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Abstract

In many applications, an uncompressed source stream is systematically encoded by a channel
code (which ignores the source redundancy) for transmission over a discrete memoryless channel.
The decoder knows the channel and the code but does not know the source statistics. This
paper proposes several universal channel decoders that take advantage of the source redundancy
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I Introduction

One of the central problems formulated by Claude Shannon [1] is the reliable transmission of a

redundant information source through a noisy communication channel. Shannon [1] established

that if the source and channel have no memory, in the limit of long block length, encoding can be

accomplished without loss of efficiency by removal of the redundancy in the source with a (channel-

independent) data compressor followed by the addition of redundancy by a (source-independent)

channel encoder. At the receiver, a channel decoder recovers the compressed data and feeds it to

a source decompressor that finally recovers the transmitted data. A cornerstone of information

theory, the source/channel separation principle has been shown to hold in wide generality for

stationary sources and channels [2]. When the separation principle holds, the maximum rate of

source symbols per channel use is equal to the ratio of channel capacity divided by the source

entropy. Analogously, the separation principle also holds in wide generality when the source is to
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be reconstructed only within some desired distortion D, in which case the fundamental limit is the

ratio of channel capacity divided by the source rate-distortion function evaluated at D.

Because of various considerations (such as legacy, layered design, and the difficulty in adapting

universal data compressors to short-packet transmission systems) certain existing applications (in-

cluding third-generation wireless data transmission systems) do not compress the redundant data

prior to channel encoding. In other applications, such as the GSM second-generation cellular wire-

less system, the data compressor leaves some residual redundancy prior to channel encoding [3]. In

those cases, the signal sent through the channel incorporates redundancy due to both the channel

encoder and the data itself. The receiver may choose to ignore the redundancy due to the source

and simply decode the data with a channel decoder. However, by exploiting the residual source

redundancy at the receiver it is possible to achieve reliable communication for noisier channels than

the code was designed to handle. For example, in a wireless system that transmits uncompressed

data, it is possible to lower the minimum signal-to-noise ratio required for reliable communication

by exploiting the redundancy in the data. Another application is in internet content distribution

to receivers facing channels with a priori unknown erasure rates. The fountain codes [4, 5] are

rateless codes whose decoding time depends on the channel erasure rate. By exploiting any source

redundancy it is possible to further reduce the decoding time.

The idea of exploiting source redundancy in decoding goes back to Shannon [1], and one of its

first practical embodiments is [3]. The approach in [3], and a number of related works [6, 7, 8, 9,

10, 11, 12, 13, 14] is to replace the maximum likelihood channel decoder by a maximum-a-posteriori

(MAP) decoder (or an approximation thereof) that incorporates the statistics of the source fed to

the channel encoder. Soft-channel decoders provide reliability information, i. e. (estimates of) the

posterior marginals of the data, and are typically amenable to incorporate a priori probabilities

of the data sequences. Notable examples are the backward-forward dynamic programming (or

BCJR) algorithm [15], turbo decoding [16] and belief propagation decoding [17]. If the source is

Markovian, then it is possible to take into account its structure at the decoder by augmenting the

factor graph of the code (e.g. [18]). This approach faces two serious practical shortcomings: a) the

decoding complexity grows exponentially with the source memory and b) knowledge of the statistics

of the source is required at the decoder. These shortcomings, which are particularly detrimental

in many applications, are not present, at least in principle, when the system is designed following

the separation principle as linear-time source encoders/decoders (such as the Lempel-Ziv class of

algorithms) are available that are universal (do not require knowledge of the source statistics either

at encoder or decoder), and optimal (achieve the entropy rate of the source if it is stationary ergodic,

as well as other stronger individual-sequence optimality properties) [19].

Recently, [20, 21] propose decoders that use a Krichevsky-Trofimov estimate of a biased coin in
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order to take advantage of the unknown bias of the iid uncompressed encoded data. For general

sources with memory, the first universal approach to harness both the redundancy in the channel

code and the redundancy in the data without prior knowledge of the statistical structure of the data

was introduced in the conference version of the present paper [22]. Another approach for sources

with memory, employing the Burrows-Wheeler Transform and segmentation of the transformed data

into piecewise-stationary memoryless sources (see also [23]), was subsequently considered in [24].

Reference [25] proposes the design of non-systematic turbo codes with a special property (quick

look-in) that allows universal exploitation of the source redundancy at the receiver.

In this paper we propose a new approach to decoding of channel-encoded noisy uncompressed (or

partially compressed) discrete sources that requires no prior knowledge of the statistical structure of

the data. To motivate our general approach, consider the simple special case of the setting in which

no channel code is used prior to transmission. In this case, the source is connected directly to the

channel, and the task of the decoder is to “denoise” the output knowing the channel but without

prior knowledge of the source. This is the problem of discrete universal denoising considered in [26],

which proposed a linear-time universal algorithm, called the DUDE (Discrete Universal DEnoiser),

that suffers no asymptotic penalty for universality provided that the source is stationary and the

discrete memoryless channel has a full-rank transition probability matrix. Since the source is not

protected against the channel noise, even an optimum nonuniversal algorithm that knows the source

distribution is able to accomplish only partial denoising of the source. This setup has been applied

to various practical problems [27, 28, 29] and extended in several directions: non-discrete channel

output alphabets [30], unknown channel belonging to an uncertainty class [31], and channels with

memory [32, 33]. The DUDE algorithm consists of the following stages:

1. Empirical conditional distributions of each channel output symbol, given a context of neigh-

boring previous and succeeding symbols, are computed;

2. Using the memoryless and full-rank properties of the DMC, the corresponding conditional

distributions of each clean source symbol given the corresponding noisy context and noisy

symbol are estimated;

3. Using a distortion function, and the conditional distributions computed in step 2, a denoising

table is computed which gives the denoised symbol as a function of the noisy symbol and its

context.

4. The denoising table is applied to the string of channel outputs, to obtain the denoised output

string.

Following up on [26], alternative algorithms to carry out Step 1 have been reported in [34, 35].
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Figure 1: Combined action of denoising and error correction

The conditional marginal distributions of the source given the noisy channel outputs obtained in

Step 2 can be considered “soft” information and will play a role in our development. In the sequel,

we will refer to the algorithm (Steps 1 and 2) that produces such information as sDUDE. Notice

that sDUDE is, in fact, a simplification of DUDE, since it outputs intermediate information and does

not carry out Steps 3 and 4 above. Unlike previous works on discrete universal denoising, in this

paper we modify the sDUDE to incorporate a priori beliefs of the source symbols. We refer to this

“soft-in, soft-out” scheme as the ssDUDE algorithm.

Returning to the original setup where the source is not connected directly to the channel but

is channel encoded, let us assume that the channel code is systematic, as is often the case in

applications. A natural way to harness the redundancy of both the channel code and the source

redundancy is to feed the channel decoder (in addition to the noisy parity-check symbols) not the

noisy systematic information symbols but their cleaned-up version as output by the DUDE. The

rationale is that if the DUDE is indeed eliminating some of the noise introduced by the channel, then

replacing the noisy systematic symbols by their cleaned-up versions results in a block of symbols

that should be closer to the transmitted codeword than the received block of channel outputs. The

approach is illustrated in Figure 1, which shows the decoding regions (spheres) of the channel code,

centered at the codewords; z is a noisy channel output block, y is the corresponding block after

the systematic information part has been cleaned-up by the DUDE, and x̂ is the codeword output

by the channel decoder on input z. The figure depicts how the DUDE “brings in” noisy blocks that

would otherwise have been missed by the channel decoder.

In this paper we propose six approaches achieving various performance/complexity tradeoffs:

A. The basic combined scheme outlined above will be referred to as Approach A.

B. Approach B is similar to Approach A except that we use sDUDE instead of DUDE and we now

require that the channel decoder have the ability to incorporate soft information about the
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marginal distribution of the inputs. For example, belief propagation decoding satisfies this

requirement.

C. If the channel decoder not only accepts soft input information but also generates it (e.g.

belief propagation), then it can be used in the iterative Approach C, where the first iteration

proceeds as in Approach B, and then the soft output produced by the channel decoder is fed

to the ssDUDE that incorporates soft information about the transmitted source. A dialog

between the modules that exploit the channel code and source redundancies is established

which is very much in the spirit of the turbo principle [36]. This approach uses the chan-

nel parameters and the empirical joint distribution of noisy symbols, to obtain estimates of

the joint distribution of short windows of clean symbols, and these estimates are retained

unchanged over multiple iterations of ssDUDE and the decoder.

