O}

invent

Operating Systems and Asymmetric Single-ISA CMPs: The Potential
for Saving Energy

Jeffrey C. Mogul, Jayaram Mudigonda, Nathan Binkert, Partha Ranganathan, Vanish Talwar
HP Laboratories Palo Alto

HPL-2007-140

August 22, 2007*

CMP, multi-core, CPUs consume too much power. Modern complex cores sometimes waste
energy savings, power on functions that are not useful for the code they run. In particular,
operating systems operating system kernels do not benefit from many power-consuming features

that were intended to improve application performance. We propose using
asymmetric single-ISA CMPs (ASISA-CMPs), multicore CPUs where all cores
execute the same instruction set architecture but have different performance and
power characteristics, to avoid wasting power on operating systems code. We
describe various design choices for both hardware and software, describe Linux
kernel modifications to support ASISA-CMP, and offer some quantified
estimates that support our proposal.

* Internal Accession Date Only
Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.

Opeiting SygemsandAsymmeric Singe-ISA CMPs:
ThePaentialfor Saving Enegy

Jefrey C. Mogul

JayaranMudigonda NathanBinkert

ParhaRanganathan Vanish Talwar

Jeff. Mogu @hp.can, Jayaam.Mudigonda@hp.con, binkert@hpcom, Partha.Raganahan@hp.con, Vanish. Tawar@hp.con
HP Labs Palo Alto, CA94304

Abstr act

CPUs consumetoo much power. Modern complex cores
somdimeswastepower on functions that arenot usefulfor

the code theyrun. In paricular, operding sysem kernels do

not benefitfrom mary power-consuming featues that were
intendedto improve applcation perfamance We propose
using asymmeric single-ISA CMPs (ASISA-CMPs), mul-

ticore CPUswhereall coresexeaute the same instriction

sea archiecture but have different performane and power

chaacterisics, to avoid wastng power on operding systems
code.We describevariousdesign choicesfor bath hardware
andsoftware desribeLinux kernel modifications to support

ASISA-CMP, and offer somequantified edimatesthat sup-
pott our proposal.

1 Intr oduction

While Moore's Law has delivered exponental increaesin
computatbn over the past few decades, two well-known
trends createprablems for compuér systens: CPUscon-
sumemore and more power, and operatirg systens do not
speel up asrapidly as mostapplication codedoes. Many
peopk hawe addresse these problems separately; we pro-
poseto addressthem together.

Until recently, designer®f high-endCPU chipstendedo
improve single-stream performanceasmuchaspaossble, by
expoitinginstruction-level parallelism anddecreasing cycle
times. Both of thesetechniqguesarenow hardto susgin, so
recent CPU desgnsexpbit shiinking VLSI feaure sizesby
using muttiple cores rather thanfader clocks. Examplesof
theseChip Multi-Processor{CMPs)include the Sun Niagra

processorwith eight cores, the quad-corelntel Xeon, and
dual-coresysemsfrom several vendos.

All commecially-available gener&pumposeCMPs, asof
mid-2007, are synmedrical: eachCPUis identical, and typ-
icdly, all run at the same clock rate. However, in 2003 Ku-
mar et al. [13] proposel heterogeneoufor asymmeérical)
multi-core processors,as a way of reducing power require-
ments. Ther propcsd retains the single-Instruction-Sd-
Architecture (single-ISA) modd of symmetrical CMPs: all
corescan execute the samemadine code. They obseved
that different implementatons of the sane ISA had order
of-magnitudedifferencesin powerconsumpton (assuming
single VL Sl proces). Theyfurtherobsevedthatin a mutti-
appication workload, or even in phase of a single applica-
tion, one does nat alwaysneedthefull powerandfunctiond-
ity of the mostcomplexCPU core; if a CMP could switch a
processbetveen coreswith differentcapailities, onecould
maintin througtput while decreaing power consumpton.

Sincethe original study by Kumar et al., several other
studies [3, 8, 14] hawe highlighted the benefits from het-
erogeneity. (Keynote spe&ers from some major processor
vendas have also suggestedhat heterogeneity might be
commecially interesting [2, 22].) Howeer, all these stud-
ieslooked only at use-mode execution. But we know that
mary workloadsspendmuch or mostof their cyclesin the
operding system[23]. We also know that operating sysem
(OS) code differs from application code: it awids the float-
ing point processorit branche moreoften, andit haslower
cade locdity (all reasonswhy OS speedips lag applica-
tion spe@lupson modern CPUs).An asymmgic singe-ISA
CMP (ASISA-CMP)mighttherefore sawe power, withoutre-
ducingthrouglput, by exeauting OS cock on a simple, low-
power core,whil e usingmorecomplex, high-power coresfor

appication code.

The main contibution of this paper is to propose and
evaluatethe ASISA-CMP modtl, in which (1) a multi-core,
single-ISA CPUindudessome” OS4{riendly” cores,optim-
izedto exeaute OS codewithou wasting energy, and(2) the
OS statrally and/or dynamicdly decideswhich codeto ex-
eaute onwhich coresso asto optimize throughputper joule.

To optimally exploit ASISA-CMB, we expect thatthe OS
and the hardware both mustchange. This paper explores
the variousdesig consideratbnsfor co-ewolving the OS and
hardware, andpresaits experimentatesuls.

2 Redated work

Ouserhout[20] may have beenthefirst to point out that“op-

eraing systemperformancedoesnot seemto beimproving

at the sane rate asthe basesped of the underlying hard-
ware” He speculated that causesinclude memorylatencies
andcontext-switching overheals.

Nellanset al. [19] meauredthefractionof cyclesspentn
the OSfor avarietyof appications, andre-examnedhow OS
perfomancescdeswith CPU performance, suggesting that
interrug-handing code interferes with caches and branch-
predction history tables. Theyfoundthatmany appications
exeaute a large fraction of cycles in the OS, and obsenred
that “a classic5 stagepipeline [such as]a486 is surpisingly
closein performance to a modernPenium 4 when execut-
ing [OS code]” However, insteal of proposingan ASISA-
CMP, theysuggestaddngadedcatedOS-spedic core. (It is
notentirely clearhow far their propcsal is from a single-1SA
CMP) Theydid not evaluate this propcsal in detail.

Chakraborty et al. [11] propcsed refadoring sdtware so
that similar “fragmens” of codeare executedon the same
core of a CMP. Their initial study treatedthe OS andthe
usermodeapplication as two coarse-graied fragments, and
found speedupn some cases.However, they did not exam
ine asymmetric CMPsor the quesion of power reduction.

SanjayKuma et al. [15] propcse a “sidecore” architec
ture to support hypervisor operdions. In their approad, a
hypervisoris restrictured into multiple componerg, with
somerunning on specialzed cores.Their god was to awid
the expensieinternal state changes triggeral viatraps(e.g.,
VMexit in Intel's VT architedure)to performprivilegedhy-
pervisor functions. Instead, the side@re appoach transfes
the operation to a remotecore “that is already in the appro-

priatestate.” Thisalsoavoids polluting theguest-core caches
with codeand data from hypervisor operatons. (The side-
coreapproad is nat specificaly targetedat saving eneigy.)

3 Designoverview

Our gaal is to addresgwo mgor challenges for multi-core
systems: how to minimize power corsumption while man-
taininggoodperformanceand how to exploit the parallelism
offered by a multi-core CPU. Thesetwo issues are closdy
linked, but we will try to untangle themsomevha.

