

Adaptive Infrastructure meets Adaptive Applications

Nigel Edwards, Guillaume Belrose, Klaus Brand, Sven Graupner,
Jerry Rolia, Lawrence Wilcock
Enterprise Systems and Software Laboratory
HP Laboratories Bristol
HPL-2007-138
August 21, 2007*

enterprise
applications,
business process
modelling, SAP,
model driven IT
management,
adaptive
infrastructure,
virtualization, UML,
CIM

Enterprise class applications such as SAP consist of complex configurations of
many interacting components. It requires considerable skill to match the design
of an application's component configuration to an appropriate infrastructure
configuration design. So even if we have an Adaptive Infrastructure it is hard to
adapt such systems because of the difficulty in matching the application and
infrastructure configurations. This paper proposes a model that formally links
the application and infrastructure configurations. The model takes into account
business process, applications, and infrastructure. It allows us to link changes in
the business process to necessary and MATCHED changes to applications and
infrastructure.

* Internal Accession Date Only
 Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.

Adaptive Infrastructure meets Adaptive Applications

Nigel Edwards, Guillaume Belrose, Klaus Brand, Sven Graupner, Jerry Rolia,
Lawrence Wilcock

HP TSG & HP Labs
{nigel.edwards, guillaume.belrose, klaus.brand, sven.graupner, jerry.rolia,

lawrence.wilcock}@hp.com

Abstract. Enterprise class applications such as SAP consist of complex
configurations of many interacting components. It requires considerable skill to
match the design of an application’s component configuration to an appropriate
infrastructure configuration design. So even if we have an Adaptive
Infrastructure it is hard to adapt such systems because of the difficulty in
matching the application and infrastructure configurations. This paper proposes
a model that formally links the application and infrastructure configurations.
The model takes into account business process, applications, and infrastructure.
It allows us to link changes in the business process to necessary and
MATCHED changes to applications and infrastructure.

Problem Statement

The purpose of the applications and supporting infrastructure in an enterprise system
is to deliver business processes to the enterprise: supply chain management, customer
relationship management, etc. For many enterprises the business process and
innovations therein are their competitive advantage. Gaining and maintaining this
competitive advantage requires the ability to be able to make changes to the business
process. Changing the business process requires making changes in the supporting
applications and infrastructure to implement this change.

An adaptive infrastructure on its own is insufficient to build truly adaptive
enterprise systems. The problem is how to manage consistent changes across all three
viewpoints: business processes, applications and infrastructure. Enterprise
applications consist of complex configurations of many interacting components.
These include application servers, virtual machines, appliances (i.e. firewalls),
networks, and storage. It is a complex, difficult task to design the configuration and
deploy all these components to deliver the functionality of the desired business
process.

Delivering appropriate non-functional requirements such as performance,
reliability and security increases the complexity and difficulty even further. The
resource demands of the components are dependent on the workload mix: functions
invoked, size and type of data. Scaling the application to meet a given performance
requirement is not simply a question of arbitrary replication (scale-out) or using larger
machines (scale-up). Rather it requires great skill to achieve specific non-functional

2

requirements, by matching the application configuration and infrastructure
configurations. This means that design and performance sizing errors are common.

Once a system has been implemented, it can be extremely difficult to adapt it.
Skilled and expensive consultants are required for the redesign: change is slow and
expensive. This problem will become worse as companies such as Oracle [8] and SAP
[11] adopt fine-grained Service Oriented Architectures (SOA): the number of
interacting components will increase significantly. The inability to adapt means that
systems have to be sized for their maximum use, resulting in wasted resources for
much of the time. It also means that systems cannot readily take advantage of
additional resources even if they are available.

Our Solution

Working with colleagues at SAP-Research we have developed an integrated model
to link the design, configuration and management of: business processes, applications
and infrastructure. The flow of information and components in the model are show in
Fig. 1. For simplicity, we do not show the cycles and loops that would occur in this
diagram as a system progresses through its lifecycle and evolves through change and
maintenance activities.