D. Approach D is also an iterative approach where the first iteration proceeds as in Approach B.

From then on, it postulates that the source and the channel decoder decisions at the end of

each iteration are connected by a symmetric channel, and computes the marginal distribution

of the each source symbol by solving a quadratic equation whose coefficients are obtained from

the decoder soft output and the context-dependent counts in the hard-decision block decoded

in the last iteration.

E. Approach E is also an iterative approach where the first iteration proceeds as in Approach

B. From then on, the context-dependent counts in the hard-decision block decoded in the

last iteration are used directly as the marginal distribution of each source symbol. As will be

explained in detail in the sequel, it can also be interpreted as a simplification of Approach F

below.

F. Approach F is a modification of Approach C where the joint distribution estimates are re-

placed in every iteration by the empirical joint distribution of short windows of symbols in the

hard-decision decoded signal of the previous iteration. Approach E above can be interpreted

as restricting a certain summation (marginalization) in Approach F to a single maximally

weighted term.

Section II reviews the fundamentals of discrete universal denoising and presents a formal de-

scription of the DUDE and sDUDE. A description of ssDUDE is deferred to Section V. Sections III-V

describe, respectively, Approaches A-F, and present the results of several experiments with real

data, using different codes and channel regimes. The channel parameters, codes, and code rates

are chosen to illustrate the effectiveness and wide applicability of the proposed approaches, and to
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compare their relative performance. The results show that the various denoising/decoding com-

bined schemes yield significant improvements in the residual error rates of the reconstructed data,

compared to either denoising alone, or the traditional error-correction decoding alone. Also, as

expected, combined schemes that exploit soft information do significantly better than schemes that

do not. Section VI compares the universal Approaches A-F to some natural non-universal coun-

terparts in the enhanced decoding of first-order Markov binary sources. Although the emphasis in

this paper is on universally enhancing the decoding of existing, practical families of uncompressed

channel encoding schemes, the use of synthetic sources with well-characterized entropy rates also

allows us to present in Section VI some relevant fundamental performance bounds on unrestricted,

possibly source dependent, encoders and decoders, both with and without compression.

II Discrete Universal Denoising

We denote by xn and xn
m, respectively, the sequences x1, x2, . . . , xn and xm, xm+1, . . . , xn. For a

vector v, we use the notation v[i] to denote the i-th entry of v when subscripts would result in

excessively cumbersome notation.

Let A be a finite alphabet of cardinality |A| = M , taking, without loss of generality, A =

{1, 2, . . . ,M}. We assume a given discrete memoryless channel (DMC) whose transition probability

matrix, Π = {Π(a, b)}a,b∈A , is known. Π(a, b) denotes the probability of the channel producing

the output symbol b when the input is a. Furthermore, we assume that the M×M matrix Π is

nonsingular.1 We also assume a given loss function (fidelity criterion) Λ : A2 → [0,∞), represented

by a matrix Λ = {Λ(a, b)}a,b∈A, where Λ(a, b) denotes the loss incurred by estimating the symbol

a with the symbol b. An example of such a loss function is the Hamming metric, i.e., Λ(a, b) = 0

when a = b, and Λ(a, b) = 1 otherwise. The examples in this paper will use the Hamming metric,

although the framework applies to arbitrary cost functions.

Assume a (clean) sequence xn ∈ An is transmitted over the channel, and a (noisy) sequence

zn ∈ An is received. An n-block discrete denoiser is a function Y : An → An which, on input zn,

produces a (denoised) sequence yn = Y(zn). We let LY(xn, zn) denote the normalized cumulative

loss, as measured by Λ, of the denoiser Y when the observed sequence is zn ∈ An and the underlying

clean sequence is xn ∈ An, i.e.,

LY(xn, zn) =
1

n

n
∑

i=1

Λ(xi,Y(zn)[i]) .

1For simplicity, we assume that the output alphabet of the channel is the same as the input alphabet. The DUDE

is defined in [26] more generally for channel transition matrices Π of dimensions M×M ′, M ′
≥ M , which are required

to be of full row rank. All the schemes and results of this paper carry naturally to the non-square case.
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When Λ is the Hamming metric, LY(xn, zn) measures the symbol error rate at the output of the

denoiser.

We now describe the specific denoiser defined in [26], namely, the DUDE. Let κ denote a

nonnegative integer, which will parametrize the denoiser. We assume that 2κ < n. For each

sequence zn, and pair of strings `κ, rκ ∈ Aκ, let m(zn, `κ, rκ) be an M -dimensional (column) vector

of integers whose components are defined as follows:

m(zn, `κ, rκ)[a] =
∣

∣{ i : κ < i ≤ n− κ, zi+κ
i−κ = `κa rκ }

∣

∣ , a ∈ A . (1)

The vector m(zn, `κ, rκ) is thus a histogram of the symbols in zn occurring with a left (κ-th order)

context equal to `κ and a right context equal to rκ. Let πa and λa denote the a-th columns of Π and

Λ, respectively, let AT denote the transpose of a matrix A, and A−T = (A−1)T for a nonsingular

matrix A. The κ-th order DUDE, denoted Yκ
DUDE

, is defined as follows:

Yκ
DUDE

(zn)[i] = arg min
ŷ∈A

λT
ŷ ·

((

Π−Tm(zn, zi−1
i−κ, z

i+κ
i+1 )

)

� πzi

)

, κ < i ≤ n−κ, (2)

where � denotes the component-wise or Schur product between vectors. The values output for

1 ≤ i ≤ κ and n−κ ≤ i ≤ n are inconsequential to the asymptotic properties of the denoiser and

can be set arbitrarily (e.g., for concreteness, equated to the corresponding locations in zn). We

refer to Yκ
DUDE

(zn) as the κ-th order DUDE response to zn.

After proper normalization, the vector m(zn, zi−1
i−κ, z

i+κ
i+1 ) in (2) can be seen as an empirical

estimate of the conditional distribution, P (Zi|z
i−1
i−κ, z

i+κ
i+1 ), of a noisy sample given a two-sided noisy

context. The vector
(

Π−Tm(zn, zi−1
i−κ, z

i+κ
i+1 )

)

� πzi
, (3)

in turn, can be interpreted, after normalization, as an estimate of the posterior distribution of the

corresponding clean sample Xi given the same noisy context and Zi. Letting P̂Xi|Z2κ+1(·|·) denote

this estimated conditional distribution, the expression (2) corresponds to a MAP estimate of Xi

with respect to P̂Xi|Z2κ+1(·|·). As evident in (2), this estimation is at the heart of the DUDE, and is

produced as an intermediate result by the denoiser.

Example. Consider a binary symmetric channel (BSC) with cross-over probability δ, 0 < δ < 1
2

and the Hamming cost function. In this case, we have

Π =

(

1 − δ δ
δ 1 − δ

)

, Π−1 =
1

1 − 2δ

(

1 − δ −δ
−δ 1 − δ

)

, Λ =

(

0 1
1 0

)

.

For simplicity, let ni = m(zn, zi−1
i−κ, z

i+κ
i+1 ). Substituting the values of Π−1 and Λ into (2) yields,

following simple algebraic manipulations,

Yκ
DUDE

(zn)[i] =











zi,
ni[zi]

ni[z̄i]
≥

2δ(1 − δ)

1 − 2δ(1 − δ)
,

z̄i, otherwise,

(4)
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where z̄i denotes the binary complement of zi. In words, for each bit zi in the noisy sequence,

the DUDE counts how many bits occurring within the same double-sided context are equal to zi.

If the ratio of the number of such occurrences to those of the value z̄i is below the threshold

2δ(1 − δ)/(1 − 2δ(1 − δ)), then zi is deemed to be an error introduced by the BSC, and is flipped.

The corresponding estimate of the posterior distribution of Xi given the noisy context and Zi is

given, using simplified notation, by





P̂
(

xi = 0
∣

∣ zi+κ
i−κ

)

P̂
(

xi = 1
∣

∣ zi+κ
i−κ

)



 =







(

(1 − δ)ni[0] − δni[1]
)(

(1 − δ)z̄i + δzi

)

(

− δni[0] + (1 − δ)ni[1]
)(

δz̄i + (1 − δ)zi

)






γ , (5)

where γ is an appropriate normalization constant, and we slightly abuse notation and interpret

binary symbols zi as {0, 1}-valued integers.