3.1 Proportionality in power consumption

We want to maximize the eneigy efficiencyof our computer
systems, which could be expresseé as the useful computa-
tiond work (throughput) per joule expended.Fanet al. [6]
have obsered that the ided systemwould consumepower
directly propationalto the rateof usefulcompuational work
it completes. We refer to this as the “proportiondity rule”
Sweh a sysem would needno additional power management
algorithms,excet asmight be neededto avoided exceeding
peak power or cooling li mits.

Fanetal. amguethat”sysem desigrers shaild consider
power efficiency not simply at peak perfamancelewels but
acrosghe activity rang€. We believe thatthe ASISA-CMP
appoad, with a careful integraton of OS and hardware
design, can hdp addressthis goal Of course it is prob-
ably impossble to designa systemthat truly complies with
the propotionality rule, espeially sincemany compments
corsume considerale power even whenthe CPUis idle.

There areat least two waysthatone might desgn a sys-
tem to addressthe proportiondity rule. First, one could
design individual comporents whose power corsumption
varieswith throughput, suchas a CPUthat supports voltage
and frequencyscding. Secord, one could desgn a sys-
tem with a mix of both high-powerhigh-perfomanceand
low-power/low-perfamancecomponerd, with amechanism
for dynamically varying which conponentsare usad (and
powered up) basedon systemoad.

The origind ASISA-CMP model,asproposed by Kumar
etal. [13], follows the secondapprach, withou preduding
the first one. In times of light load, activity shifts to low-
power cores; in times of heavy load, low-power corescan
offer additional paralklism without significant increaesin

area or power corsumption.

In this pape, we extendthe ASISA-CMP model by as-
sating tha the ided low-power core is onetha is special-
ized to exeaute operating systemcode. (More broady, we
consiar “OS-like code; whichwewill definein Sec 4.31.)
This stens from sewerd obsevations:

e OS code does not proportionately benefit from the
potential speedup of complex, high-frequencycores.
Thus,running OS code on asimpler coreis a better use
of power andchip area.

e Most compuér systems (with certain exceptions, such
as scientfic computing) are often idle. If we could
powver dowvn complex CPU coresduring periads when
theywould otherwisebeidle, we could improve propor
tionality.

Thedesigrs explored in this paperinclude:

e Multi-core CPUs with a mix of high-power, high-
complexity application cores, and low-power, low-
complexity OS{riendly cores.

e Operatig sysem modifications to dynarnically shift
load to the mostapprariate core, and (potentally) to
power down idle cores.

¢ Modest hardwarechangego improve the efficiencyof
core-swithing.

Of couse the CPU is not the only powerconsuming
componenin a system andASISA-CMP does nat address
the power consumedy memory, busses, and /O devices,
or the powerwaged in powver sugplies andcooing sysems.
Therefore, even if the CPU wereperfectlypropational, the
entre sysemwould st fail to mee the proportionality rule.
However, aslong asCPUsrepresat thelarges single power
dravs in a sysem (see Sec. 3.3.1),improving their propor
tionality is worthwhile.

3.2 Coreheterogeneity

Thepromiseof ASISA-CMPdependgritically ontwo fads
of CPU core design: (1) for a given processtechnology, a
complexcoreconsume muchmore power anddie areathan
asimple core,and(2) a compkx coredoes nat improve OS
perfomancenealy as mud asit improvesappication per-
formance

Tablel shows the relative power consumpton, perfom-
ane (in terms of instructons per cycle, or IPC), and sizes
of variousgeneatons of Alphacores,scded asif all were

Tabke 1: Pawer andrelative perfformane of Alpha cores

Alpha Peak
core powe
EV4 4.97W
EV5 9.83W

Average Normalizedvs. EV4
power IPC | area | power
3.BW 1.00 | 1.00 1.00
6.88W 130 | 176 1.84

EV6 17.8W | 10.8W 187 | 854 2.86

EV8 92.88W | 46.4W 214 | 82.2 | 1245

All coresscaledo 0.1 um; IPC basedon SPEC CPU benchmarks

Basedon daafrom Kumaretal. [13]

implemented in the same processtechnology. Clearly, the
smalkst core delivers significanty more perfomance per
watt and per mm?. In fad, these perfomanceresuls were
basedon the SPEC CPU bendmark suite; since operathg
system performancegenerdly scdes worsethan apgication
performance [20], we beliewve the IPC ratios would be even
smalkr for OScode.

3.3 Complicating issues

Various issuescompli cate the question of whether we can
improve throughputjoule by running OS (or OS-iike) code
on special aOSAriendly core. We covermary detaikin sib-
sequensectionsof this paper;here,we expcse sane general
guegions. Many of thesecan only be resolved by exper
imentation (possibly through simulation); we descrbe our
experimentdater, in Sec 7.

The two key issuesasmentbnedabove, arethe relatve
power consumption levels for various systemcomponers,
andtherelative performance cost and benefitsof switching
cores.In order for ASISA-CMP to pay off, we require that
it doesnot reduceperformancdasterthanit reduce power
corsumption.

3.3.1 Howimportant is CPU power?

Any red sysem includes multiple comporents that draw
power, and ASISA-CMP will not significantly change the
enegy consumpbn of componentsother thanthe CPU. In
faa, if ASISA-CMP increasesthetime requredto complete
ajob (or setof jobs),the resuling increasein enegy con-
sumed by other system compaments may outweight the sav-
ingsfrom the CPU cores.

Comporent power consunption varies tremendously
acrosghevariety of compuer systensin use.In particular,

Table 2: Exanple power budgetsfor two typical systems

Watts
Tot. | CPRU (%) | Mem | Dik | PCI | Other

Blade savers (all with multipl e CPUs; after [16])

Systen

Smdl 248 70 28% 48 10 50 70

Med. 442 170 3% 112 10 50 100

Large 1025 | 520 51% 320 10 75 100
L aptop (after [17])

Idle 131 20 15% 0.4 0.6 | N.A. 10.1

Busy 258 | 134 52% 1 1| NA 10.3

laptops and severs have vastly different balan@s betwea
componerd. Table2 shavs a power breakdavn for several
typical systems Theblade saver reallts, takenfrom [16],
shav “namelate” (maximum)power budgets, and all have
either two or (for the“L amge” configuiation) four CPUs.The
laptop reallts, taken from [17], shav measuredresuts for
anidle sysem and for one running the PCMarkCPU bench-
mak; in both caes,Dynanic VoltageSaling wasdisabled
andthe screen was at full brightness.

In all cases,exceptfor the idle laptop, CPU power con-
sumpton wasthelargeg single comporent of sysem power
consumgbn. For the Large server andthe busy laptop, the
CPU(or CPUs)consumd slighty more thanhalf of thetotal
power. This suggeststhattechniques, suc asASISA-CMB,
that address CPU power consumgbn canhawe meaningful
effects on whde-systenpowver consumgbn.

