to a remotecore “that is already in theappro-

priatestate.” Thisalsoavoidspollutingtheguest-corecaches
with codeand data from hypervisor operations. (The side-
coreapproach is not specifically targetedat saving energy.)

3 Designoverview

Our goal is to addresstwo major challenges for multi-core
systems: how to minimize power consumption while main-
taininggoodperformance, and how to exploit theparallelism
offered by a multi-core CPU. Thesetwo issues are closely
linked,but wewil l try to untangle themsomewhat.

3.1 Proportionality in power consumption

We want to maximizetheenergy efficiencyof our computer
systems, which could be expressed as the usefulcomputa-
tional work (throughput) per joule expended.Fanet al. [6]
have observed that the ideal systemwould consumepower
directlyproportionalto therateof usefulcomputationalwork
it completes. We refer to this as the “proportionality rule.”
Such a system would neednoadditional powermanagement
algorithms,except asmight beneededto avoided exceeding
peakpoweror cooling limits.

Fanet al. arguethat “system designers should consider
power efficiency not simply at peak performancelevelsbut
acrosstheactivity range.” We believe that theASISA-CMP
approach, with a careful integration of OS and hardware
design, can help address this goal. Of course, it is prob-
ably impossible to designa systemthat truly complies with
the proportionality rule, especially sincemany components
consumeconsiderable power even whenthe CPUis idle.

There areat least two waysthatonemight design a sys-
tem to addressthe proportionality rule. First, one could
design individual components whose power consumption
varieswith throughput, suchas a CPUthat supports voltage
and frequencyscaling. Second, one could design a sys-
tem with a mix of both high-power/high-performanceand
low-power/low-performancecomponents, with amechanism
for dynamically varying which componentsare used (and
powered up) basedonsystemload.

The original ASISA-CMPmodel,asproposed by Kumar
et al. [13], follows the secondapproach,without precluding
the first one. In times of light load, activity shifts to low-
power cores; in times of heavy load, low-power corescan
offer additional parallelism without significant increasesin
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areaor power consumption.
In this paper, we extendthe ASISA-CMP modelby as-

serting that the ideal low-power core is onethat is special-
ized to execute operating systemcode. (More broadly, we
consider “OS-likecode,” whichwewill definein Sec. 4.3.1.)
Thisstemsfrom several observations:
� OS code does not proportionately benefit from the

potential speedup of complex, high-frequencycores.
Thus,runningOScodeon a simpler coreis a betteruse
of power andchip area.� Most computer systems(with certain exceptions,such
as scientific computing) are often idle. If we could
power down complex CPU coresduring periods when
theywould otherwisebeidle,wecould improvepropor-
tionality.

Thedesigns explored in this paperinclude:
� Multi-core CPUs with a mix of high-power, high-

complexity application cores, and low-power, low-
complexity OS-friendly cores.� Operating system modifications to dynamically shift
load to the mostappropriate core,and(potentially) to
power down idlecores.� Modest hardwarechangesto improve theefficiencyof
core-switching.

Of course, the CPU is not the only power-consuming
componentin a system, andASISA-CMP does not address
the power consumedby memory, busses,and I/O devices,
or thepower wasted in power supplies andcooling systems.
Therefore, even if the CPUwereperfectlyproportional, the
entiresystem would stil l fail to meet theproportionality rule.
However, aslong asCPUsrepresent thelargest singlepower
draws in a system (see Sec. 3.3.1),improving their propor-
tionality is worthwhile.

3.2 Core heterogeneity

Thepromiseof ASISA-CMPdependscritically on two facts
of CPU core design: (1) for a given processtechnology, a
complexcoreconsumesmuchmore power anddie areathan
a simple core,and(2) a complex coredoes not improve OS
performancenearly as much asit improvesapplication per-
formance.

Table1 shows the relative power consumption, perform-
ance (in terms of instructions per cycle, or IPC), andsizes
of variousgenerations of Alphacores,scaled asif all were

Table 1: Power andrelativeperformanceof Alpha cores

Alpha Peak Average Normali zed vs. EV4
core power power IPC area power
EV4 4.97W 3.73W 1.00 1.00 1.00
EV5 9.83W 6.88W 1.30 1.76 1.84
EV6 17.8W 10.68W 1.87 8.54 2.86
EV8 92.88W 46.44W 2.14 82.2 12.45

All coresscaledto 0.1 � m; IPC basedonSPEC CPU benchmarks
Basedon data from Kumaret al. [13]

implemented in the sameprocess technology. Clearly, the
smallest core delivers significantly more performanceper
watt and per mm

�
. In fact, theseperformanceresults were

basedon the SPECCPU benchmark suite; sinceoperating
system performancegenerally scales worsethan application
performance [20], we believe the IPC ratios would beeven
smaller for OScode.

3.3 Complicating issues

Various issuescomplicate the question of whether we can
improve throughput/joule by running OS (or OS-like) code
on special aOS-friendly core. Wecovermany details in sub-
sequentsectionsof thispaper;here,weexposesomegeneral
questions. Many of thesecan only be resolved by exper-
imentation (possibly through simulation); we describe our
experimentslater, in Sec. 7.

The two key issues,asmentionedabove, arethe relative
power consumption levels for various systemcomponents,
andtherelative performance costs and benefitsof switching
cores.In order for ASISA-CMP to pay off, we require that
it doesnot reduceperformancefasterthanit reduces power
consumption.