It is shown in [26] that if Zn is the output of a DMC with transition probability matrix Π and

input xn then the normalized loss of the κ-th order DUDE response using a context parameter κn

that increases sufficiently slowly with n, converges, with probability 1, to that incurred by the best

stationary sliding window denoiser, with window size 2κn + 1, optimized with full knowledge of xn

and zn. The latter is equivalent to a genie–aided denoiser for which the estimate P̂Xi|Z2κn+1 relied

upon in (2) is replaced with the corresponding posterior derived from the empirical joint distribution

of 2κn + 1 blocks in the pair xn and zn. This establishes the universality of the DUDE in a so-

called semi-stochastic setting, where xn is a given individual sequence, and all the randomness in

the problem resides in the channel. Furthermore, in a fully stochastic setting, the semi-stochastic

results are leveraged in [26] to show that if the channel input Xn is a stationary process, the

normalized loss of the DUDE response converges, with probability one, to the normalized loss of

the optimal Bayes response, corresponding to the MAP estimation in (2) but with respect to the

actual source and channel distributions.

The DUDE algorithm can be generalized [27, 28, 34, 35] from the foregoing one-dimensional

signal and context setting to operate on multi-dimensional signals, such as images, with i tak-

ing values in a general index set, and the values of an arbitrary finite group of symbols neigh-

boring zi, denoted by ηi, replacing (zi−1
i−κ, z

i+κ
i+1 ) as the context. For example, given a two-

dimensionally indexed signal {zi,j}, the context corresponding to a symbol with index (i, j) might

be ηi,j = (zi−1,j , zi+1,j , zi,j−1, zi,j+1). The generalization includes also one-dimensional schemes

with asymmetric contexts of the form (`κ1, rκ2) in which κ1 and κ2 are not necessarily equal. We

will denote by K = |ηi| the overall size (number of neighboring samples) in ηi, not including the

center sample zi. In the one-dimensional symmetric case, for instance, we have K = 2κ.

The generalized DUDE operates according to (2) with m(·) redefined for each context value c as

m(zn, c)[a] = |{ i : ηi = c, zi = a}| , a ∈ A .
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The interpretation of the corresponding version of (3), after normalization, as an estimate of the

posterior distribution ofXi given Zi and the noisy generalized context ηi, applies as well. Analogous

optimality results hold for the generalized DUDE with respect to corresponding context-based genie

aided denoisers in semi-stochastic and fully-stochastic settings. Similarly, the decision rule (2) holds

for generalized contexts, and, in particular, in the simplified rule (4) for the binary case, we will

denote the counters of symbols in context as nc

i [a], a ∈ {0, 1}.

The sDUDE algorithm is a soft-output version of the DUDE which outputs, for each i, an estimate

of the conditional probability of Xi given the noisy symbols Zi+κ
i−κ . These probabilities can then

serve as inputs to soft input channel decoders, as will be the case in the sequel. In such applications,

it would not be ideal for the sDUDE to directly output P̂Xi|Z2κ+1(·|zi+κ
i−κ), as obtained by normal-

izing (3), since this vector may have negative components, as potentially introduced by the term

Π−Tm(zn, zi−1
i−κ, z

i+κ
i+1 ). While the DUDE operation is still well defined in such cases, negative (or

even zero) estimates for probabilities can pose serious problems for downstream soft input channel

decoding. In the binary case, for example, a zero conditional probability of a symbol being 1 may

force a soft-input decoder to output 0 for that symbol, irrespective of any additional information

from the channel code redundancy. To avoid these difficulties, the output for i of sDUDE is set to

ψ
(

Π−Tm(zn, zi−1
i−κ, z

i+κ
i+1 )

)

� πzi
, (6)

where ψ(·) is a smoothing function that outputs a vector that is close to its input after normalization

and has sufficiently positive components. There are many potentially good choices for ψ(·). In this

paper, we focus on soft decoding of binary sources and channels, and for the corresponding two

dimensional input and output vectors, the following (sum preserving) choice for ψ was found to

give good results:

ψ([x, y]T ) =











[1, x+ y − 1]T if x < 1

[x, y]T if 1 < x and 1 < y

[x+ y − 1, 1]T if y < 1

(7)

Note that the sum of the components of Π−Tm(zn, zi−1
i−κ, z

i+κ
i+1 ) is equal to the sum of the components

of m(zn, zi−1
i−κ, z

i+κ
i+1 ), which is the total number of occurrences of the context zi−1

i−κ, z
i+κ
i+1 . Thus

ψ([x, y]T ), as defined in (7), ensures that each symbol value has an estimated “clean” symbol count

of at least 1, per context. Other values for this minimum count could be used, but a value of 1 was

found to work well.

For ease of exposition, in the sequel, the various DUDE-enhanced decoders are described in a

one-dimensional setting and the term DUDE refers to a denoiser that operates according to (2), for

each i, while sDUDE is a modification that outputs (6), with ψ(·) as in (7). Though not explicitly

presented, the DUDE-enhanced decoders generalize easily to multi-dimensional settings, with the

DUDE and sDUDE steps replaced by their appropriate multi-dimensional generalizations, along the
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Figure 2: Approach A

lines described above. We note that some of the experimental results on binary images presented

in the sequel are based on such generalizations.

Choice of context size. It follows from the results of [26] that a choice of κ = κn, with κn

increasing slowly enough with n, or the corresponding choice of overall context size in the case of the

generalized DUDE schemes, guarantees asymptotic convergence of the DUDE to optimal denoising

performance. The sufficient condition found in [26] still leaves a very broad range of choices of

context size; various heuristics for choosing a good context size for the DUDE have proven very

effective in practice. These heuristics are based on using an observable parameter as a proxy

for the denoising performance, and optimizing the context size based on the proxy. A heuristic

described in [26] suggests using the compressibility of the denoised sequence (using a universal

compressor), and is based on the empirical observation that when the sequence is denoised with the

optimal value of the context size, the denoised sequence exhibits a local minimum in compression

ratio. This heuristic has proven effective, in practice, in finding the best values of the context size

for a wide range of practical data sets, and was adopted also for the empirical examples described

later in this paper. More principled techniques, based on an unbiased estimator of the DUDE loss,

are described in [34].

III Approach A: DUDE-enhanced decoding

III-1 The combined scheme

Our first approach is illustrated in Figure 2. The error-correcting code is a systematic code of

block length n whose symbols belong to a discrete finite alphabet A. The sequences xk
1 ∈ Ak and

xn
k+1 ∈ An−k denote the noiseless systematic information and parity check symbols respectively.

The sequence zn
1 ∈ An consists of the corresponding noisy symbols obtained when xn

1 is transmitted

over a discrete memoryless channel. The DUDE module takes zk
1 as input and outputs the block

of symbols yk
1 ∈ Ak, which is the denoised version of zk

1 . The channel decoder takes (yk
1 , z

n
k+1)
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as input, and outputs the decoded block x̂k
1, which is the system’s reconstruction of the noiseless

information symbols. To improve denoising efficiency, the DUDE module can use statistics from

multiple code blocks to derive the denoising table for zk
1 . All of the experiments in the sequel

employ this technique, in which all code blocks corresponding to a data set are used to build

statistics. In practice, the accumulation of statistics can be limited to occur in a causal or limited

delay fashion across previously observed code blocks. Various fading-memory and periodic reset

strategies can be employed to fine-tune this mechanism. In addition, further fine-tuning of denoiser

parameters, such as context size and assumed channel parameters, can be achieved by monitoring

the end-to-end performance of the denoiser/decoder system as reflected in information provided by

the decoder, such as current rate of nonzero block syndromes, or rate of block decoding failures.

The parameters of the denoiser could be dynamically adjusted, seeking to decrease these rates.

Throughout this paper, the criterion for assessing the performance of the proposed schemes,

including Approach A, is symbol (bit) error rate. If the target were block error rate instead, it might

impact the choice of the constituent channel codes and channel decoders in the various approaches,

but it would not change the role or operation of the DUDE. The latter would continue to target the

reduction of symbol error rate in the systematic portion of the received codeword, thereby reducing

the effective noise handled by the channel decoder, which, in turn, could target block error rate.

The baseline denoising/channel decoding scheme of this section was tested on various data sets,

under different noise regimes. The results, showing the effectiveness of the scheme, are presented in

Sections III-4 and III-3. First, we describe the data sets, which are used throughout the remainder

of the paper.

III-2 Test data sets

Three test data sets are used in the examples given in this and subsequent sections of the paper.

They are briefly described below, together with the DUDE settings used to denoise their BSC-

corrupted versions.

Data Set 1 (Figure 3). A 896×1160 binary (B/W) half-toned rendering of a continuous tone

grayscale picture. A one-dimensional DUDE scheme with contexts of overall size of K = 12 and

K = 14 was used to denoise this image, with the smaller context sizes used at the higher noise

levels.