3.3.2 How does ASISA-CMP affect performance?

ASISA-CMP can affect performance in several ways:

e Running OS code on a slower CPU: By design,
ASISA-CMP concede someperformance by running
OS code on a slower core. As aguedin Sec. 3.2, this
slovdown might be minimal. However, an application
that spendanuchof its time in the OS could seea sig-
nificantperfomancededine.

e Core switching costs ASISA-CMP inherenty moves
athreadof executbn from onecore to another for cer-
tain sysem calls. Core-swithing creates longer code
pathsfor thesesystem calls, and addsstate-savig over-
heal.

e Cache affinity vs. cacheinterference We assume
that the coresin a CMP CPU share a singe L2 cache
but have private L1 cache. Core-switching coud af-

fect cadche performancein at leasttwo ways: it could
harm cade affinity, by requiring cade lines (e.g, for
thedaa buffer of awrite systemcdl) to move between
L1 cades, or it could reducecacheinterference by
kegiing some OS codeanddata out of the apgication
corescache

e Available parallelism: Giventhattheincremengl cost
(in power andarea) for addng anOS coreto aCMP is
muchlower thanfor an applcation core(seeSec. 3.2),
if thereis available parallelism in theworkloadthat ex-
tendto OSprocessirg, an ASISA-CMP CPU coul suwp-
port more pardlelismthana symmeric CMP CPUwith
similar power andarea For exampleapardlel “make”
command might bendit from having anOScorerun 1/O
processirg while the application coreis dedicatedto an
optimizing conypiler. Not all workloadswill hawe this
kind of parallelism, of course.

3.3.3 Idle time

We have describedthe example in Figure 1 asif the applc-
afon's systemcall doesusefulwork. However, it couldalso
be blockedwaiting for same externalevent, suchas disk 1/0
or the arrival of a Web requed. Numerousstudies (e.g,
[6, 21]) hawe shavn that mostcompuers are idle most of
thetime. Therefore, aspointed out by Fanetal. [6], a use-
ful desgnfor meetng the portionality rule must significantly
reduce power consumption during idle periods.
ASISA-CMP offers the option of powering down the
high-power application core(s), while mantaining OSfunc-
tionson alow-power core.For example, the arrival of anew
Web (HTTP/TCP)conrection normaly precedes the arrival
of theadud HTTPrequesby atleastone network round4rip
time (typicdly on the order of millisemndsor more). This
would allow anOScoreto hande theinitial TCP connecton
request andthen awakentheappication coresoonenoughto
processthe HTTP-level request without anydelay.

3.4 Competing approaches

Given that the goal of ASISA-CMP is to improve perform-
ance (in terms of throughpu/joule), and it would require
changedo the desgn of CPU chips, we have to compare
it againsipossble competing appr@aches

Otherpotential alternativesinclude:

e Complex-core with dynamic Voltage/Frequency

saling: This coud be espeially effective at saung
power in sysemswith lots of idle time. Howewer, we
suspetthat the lowest-pwer modefor V/F scding on
a compkx core is still much higher than the power
dravn by an ASISA-CMP CPU with the applicaion
coreturnedoff.

e Complex-core with power-down on idle: In sucha
system.a idle core would wakeup on ary externalin-
terrypt. This appoachcould alsobe espedally effective
at saving power in sysemswith lots of idle time, espe
cially if the systemis not forced to wake up on every
clocktick evenif thereis nowork to do. However, this
approactonly worksif thesystemis truly idle for mod-
eraely long periods; a saver sysem handing a min-
imal rateof requestpadets,for example, might never
stayidle for longenoudy.

e Lots of simple cores A CPUwith lots of simplecores,
each of which could beindependeny power off, might
allow a closeapproximation to the proportionality rule.
However, this configuration can only get ressoreble
throuchput (and thus reasorable throughput/joule for
the full system) if we can solvethegeneralparallel pro-
gramming problem — a problem tha hasbeen elusive
for mary yeas. Amdahl's Law may be an inherent
limit to this apprach.

e Sone cores with spegalized ISAs: Others have ex-
ploredthis alternative [19]. We hawe ruled it outfor this
paper beausewe believe tha a single-ISA approach
makes it much easierto develop andmaingin anoper-
ating system,and beausewe have no way to simulate
multiple ISAsin one system

4 Softwareisaies

We believe thatthe ASISA-CMP approacttanbeappiedto
OScode in severalways,including:
1. Dynamicdly switching betwea coresin OS kernel
code;see Sec4.1.
2. Running virtualization “helper processirg” on OS-
friendly cores;see Sec 4.2.
3. Running applications, or partsthereof, with “OS-ike
code”on OS-friendly cores;see Sec 4.3
To date,we hawve focussedall of ourimplementaton andex-
perimentalwork on the first approad.

Kernel entry overhead Kernel exit overhead
Thread A ‘

! ,
User mode ~ A /A / .
Kernel mode \ B B4 ~
Cache” JPtag Interrapt entry 5 O mé?/rerlr’lr?e[:;n
interference overhead & 2.
overhead =8
k=

(a) Single-core CPU

Kernel entry overhead Kernel exit overhead

Thread A K *
User mode, core 1 ¥ Tcore Linlow / A _
Kernel mode, core 1 \ power mode ‘\‘
o PRt

Kernel mode, core 0/ -~

AN

CoreZswitch ~ ~---Cache

affinity
overhead overhaad

dnieiu|
someq

(b) ASISA-CMP dual-core CPU

Figure 1: Examplewithout threal-level parallelism.

4.1 Dynamic core-switching for OS kernel
code

In any multiprocessor sysem, perfamance depends on
whether there is enoudn aweilable parallelism to keep all
processirg elementsbusy Specifically in an ASISA-CMP-
based system, there are two ways to optimize throudh-
put/joule:

1. If the sysem is underutlized: shift OS load to
low-power cores,and power down high-paver cores
whenever possibk.

2. If thesystemhas aweilable pardlelism: shift OSload to
low-power cores, while keeping the high-paver cores
asbusyas possilte with applicaion code.

First, consicer the case where there is no awailable
appication-level parallelism. Figure 1 illustratesa simple
exanple for an applcation with justone thread. Figure 1(a)
shows a brief partof the application's execution onasingle-
coreCPU.Whentheappication threadmakes a systemcal,
execution movesfrom user mock to kernelmode andbad.
Figure 1(b) shavs the same execution sequene on a two-
coreASISA-CMP sysem. In this case,when the apgication
threadmakes the systemcadl, thekernel(1) transfersortrol
from the “appication core” (core 1) to the “OS core” (core
0); (2) putscorelin low-power moce; (3) executesthe sys-
tem cdl on core 0; (4) wakes up core 1; and (5) transfers
cortrol back to corel.

Kernel entry overhead t,(ernel exit overhead '”lg?,'erﬁ,?etae&(it

Thread A ' ; 7
Thread B -(B-blocked)\ -+ { 4 - N

User mode al / Rl
\ ; oY

Kernel mode

(A blocked) Thread A

/_ Thread B
>

C

cache” ~ Imerrhpt entrys O

interference” overhead @ g

overhead S8
=

dnuseyu |
BINPALIS

(a) Single—core CPU

Kernel entry overhead

Thread A b \
Thread B - (B-blocked)\ 4
User mode, core 1 /

Kernel mode, core 1

.- Cache interference overhead------__
(A blacked).

a

» Thread A
/(B blocked)Thread B

i (begin core switch for A)

Kernel mode, core 0

\\

--- Cache
affinity
overhead

2018Q

Core-switch
overhead

dnieiu|
dnieu|
BINPAYES

(b) ASISA-CMP dual-core CPU

Figure 2: Exampe with thread-level paralldism.