3.3.1 How important is CPU power?

Any real system includes multiple components that draw
power, and ASISA-CMP wil l not significantly change the
energy consumption of componentsother thanthe CPU.In
fact, if ASISA-CMPincreasesthetime required to complete
a job (or setof jobs), the resulting increasein energy con-
sumedby othersystem components mayoutweight thesav-
ingsfrom the CPUcores.

Component power consumption varies tremendously
acrossthevarietyof computer systems in use.In particular,
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Table 2: Example power budgetsfor two typical systems

Watts
System Tot. CPU (%) Mem Disk PCI Other

Bladeservers (all with multipl eCPUs;after [16])
Small 248 70 28% 48 10 50 70
Med. 442 170 39% 112 10 50 100
Large 1025 520 51% 320 10 75 100

Laptop (after [17])
Idle 13.1 2.0 15% 0.4 0.6 N.A. 10.1
Busy 25.8 13.4 52% 1 1 N.A. 10.3

laptops andservershave vastly different balancesbetween
components. Table2 shows a power breakdown for several
typical systems. Thebladeserver results, takenfrom [16],
show “nameplate” (maximum)power budgets, and all have
either two or (for the“L arge” configuration) fourCPUs.The
laptop results, taken from [17], show measuredresults for
anidle system and for onerunning the PCMarkCPU bench-
mark; in both cases,Dynamic VoltageScaling wasdisabled
andthescreen wasat full brightness.

In all cases,exceptfor the idle laptop, CPU power con-
sumption wasthelargest singlecomponent of system power
consumption. For the Largeserver andthebusy laptop, the
CPU(or CPUs)consumed slightly morethanhalf of thetotal
power. This suggeststhat techniques,such asASISA-CMP,
that addressCPU power consumption canhave meaningful
effects onwhole-systempower consumption.

3.3.2 How doesASISA-CMP affect performance?

ASISA-CMP can affect performance in several ways:
� Running OS code on a slower CPU: By design,

ASISA-CMP concedes someperformance by running
OS codeon a slower core. As arguedin Sec. 3.2, this
slowdown might beminimal. However, an application
that spendsmuchof its time in theOScould seea sig-
nificantperformancedecline.� Core switching costs: ASISA-CMP inherently moves
a threadof execution from onecore to another for cer-
tain system calls. Core-switching creates longer code
pathsfor thesesystem calls,and addsstate-savingover-
head.� Cache affinit y vs. cache interference: We assume
that the coresin a CMP CPU share a single L2 cache
but have private L1 caches. Core-switching could af-

fect cache performance in at least two ways: it could
harm cache affinity, by requiring cache lines (e.g., for
thedata buffer of a write systemcall) to move between
L1 caches, or it could reducecacheinterference, by
keeping some OS codeanddata out of the application
core'scache.� Available parallelism: Giventhattheincremental cost
(in power andarea) for adding anOScoreto a CMP is
muchlower thanfor an application core(seeSec. 3.2),
if thereis availableparallelism in theworkloadthat ex-
tendto OSprocessing,an ASISA-CMP CPUcould sup-
port moreparallelismthanasymmetric CMPCPUwith
similar power andarea. For example,aparallel “make”
command might benefit fromhaving anOScorerun I/O
processing while the applicationcoreis dedicatedto an
optimizing compiler. Not all workloads wil l have this
kind of parallelism,of course.

3.3.3 Idle time

We have describedtheexample in Figure1 asif the applic-
ation's systemcall doesusefulwork. However, it couldalso
be blockedwaiting for someexternalevent, suchasdisk I/O
or the arrival of a Web request. Numerousstudies (e.g.,
[6, 21]) have shown that most computers are idle mostof
the time. Therefore, aspointed out by Fanet al. [6], a use-
ful designfor meetingtheportionality rulemust significantly
reduce power consumption during idle periods.

ASISA-CMP offers the option of powering down the
high-power application core(s), while maintaining OSfunc-
tionsona low-power core.Forexample, the arrival of a new
Web (HTTP/TCP)connection normally precedes the arrival
of theactual HTTPrequestby atleastonenetwork round-trip
time (typically on the order of mill isecondsor more). This
would allow anOScoreto handle the initial TCPconnection
requestandthen awakentheapplication coresoonenoughto
processtheHTTP-level requestwithout anydelay.

3.4 Competing approaches

Given that the goal of ASISA-CMP is to improve perform-
ance(in terms of throughput/joule), and it would require
changesto the design of CPU chips, we have to compare
it againstpossible competing approaches.

Otherpotential alternativesinclude:
� Complex-core with dynamic Voltage/Frequency
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scaling: This could be especially effective at saving
power in systems with lots of idle time. However, we
suspect that the lowest-power modefor V/F scaling on
a complex core is stil l much higher than the power
drawn by an ASISA-CMP CPU with the application
coreturnedoff.� Complex-core with power-down on idle: In sucha
system,a idle core would wakeup on any externalin-
terrupt. This approachcould alsobeespecially effective
at saving power in systemswith lots of idle time,espe-
cially if the system is not forced to wake up on every
clock tick even if thereis nowork to do. However, this
approachonly worksif thesystemis truly idle for mod-
erately long periods; a server system handling a min-
imal rateof requestpackets,for example, might never
stayidle for longenough.� Lots of simple cores: A CPUwith lotsof simplecores,
eachof which could beindependently power off, might
allow a closeapproximation to theproportionality rule.
However, this configuration can only get reasonable
throughput (and thus reasonable throughput/joule for
thefull system) if wecan solvethegeneralparallel pro-
gramming problem – a problem that hasbeen elusive
for many years. Amdahl's Law may be an inherent
limit to this approach.� Some cores with specialized ISAs: Others have ex-
ploredthisalternative [19]. Wehaveruled it out for this
paper, becausewe believe that a single-ISA approach
makes it much easierto develop andmaintain anoper-
ating system,and becausewe have no way to simulate
multiple ISAs in one system.