Data Set 2 (Figure 4). The first page of a scanned version of [1]. The dimensions of this B/W

image are 1800×2104. This image is best denoised with a two-dimensional DUDE scheme, where the

context ηi,j of a bit zi,j is given by a collection of K bits that correspond to the pixels neighboring

the pixel corresponding to zi,j. All experiments were run with the context size K = 12 so that

ηi,j = {zi±1,j±1, zi±2,j , zi,j±2}.
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Figure 3: Half-toned binary image (Data Set 1)

Figure 4: Scanned binary image (Data Set 2)
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Notice that although both of the above data sets represent binary images, their fine structures

are very different. As noted in [26] and in [27], although effective denoisers for scanned B/W images

were known before [26], none of the previously known schemes was effective for half-toned images

such as that of Figure 3.

Data set 3. A large text file containing HTML language code, downloaded from one of the popular

web portals serving web-enabled wireless devices [37]. The file size is approximately 140 Mbits.

Since the file contents consists mostly of printable text, it would be natural to regard it as a string

over an alphabet of 8-bit symbols (M = 256), and apply a DUDE scheme over the same alphabet,

rather than a binary one. However, our experiments on this file showed that binary DUDE schemes

were as effective in denoising it as schemes defined over the larger alphabet. At lower noise levels

(δ ≤ 0.050), a plain binary denoiser that ignores the character structure suffices. The preferred

context size in this regime was K = 24. At higher noise levels, a “character-aware” binary scheme

provided the best performance. This scheme uses a different statistical model for each bit position

in a character, and asymmetric context patterns with the right-side context always aligned to a

character boundary. The best context sizes in this regime varied from K = 23 to K = 16, with K

decreasing toward the highest noise levels tested. The decrease in optimal context size as the noise

level increases is well predicted by the theoretical analysis of [26], which exhibits a model cost term

that increases exponentially in K, with coefficients that increase with δ.

III-3 Experimental results: the high noise regime

Table 1 presents results of experiments with a scheme combining DUDE with a (255, 155) Reed-

Solomon (RS) code over GF(256) [38]. The data sets were parsed into 8-bit symbols (in the case

of the binary images, after raster-scanning and packing binary pixels into octets) and 155-symbol

blocks, and each block was encoded with a standard RS encoder. The encoded data was fed into

a BSC, and the channel output was processed according to the scheme of Figure 2, using a binary

DUDE and a standard RS decoder matching the encoder. The decoder uses a standard full-error

correction algorithm, correcting all patterns of up to 50 symbols. Most uncorrectable error patterns

are detected by the decoder, in which case the data is left untouched.

In Table 1, we compare the performance, in terms of output bit error rate (BER), of the

combined denoiser/decoder scheme against that of the channel decoder alone, or the denoiser

alone, at various values of the BER of the BSC. The results are also plotted in graphical form in

Figure 5. As expected, the performance of the error-correction decoder is independent of the data,

up to statistical random sample variations. The performance of the denoiser, and of the combined

scheme, on the other hand, are strongly data-dependent. In all cases, however, the combined

scheme significantly outperforms either the decoder or the denoiser alone, except in the very high

13



Data set 1 (Fig. 3) Data set 2 (Fig. 4) Data set 3 (HTML)

channel Denoised/ Denoised/ Denoised/

δ Decoded Denoised Decoded Decoded Denoised Decoded Decoded Denoised Decoded

0.020 0.0005 0.0075 0.0000 0.0005 0.0018 0.0000 0.0005 0.0083 0.0000

0.025 0.0078 0.0092 0.0000 0.0078 0.0022 0.0000 0.0078 0.0110 0.0001

0.030 0.0240 0.0109 0.0001 0.0238 0.0026 0.0000 0.0238 0.0139 0.0007

0.040 0.0399 0.0143 0.0038 0.0399 0.0035 0.0002 0.0400 0.0204 0.0090

0.050 0.0500 0.0180 0.0132 0.0500 0.0043 0.0012 0.0500 0.0259 0.0224

0.060 0.0600 0.0219 0.0206 0.0600 0.0051 0.0031 0.0600 0.0333 0.0330

0.080 0.0801 0.0301 0.0300 0.0800 0.0070 0.0065 0.0800 0.0494 0.0494

0.100 0.1000 0.0398 0.0398 0.1001 0.0092 0.0091 0.1000 0.0662 0.0662

0.200 0.2001 0.1131 0.1131 0.2002 0.0272 0.0272 0.2000 0.1508 0.1508

Table 1: Results for Approach A with a (255, 155) RS code over GF(256)

noise region, where the error rate overwhelms the RS decoder, and all improvement in BER is due

to the denoiser. Under the assumption that the BSC is a binary-quantized Gaussian channel, the

combined denoiser/decoder scheme yields, at an output BER of 10−3, a coding gain ranging from

0.8dB for Data Set 3 to 1.8dB for Data Set 2, over the channel decoder alone.

The BER values in these experiments are relatively high, and the code utilized is, accordingly, of

relatively high redundancy. The low noise/low redundancy regime is studied next in Section III-4.

III-4 The low noise regime

In this section, we consider data corrupted by channels of relatively low BER (ranging from 10−4 to

10−2), and the channel code is a high-rate (255, 235) Reed-Solomon code. The setting is otherwise

identical to that of Section III-3. Results for Data Set 3 are presented in Table 2.

The results show the expected advantage of the combined denoiser/decoder scheme over the RS

decoder alone for channel BERs from around 2·10−3 and above, but the advantage narrows at lower

BERs, and the combined scheme is actually worse than the decoder alone at BER level 10−3 and

below (see boldface entries in Table 2). This deterioration occurs despite the fact that the DUDE is

doing its job, and, as the table shows, the BER at the output of the denoiser is significantly lower

than the channel BER even in the “problematic” region.

Although the observed deterioration might seem counterintuitive at first, its cause is not hard to

find: the DUDE introduces memory into the channel “seen” by the decoder. The composite channel

is no longer characterized by the marginal BER alone, which is nevertheless the loss function that

the denoiser is attempting to minimize. Intuitively, the action of the DUDE “clusters” errors in a

way that makes a certain fraction of the codewords suffer heavy corruption, while leaving (maybe

many more) codewords less corrupted than the average. However, reducing the number of errors

14



Figure 5: Plot of output BER vs. channel BER for Approach A on test data sets 1–3

channel Denoised/

δ Decoded Denoised Decoded

7.50e-04 4.309e-09 3.275e-04 2.449e-08

1.00e-03 3.679e-08 4.189e-04 4.616e-08

1.25e-03 3.984e-07 5.034e-04 7.749e-08

1.50e-03 1.575e-06 5.899e-04 1.304e-07

1.75e-03 5.870e-06 6.731e-04 2.057e-07

2.00e-03 1.629e-05 7.619e-04 4.812e-07

2.50e-03 7.932e-05 9.343e-04 1.645e-06

3.00e-03 2.502e-04 1.107e-03 4.751e-06

4.00e-03 1.133e-03 1.450e-03 2.327e-05

5.00e-03 2.711e-03 1.810e-03 7.605e-05

6.00e-03 4.555e-03 2.180e-03 1.770e-04

7.00e-03 6.237e-03 2.561e-03 3.410e-04

8.00e-03 7.657e-03 2.939e-03 5.950e-04

Table 2: Results for Approach A with a (255, 235) RS code on Data Set 3 (HTML).
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in codewords that were correctable to start with does not help the decoder, whereas making some

codewords uncorrectable will defeat it, resulting in an overall higher output BER. The effect was

not observed in the high noise regime, where the high-redundancy RS code is fairly powerful in

correcting bursts of errors of density well above the average, and whose length exceeds the DUDE

memory (of which the overall context size is a good reference measure).

Ideally, in the system of Figure 1, the loss function minimized by the DUDE should be adapted

to the characteristics of the channel decoder. Although implementing this adaptation optimally

and precisely seems impractical, a closer look at the nature of the residual errors of the DUDE will

allow us to address the problem in practice. Errors remaining at the DUDE’s output are of two

kinds: errors of omission are original channel errors that the DUDE failed to correct; errors of

commission are symbols that went through the channel unscathed, but the DUDE decided to flip

anyway, following its decision rule (4). Clearly, it is the errors of commission that are defeating

the decoder and the overall system performance; the DUDE does not increase the local density of

errors by making errors of omission. Thus, the output of the DUDE would be better matched to the

channel decoder if it were possible to penalize errors of commission more than errors of omission in

the loss function minimized by the denoiser. It turns out that a minor modification of DUDE can

implement this unequal loss function.