The model is stored in a model repository so that different tools can access and
manipulate it, managing the system through its lifecycle. Using this tool-chain, we
begin with a definition of the business process in terms of functional steps (General
Process Model). We specify the time-varying non-functional requirements for these
steps: the number of concurrent users, response time, availability and security
(Custom Process Model). Next we identify and add to the model the software
components needed to deliver the functional steps (Unbound Model). We then
proceed with the software configuration and infrastructure design – this is captured in
the Grounded Model. Finally, the model is used to drive infrastructure configuration
services, application installation services, application configuration services, and the
services that manage the startup and ongoing running of the system (Bound and
Deployed Models).

A crucial benefit of the model is that it provides a framework within which we can
reason about and manage change. So changes in the requirements of the system,
resulting from changes in business process (driven by business-need) lead to matched
changes in the application and infrastructure configurations. The model is used by
tools managing a shared-infrastructure, in which services for many different
customers are run on a shared physical infrastructure. It is used by tools for managing
a changing set of business processes and changing physical resource allocations.

The remainder of this section describes the information flow and components in
the model shown in Fig. 1 in more detail. We have used UML/CIM (Unified Modeling
Language/ Common Information Model) [12], [4] as our conceptual modeling
language; the current implementation uses EMF (Eclipse Modeling Framework) [5]
because of its integration with Java and its support for persistence in XML.

3

General Process Model

The General Process Model is a specification of the functional steps that make up the
business process. The General Process Model is chosen from a catalog of existing,
supported business processes. SAP and partners have a huge and growing set of such
business processes often referred to as scenarios. The business processes in the
catalog would typically be described in BPEL [3] or Event Process Chains [1]. The
General Process Model also identifies the (SAP) application components that
typically implement each step.

General Custom Unbound Grounded Bound Deployed

Component
Performance Templates

Application
Packaging

Application
Constraints

Fig. 1. The Model Information Flow and components

Customized Process Model

The Customized Process Model is a customization of the General Process Model. The
designer may have added or removed steps or introduced new loops and sequences.
Most importantly time-varying non-functional requirements are introduced. Fig. 2
shows an example of a customized process model for the Sales and Distribution (SD)
benchmark. SD is a widely used SAP product. The SD benchmark is a subset of SD
functionalities used to assess the performance of IT systems when running SAP; it
consists of a well known business process. Only time-varying performance non-
functional requirements are shown for brevity (Fig. 1: left side).

If we look at the Create Sales Order BPStep (Fig. 2: top, middle) we see that it is
implemented by the SAP application component VA01 (Fig. 2: top right). This step
consists of navigating through several screens and entering the order. The initial
screen for VA01 is shown in Fig. 3. The expected detail of this workload mix,
including the amount of data being entered, is specified in the
BPStepToApplicationComponentMapping relation. Notice that the Business Process
Steps can be composed. In Fig. 2 a single SD_Benchmark Business Process (top left
hand side) comprises of five children: Create Sales Order … Create Delivery
Document. Concurrency is implicit: many users can execute many steps concurrently.

4

Fig. 2. Custom Model for Sales and Distribution Benchmark

Fig. 3. Initial screen for Create Sales Order Business Process Step

An example of a tool that can handle General and Customized Process Models is
Aris from IDS-Scheer [7]. Integrating Aris with our Model Repository would require
an adaptor to transform between the representations supported by Aris and that used
by the Model Repository.

5

Unbound Model

Fig. 4. Unbound Model structure

The Unbound Model is a complete functional specification of the system, but is not
bound to any particular infrastructure design. As shown in Fig. 4, the Unbound Model
is composed of several sub models. It includes the Custom Process Model,
Application Packaging Model, Application Constraints Model and the Application
Performance Model (calculated from the Component Performance Model). The
Custom Process Model and Application Performance Models are specific for each
Unbound Model. The Application Packaging Model, Application Constraints Model
and Component Performance Models are libraries that are reused in many different
Unbound Models.