4 Software issues

Webelieve thattheASISA-CMPapproachcanbeapplied to
OScode in severalways,including:

1. Dynamically switching between cores in OS kernel
code;see Sec. 4.1.

2. Running virtualization “helper processing” on OS-
friendly cores;see Sec. 4.2.

3. Running applications, or partsthereof, with “OS-like
code”onOS-friendly cores;see Sec. 4.3

To date,wehave focussedall of our implementation andex-
perimentalwork on the first approach.
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Figure 1: Examplewithout thread-level parallelism.

4.1 Dynamic core-switching for OS kernel
code

In any multiprocessor system, performance depends on
whether there is enough available parallelism to keep all
processing elementsbusy. Specifically in an ASISA-CMP-
based system, there are two ways to optimize through-
put/joule:

1. If the system is underutilized: shift OS load to
low-power cores,and power down high-power cores,
whenever possible.

2. If thesystemhasavailableparallelism: shift OSload to
low-power cores, while keeping the high-power cores
asbusyaspossible with application code.

First, consider the case where there is no available
application-level parallelism. Figure 1 illustratesa simple
example for an application with justone thread. Figure 1(a)
shows a brief partof the application's execution ona single-
coreCPU.Whentheapplication threadmakesasystemcall,
execution movesfrom user mode to kernelmode andback.
Figure 1(b) shows the same execution sequence on a two-
coreASISA-CMPsystem. In thiscase,when the application
threadmakes thesystemcall, thekernel(1) transferscontrol
from the “application core” (core 1) to the “OS core” (core
0); (2) putscore1 in low-power mode; (3) executesthesys-
tem call on core 0; (4) wakes up core 1; and (5) transfers
control back to core1.
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If theOScoredrawssignificantly lesspower thantheap-
plication core while not significantly reducing performance
on OS code,and if there were no overheads for switching
coresand for changing the power stateof core 0, then the
ASISA-CMP system would havehigherthroughput perjoule
than thesingle-core system.Thesetwo “if s” are two of the
key questionsfor this paper: are therereal benefitsto run-
ning OS code on specialized cores,and are the overheads
small enoughto avoid overwhelming thebenefits?

Figure1(a)and(b) alsoshow whathappenson thearrival
of an interrupt. In the single-coresystem,application exe-
cution is delayedboth for the actualexecution of the inter-
rupt handling codein theOS,and alsofor interrupt exit and
entry. In theASISA-CMP system, theapplication continues
to run without delay(exceptperhapsfor memory-access in-
terference). This would probablybe true for any multi core
system,but in theASISA-CMPapproach, interrupt handling
happenson a power-optimized core,rather than on a high-
power core.

Note that wecompare thedual-coreASISA-CMPsystem
againsta single-coresystem, rather thanagainst a symmet-
ric dual-coresystem,because(in the underutilized case) it
seems likely that a dual-core CMP would consumemore
power than a single-core system, without any increasein
throughput.

Next, consider the case wherethere is application-level
parallelism. Figure 2 il lustratesanother simple example,

for anapplication with two runnable threads,threadA and
threadB, wherethread A is running at the start of the ex-
ample,and againthethreadmakesasystemcall. Figure2(a)
shows the single-core case: while thread A is executing in
thekernel,threadB remainsblocked until thescheduler de-
cides that A hasrun long enough. Figure 2(a) shows the
ASISA-CMPcase:whenthreadA makes itssystem call, the
kernelswitchesthatthreadto the OScore(core0), thread B
cannow runon theapplication core(core1).

Again assuming that the switching overheadsarenot too
large, the useof ASISA-CMPincreases theutilizationof the
application core,because OSexecution is moved to a more
appropriate core.

4.2 Running virtual ization helperson
OS-friendly cores

Sofar, wehavediscussedtheoperating system asif it werea
singlemonolithic kernel. Of course,many operatingsystems
designs,both in researchandasproducts, have beendecom-
posed; for example, into a microkerneland a set of server
processes. Sec. 4.3 discussesthepossibili ty of running dae-
monprocessesona OS-friendly core.

However, a dif ferent kind of decomposition hasbecome
popular: the creation of one or more virtualization layers
between the traditional operating system and the hardware.
Theselayers basically execute OS kernel code, but in a
dif ferent protection domain from the “guest” OS. We be-
lieve theseare clear candidates for executiononOS-friendly
cores. Theyalso tend to be boundto specific cores, which
eliminatestheperformanceoverhead of core-switching.