If the OScoredrawssignificantly lesspowerthanthe ap-
plication core while not sigrificantly reducing perfamance
on OS code,andif there were no overheals for switching
coresand for changing the power stateof core O, thenthe
ASISA-CMP sysem would hawe higherthroughput perjoule
than the sinde-core system. Thesetwo “if s” are two of the
key questionsfor this pape: aretherereal benefitsto run-
ning OS code on specialzed cores,and are the overheals
smdl enoughto avoid overwhelmirg the benefits?

Figurel(a)and(b) alsoshow whathgppens onthearrival
of aninterrug. In the single-core system,appication exe-
cution is delayedboth for the actualexeaution of the inter-
rupt handing codein the OS,and alsofor interrupt exit and
entry In the ASISA-CMP system the appication continues
to run without delay (exceptperhapgor menory-acces in-
terferencg This would probablybe true for ary multicore
systemput in the ASISA-CMPapproad, interriypt handing
happenson a power-optimized core, rather than on a high-
power core.

Note that we compare thedual-coreASISA-CMP system
againsta single-coresystem rather thanagainsta symmet-
ric dual-coresystem,because(in the underutlized cas§ it
seemslikely that a dualcore CMP woud consumemore
powver than a single-core sysem, withou ary increasein
throuchput

Next, conster the ca® wherethere is applicationdevel
parallelsm. Figure 2 illustratesanoher simple example,

for an application with two runnabé threads,thread A and
threadB, wherethreal A is running at the start of the ex-
ample and againthe threadmakesa systencall. Figure 2(a)
shows the sinde-core case: while threal A is executing in
the kernel,thread B remainsblocked until the scheduér de-
cides that A hasrun long enough Figure 2(a) shavs the
ASISA-CMP case:whenthread A makes its sysem cdl, the
kernelswitchesthatthreadto the OS core(core0), threal B
cannow runontheapplication core(corel).

Again assumirg that the switching overheas arenot too
large, the useof ASISA-CMPincreases the utili zation of the
appication core,because OS execution is movedto a more
appopriate core.

4.2 Running virtual ization helperson
OS-friendly cores

Sofar, we hawe disaussedtheoperding sysem asif it werea
single monolithic kernel. Of coursemary operating systems
designs,bath in resarchand asproducs, hawe beendecom-
posdl; for example, into a microkerneland a s& of sever
processes Sec 4.3 discussesthe possbility of running dae-
monprocesse on a OS-fiiendly core.

However, a differentkind of demmpasition hasbemme
popular: the creation of one or more virtudization layers
between the traditional operding system and the hardware
Theselayers basically exeaute OS kernel code, but in a
different protedion doman from the “guest” OS. We be-
lieve thes are clea candidates for exeaution on OS-friendly
cores. Theyalso tend to be boundto spedfic cores, which
eliminatesthe performanceoverhea of core-swithing.

Note that the use of cument virtual madine monitors
(VMM) might undermire the useof dynamic core switching
for kernel code, be@usea guestoperating system running
in a virtual machinemight not be able to bind a threadto a
specific core. It is possibé thata VMM' s interfaceto the
gueg OScoud beaugmented to exposethe adual cores, or
at least to exposethe distinction betweenapplication cores
andOS-friendly cores, but we have not expgored this issuein
detail.

e Xen's Domain 0: In Xen [4], and probably in sim-
ilar VM systemsoneprivileged virtualmachine is used
to multiplex and manage the 1/0 operdions issu@ by
the othervirtual machines. This“Domain 0" probaby
would be mostpower-efficient if runonanOS-friendly

core.

e /O and network helper threads: Se\erd resarches
have proposedunring I/O-related portionsof thevirtu-
alization ervironment on sepaate processors McAuley
and Neugebauer [18] proposed“encapsuéting oper-
ating sysem I/O subsystms in Virtud Chanrel Pro-
cessors, which could run on separge processors.Reg-
nier etal. [24] and Brecht et al. [5] hawe proposel run-
ning network padet processingcodeon distinct cores.
For both of theseappoades,OS-friendy cores would
beagoodmatchfor optimizing power and performance.

4.3 Running OSlike code on OS-friendly
cores

Our hardwaredesignis basedon the obsevation that “OS
code” behaes differently from user code. However, the
definition of an operding systemis quite fluid; thesamecode
that executesinside the kernel in a mondithic systemsuch
asLinux, may execute in usermodeon a microkernel. Thus,
we should not limit our choice of which codeto executeon
OS-friendly coresbasedsimply on whetherit runsin kernel
mode.

Typical sysemsinclude mudc codethatshaesthesecha-
aderistics with actualkernel code:

e Libraries: muchof usermodecoce actually exeaites
in librariesthatare tightly integratedwith thekernel.In
microkernds andsimilar approades, it might be hard
to distingush much of this code from traditionalkernel
code. So, one might expe¢ somelibrary codeto run
mostefficiently on an OS-fiendly core. On the other
hand,we suspect that thiswould requie core-swithing
far too frequently, and it might be hard to detectwhen
to switch.

e Daemons: mostoperating systemgbut especially mi-
crokernels) use deemonprocessego executecode that
doesnot neal to bein thekernel,or thatneedsto block
frequenly. This code mightalsoberun mostefficiently
onanOS-friendly core, andcould easily bebourd to the
appropiate core (mostoperatng systens allow binding
aprocessto a CPU).

e Savers: Some applcations, such as Web severs,
might fall intothe samecategory asdaanons.However,
cryptographc code might run beter on normal cores,
andsoa secureWeb sever might have to berefactored

to run optimally on an ASISA-CMP.
Note that if we use ASISA-CMP to execute enire OS-like
appication processes(or, at least, threals) on OS-fiendly
cores, this eliminates the performane overheal of core-
switching.

4.3.1 Defining and recognzing “O Sdike” code

If it makessenseto run OS-like applcation codeon OS-
friendly cores,how doesthe OS dedde which appli cations
to treat this way? Progammes could simply dedare ther
appicationsto be OS-ike, but this is likely to leadto mis-
takes. Instead,we believe that through moritoring the ap-
propriate hardware perfamancecounters,the OS candetect
apgications, or perhapseven threals, with OS-ike execu-
tion behavior.

Automatedrecogrition of OS-like codedemands a clear
definition of the term. While we do not yet hawe a spe-
cific definition, the main characterisics of OS-like code
are likely to indude the absece of floating-point opera-
tions; frequent painter-chasirg (which can defeat compkex
data cachedesgns); idiosyncrdic conditional-bianch beha-
vior [7] (which can defeatbranchpredictas designedfor ap-
plication code),and frequent block-data copies (which can
limit the effectivenesof large D-caches).

Many of theseidiosyncraticcharateristics could be vis-
ible via CPU performance courters. (Zhanget al. [26] have
suggestedhat performane couners should bedirectly man-
agedby the OS asafirst-classresource for similar reasons.)
We arenat sure, however, wheher suppat for ASISA-CMP
will require novel perfamancecoungrs.

We alsosuspetthatanadaptve appoach,basedon tent-
afively runningasuspeted OS-likethreadonanOS-fiendly
core,andmeauring theresuting changen progess,coud
be effective in determinng whether a threal is sufiiciently
OS-like to benefit. This apprach requres a meansfor the
kernelto determinethe progresof athread,whichisanopen
issue in some cases therate at which it issuessysem cdls
coud beausdul indicator.