In the Unbound Model all the application components are mapped to products and
the necessary Execution Services that execute them (databases and application servers
in the case of SAP). The Application Packaging and Application Constraints models
tell us how to do this. The Application Packaging Model tells us what products and
what components within those products need to be installed and configured to
implement the required business process. The Application Constraints Model gives
information on how different components can be packed together or consolidated. For
example in the case of SAP, there are rules and best-practices that should be followed
concerning how to configure multiple application server components in a single
server.

The Application Packaging and Application Constraints model libraries need to be
built either by the application vendor, in our case SAP, or a domain expert such as a
consultant specializing in the application.

The Unbound Model also specifies the performance requirements of each service
that needs to execute. The information to derive these performance requirements
comes from the Component Performance Model and workload mix for each
component specified in the BPStepToApplicationComponentMapping relations
shown in Fig. 3. The Component Performance Model is combined with the
BPStepToApplicationComponentMapping relations to calculate an Application
Performance Model which is SPECIFIC to the Customized Process Model.

At the time of writing we are investigating using HP’s LoadRunner [13] product to
generate Component Performance Model libraries automatically. LoadRunner enables
us to drive an individual component or set of components with a specified workload

6

mix and accurately record the infrastructure demands of the component or
components under that workload mix. Infrastructure demands include CPU, memory,
network and storage across application server tiers.

Grounded Model

The Grounded Model is “grounded” in a particular infrastructure design. Each service
that is required to deliver the business process is assigned a particular type and
configuration of computer. A number of possible designs are proposed and we build a
Layered Queuing Model (LQM) [9], [6] of each of these designs. An LQM consists of
a queuing network for each element in the design: clients, business process steps,
application components, execution services and hardware. Synchronization points are
specified between each layer (e.g. a client invoking VA01). We then solve the LQM
with the demands in the Unbound Model against the performance capabilities of the
infrastructure to determine if the proposed design can meet the performance
requirements. Each design that is evaluated is chosen from the Templates Model
shown in Fig. 1.

The Templates Model consists of a catalog of templates. Each template specifies
an infrastructure that can be instantiated and also how to install, configure and start
applications on that infrastructure. The templates provide a number of degrees of
freedom. In the case of SAP:

• The number of application server machines
• The size of server machines
• The number of components (e.g. worker processes) – typically this is a

function of the size or capacity of the server
Choosing a design requires selecting a template from the template model and

filling in parameters such as the number and type of physical server. From this we
build a Layered Queuing Model and evaluate the performance of the design.

One crucial simplification that we made in our modeling was not to instantiate
every possible configuration; rather the Templates Model catalog presents a fixed
selection of physical and virtual machine configurations, for example, small, medium
and large virtual machines. An example of a computer system configuration is
Xen/SuSe Linux Enterprise VM, 3GB RAM, 40GB OS disk, 2 additional 40GB disks,
performance 500 SAPs (this is a performance measure used by SAP). This
substantially simplifies the model, as we do not have to explicitly model virtualization
avoiding recursion problems such as a virtual machine on a virtual partition on a hard
partition on a physical machine. Instead we provide a computer (physical or virtual)
with a known set of characteristics; the virtualization-host relationship is not modeled.
This also substantially simplifies the management code needed to instantiate the
infrastructure.

Templates also simplify the implementation of the tools that process the models.
Transforming from the Unbound to the Grounded Model requires selecting a
template, filling in parameters and evaluating the predicted performance of the
template against the required performance specified in the Unbound Model. The main
limitation of this approach is that it restricts the application configurations that we can
support. As we gain more experience we plan to introduce more and more degrees of

7

freedom and build more sophisticated tools for transforming from the Unbound to
Grounded Models.