Note that the use of current virtual machine monitors
(VMM) might undermine theuseof dynamic core switching
for kernel code, becausea guestoperating system running
in a virtual machinemight not be able to bind a threadto a
specific core. It is possible that a VMM' s interfaceto the
guest OScould beaugmented to exposetheactual cores,or
at least to exposethe distinction betweenapplication cores
andOS-friendly cores,but wehavenot explored this issuein
detail.
� Xen's Domain 0: In Xen [4], and probably in sim-

ilar VM systems, oneprivileged virtualmachine is used
to multiplex andmanage the I/O operations issued by
theothervirtual machines. This “Domain 0” probably
would bemostpower-efficient if runonanOS-friendly
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core.� I/O and network helper threads: Several researchers
haveproposedrunning I/O-related portionsof thevirtu-
alizationenvironment on separateprocessors.McAuley
and Neugebauer [18] proposed“encapsulating oper-
ating system I/O subsystems in Virtual Channel Pro-
cessors,” which could runon separate processors.Reg-
nier et al. [24] andBrecht et al. [5] have proposed run-
ning network packet processingcodeon distinct cores.
For both of theseapproaches,OS-friendly cores would
beagoodmatchfor optimizingpower andperformance.

4.3 Running OS-lik e code on OS-friendly
cores

Our hardwaredesignis basedon the observation that “OS
code” behaves differently from user code. However, the
definition of an operatingsystemis quitefluid; thesamecode
that executesinside thekernel in a monoli thic system,such
asLinux,may execute in usermodeonamicrokernel.Thus,
we should not limit our choiceof which codeto executeon
OS-friendlycoresbasedsimply on whetherit runs in kernel
mode.

Typical systemsincludemuch codethatsharesthesechar-
acteristicswith actualkernel code:
� Li braries: muchof user-modecode actually executes

in libraries thatare tightly integratedwith thekernel.In
microkernels andsimilar approaches, it might be hard
to distinguishmuch of thiscodefrom traditionalkernel
code. So, onemight expect somelibrary codeto run
mostefficiently on an OS-friendly core. On the other
hand,wesuspect that thiswould requirecore-switching
far too frequently, and it might behard to detectwhen
to switch.� Daemons:mostoperating systems(but especially mi-
crokernels) use daemonprocessesto executecode that
doesnot need to bein thekernel,or thatneedsto block
frequently. Thiscode mightalsoberun mostefficiently
onanOS-friendlycore, andcould easily bebound to the
appropriatecore(mostoperatingsystemsallow binding
a processto a CPU).� Servers: Some applications, such as Web servers,
might fall intothesamecategoryasdaemons.However,
cryptographic code might run better on normal cores,
andsoa secureWeb servermight have to berefactored

to runoptimally onan ASISA-CMP.
Note that if we useASISA-CMP to execute entire OS-like
application processes(or, at least, threads) on OS-friendly
cores, this eliminates the performance overhead of core-
switching.

4.3.1 Defining and recognizing “O S-lik e” code

If it makessenseto run OS-like application codeon OS-
friendly cores,how doesthe OS decide which applications
to treat this way? Programmers could simply declare their
applicationsto be OS-like, but this is likely to leadto mis-
takes. Instead,we believe that through monitoring the ap-
propriatehardware performancecounters,theOScandetect
applications, or perhapseven threads, with OS-like execu-
tion behavior.

Automatedrecognition of OS-like codedemands a clear
definition of the term. While we do not yet have a spe-
cific definition, the main characteristics of OS-like code
are likely to include the absence of floating-point opera-
tions; frequent pointer-chasing (which can defeat complex
data cachedesigns); idiosyncratic conditional-branch beha-
vior [7] (which can defeatbranchpredictorsdesignedfor ap-
plication code),andfrequent block-data copies (which can
limit theeffectivenessof largeD-caches).

Many of theseidiosyncraticcharacteristics could bevis-
ible via CPUperformance counters. (Zhanget al. [26] have
suggestedthat performancecountersshould bedirectly man-
agedby theOSasa first-classresource, for similar reasons.)
We arenot sure, however, whether support for ASISA-CMP
will requirenovel performancecounters.

We alsosuspect thatanadaptive approach,basedon tent-
atively runningasuspected OS-likethreadonanOS-friendly
core,andmeasuring theresulting changein progress,could
be effective in determining whether a thread is sufficiently
OS-like to benefit. This approach requires a meansfor the
kernelto determinetheprogressof athread,which isanopen
issue; in some cases,therate at which it issuessystem calls
could beauseful indicator.

4.3.2 Shouldasymmetry beexposed to user-modecode?

Kernels already provide processor-affinity controls (e.g.,
sched setaffinity on Linux). With asymmetrical cores,the
kernelmight also expose core configuration data, to allow
OS-like usercodeto select theright core.
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5 Implementation of dynamic
core-switching

For thepreliminaryexperimentsin this paper, we made the
simplestpossible changesto Linux (version2.6.18) to allow
usto shift certain OSoperations to anOS-friendly core.We
assumeda two-coresystem, anddid not add code to power-
down (or slow down) idle cores.

Kernels typically execute two categories of code:
“Bottom-half” interrupt-handler code, and “top-half”
system-call code. We useddifferent strategiesfor each.

5.1 Interrup t-handler code

Webelievethatinterruptcode(oftenknownas“bottom half”
code)should alwayspreferanOS-friendly core.TheOScan
configure interruptdeliverysoasto ensurethis.

Linux alreadyprovides,via the/proc/irq directory in
the/proc processinformation pseudo-filesystem,a way to
set interrupt affinity to a specific core. We do this only for
theNIC; mostother deviceshavemuch lower interrupt rates,
andthetimer interrupt mustgo to all CPUs.