Consider a loss function Λ with three inputs that assigns different losses to errors of commission

and errors of omission as follows:

Λ(x, x̂, z) =







`o x 6= x̂, x̂ = z
`c x 6= x̂, x̂ 6= z
0 x = x̂

Letting P̂ (·|ηi) denote the DUDE-estimated posterior given the context of zi (but not the noisy

symbol zi itself), the Bayes optimal decision rule is

Y(zi) =

{

zi, P̂ (zi|ηi)`c(1 − δ) > P̂ (z̄i|ηi)`oδ ,

zi, otherwise.

Denoting ni = m(zn,ηi), and substituting the formula for the estimated posterior

P̂ (zi|ηi) ∼ (1 − δ)ni[zi] − δni[z̄i]

(cf. (5)), we obtain, after simplification, the decision rule

Y(zi) =











zi,
ni[zi]

ni[zi]
>

δ(1 − δ)

α(1 − δ)2 + (1 − α)δ2
,

zi, otherwise.

(8)
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DUDE with δ′≤δ DUDE with δ′=δ

channel Denoised/ Denoised/

δ δ′/δ `c/`o Decoded Denoised Decoded Denoised Decoded

7.50e-04 0.50 ∞ 4.309e-09 5.955e-04 8.210e-10 3.275e-04 2.449e-08

1.00e-03 0.60 5 3.679e-08 6.002e-04 4.309e-09 4.189e-04 4.616e-08

1.25e-03 0.62 4 3.984e-07 6.895e-04 2.098e-08 5.034e-04 7.749e-08

1.50e-03 0.75 2 1.575e-06 6.812e-04 8.769e-08 5.899e-04 1.304e-07

1.75e-03 0.75 2 5.870e-06 7.807e-04 2.481e-07 6.731e-04 2.057e-07

2.00e-03 0.75 2 1.629e-05 8.771e-04 4.295e-07 7.619e-04 4.812e-07

Table 3: Results for Approach A with a (255, 235) RS code on Data Set 3 (HTML) with DUDE

tuned for a weighted loss function. Results for the standard DUDE are also listed, for comparison.

where α = `c/(`c + `o). For α = 1/2 (or `o = `c), we recover the original DUDE decision rule (4).

As we are interested in the case `c ≥ `o, the parameter α will vary in the range 1
2 ≤ α < 1, with

α → 1 as `c/`o → ∞. It is readily verified that for any value of α in this range, the rule (8) is

equivalent to one of the form of (4), for some value δ′ ≤ δ substituted for δ. Thus, a version of

DUDE that penalizes errors of commission can be implemented by simply using the standard DUDE

algorithm, but tuning it for a channel parameter δ′ below the true channel parameter δ, i.e., a more

“conservative” DUDE. In practice, rather than setting an arbitrary ratio `c/`o, the best operating

value for the ratio δ′/δ ≤ 1 can be tuned by monitoring the performance of the channel decoder,

and adjusting the parameter so that the rate of decoding failures is minimized.

Results for a denoising/decoding scheme incorporating the DUDE tuned for unequal error weight-

ing are shown in Table 3 for the problematic range of Table 2, and in Figure 6 for the whole range

of the table. In Table 3, we list the ratio between the parameter δ′ used by the DUDE to the

actual channel parameter δ, and the corresponding ratio `c/`o by which errors of commission are

over-weighted.
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Figure 6: Output BER vs. channel BER for Approach A with a (255, 235) RS code on Data Set
3, with DUDE tuned for a weighted loss function. Results for the standard DUDE are shown for
comparison.
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Figure 7: Approach B

IV Approach B: sDUDE-enhanced decoding

In Approach A the noisy information symbols were denoised by the DUDE and the denoised infor-

mation symbols were input to a decoder along with the noisy parity check symbols. In Approach

B, instead of performing a hard denoising using the DUDE, the noisy information symbols are input

to the sDUDE, described in Section II, which outputs soft information about each of the noiseless

information symbols. This information along with the noisy parity check symbols are sent to a

decoder that takes soft-information as input and outputs estimates of the clean symbols.

Approach B is depicted in Figure 7, with notation similar to that of Figure 2 and Section III-

1. The sDUDE block takes the noisy systematic symbols zk
1 as input, and outputs a posteriori

probability estimates {P̂Xi|Z2κ+1(·|zi+κ
i−κ)}k

i=1 of the clean symbols {Xi} conditioned on a subset of

noisy symbols. The soft-input decoder takes these estimates and zn
k+1 as input and outputs a

sequence of estimates x̂k
1 for the noiseless information symbols.

In general, a soft-input decoder can be viewed as a mapping g : R
|A|n → Ak that takes soft

information about the transmitted symbols as input and outputs an estimate of the information

symbols. We observe that while Approach B can be easily modified to apply to any soft-input

decoder defined as above, the approach is particularly well suited for belief-propagation based

decoders [16, 17]. We therefore illustrate the approach with such decoders.

Here we describe a belief propagation decoder that incorporates the additional soft information

about the information symbols generated by the sDUDE block. The input to the soft decoder is a

sequence {Li}
n
i=1 of non-negative |A|-dimensional vectors. Let the information variable nodes of

the Tanner graph underlying the belief propagation decoder be denoted by the integers {1, 2, . . . ,k}

and the parity check variable nodes by {k + 1, k + 2, . . . ,n}. Then for 1 ≤ i ≤ k

Li = P̂Xi|Z2κ+1(·|zi+κ
i−κ) (9)

and for k + 1 ≤ i ≤ n

Li = u|A| � πzi
(10)
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where

u|A| =

(

1

|A|
,

1

|A|
, . . . ,

1

|A|

)

is the uniform distribution over A and � represents coordinatewise multiplication. The soft de-

coder is initialized with these probabilities and a predetermined number of iterations of the belief-

propagation decoding algorithm is executed on the Tanner graph of the linear code. For complete-

ness, we describe the decoding.

Denoting the check nodes by the integers {1, 2 . . . n − k}, let νt
i→j ∈ R

|A| denote the message

from the variable node i to the check node j in the tth iteration and let µt
j→i ∈ R

|A| denote the

message from check node j to variable node i in the tth iteration. We index the message vectors

by elements of A. Moreover for any node i, variable or check, let Ni denote the set of neighbors

of i. The rules for updating the messages at the variable and check nodes are given below. At the

variable node i, for all x ∈ A and t ≥ 0

ν
(t)
i→j[x] = Li[x]

∏

j′∈Ni\{j}

µ
(t−1)
j′→i [x], (11)

where µ
(−1)
j→i [x] = 1 for all i, j, and x. At the check node j, for t ≥ 0

µ
(t)
j→i[x] =

∑

x
Nj∈A|Nj |:

xi=x

1j(x
Nj )

∏

i′∈Nj\{i}

ν
(t)
i′→j [xi′ ] (12)

where xNj denotes the tuple of values {xi′ ∈ A : i′ ∈ Nj} indexed by nodes in Nj, and 1j(x
Nj )

is equal to 1 for those tuples xNj satisfying the parity check for check node j and is equal to 0

for remaining tuples. After a fixed number, say `, of iterations the decisions at the information

variable nodes are made according to the function

x̂i = arg max
x∈A

Li[x]
∏

j′∈Ni

µ
(`−1)
j′→i [x].

To demonstrate the improved effectiveness of Approach B over A we describe the results of

experiments conducted on the data sets described in Section III-2. In each case, the rows of the

image are concatenated and divided into blocks of length 4000. Each block is encoded using a

rate-1/4 regular repeat-accumulate (RA) code selected at random from an ensemble. The encoded

blocks are transmitted over a binary symmetric channel of known crossover probability and the

noisy output from the channel is denoiser-enhanced decoded using the algorithms described in

Sections III and IV, with belief propagation comprising the channel decoding block. For the DUDE

and sDUDE blocks we use a simple one-dimensional context scheme with context length K = 12 for

Data Set 1, and the 2D context scheme described in Section III-2 for Data Set 2.
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Output bit error rate

Channel Denoised Decoded A B

0.13000 0.05596 0.00001 0.00000 0.00000

0.14000 0.06263 0.00002 0.00000 0.00000

0.15000 0.06992 0.00024 0.00000 0.00000

0.16000 0.07715 0.00455 0.00002 0.00000

0.17000 0.08537 0.02357 0.00038 0.00000

0.18000 0.09375 0.05182 0.00468 0.00002

0.19000 0.10251 0.07925 0.02006 0.00053

0.20000 0.11185 0.10335 0.04278 0.00478

0.21000 0.12075 0.12655 0.06509 0.01756

0.22000 0.13045 0.14800 0.08563 0.03831

Table 4: Results for Approaches A and B with a (16000, 4000) RA code and Data Set 1 (Figure 3).