4.3.2 Shouldasynmetry beexposed to use-modecode?

Kernels already provide proces®r-affinity contols (e.g,
scheal_setaffinity on Linux). With asymmadrical cores,the
kernelmight also expase core configuation data, to allow
OS-like user codeto sele¢ theright core.

5 Implementation of dynamic
core-switching

For the preliminary experimentsn this paper we made the
simplest possible changedo Linux (version 2.6.18) to allow
usto shift certain OS operations to an OS-friendly core.We
assumeda two-coresysem, anddid not add code to power-
down (or slow down) idle cores.

Kernels typically exeaute two categries of code:
“Bottom-half’ interrug-hander code, and “top-half”
system-all code. We useddifferent strategesfor eech.

5.1 Interrup t-handler code

We believe thatinterrupt code (oftenknown as “bottom half”
code)shauld always preferanOS-fiendly core. TheOScan
configue interruptdelivery soasto ensurethis.

Linux alreadyprovides,viathe/ pr oc/ i r q directory in
the/ pr oc processinformaton pseud-filesystemaway to
sd interrupt affinity to a specific core. We do this only for
the NIC; mostother deviceshave much lower interruptrates,
andthetimerinterrupt mustgoto all CPUs.

It is possble thatthe interrug load could exceed the ca-
padty of the OScorgs) in a CPU.If so, shoul thisloadbe
sprea out over the other cores? This mightimprove system
throuchput under someconditions, but it might be beter to
confineinterrupt processng to a fixed subsé of cores,asa
wayto limit thedisruption causedby excessve interrugs. In
our experimentsye have statcally directedinterrugsto the
(single) OScore.

5.2 Systemcalls

We facedtwo man challengesin ourimplementation of core
switching for system calls: how to dedde whento switch,
andhow to reduce theswitchingcosts.Switching cores takes
time, because

1. switching involvesexeauting extra instructons;

2. switching requres transferring some state betwee
CPUs;

3. if the targetcore is powereddown, it could take about
a thousanctycles to switch [13]. Note thatin our cur-
rentimplementation, we do not attermpt to power-down
idle cores; we defe further discussim of this issueto
Sec.5.6.

Given a significant cost for core-swithing, the tradeoff
is only benédicial for expensive, frequentsystemcalls (e.qg,
selector perhap®pen), but notfastor rare calls (e g.,getpid
or exit). (Sec.7.2 deseibessimple measurenent of relevant
coss.) Further, for somesysem calls the decision to switch
should depend on how much work is to be dore. A read
system cdl with a buffer sizeof 10 bytes shoul not switch,
whereasonewith abuffer sizeof 10K bytesprobablyshoud.

Our basic approad to core-swithingis to modfy certain
system calls sothat the basic seqienceis:

e doinitial validation of arguments

e Decide whether thereis enough work to do to merit
switching

e If so,invoke a core-swithing function to switch to
an OScore

e do thebulk of the systemcall

o If we switched codes core switch back to an applic-
ation core. Wereturn if possble, to the original core,
to preseve cade affinity.

e finishupandreturn

Thestepsin bdd arethe modifications we made Thedetails
differ slightly for each cdl thatwe modified, but generally
involve only afew linesof new codefor eadt cdl.

In our current implemantation, we core-switch on thes
system calls: open, stat, read, writ e, readv, writ ey, selet,
poll, andsendfile. For read, write, and similar calls, we
arbitrarily defined”enowghwork” as4096bytesor more;we
hawve nat yettried to optimizethis chaice.

We hawe two different implemaentations of the core-
switching function, asisaSwichCores a very slow design
thatworks, anda fager designthat, unfortunately we were
unableto detug before the submssiondealline. We describe
ead versionbelow.

In either case,we dedicateoneor morecoresasOScores
to exeaute only OScode,and we modified the kernelto man-
tain bitmapsdesignating the OS coresand the apgication
cores.

5.3 Core-switching via the Linu x migration
mechansm

Linux alreadyincludesaload-baancing facility thatcanmi-
grate a threal from one CPU to anather[1]. For our initial
implementation of asisaSwichCores, we used this mechan-
ism. This gave us a simpleimplemaentation: we block the

cdlingthreal, make it eligible to run only on the targetdes-
tination CPU, place it on a queueof migratable proces®s,
andtheninvoke Linux's perCPUmigration threal.

Thisis anexpensive proceduresinceit involves athreal-
switch onthesourceCPU, andinvokes theschedukr on both
the sourceanddedination CPUs... andthe entire procedure
mustbe donetwice persystemcall.

5.4 Core-switching via a modified scheduer

In an atenmpt to spe=d up core-swithing, we wrote a ver-
sion of asisaSwichCores that directly invokesa modfied,
somewlat simpified versian of the Linux scheluler. Linux
allows athread (running in the kernel) to call the schedule
procedureto yield the CPU. We wrote a modified versi,
asisaYield, which deadivates the currentthread, placesit on
a specialperCPU queuefor the taget CPU, does the usual
scheduler processing to choase the nextthreadfor the source
CPU, and finally sendsan interprocessorinterrug to the
destnation CPU. (Linux already usesthis kind of interrupt
to awakenthe scheduér whendoing thread migration.)

Whenthe interruptarrives at the destnation CPU, it in-
vokesanothermodified versionof the schedutr, asisaGrah
which deqeuesthe threal from its special perCPU queue,
bypassirg thenormd sdcheduler logic to choosewhichthreal
to run.

5.5 Coreswitching cods

To quantfy the costof core switching, we modified a kernel
to switch on the getpid systemcall. This call does almost
nothing, soit is a good way to meaurethe overhead. We
wrote a benchmarktha bypassesthe Linux C library's at-
temptto cachethe resuts of getpid; the benchmek pins it-
sdf to theapplcation core, theninvokesgetpid manytimes
in atight loop. We wrote similar benchmarksto measure the
latencyof sdect with bath an empty file-desciptor sea (fd-
sd) anda one-éementfdsetwhich is always “ready”, and
of readv (which readsinto a vectar of N buffers) reading
N = 16, 64,512 blocksof 64 bytesfrom afile in the buffer
cache.

The resuls in Table 3 were measured on our modified
Linux 2.6.18kernd runningonadualcore Xeonmodel5160
(3.0GHz,64KB L1 cades, 4MB L2 cachg system with
andwithout core-switching enaled. In generd our known-
to-be-slav core-swithing code addsslightly over 4 micro-

Tablke 3: Core-swithing overheals

Core-switching
Systemcall disabled | enabled | Overhead
getpid 84 4183 409
sdect/empty 120 121 1
sdect/non-enpty 350 4647 4297
readv N = 16 6027 6018 -9
readv N = 64 22517 26758 4241
readv N = 512 176503 | 181767 5264

Timesarein nse. percall; trial is 10M invocatiors of systemcall (excep
10K invocatiors for readv); resultis from best of 10 trials.

seondsper systemcdl. Theselectcdl with anempty fd-
set,andthereadv cdl with N = 16, both have essatially
no overheal because they do not have enoughwork to core
switch (16 blocks of 64 bytesis well bdow the 4096-byte
threshotl we se for “enoudp work” for readv).