It is possible that the interrupt loadcould exceed theca-
pacity of theOScore(s) in a CPU.If so, should this loadbe
spread out over theother cores?This might improve system
throughput under someconditions,but it might bebetter to
confineinterrupt processing to a fixed subset of cores,asa
wayto limit thedisruptioncausedby excessive interrupts. In
ourexperiments,wehave statically directedinterrupts to the
(single)OScore.

5.2 Systemcalls

Wefacedtwo main challengesin our implementation of core
switching for system calls: how to decide whento switch,
andhow to reducetheswitchingcosts.Switchingcorestakes
time, because

1. switching involvesexecutingextra instructions;
2. switching requires transferring some state between

CPUs;
3. if the targetcore is powereddown, it could take about

a thousandcycles to switch [13]. Note that in our cur-
rentimplementation,wedo not attempt to power-down
idle cores; we defer further discussion of this issueto
Sec. 5.6.

Given a significant cost for core-switching, the tradeoff
is only beneficial for expensive, frequentsystemcalls (e.g.,
selector perhapsopen), but notfastor rarecalls(e.g.,getpid
or exit). (Sec.7.2 describessimplemeasurementsof relevant
costs.) Further, for somesystem calls thedecision to switch
should depend on how much work is to be done. A read
system call with a buffer sizeof 10 bytes should not switch,
whereasonewith abuffer sizeof 10K bytesprobablyshould.

Ourbasic approach to core-switching is to modify certain
system calls sothat thebasicsequenceis:
� do initial validationof arguments� Decide whether there is enough work to do to merit

switching� If so, invoke a core-switching function to switch to
an OScore� do thebulk of thesystemcall� If we switched codes, core switch back to an applic-
ation core. We return, if possible, to theoriginal core,
to preserve cacheaffinity.� finishupandreturn

Thesteps in bold arethemodificationswemade. Thedetails
dif fer slightly for each call that we modified, but generally
involve only a few linesof newcodefor each call.

In our current implementation, we core-switch on these
system calls: open,stat, read, writ e, readv, writ ev, select,
poll , andsendfile. For read, wr ite, andsimilar calls, we
arbitrarily defined“enoughwork” as4096bytesor more;we
have not yet tried to optimizethis choice.

We have two dif ferent implementations of the core-
switching function, asisaSwitchCores: a very slow design
thatworks, anda faster designthat, unfortunately, we were
unableto debugbeforethesubmissiondeadline. Wedescribe
each versionbelow.

In either case,wededicateoneor morecoresasOScores,
to executeonly OScode,and wemodifiedthekernelto main-
tain bitmapsdesignating the OS coresand the application
cores.

5.3 Core-switching via the Linu x migrati on
mechanism

Linux alreadyincludesa load-balancing facility thatcanmi-
grate a thread from one CPU to another [1]. For our initial
implementation of asisaSwitchCores, weused thismechan-
ism. This gave us a simple implementation: we block the
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calling thread, make it eligible to run only on the targetdes-
tination CPU, place it on a queueof migratable processes,
andtheninvoke Linux's per-CPUmigration thread.

This is anexpensiveprocedure,sinceit involvesathread-
switch onthesourceCPU,andinvokesthescheduler onboth
the sourceanddestination CPUs... andtheentire procedure
mustbedonetwicepersystemcall.

5.4 Core-switching via a modified scheduler

In an attempt to speed up core-switching, we wrote a ver-
sion of asisaSwitchCores that directly invokesa modified,
somewhat simplified version of theLinux scheduler. Linux
allows a thread (running in the kernel) to call the schedule
procedureto yield the CPU. We wrote a modified version,
asisaYield, whichdeactivates thecurrentthread,placesit on
a specialper-CPUqueuefor the targetCPU,does theusual
scheduler processingto choosethenextthreadfor thesource
CPU, and finally sendsan inter-processorinterrupt to the
destination CPU. (Linux already usesthis kind of interrupt
to awakenthescheduler whendoing threadmigration.)

Whenthe interruptarrives at the destination CPU, it in-
vokesanothermodifiedversionof thescheduler, asisaGrab,
which dequeuesthe thread from its special per-CPUqueue,
bypassing thenormal scheduler logic to choosewhichthread
to run.

5.5 Core switching costs

To quantify thecostof core switching,wemodified a kernel
to switch on the getpid systemcall. This call does almost
nothing, so it is a good way to measurethe overhead.We
wrote a benchmarkthat bypassesthe Linux C library's at-
temptto cachethe results of getpid; thebenchmark pins it-
self to theapplication core, theninvokesgetpid manytimes
in a tight loop. Wewrote similarbenchmarksto measure the
latencyof select with both anempty file-descriptor set (fd-
set) anda one-elementfdsetwhich is always “ ready”, and
of readv (which readsinto a vector of

�
buffers) reading�
	���
���
����������

blocksof 64 bytesfrom a file in thebuffer
cache.

The results in Table 3 were measured on our modified
Linux 2.6.18kernel runningonadual-coreXeonmodel5160
(3.0GHz, 64KB L1 caches, 4MB L2 cache) system, with
andwithout core-switching enabled. In general, our known-
to-be-slow core-switching code addsslightly over 4 micro-

Table 3: Core-switching overheads

Core-switching
Systemcall disabled enabled Overhead
getpid 84 4183 4099
select/empty 120 121 1
select/non-empty 350 4647 4297
readv ������� 6027 6018 -9
readv ��� �"! 22517 26758 4241
readv ���$#��&% 176503 181767 5264

Timesarein nsec. percall; trial is 10M invocations of systemcall (except
10K invocations for readv); result is from best of 10 trials.

secondsper systemcall. Theselect call with anempty fd-
set,andthe readv call with

�'	(�"

, both have essentially

no overhead because they do not have enoughwork to core
switch (16 blocks of 64 bytes is well below the 4096-byte
threshold weset for “enough work” for readv).