There may be several Grounded Models for one Unbound Model, because the
Unbound Model contains time-varying performance requirements, as shown in Fig. 2.
This is used to manage the change in system configuration, i.e., MATCHED changes
to application and infrastructure configurations, according to predicted and specified
time-varying business demands. Each Grounded Model has a fixed set of physical
resource associated with it. Any load can be accommodated up to the maximum
specified in the Grounded Model. If the load (e.g. number of users) exceeds that
specified in the Grounded Model, the performance requirements may not be meet.

Bound Model

The Bound Model binds the Grounded Model to physical resources in the data centre.
These resources are no longer available for use by other services. Finding the most
appropriate resources in a shared data centre fabric is non-trivial. We use a trace-
based capacity planning service [10] to determine where best to place the new load. A
Resource Directory and Resource Acquisition service are also needed. Sometimes we
need to move existing loads, using live virtual machine migration, to make room for
new loads. The model presented here provides us with a framework for managing
this.

Deployed Model

The Deployed Model models the state of the running system. The Deployed Model is
obtained by passing the Bound Model to our deployment services: infrastructure,
software installation etc. The information carried forward from the Application
Packaging, Application Constraints and Template Models enables us to install,
configure and manage the execution of each software component. We instantiate
management services to monitor adherence to performance requirements and provide
traces of monitored workload data to the capacity planning service.

Using the model to manage change

The purpose of the model is to provide the information needed to manage a system
through its lifecycle. Some changes to a system can be fully automated; others cannot
and should not be fully automated. Examples of changes that can be fully automated
include migration of virtual machines, changing the amount of physical resource
available to a virtual machine (increasing or decreasing the amount of available
RAM), adding an additional (virtual) machine to run an additional application server
to increase the throughput of the system. For these classes of changes we are building
services that read the model from the model repository, compute a delta operation and
add it to the model repository. Other services then process the delta in the model to
apply the change to the running system. These classes of well known changes and the
context within which they can be applied are encoded in the Templates.

8

Examples of changes that would not normally be fully automated are changes to
the business process, patches and system upgrades. For such changes it is appropriate
to follow ITIL/ITSM processes [2]. This implies human activity such as a Change
Review Board and programming. For a change in the business process, there would
generally be a period of implementation and testing before the change is transported
into the live system. The transport would very likely use application specific tools
such as SAP Solution Manager. The model presented here formalizes the information
needed to create the appropriate test and development system to implement the
change. We start by extracting the model of the system from the model repository and
creating a replica of the production system for test and development.

What degree of automation is possible?

The current state of the art for automation is not uniform as we progress from left to
right through the model information flow. Over the last few years there have been
several demonstrations of automatic infrastructure deployment, including the HP
Utility Data Center. We are not aware of any attempts to automate the ongoing
dynamic change of infrastructure and application configuration once the service has
been deployed. Nor are we aware of any attempt to automate from such a
comprehensive set of models the selection of the most appropriate application
configuration and infrastructure topology before making a change or doing the initial
deployment. The current focus our work is the middle to right hand side of Fig. 1.

One dimension of automation enabled by business process design (left hand side of
Fig. 1) is the automated creation and generation of test cases as well as the test
environments for functional and performance testing. Testing accounts for a
substantial part of the application roll-out. HP LoadRunner, for instance, can generate
specific load patterns and exercise specific transactions of a business process through
scripts. If test configurations are part of the application design, the deployment of the
test environment can be automated, which include workload and test generators. Both
help to accelerate the solution deployment time.

Currently, automation of business process design (left hand side of Fig. 1) is a
relatively new field in which SAP and others are investing heavily. The objective is to
generate code from user designed business process models. Typically the user
constructs a graph to represent the design of their business process. The tool generates
code from these graphs. Our objective is to work with SAP and others so that these
tools are able to construct models that contain the necessary information to install,
configure, test and manage the applications on a shared infrastructure. The models
need to support a range of non-functional requirements: performance, security and
availability.

In the absence of full automation of business process design, we intend to construct
a catalog of business processes along with their associated models including test
cases. A business process is selected from the catalog and appropriate non functional
requirements are specified. This is the unbound model. We then go through the
automated process of generating the other models as described above.