The results for Data Sets 1 and 2 are presented, respectively, in Tables 4 and 5, and plotted in

Figures 8 and 9. Fixing a bit error rate of 10−4, we see that for Data Set 1, Approach A results in

a coding gain of 0.7dB over a plain decoder, and Approach B results in a coding gain of 0.7dB over

Approach A. For Data Set 2, Approach A results in a coding gain of 1.4dB over a plain decoder,

and Approach B results in a coding gain of 0.8dB over Approach A.

V Approaches C–F: Iterative denoising/decoding

In this section, we show how to carry out additional iterations of denoising and decoding beyond

Approach B, by combining error correction decoding algorithms that also output a posteriori reli-

ability information concerning the information symbols with several alternatives to the denoising

stage that can incorporate the decoder-generated soft information. Each subsection below describes

an alternative denoising stage and how it interacts with the error correction decoder in the iterative

process. While the various approaches are compatible with any soft-input-soft-output decoding al-

gorithm, the descriptions below are tailored to belief propagation decoding in the setting of LDPC

codes. All of the approaches start off with an iteration of Approach B (sDUDE), followed by the

respective iterative stages. The experimental results for the various approaches and data sets,

involving the RA codes and belief propagation decoding of the previous section, are presented in

Section V-5, along with comparisons to Approaches A and B for this setting.

V-1 Approach C

The key new component in this approach is the ssDUDE, a DUDE-like denoising stage which can

process the decoder generated reliability information along with the noisy information symbols
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Figure 8: Bit-error rate of Approach A and Approach B applied to Data Set 1 (Figure 3).

Output bit error rate

Channel Denoised Decoded A B

0.13000 0.01310 0.00000 0.00000 0.00000

0.14000 0.01458 0.00002 0.00000 0.00000

0.15000 0.01630 0.00030 0.00000 0.00000

0.16000 0.01818 0.00464 0.00000 0.00000

0.17000 0.02003 0.02375 0.00001 0.00000

0.18000 0.02221 0.05221 0.00002 0.00000

0.19000 0.02453 0.07974 0.00134 0.00000

0.20000 0.02704 0.10464 0.00564 0.00003

0.21000 0.02965 0.12742 0.01441 0.00027

0.22000 0.03248 0.14902 0.02655 0.00116

0.23000 0.03558 0.16954 0.03942 0.00326

0.24000 0.03879 0.18908 0.05125 0.00654

0.25000 0.04215 0.20752 0.06170 0.01098

0.26000 0.04555 0.22504 0.07061 0.01614

Table 5: Results for Approaches A and B with a (16000, 4000) RA code and Data Set 2 (Figure 4).
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Figure 9: Bit-error rate of Approach A and Approach B applied to Data Set 2 (Figure 4).

to further refine reliability information for use in yet another error correction decoding stage.

Additional iterations between the decoder and ssDUDE can be carried out, though we note that in

practice just one iteration can yield significant gains over Approach B.

As above, let xn and zn, respectively denote the clean and noisy code symbols with indices

1, . . . , k corresponding to information symbols and indices k+1, . . . , n corresponding to parity check

symbols. Let PX denote the k-fold product space of marginal probability distributions on the set

of information symbols and let V denote the n-fold product space of M–dimensional non-negative

vectors (recall that M denotes the input/output alphabet size). We may view each iteration of a

soft-input-soft-output decoding operation as a mapping g from PX × V × S to PX × S where S

denotes the internal state space of the decoding algorithm, e.g. the last round of edge messages

in belief propagation. Letting {P
(0)
Xi

(·)} denote the set of marginals on the information symbols

generated by the sDUDE algorithm, with P
(0)
Xi

(x) = PXi|Z2κ+1(x|zi+κ
i−κ), the output of the soft–output

decoder after Approach B for received codeword symbols zn can be expressed as

[{Q
(1)
Xi

(·)}, s1] = g({P
(0)
Xi

(·)}, {πzi
}, s0),

where s0 denotes an initial decoder state. The distribution Q
(1)
Xi

(·) computed by the decoder for
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the i–th symbol can be interpreted as a conditional probability distribution on the values that this

symbol might take on given the entire (or significant portions of the) received, channel corrupted

codeword. We next describe how ssDUDE operates on the distributions {Q
(1)
Xi

(·)} and zk to generate

a refined set of information symbol marginals {P
(1)
Xi

(·)} for input to a second decoding stage.

Common to all ssDUDE stages after the initial sDUDE stage is an estimate P̂X2κ+1(·) of the

probability distribution on values assumed by tuples of source (equivalently information) symbols.

The estimate is based on the following property of the joint distribution of clean and noise corrupted

random variables.

Lemma 1 Suppose the random variables Xm 4
= X1,X2, . . . ,Xm taking values in A are transmitted

over a DMC with transition probability matrix Π to obtain Zm 4
= Z1, Z2, . . . , Zm. Then for any

j = 1, . . . ,m, and any (ξm, ζm) ∈ Am ×Am

















PXj−1,Zm
j

(ξ1, ξ2, . . . , ξj−1, 1, ζj+1, . . . , ζm)

PXj−1,Zm
j

(ξ1, ξ2, . . . , ξj−1, 2, ζj+1, . . . , ζm)

PXj−1,Zm
j
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PXj ,Zm
j+1

(ξ1, ξ2, . . . , ξj−1, 1, ζj+1, . . . , ζm)

PXj ,Zm
j+1

(ξ1, ξ2, . . . , ξj−1, 2, ζj+1, . . . , ζm)

PXj ,Zm
j+1

(ξ1, ξ2, . . . , ξj−1, 3, ζj+1, . . . , ζm)
...

PXj ,Zm
j+1

(ξ1, ξ2, . . . , ξj−1,M, ζj+1, . . . , ζm)

















. (13)

The proof of Lemma 1 is completely analogous to the derivation of (8) in [26] and is omitted.

Assuming an invertible Π, multiplying both sides of (13) by Π−T gives a way to obtain the

vector of probabilities on the right side, corresponding to one more Xj and one less Zj , in terms of

the vector of probabilities on the left side. Several iterations of this step are the basis for computing

the estimate P̂X2κ+1(·), the details of which follow.

Let

P̂Z2κ+1(ζ2κ+1) =
m(zk, ζκ, ζ2κ+1

κ+2 )[ζκ+1] + c

N
(14)

where N =
∑

ζ̃2κ+1(m(zk, ζ̃κ, ζ̃2κ+1
κ+2 )[ζ̃κ+1]+c) is a normalization constant, m(·) is given by (1), and

c is a smoothing constant, set to c = 1 in the simulations. Thus, P̂Z2κ+1(·) should be interpreted as

a probability distribution on (2κ+ 1)-tuples of consecutive noisy symbols. Up to the constant c, it

corresponds to the empirical distribution of such tuples in the noisy information symbols zk. The

estimate P̂X2κ+1(·) of the empirical distribution of (2κ+ 1)-tuples of consecutive clean information
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symbols is derived from P̂Z2κ+1(·) in (2κ + 1)-steps, each comprised of a collection of DUDE-like

computations involving Π−1, as justified by Lemma 1. The first step operates on P̂Z2κ+1(·) to

compute an estimate P̂X1,Z2κ+1
2

(·) of the empirical distribution of (2κ + 1)-tuples of consecutive

symbols in which the first symbol in each tuple is taken from the clean signal and the remaining

symbols are taken from the noisy signal. In general, the j-th step outputs an estimate P̂
Xj ,Z2κ+1

j+1
(·)

of the empirical distribution of (2κ+ 1)-tuples of consecutive symbols in which the first j symbols

in each tuple are taken from the clean signal and the remaining symbols are taken from the noisy

signal. The j-th step computes its estimate from the output of the j − 1-th step P̂Xj−1,Z2κ+1
j

(·) as

follows





















P̂
Xj ,Z2κ+1

j+1
(ξ1, ξ2, . . . , ξj−1, 1, ζj+1, . . . , ζ2κ+1)

P̂Xj ,Z2κ+1
j+1

(ξ1, ξ2, . . . , ξj−1, 2, ζj+1, . . . , ζ2κ+1)

P̂
Xj ,Z2κ+1

j+1
(ξ1, ξ2, . . . , ξj−1, 3, ζj+1, . . . , ζ2κ+1)

...