The per-call overheadfor readv call
�)	*�����

increases
slightly over that for

�+	(
,�
, possibly becausethe larger

buffer size (32K bytes) representsa significant number of
cache-linetransfersbetweencores,or perhapsbecausecopy-
ing it from theuser buffer to a kernel buffer causesconflicts
in the 64KB L1 cache.

5.6 Poweri ng down cores

Kumaretal. [13] assumed that“unused coresarecompletely
powered down, rather thanleft idle,” asa way to minimize
wasted power. Giventheir estimatedthousand-cycle costto
power-upacore, thismightnot bethebestchoice,especially
for anOS corethat is handling lots of interrupts or system
calls, or whereinterruptlatencyis critical.

How should the kernel decide when to power-down
cores?We suggestanadaptive approach:

1. If the OS expects to return quickly to an application,
it should keep the application core powered up. (The
OS might expectto return “slowly” if theapplication is
blocked ondisk I/O, for example.)

2. The OS can track the ratesof systemcalls and inter-
rupts. If thecombined ratehasbeenlow, it could power-
down theOScoreafterreturning (although perhapsthe
arrival of any interrupt implies a likely increasein the
rate of system calls?). If the rateexceedsa threshold,
the OS core should remain poweredup. (Feedback-
basedoptimization could beusefulhere.)

Onepossible alternativeto completely powering down acore

9



is to drastically reducethe core's voltage and frequency.
Sec. 6.2 discussesidle-CPUpower statesin more detail.

6 Architectural support

The ASISA-CMP approach exposes a numberof hardware
designchoices, which we discussin this section. Most of
theseare openissues,sincewe have not yet donethe simu-
lationstudiesto exploreall of themany options.

6.1 Design of ASISA-CMP processors

How should an “OS processor” in an ASISA-CMP differ
from theotherprocessors?We strongly favor thesingle-ISA
model,since it greatly simplifies the design of thesoftware,
andbecauseit still allows flexible allocation of computation
to cores.But given a single ISA, many choicesremain:
- Non-architectural state: Differentimplementationsof

an ISA often expose different non-architectural state
to the operating system.(“Non-architectural state” in-
cludesCPU statethat might have to be saved when a
partially-completed instruction trapson a pagefault.)
The OS needsto be awareof these differences to be
ableto support the appropriateemulation.- Floating-point suppor t: Most kernelsdo not usefloat-
ing point at all, and so one might design the OS core
without any floating-point pipeline or registers. If a
threadwith FPcode somehow did endup executing on
the OScore, it could trap into FP-emulation code,pre-
serving thesingle-ISA view at a considerable perform-
ancecost.- Caches: CMPs typically have per-core first-level (L1)
caches, anda sharedL2 cache. Cache designers have
many choices(linesize, associativity, total cachesize,
etc.). OS code tends to have different cache behavior
than application code[23]; for example, thekernelhas
much less data-cache locality. On the other hand,a
large instruction cachemight capture a lot of OS ref-
erences.An OScorecouldhavesmaller cachesoverall,
or it could have a largerL1 I-cache at theexpense of a
smaller L1 D-cache.- Pipeline: Moderncores have complex pipelines(one
version of the Pentium 4 had 31 stages; more recent
systemshave somewhatfewerstages).Deep pipelines
work well for applications with predictable or infre-

quentbranchbehavior, but badlyfor codewith frequent
andhard-to-predictbranches, asis typical of OScode.
An OScore canpotentially have a simple pipeline and
stil l achieve closeto the performanceof a muchmore
complex pipeline, but with significantpower andarea
savings.- Branch-prediction tables: Branch prediction (BP)
helpsCPUsavoid stalling to determineif a branchwil l
be taken or not. BP performancedependson the size
of the CPU core's prediction tables. While we know
of no studiesaddressingwhether kernel-only execution
would be optimized by a different table size than for
mixed kernel+user execution, Gloy et al. [7] reported
that one should not base simulations of BP on user-
only traces if thekernelaccountsfor even 5%of execu-
tion time. This result suggests that an OS-friendly core
might need a different BP table thana general-purpose
core,although it isunclearwhetheran OS-friendly core
could usesmaller tables.Their resultalsosuggeststhat
keeping OSandusercodeon separatecores would im-
prove branchprediction.- Number of OScores:While thispapermostly assumes
an ASISA-CMP with a single OS-friendly core, there
is no inherent reason why there should be just one.
Future CMPsmight have dozens of cores[12], so an
ASISA-CMP designerwould probably have to choose
theappropriatefraction of OS-friendly cores to optim-
ize power vs. performance for a range of anticipated
workloads.(Onemight imaginea small family of CPU
products thatdiffer only on this axis, for differentmar-
kets.)- Proximity to I/O: A systemthat tries to executeOS
code on an OS-friendly core will , in most cases, use
thatcorefor I/O operations. CPU designersare moving
towards on-chip integration of I/O hardware(e.g., PCI
Express controllers, HyperTransport, or Intel's CSI).
While these features will probably not soon be in-
tegrated into individual cores,placingthe OS-friendly
core(s)near the on-chip I/O components should re-
duce wire lengths, improving performanceand redu-
cingpowerconsumption.