9

Evidence that the Solution Works and current status

We have applied the model described above to the SAP SD application. We have built
a model for SD, and are able to automatically create virtualized infrastructures (using
Xen) from a Grounded Model and automatically install, configure and start SD within
that virtualized infrastructure. We are able to manage the virtualized infrastructure
according to performance constraints, using live migration of virtual machines to
adjust to time-varying demands. We have built a Layered Queuing Model of SD to
allow us to evaluate design choices in our templates. We have built an
implementation of the Model Repository and a number of tools that use it including:
Resource Acquisition, Infrastructure Deployment and Software Deployment Services.

Competitive Approaches

The idea of using models to link tool sets together is not new. It is being used
extensively in some HP’s initiatives. It is also implicit in the work on CIM within the
DMTF which tries to provide a common model so that different tools can use the
same models. However, we believe what is new is an integrated model comprising the
set of models proposed here that go from an abstract specification of the business
process; onto a specification of the software components to deliver that business
process; onto a specification of the infrastructure to meet the requirements; onto a
fully usable and deployed service; onto managing changes to the system.

Next Steps

We need to find or develop additional tools that automate some of the transitions
described here. For example, we are collaborating with a group in HP Labs who have
previously developed technology that automates the configuration of high-end
Superdome servers using design constraints and a constraints satisfaction solver. We
are trying to determine if we can use similar ideas for automating the design of
Grounded Model from the Unbound Model using the information in the Application
Packaging and Application Constraints Model. This will allow us to introduce more
degrees of freedom into the Templates Model described above.

HP Labs, SAP Research and others are working on technology to automatically
derive some of the necessary models, in particular the Component Performance
Models. We are using LoadRunner for this; another technique involves source code
analysis. Working with our colleagues at SAP Research we are designing layered
queuing models for SAP systems, starting with SD.

Much of HP’s work to date has been focused on transforming from the Unbound
Model through the Grounded, Bound and Deployed Models. We are now increasing
our efforts on business process modeling and associated tools. Finally although this
work is a collaboration with SAP Research, the HP team’s intention is to build a
generic model that can be applied to other enterprise software stacks.

10

Acknowledgements

We are grateful to Daniel Gmach, Ilango Sriram, Johannes Kirschnick, Maher
Rahmouni and Paul Vickers with whom it has been our pleasure to work on this
project. We are grateful to John Manley for his constant support and encouragement.

References

1. Formalization and Verification of Event-driven Process Chains, W.M.P. van der Aalst
,Information and Software Technology, 41(10):639-650, 1999.

2. “Foundations of IT Service Management based on ITIL”, Jan van Bon, Van Haren
Publishing, September 2005

3. Business Process Execution Language for Web Services, Oasis, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel

4. Common Information Model, Distributed Management Task Force,
http://www.dmtf.org/standards/cim/

5. The Eclipse Modeling Framework, http://www.eclipse.org/emf/
6. “Performance validation tools for software/hardware systems”, U. Herzog, J. Rolia,

Perform. Eval. 45(2-3): 125-146 (2001).
7. The Aris Platform, http://www.ids-scheer.com/
8. "Oracle Fusion Middleware", http:// www.Oracle.com/Middleware
9. “The Method of Layers”, J.A. Rolia and K.C. Sevcik, IEEE Transactions on Software

Engineering, Vol. 21, No. 8, pp. 689-700, August 1995.
10. “A Capacity Management Service for Resource Pools”, Jerry Rolia, Ludmila Cherkasova,

Martin Arlitt, Artur Andrzejak, Internet Systems and Storage Laboratory HP Laboratories
Palo Alto HPL-2005-1.

11. “Enterprise Service-Oriented Architecture (Enterprise SOA)”,
http://www.sap.com/solutions/esa

12. The Unified Modeling Language, http://www.uml.org/
13. HP LoadRunner, http://www.mercury.com/us/products/performance-center/loadrunner/