P̂
Xj ,Z2κ+1

j+1
(ξ1, ξ2, . . . , ξj−1,M, ζj+1, . . . , ζ2κ+1)





















=

ϕ





















Π−T





















P̂
Xj−1,Z2κ+1

j
(ξ1, ξ2, . . . , ξj−1, 1, ζj+1, . . . , ζ2κ+1)

P̂Xj−1,Z2κ+1
j

(ξ1, ξ2, . . . , ξj−1, 2, ζj+1, . . . , ζ2κ+1)

P̂
Xj−1,Z2κ+1

j
(ξ1, ξ2, . . . , ξj−1, 3, ζj+1, . . . , ζ2κ+1)

...

P̂
Xj−1,Z2κ+1

j
(ξ1, ξ2, . . . , ξj−1,M, ζj+1, . . . , ζ2κ+1)









































. (15)

The smoothing operation ϕ(·) in (15) ensures that all of the components of

P̂
Xj ,Z2κ+1

j+1
(ξ1, ξ2, . . . , ξj−1, ·, ζj+1, . . . , ζ2κ+1) are non-negative and have the same sum as the

components of Π−T [P̂
Xj−1,Z2κ+1

j
(ξ1, ξ2, . . . , ξj−1, ·, ζj+1, . . . , ζ2κ+1)].

For the simulation results, on binary sources/channels (M = 2), the following smoothing func-

tion was used (cf. (7))

ϕ([x, y]T ) =







[x, y]T if x ≥ c/N and y ≥ c/N

[c/N, (x+ y − c/N)]T if x < c/N

[(x+ y − c/N), c/N ]T if y < c/N

(16)

where c and N are, respectively, the offset and normalization constants appearing in (14). The fact

that Π (and hence Π−1) is a stochastic matrix imply that ϕ(·) will always operate on vectors [x, y]T

satisfying x + y ≥ 2c/N . The simulation results for Approach C in Section V-5 were generated

using the smoothing function (16), and c = 1 in both the smoothing function and in (14).

We next describe how the ssDUDE stage uses P̂X2κ+1(·) and the output of the decoding stage
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{Q
(1)
Xi

(·)} to generate the next stage a priori reliability information P
(1)
Xi

(x). Define Q̃
(1)
Xi

(·) by

Q̃
(1)
Xi

(x) =
Q

(1)
Xi

(x)πzi
[x]

P
(0)
Xi

(x)
. (17)

This step removes the “intrinsic” information from the decoder generated posteriors. Then, for

each information symbol index i, and each value x, let

P̃
(1)
Xi

(x) =
∑

ξ2κ+1:ξκ+1=x

P̂X2κ+1(ξ2κ+1)πzi
[x]

∏

−κ≤j≤κ
j 6=0

Q̃
(1)
Xi+j

(ξκ+j+1), (18)

and set

P
(1)
Xi

(x) =
P̃

(1)
Xi

(x)
∑

x P̃
(1)
Xi

(x)
. (19)

As explained below in the context of LDPC codes, these operations can be interpreted as being

part of a belief propagation-like procedure on an augmented factor graph representing both the

channel code constraints and the estimated clean source distribution.

The distributions {P
(1)
Xi

(·)} are then fed into a second decoding stage whose operation can be

expressed as

[{Q
(2)
Xi

(·)}, s2] = g({P
(1)
Xi

(·)}, {πzi
}, s1).

Following this, additional iterations of the above stages can be carried out, and after the t-th

decoding stage the distributions {Q
(t)
Xi

(·)} can be the basis for MAP decisions to yield an Approach

C decoded signal. Note that P̂X2κ+1(·), the estimate of counts of tuples of clean source symbols, is

constant for all ssDUDE iterations.

The simulation results presented in Section V-5 are for an Approach C implementation involv-

ing systematic LDPC codes (RA codes, specifically) and a soft-input-soft-output version of belief

propagation decoding. For concreteness, we specify the function

[{QXi
(·)}, sout] = g({PXi

(·)}, {πi}, sin) (20)

corresponding to this decoder, with reference to the description of belief propagation in Section IV

(equations (9)–(12)). The generic input parameters {PXi
(·)}, {πi}, and sin in (20) respectively

denote distributions on information symbols, channel matrix columns corresponding to noisy parity

check symbols, and an initial decoder state, while the generic output parameters {QXi
} and sout

denote refined distributions on information symbols and a final decoder state. The function g(·) then

implements the belief propagation computations of (9) through (12) in Section IV, and incorporates

the above generic parameters as follows. The Li are set as in (9) and (10), with the generic g(·)

input parameter PXi
(·) replacing the corresponding P̂Xi|Z2κ+1(·|zi+κ

i−κ) in (9), and the generic πi
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Figure 10: Factor graph for ssDUDE enhanced decoding.

parameter replacing πzi
in (10). The generic input parameter sin, corresponding to the decoder

state, is assumed to specify µ
(−1)
j→i [x] for all i, j, and x in (11) for the first iteration. The state portion

of the output of g(·), assuming ` decoder iterations, is set to {µ
(`−1)
j→i }, while the probabilistic portion

corresponding to index i is set to

QXi
(x) =

Li[x]
∏

j′∈Ni
µ

(`−1)
j′→i [x]

∑

x∈ALi[x]
∏

j′∈Ni
µ

(`−1)
j′→i [x]

.

Note, that the decoding stage of each Approach C denoising/decoding iteration in general consists

of numerous (sub)iterations of belief propagation on the LDPC code graph.

The ssDUDE enhanced decoder for LDPC codes, as just described, can also be interpreted as a

slightly modified form of belief propagation (sum-product algorithm) applied to the factor graph

(see [39]) shown in Figure 10, representing both the channel code constraints and the estimated

clean symbol probabilities. The factors in Figure 10 are denoted by squares. The pairwise factors

involving the clean and noisy codeword variables {xj} and {zj} correspond to the channel transition

probabilities. The factors {cj} correspond to the parity check constraints, while the factors {tj}

correspond to P̂X2κ+1(·) applied to the 2κ+1-tuples of information symbols xj+κ
j−κ, j = κ+1, . . . , k−κ

connected to them in the figure.2 Note that these latter factors do not include variables xk+1, . . . , xn

2For simplicity, we omit factors corresponding to the boundary indices j < κ + 1, j > k − κ. A good choice for
such factors would be marginal distributions on fewer random variables derived from P̂X2κ+1(·).
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which correspond to parity symbols. The ssDUDE and decoding stages of each Approach C iteration

described above correspond, respectively, to the updating of messages passing between {tj} and

{xj} and to the updating of messages passing between {xj} and {cj} in a belief propagation-like

algorithm. The overall goal is to approximate the conditional distribution of each xj given all the

observed {yj}. As we explain below, the main difference between Approach C and standard belief

propagation on this factor graph has to do with the messages passing back and forth between the

factors {tj} and the variable nodes {xj}. The factor to variable node edge messages are initialized as

usual, with the exception of the edges (tj → xj) which are initialized to P̂Xj |Z2κ+1(x|zj+κ
j−κ)/Π(x, zj),

x ∈ A, where P̂Xj |Z2κ+1(x|zj+κ
j−κ) is the output of sDUDE. We divide by Π(x, zj) for consistency with

the factor graph of Figure 10, which multiplies this term back in through the pairwise channel factors

connecting xj and zj . In future iterations, messages passing on the edges (xj → tj) and (tj → xj)

are updated as usual, with the updates of the former corresponding roughly3 to equations (18)

and (19). In a departure from standard belief propagation, however, messages passing on (tj → xi)

for i 6= j are always fixed to the all-ones vector [1, 1, . . . , 1] and are never updated, and the messages

passing on (xi → tj) for i 6= j are set equal to the messages on (xi → ti), the latter updated in the

usual way, as already noted. These modifications stem from the fact that we do not want products

of factors tj with common variables to appear in the propagating messages. An additional difference

relative to standard belief propagation is in the schedule of message updates. In particular, decoding

proceeds with multiple updates of the messages passing between {xj} and {cj}, while the messages

between {tj} and {xj} are held fixed. This corresponds to the multiple channel decoder iterations

per denoising iteration mentioned above. After a certain number of such iterations, the messages

passing back and forth between {xj} and {tj} are updated in the usual way, with the aforementioned

exceptions for (tj → xi) and (xi → tj), i 6= j.