The percall overheador readv cdl N = 512 increases
slightly over thatfor N = 64, possilly beausethe larger
buffer size (32K bytes) representsa significant numbe of
cadte-inetransfersbetweencoresor perhapdecaisecopy-
ing it from theuse buffer to a kernel buffer causesconflicts
inthe 64KB L1 cade.

5.6 Powering down cores

Kumaretal. [13] assumd that“unused cores arecompktely
powered down, ratherthanleft idle; asa way to minimize
waded power. Giventher edimatedthousand-cgle costto
power-up acore, this might not bethe bestchoice, egecially
for an OS corethat is handing lots of interripts or sysem
calls, or whereinterruptlatencyis critical.

How shoull the kernd dedde when to powerdown
coresANe suggest anadapive apprach:

1. If the OS expeds to return quickly to an application,
it shoutl keep the application core powered up. (The
OS might expectto retumn “slowly” if the applicationis
blocked ondisk /O, for exanple.)

2. The OS cantrad the ratesof systemcdls and inter
rupts. If thecombired rate hasbeenlow, it could powver
down the OS coreafterreturning (although perhapsthe
arrival of any interrug implies a likely increasein the
rate of sysem calls?). If the rate exceedsa threshdd,
the OS core shoud reman poweredup. (Feedback-
basedoptimization could be usefulhere.)

Onepossilhe alternative to compktely powering down acore

is to drasttally reducethe core's voltage and frequency.
Sec. 6.2 disaussesdle-CPUpower statesn more detail

6 Architectural support

The ASISA-CMP apprach exposes a numberof hardware
designchaices, which we disaussin this section. Most of
theseare openissuessincewe hawe not yet donethe simu-
lation studiesto explore all of themary options.

6.1 Desggn of ASISA-CMP processors

How shoud an “OS processor”in an ASISA-CMP differ
from the otherproces®rs? We strongly favor the single-1SA
model,since it gredly simpifies the design of the software,
andbecaiseit still allows flexible allocation of compustion
to cores.But given asingle ISA, many choicesremain:

e Non-architectural state: Differentimplementtions of
an ISA often expcse different non-archiectural state
to the operathg system. (“Non-architecural state” in-
cludesCPU statethat might have to be sawed when a
partially-completed instruction trapson a pagefault)
The OS needsto be awareof these differences to be
ableto suppat the appropiiate emulaton.

e Floating-point support: Most kernelsdo not usefloat-
ing point at all, and so one might design the OS core
withou ary floating-point pipdine or registers. If a
threadwith FP code soménow did endup executng on
the OScore, it could trapinto FP-enulation code,pre-
saving the single-1SA view ata consderable perfom-
anc cost

e Caches: CMPstypicdly hawe percore first-level (L1)
caches, anda sharedL2 cache Cadhe desigrers have
many choices(line size, associatvity, total cache size,
etc). OS code tends to hawe different cache behavor
than application code[23]; for exanple, the kernelhas
much less data-@dhe locality. On the other hand, a
large instruction cache might cegpture a lot of OS ref-
erences.An OScorecouldhave smaler cachesoverall,
or it could haw alargerL1 I-cache atthe expense of a
smadler L1 D-ceche.

e Pipeline: Modern cores have conplex pipelines(one
version of the Pentium 4 had 31 stages more recent
systemshawe somewhatewerstages).Dee pipelines
work well for applications with preditable or infre-

guentbranchbehavior, but badlyfor codewith frequent

andhardio-predictbranchesasis typical of OS code.

An OS core canpotentially have a simple pipeline and
stll achiewve closeto the performance of a muchmore
compkx pipdine, but with significantpowver and area
sasings.

Branch-prediction tables: Branch predicton (BP)
helps CPUsawid stalling to determinef a branchwil |

be taken or not BP perfamancedependson the size
of the CPU core’s predictbn tables. While we know
of no studiesaddressingvhetter kernelonly exeattion
would be optimized by a differenttable size thanfor
mixed kernel+use execution, Gloy et al. [7] repated
that one shaild nat base simulations of BP on user

only tracesif thekernelaccountsfor even 5% of execu-
tion time This resuk swygeds that an OS-friendy core
might neal a different BP table thana general-purpcse
core,althoudh it isunclearwhetheran OS-friendly core
coud usesmaller tables.Their resultalsosuggestshat
kegiing OSandusercodeon separatecores would im-

prove branchprediction.

Number of OS cores: While this papemostly assume
an ASISA-CMP with a singe OS-friendly core,there
is no inherent reason why there shoull be just one.

Future CMPs might hawe dozens of cores[12], so an
ASISA-CMP desgnerwoud prabably have to chose
the appropriate fraction of OS+{riendly cores to optim-

ize power vs. performance for a range of anticipated
workloads.(Onemightimaginea small family of CPU
produwcts thatdiffer only on this axis, for differentmar

kets.)

Proximity to 1/0O: A systemthat tries to executeOS
cock on an OS-fiendly core will, in most cases, use
thatcorefor 1/0O operations. CPU designersare moving
towards on-chip integraton of I/O hardware (eg., PCI
Express cortrollers, HyperTranspat, or Intel's CSl).
While thesefeaures will probaby not som be in-
tegmated into individual cores,placingthe OS-fiendly
core(s) near the on-chip I/O compments shoul re-
duce wire lenghs, improving performanceand redu-
cing power consumption.

Idle-CPU power states

Ideally, we want to be ableto put an idle coreinto a zero-
power statewith no delay for enty or exit. In reality, the

exit transition takesa relatively longtime we may have to
sdtle for transitoning the coreinto a low-power state. For
example the Advanced Configuration and Power Interface
standard10] specifiesmultiple “ C-states”progressiely in-
creasingin aggressienessof pover managerant Theseuse
awide variety of options,including gating, voltage andfre-
guencyconrol, archiectural throtling (e.g.,4-way isue to
1-way isswe), menory sleep states, conroller andcoherence
shutdown, etc.
Openquestonsinclude

¢ Isthereafundameial tradeof betwea the power con-
sumptonin alow-power stateand the delays for entr-
ing and leaving thatstate?

e Whatarethe fundamatal limits to the sped of these
transitions?Is thereroomfor furtherinnovation in sup-
port of rapid powerlevel changesand leakagepower
reductonin low-power states?

¢ Whatnewmedanisms mighthelpspeedup thesetrans-
itions?

e Woud ASISA-CMP yield beter overdl perfamance
(throughpu/joule) if it useda dee idle statewith high
transition costs,or a shdlow idle state with low trans-
ition costs? If the choice depends on the applicaion
mix, asseens plausibke, could the the OS dedde dy-
nanicdly betweenthes appraches (e.g., by estmat-
ing duration of the next idle periodbase& on obseva
tionsof pastbehavior).

7 Preéiminary results

The experiment we reportin this pape are quite prelimin-
ary. While we are planning to run extensive simulations of
the ASISA-CMP architedure, we do not yet have a fully-
delugged simulation.

Thes experimaits wereall performed using Linux 2.6.18
kernels running on a dua-core Xeon model 5160 (3.0GHz,
64KB L1 caches,4MB L2 cache).