6.2 Idle-CPU power states

Ideally, we want to be ableto put an idle coreinto a zero-
power statewith no delay for entry or exit. In reality, the
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exit transition takesa relatively long time; we may have to
settle for transitioning the coreinto a low-power state. For
example,the Advanced Configuration andPower Interface
standard[10] specifiesmultiple “C-states”progressively in-
creasingin aggressivenessof power management. Theseuse
a wide variety of options,including gating, voltage andfre-
quencycontrol, architectural throttling (e.g.,4-way issue to
1-way issue), memory sleepstates,controller andcoherence
shut-down, etc.

Openquestionsinclude:
. Is thereafundamental tradeoff between thepower con-

sumption in a low-power stateand thedelays for enter-
ing and leaving thatstate?. What arethe fundamental limits to the speed of these
transitions?Is thereroomfor furtherinnovation in sup-
port of rapid power-level changes,and leakagepower
reduction in low-power states?. Whatnewmechanismsmighthelpspeedup thesetrans-
itions?. Would ASISA-CMP yield better overall performance
(throughput/joule) if it useda deep idle statewith high
transition costs,or a shallow idle state with low trans-
ition costs? If the choice depends on the application
mix, asseems plausible, could the the OS decide dy-
namically between these approaches (e.g., by estimat-
ing duration of the next idle periodbased on observa-
tionsof pastbehavior).

7 Preliminary results

Theexperiments we reportin this paper are quite prelimin-
ary. While we areplanning to run extensive simulationsof
the ASISA-CMP architecture, we do not yet have a fully-
debugged simulation.

Theseexperimentswereall performed using Linux 2.6.18
kernels running on a dual-coreXeon model 5160 (3.0GHz,
64KB L1 caches,4MB L2 cache).

7.1 Workloads

We usedtheseworkloadsin our tests:
. Netperf TCP STREAM: We usedthe TCP STREAM

benchmark from theNetperf [9] microbenchmarksuite
developedat Hewlett-Packard. In this benchmark,the
client (the systemunder test)connects to a server and

sendsdataasquickly aspossibleoverasingleTCPcon-
nection. It setsupa socket andcallssend() in a tight
loop. Normally this call returnsas soon as the data is
copied out of the user's buffer. However, if the ker-
nel socket buffer is full, the call wil l block until space
is available, potentially idling the processor. The user
time spent executing this benchmark is minimal, and
mostof theCPUtimeis spentin thekerneldriver man-
aging the NIC or processingthe packet in the TCP/IP
stack. We usednetperf 's --enable-dirty config-
uration option, which ensures that its I/O buffers are
alwaysdirty in thedatacache.
We alsoused thesenetperf tests:
. TCP MAERTS: Like TCP STREAM, but the

server sendsthedata to theclient. TCP RR: Instead of streamingbulk data in one
direction, in thistesttheclient repeatedly executes
request-responsetransactions with the server.. TCP CRR: Like TCP RR, but initiates a new
connection for each transaction. (Notethat wedo
not currently switch coreson the connect system
call.)

. Compile: compile theLinux kernel, with optimization. Re-Aim-7 [25]: anOpen Sourceimplementation of the
AIM BenchmarkSuiteVII; AIM-VII iswidely used by
UNIX system vendors.

7.2 Time spentper systemcall

We ran a preliminary experiment to determine how much
time is spentin the top half of each system call. In partic-
ular, for a given workload anda given system call, what is
theaveragetime spentin the call, andwhat fraction of time
is spent in thatcall during the whole workload?

We modified the Linux 2.6.18 kernel (not the core-
switching version of the kernel) to record the numberof
cycles spentin, and invocations of, each system call, not
counting time whenthe processwas blocked.For example,
for a single minute-longWeb trial, Table 4 shows the top 10
system calls, by total number of cycles, andexcluding any
calls that averagedunder2K cycles/call.

This is obviouslya crudemeasure of which systemcalls
are“expensive” enough to merit switchingCPUs. The res-
ults wil l vary between architectures,kernelversions,applic-
ations,phaseswithin anapplication,etc.
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Table4: Systemcall costs: 1-minute Web trial

Call name Count Tot. cyc. Cyc./call Cum. %
sendfile 50627 3058.86M 60419 20.50%
stat64 78851 2226.89M 28241 35.42%
write 78473 2142.91M 27307 49.78%
writev 60164 1585.92M 26359 60.40%
socketcall 181108 1522.33M 8405 70.60%
read 141616 1309.60M 9247 79.38%
open 43165 1043.67M 24178 86.37%
poll 79373 743.66M 9369 91.36%
lstat64 90105 565.02M 6270 95.14%
close 49221 446.84M 9078 98.14%

As wedescribedin Sec. 5.2,the decision in our modified
kernel about whetheror not to switch coresduring a system
call is, in somecases,conditionalonhow much work thecall
expectsto do. Therefore,whileTable4 presentsaveragesfor
cycles/call over all invocations of a given system call, our
codeswitch on a subsetof thosecalls with a highermean.