7.1 Workloads

We usedtheseworkloadsin our tests:

e Netpeaf TCP_STREAM: We usedthe TCP_.STREAM
benchmek from the Netperf[9] microbenchmarksuite
developedat Hewlett-Padard. In this benchmark,the
client (the systemunder test)conneds to a sever and

11

sendglataas quickly asposdble overasingle TCPcon-
nection. It setsup a sacket andcallssend() in atight
loop Normally this call returnsas soon as the data is
coded out of the use's buffer. However, if the ker
nel sodet buffer is full, the call will block until spae
is available, potentally idling the processor The user
time spent executing this benchmek is minimal, and
mostof the CPUtimeis spentin thekerneldriver man-
aging the NIC or processingthe padket in the TCP/IP
stack. We usednetperf's - - enabl e-di rty config-
uration option, which ensures that its 1/O buffers are
alwaysdirty in thedatacade.

We alsousel thesenetperf tests:

e TCP_MAERTS: Like TCP_.STREAM, hut the
sener sendsthedatato theclient

e TCP_RR: Instead of steamingbulk data in one
diredion, in thistesttheclientrepededly executes
request-espmsetransatons with the saver.

e TCP_CRR: Like TCP.RR, but initiates a nen
connectdn for each transation. (Notethat we do
neot currenty switch coreson the conned sysem
cdl.)

e Compile: compiletheLinuxkernd, with optimization

e Re-Aim-7[25]: anOpen Sourceimplemaentation of the
AIM Bendmark Suite VII; AIM-VII iswidely used by
UNIX sysem vendors.

7.2 Time spentper system call

We ran a preliminary experiment to determire how much
time is spentin the top half of each sysem cdl. In partic-
ular, for a given workload and a given system call, whatis
the averagetime spentin the call, andwhat fraction of time
isspentin thatcdl during the whole workload?

We modified the Linux 2.6.18 kernel (not the core-
switching version of the kernel) to record the numberof
cycles spentin, and invocatons of, each system cdl, nat
cownting time whenthe processwas blocked. For example,
for asinde minute-longWebtrial, Table 4 shaws the top 10
system cdls, by total number of cycles, and excluding ary
calls that averagedunder2K cycles/c4.

This is obviously a crude meaute of which systemcadls
are“expensve” enowh to merit switching CPUs. The res-
ultswill vary betwee architedures,kernelversiors, applc-
afons,phagswithin anapgication, etc.

Table4: Systemcall cost: 1-minute Web trial

Call name | Count Tot. cyc. | Cyc./call | Cum. %
sendile 50627 | 3053.86M 60419 20.50%
stat64 78851 | 2226.8AM 28241 35.42%
write 78473 | 21£2.9M 2707 49.78%
writev 60164 | 158.92V 2639 60.40%
socletcdl 181108 | 152.33V 8405 70.60%
read 141616 | 1309.6aM 9247 79.3%%
open 43165 | 1043.6™ 24178 86.3M0
poll 79373 743.66M 9369 91.36%
|stat6t 90105 | 565.0M 6270 95.1%%
close 49221 446.84V 9078 98.1%%

As we descibedin Sec 5.2, the decision in our modified
kernel abou whetheror notto switch coresduring a system
cdl is,in somecases condtionalon how mud work the call
expectsto do. Therdore,while Table 4 presets averagesfor
cycles/cl over all invocaions of a given sysem call, our
codeswitch on a subsebf those calls with a highermean.

7.3 Performancevs. power: methodology

Since we do nat yet hawe the ability to simulatean ASISA-
CMP sysem with alow-power OS-friendly core, we instea
ranour modfied Linux kernelonthedual-core Xeon sysem.
We added instrumengtion to this kernelto trackwhen each
coreenteredor exited the idle threal. We record the indi-
vidual idle-time durations in a logarthmic histogram, with
onebucketper power of two. This means that we can po-
tentally underestimate theidle time by afactor of upto two,
althoughthe mean errorshoutl be smaler.

Thesidletimemeasirementsallow to crudely mocel the
perfomancevs. power effectsof ASISA-CMP. Our current
modeldepands on several big assumpbns:

1. We can modd the power of the apgication coreby as-
sumingit is appoximately one third of the Thernal
DedgnPowver (TDP) of the CPU in our system(We as-
sumethatthe L2 cacheconsumesbout asmuch power
aseither of thetwo cores.)

2. We can modelthe power and performance of the OS
core by arbitrarily picking a plausible power lewel for
asimplified core, andthen assumig that OS coderuns
asfast on this core asit doeson the adual CPU. This
is clearly abogusasamption, but it is offset somewhat
by the excessve core-swithing coss of our currentim-

plemengtion.

3. Wecanignorethetimeit takesto transtion acore outof
a powvered-twn state, by assuminghatthisis smdler
thanthe excessin core-swithing coss. Howewer, we
do atenmpt to modd the powver consumd during these
transitons.

4. We assumethat the time to transiton a core into a
powered-down state is negigible.

5. Following Kumar et al. [13], we assumeéhat powered-
down cores “suffer nostatic leakageor dynamic switch-
ing power.”

6. Thetimingof I/O event onthe sysem wetegedwould
not change sigrificantly on anactualASISA-CMPsys-
tem, andhen@we donothaweto correctfor difference
in I/O waiting time.

Given theseassumptbns, our model has the following
parameers:

e Application core power: 27 W (approximately 1/3 of
the 80W TDP for theIntel 5160 chip).

e OScore power: we modelledseveral values of P, =
1W, 5W, and 10W.

e CPU power-up time: Following Kumaretal. [13], we
assumehat it takes1000 cycles (333 nsee. at 3.0GHz)
to transition out of a powered-cwn state. Thisis based
partly on ther assumptbn that a single phaselocked
loopis sharedamorg all cores, so the power-up delay
is dominatedby the time to charge andstabiize power
buses.

7.4 Resuls

Table 5 shaws reallts for the re-aim-7 bendimark. Results
shown are the meansof five trials. We rantwo different test
sutes, “alltests”and" high_system”, each with 5 and20 sim-
ulatedusers.The high_systemtestapparetly wasdesigned
to spend alot of time executing in the operating system.
The table columns show the jobsperminute rateachieved
(this is the re-dam-7 figure of merit); the amountof idle
time we measuredfor each core in ASISA-CMP mode;
andthe jobsminute/joule resultfor (respetively) thesingle-
cock system and ASISA-CMP kernels when mocklling
Pps = 1W, 5W, and 10W, respetively. In this (admittedly
cruce) setof experiments, ASISA-CMP delivers a better
jobsminute/joule resultthan the single-coresystem except
when the ASISA-CMP OScore consume 10W or more.

Table5: Results from re-aim-7 benchmak

Jobs/minute ASISA-modeidletime Jobsminute/joule
Configuration 1-cae | ASISA | OScore | Appcae || 1-cae | ASISA/IW [ASISA/SW | ASISA/10W
alltegs/5users 2738 3091 8.22 5.8 7.88 1844 14.41 1132
alltegs/2 users 7468 7598 12.53 3.8 15.90 19.14 16.26 1368
high_system/5users 1501 1498 16.33 15.%6 2.43 6.68 4.74 3.48
high.system/P users | 5552 5489 16.82 14.04 8.37 17.39 13.23 10.19

Reslts aremeansfor 5 trials

Table6: Resulsfrom Netperf benchmark

Bandwidth Mbit/sec | ASISA-modeidle time Mbits/sefjoule
Configuration | 1-core | ASISA | OScore [Appcae || 1-cae | ASISA/IW [ASISA/SW | ASISA/IOW
TCP.STREAM | 94150 A1.37 4356 37.34 0.58 140 1.03 0.78
TCPMAERTS | 94138 A1.L 4368 40.20 0.58 158 1.13 0.83

Transactions/sec ASISA-modeidletime Transections/sec/joule
Configuration l-core | ASISA | OScore | Appcoe || 1-cae | ASISA/IW | ASISA/5W | ASISA/10W
TCP_RR 1131240 | 11329.90 45.86 37.95 6.55 1476 11.07 8.43
TCP_CRR 489540 4877.19 47.44 37.49 2.83 6.25 4.71 3.60

Reslts aremeansfor 5 trials

Resuts in Tablke 6 for the Netperfbenchmeks show that
ASISA-CMP, with all threevalues of Pys, delivers beter
bandwidth or transa&tionsperjoule than the single-coresys-
tem. (We ran 1-minute trials for these benchmarks,over a
1Ght/sec Ethernet.)

Resutsin Table 7 for the Linux compilation, on the other
hand,did not show anet bendit for ASISA-CMP. Even with
Pps = 1W, the ASISA-CMP systemconsumel more power
during the compilation benchmark. Apparenty, this bench-
mak mosty doesrelatively shortsystemcalls.

8 Summary

We hawe takenthe first steps toward evolving Linux to sup-
port ASISA-CMR and the first stepsto ewvaluating its per-
formance The appoach has promise we needto do amore
thorowgh study to prove it.

References

[1] J Aas Understading the Linux 2.6.8.1 CPU Scheduler
http:/joshtrancesdtware.com/linux/, Feh 2005

13

(2]
(3]

(4]

(8]

(9]
(10

T. Agerwala.Compute Architecture:Chdl enges ard Opyor-
tunitiesfor theNext Decace. In Keynae, ISCA2005, 2005.
M. Annavaram, E. Groclowski, and J. Shen Mitigating Am-
daH's Law throudh EPI Throtling. In Proc. ISCA pages
298-309, 2005.

P. Barham,B. Dragovic, K. Fragr, S. Hard, T. Harris, A. Ho,
R. Neugebaie, I. Pratt, and A. Warfield. Xen and the art of
virtualization.In Proc. SOSR, pages164-177,2003.

T. Brecht, G. J. Jarakiraman B. Lynn, V. Saletore,and
Y. Turner. Evauating networkprocessng efficiengy with pro-
cesa parttioning andasynchrorous!/O. In Proc. EuroSys,
pages265-278, Lewen,Belgium,2006.

X. Fan, W.-D. Wekber, ard L. A. Barro. Power provisioning
forawarehouwse sizedcomputer.In Proc. ISCA pages13-23,
SanDiego, CA, June2007.

N. Gloy, C. Yourg, J.B. Chen,and M. D. Smith. An andysis
of dynamic brarch predction schemeson systemworkloals.
In Proc. ISCA pages12-21,1996

E. Grochawski, R. Ronen, J. Shen and H. Wang. Best of
Both Lateny ard Througiput. In Proc. Int'| Conf. Compuer
Design pages 236-243, 2004

Hewlett-PackardCompary. Netpef: A netwak performance
berchmak. http://www.netpef.org.

Hewlett-Packard Corp., Intel Corp., Microoft Corp.,
Phoaix Technologies Ltd., and Toshiba Corp. Ad-
varced Configuration ard Power Interfae Spedfication.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

Tabke 7: Resillts from Linux kernelcompilation benchmek

Elapse time ASISA-modeidletime joules
1-cae | ASISA | OScore [Appcae || 1-cae | ASISA/IW | ASISA/SW [ASISA/10W
[[(312] 319 2%12] 520 [8412 | 8797 | 10073 | 11669 |

Reslts aremeansfor 5 trials

http:/www.aqi.info/spec.htm, 2006

Koushik Ch&raborty and Phlip M. Wells ard Gurindar S.
Schi. ComputationSpreading Employing HardwareMigra-
tion to Speddize CMP CoresOn-the-fly. In Proc. ASPLOS-
XIll, SanJose, CA, Nov. 2006.

T. Krazt. Intel pledges 80 cores in five yeas. News.can,
Sept. 26 2006 http://news.com.com/htel +pledges+80
+cores+in+ive+yeas2100-1M6_3-6119618.htrl.
R.Kumar, K. Farkas N. Jaupd, P. Rangrathanand D. Tull-
sen. Single-ISA Heterogeeaus Multi-core Architedures
The Potential for Procesa Powver Reduction. In Proc.
MICRO-36 SanDiego, CA, Dec 2003.

R. Kuma, D. Tullsen, N. Jouppi, and P. Ranganahan. Het-
erogenausChip Multiprocesors. In IEEE Computer 2005
S.Kumar, H. Raj, K. Schwan,andl. Ganev. Re-Architeding
VMMs for Multi-core Sydems: The Sideore Approacd.
In Proc. Workshop on Interaction betwea Op. Systemsand
Conp. Arch., SanDiego, CA, June2007.

K. Leigh. Desgn and Analyds of Nework and 10 Corsol-
idationsin a General-Purpose Infragructure. PHD thess,
Universityof Houston,2007.

A. MahesriandV. Vardhan. Power Corsumption Breakdown
on a Modern Laptop. In Proc. Workshop on Power-Aware
Conp. Sys,, Portland OR, Dec. 2004.

D. McAuley ard R. Neugebater. A casefor virtual chaand
proessors. In Proc. SGCOMM Workshop on Network-1/0
Convergence, pages237—-242, Aug. 2008.

D. Ndlans, R. Balasibramoman, and E. Brurvand. A
Casefor Increagd Operating SystemSugportin Chip Multi-
Pro@s®rs. In Proc. P = ac® Cort., Yorktown Heights, NY,
Sept. 2005.

J K. Ousterhot. Why Aren't Opeaating Sydems Geting
Fager As FastasHardware? In USENIX Sunmer pages
247-256, Anaheim, CA, June 1990.

P. Rargarathan, P. Leech, D. Irwin, and J. Cha®. Ensenble-
level Paver Manggement for Dens Blade Seners. In Proc.
ISCA pages66-77, Bogon, MA, Jure 2006.

J Ratner. Multi-coreto themasgs In Keynote PACT 2005,
2005.

J Redstone S. J. Egges, and H. M. Levy. An Analyss of
Opeating SystemBehavior on a Simultan@usMultithreacd

14

(24

(29
[26]

Architecture. In Proc. ASPLOSpages245-%56, Canbridge,
MA, Nov. 2000.

G. Ragnier, S. Makineni, R. lllikkal, R. lyer, D. Minturn,
R. Huggahdli, D. Newdll, L. Cline, and A. Foong. TCP On-
loadingfor Data CenterSevers. IEEE Computer, 37(11):48-
58,2004.

C. White ad G Payer.
http://sourcdorgenet/projeds/re-aim-7.
X. Zhang S. Dwarkalas G. Folkmanis, ard K. Shen. Pro-
cesa Hardwae Couwnter Statistts as a First-Class System
Resurce In Proc. HotOS-11 SanDiego, CA, May 2007.

re-am-7.