7.3 Performancevs. power: methodology

Since we do not yet have theabili ty to simulatean ASISA-
CMPsystem with a low-power OS-friendly core, we instead
ranour modified Linux kernelonthedual-coreXeon system.
We added instrumentation to this kernelto trackwhen each
coreenteredor exited the idle thread. We record the indi-
vidual idle-time durations in a logarithmic histogram, with
onebucketper power of two. This means that we can po-
tentially underestimate theidle timeby afactor of upto two,
althoughthemean errorshould besmaller.

Theseidle timemeasurementsallow to crudely model the
performancevs. power effectsof ASISA-CMP. Our current
modeldependson several big assumptions:

1. We can model thepower of the application coreby as-
suming it is approximately one third of the Thermal
DesignPower (TDP)of theCPU in our system.(Weas-
sumethatthe L2 cacheconsumesabout asmuchpower
aseither of thetwo cores.)

2. We can model the power and performance of the OS
coreby arbitrarily picking a plausible power level for
a simplified core, andthen assuming that OScoderuns
asfast on this core asit doeson the actual CPU.This
is clearly a bogusassumption,but it is offsetsomewhat
by theexcessivecore-switching costsof our currentim-

plementation.
3. Wecanignorethetimeit takesto transition acoreoutof

a powered-down state, by assumingthat this is smaller
thanthe excessin core-switching costs. However, we
do attempt to model thepower consumed during these
transitions.

4. We assumethat the time to transition a core into a
powered-down state is negligible.

5. Following Kumar et al. [13], we assumethatpowered-
downcores“suffer nostatic leakageor dynamic switch-
ingpower.”

6. Thetimingof I/O eventsonthesystem wetestedwould
not changesignificantly onanactualASISA-CMPsys-
tem, andhencewedonothaveto correct for dif ferences
in I/O waiting time.

Given theseassumptions, our model has the following
parameters:
/ Application core power: 27 W (approximately 1/3 of

the80W TDPfor theIntel 5160chip)./ OS core power: we modelledseveral values of 021�354
1W, 5W, and 10W./ CPU power-up time: Following Kumaretal. [13], we
assumethat it takes1000cycles (333 nsec. at 3.0GHz)
to transitionout of a powered-down state. This isbased
partly on their assumption that a single phase-locked
loop is sharedamong all cores, so the power-up delay
is dominatedby the time to charge andstabilize power
buses.

7.4 Results

Table 5 shows results for the re-aim-7 benchmark. Results
shown are the meansof five trials. We rantwo different test
suites,“alltests”and“high system”, each with 5 and20sim-
ulatedusers.Thehigh systemtestapparently wasdesigned
to spend a lot of time executing in theoperatingsystem.

Thetablecolumnsshow the jobsperminuterateachieved
(this is the re-aim-7 figure of merit); the amountof idle
time we measuredfor each core in ASISA-CMP mode;
andthe jobs/minute/joule resultfor (respectively) thesingle-
code system, and ASISA-CMP kernels when modelling
0762894 1W, 5W, and 10W, respectively. In this (admittedly
crude) set of experiments, ASISA-CMP delivers a better
jobs/minute/joule resultthan the single-coresystem,except
when theASISA-CMP OScore consumes10Wor more.
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Table5: Results from re-aim-7 benchmark

Jobs/minute ASISA-modeidle time Jobs/minute/joule
Configurati on 1-core ASISA OScore App core 1-core ASISA/1W ASISA/5W ASISA/10W

alltests/5users 2738 3091 8.22 5.93 7.88 18.44 14.41 11.32
alltests/20 users 7468 7598 12.53 3.53 15.50 19.14 16.26 13.68
high system/5users 1501 1498 16.33 15.45 2.43 6.68 4.74 3.48
high system/20 users 5552 5489 16.82 14.04 8.37 17.39 13.23 10.19

Resultsaremeansfor 5 trials

Table6: Results from Netperf benchmark

Bandwidth Mbit/sec ASISA-modeidle time Mbi ts/sec/joule
Configuration 1-core ASISA OScore App core 1-core ASISA/1W ASISA/5W ASISA/10W

TCP STREAM 941.50 941.37 43.56 37.34 0.58 1.40 1.03 0.78
TCP MAERTS 941.38 941.42 43.68 40.20 0.58 1.58 1.13 0.83

Transactions/sec ASISA-mode idle time Transactions/sec/joule
Configuration 1-core ASISA OS core App core 1-core ASISA/1W ASISA/5W ASISA/10W

TCP RR 11312.40 11329.90 45.86 37.95 6.55 14.76 11.07 8.43
TCP CRR 4895.40 4877.19 47.44 37.49 2.83 6.25 4.71 3.60

Resultsaremeansfor 5 trials

Results in Table 6 for the Netperfbenchmarks show that
ASISA-CMP, with all threevalues of :<;7= , delivers better
bandwidth or transactionsperjoule than thesingle-coresys-
tem. (We ran 1-minute trials for thesebenchmarks,over a
1Gbit/sec Ethernet.)

Results in Table 7 for theLinuxcompilation,on theother
hand,did notshow anet benefit for ASISA-CMP. Even with
: ;7=?> 1W, the ASISA-CMPsystemconsumed more power
during thecompilation benchmark. Apparently, this bench-
mark mostly doesrelatively shortsystemcalls.

8 Summary

We have takenthe first steps towardevolving Linux to sup-
port ASISA-CMP, and the first stepsto evaluating its per-
formance. The approach has promise; weneedto do a more
thoroughstudy to prove it.
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