V-2 Approach D

Approach C has the drawback that the error correction decoding stage is not being leveraged

to refine P̂X2κ+1(·), the estimate of the counts of clean source symbols. Approach D (along with

Approaches E and F of the next subsections) is an attempt to patch this hole via a different iterative

process.

Approach D also consists of a sequence of iterations of a denoising stage followed by a decoding

stage. Like Approach C of the previous section, the first iteration consists of a run of the sDUDE

algorithm followed by the corresponding enhanced error correction decoding stage, as detailed

in Section V-1. Subsequent iterations differ from the iterations of Approach C only in how the

3The actual update in the modified belief propagation formulation involves a similar sum-of-products, with the
πzi

[x] factor omitted and the Q̃
(1)
Xi+j

(ξκ+j+1) factors derived from the (xj → tj) messages.
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denoising stage processes the aggregate reliability information {Q
(t)
Xi

(·)} to generate the new a–

priori reliability information {P
(t)
Xi

(·)}. We now describe the corresponding Approach D processing.

1. Obtain a hard decision decoded sequence of source symbols by decoding each symbol i to the

value x maximizing Q
(t)
Xi

(x). Denote this sequence of symbols by ẑ(t) = ẑ1, ẑ2, . . . , ẑk.

2. Determine the fraction of occurrences of each context of symbols (context in the DUDE sense)

in the decoded sequence ẑ(t) for which the “center” symbol takes on each possible value x.

This is equivalent to the normalized m(ẑ(t), c) vector from the DUDE description.

3. For each i, let P
Ẑi

(z) denote m(ẑ(t),ηi)[z]/
∑

z m(ẑ(t),ηi)[z] where ηi represents the value of

the context of the i-th symbol, and let Ẑi denote the corresponding random variable.

4. For each i, derive a prior distribution Pr(Xi = x) on the clean symbol Xi that is consistent

with the following postulated approximations about the joint distribution of Xi and Ẑi:

(a) Pr(Ẑi = z) = P
Ẑi

(z) derived above, for all z.

(b) Pr(Xi = x|Ẑi = ẑi) = Q
(t)
Xi

(x), the output of the decoding stage of the previous iteration.

(c) Pr(Ẑi = z|Xi = x) for all z and x correspond to an M–ary symmetric channel.

Under these approximations, a system of M equations in the M unknowns Pr(Xi = x), x 6= ẑi

can be derived. One equation is the trivial
∑

x Pr(Xi = x) = 1. For x 6= ẑi we have

Pr(Xi = x) = Pr(Xi = x, Ẑi = ẑi) +
∑

z 6=ẑi

Pr(Xi = x, Ẑi = z)

= Pr(Xi = x, Ẑi = ẑi) +
∑

z 6=ẑi

Pr(Ẑi = z|Xi = x)Pr(Xi = x)

= Pr(Xi = x, Ẑi = ẑi)+

[(M − 2)Pr(Ẑi = ẑi|Xi = x) + Pr(Ẑi = ẑi|Xi = ẑi)]Pr(Xi = x) (21)

= (M − 1)Pr(Xi = x, Ẑi = ẑi) + Pr(Xi = ẑi|Ẑi = ẑi)Pr(Xi = x)
Pr(Ẑi = ẑi)

Pr(Xi = ẑi)
(22)

where (21) follows from the M–ary symmetric channel approximation. Letting Pr(Ẑi = ẑi) =

P
Ẑi

(ẑi) and Pr(Xi = x|Ẑi = ẑi) = Q
(t)
Xi

(x), according to the other approximations, we have

the following M − 1 equations,

Pr(Xi = x) = (M − 1)Q
(t)
Xi

(x)P
Ẑi

(ẑi) +Q
(t)
Xi

(ẑi)PẐi
(ẑi)

Pr(Xi = x)

Pr(Xi = ẑi)
, (23)

with one such equation for each of x 6= ẑi.
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The equations can be solved for the Pr(Xi = x) as follows. Summing the equations over

x 6= ẑi (along with the first trivial equation) leads to a quadratic equation in Pr(Xi = ẑi) as

the only unknown. The corresponding solution for Pr(Xi = ẑi) can then be inserted into each

of the above M−1 equations which become linear in the corresponding unknowns Pr(Xi = x)

and hence are easily solved. Then, for each x, set P
(t)
Xi

(x) equal to Pr(Xi = x), so obtained,

as the output of the t-th iteration Approach D denoising stage.

We remark that in the binary case M = 2, there is essentially only one equation to be solved

in step 4, namely the quadratic one. In general, there will be two real solutions to the quadratic

equation, both in the binary and non–binary cases. Clearly that solution which is strictly between

0 and 1 should be chosen. If both solutions satisfy this condition then the natural choice is the one

maximizing the induced

Pr(Ẑi = ẑi|Xi = ẑi) =
Q

(t)
Xi

(x)P
Ẑi

(ẑi)

Pr(Xi = ẑi)
,

which translates into choosing the smaller of the two solutions for Pr(Xi = ẑi). This is the

selection rule applied in obtaining the simulation results in Section V-5. If the solution to the

quadratic equation is imaginary a good heuristic is to simply set P
(t)
Xi

(·) equal to P
Ẑi

(·).

V-3 Approach E

Approach E also consists of a sequence of iterations of a denoising stage followed by a decoding stage.

Like Approach C of the previous section, the first iteration consists of a run of the sDUDE algorithm

followed by the corresponding enhanced error correction decoding stage, as detailed in Section V-1.

Subsequent iterations differ from the iterations of Approach C only in how the denoising stage

processes the aggregate reliability information {Q
(t)
Xi

(·)} to generate the new a–priori reliability

information {P
(t)
Xi

(·)}. We now describe the corresponding Approach E processing.

1. Obtain a hard decision decoded sequence of source symbols by decoding each symbol i to the

value x maximizing Q
(t)
Xi

(x). Denote this sequence of symbols by ẑ(t) = ẑ1, ẑ2, . . . , ẑk.

2. Determine the fraction of occurrences of each context of symbols (context in the DUDE sense)

in the decoded sequence ẑ(t) for which the “center” symbol takes on each possible value x.

This is equivalent to the normalized m(ẑ(t), c) vector from the DUDE description.

3. For each i, set

P
(t)
Xi

(x) =
πzi

[x]m(ẑ(t),ηi)[x]
∑

z πzi
[z]m(ẑ(t),ηi)[z]

(24)

where ηi represents the value of the context of the i-th symbol in the hard decision output

ẑ(t).
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Note that the alternative denoising stage requires only hard decisions from the decoder and oth-

erwise ignores the soft output information. Approach E can also be interpreted as a natural

approximation of Approach F described next.

V-4 Approach F

Approach F is also an iterative denoising/decoding procedure nearly identical to Approach C except

that it attempts to improve the estimate of the distribution of tuples of clean symbols P̂X2κ+1(·) in

each iteration, rather than leave it unchanged. Let P̂
(t)
X2κ+1(·) denote the alternative estimate for

the t–th iteration, as used in (18). It is computed as follows.

1. Like in Approach E, obtain a hard decision decoded sequence of source symbols by decoding

each symbol i to the value x maximizing Q
(t)
Xi

(x). Denote this sequence of symbols by ẑ(t) =

ẑ1, ẑ2, . . . , ẑk.

2. Determine P̂
(t)
X2κ+1(·) as

P̂
(t)
X2κ+1(ξ

2κ+1) =
m(ẑ(t), ξκ, ξ2κ+1

κ+2 )[ξκ+1] + c

N

where N =
∑

ξ̃2κ+1(m(ẑ(t), ξ̃κ, ξ̃2κ+1
κ+2 )[ξ̃κ+1] + c) is a normalization constant, m(·) is given by

(1), and c is a smoothing constant set to c = 1 in the simulations.

Approach F is then identical to Approach C with P̂
(t)
X2κ+1(·), as defined above, replacing

P̂X2κ+1(·), derived according to (15), in the t-th iteration update (18). In the factor graph/belief

propagation interpretation of Approach C (see Figure 10), the change introduced by Approach F

is to modify the factors {tj} to P̂
(t)
X2κ+1(·) before the t-th update of the messages (tj → xj).

We next show how Approach E can be viewed as an approximation of Approach F. Approach

F updates according to

P̃
(t)
Xi

(x) =
∑

ξ2κ+1:ξκ+1=x

P̂
(t)
X2κ+1(ξ

2κ+1)πzi
[x]

∏

−κ≤j≤κ
j 6=0

Q̃
(t)
Xi+j

(ξκ+j+1), (25)

where Q̃
(t)
Xj

(x) is the “intrinsic” information removed soft output from the previous decoder stage,

as computed according to (17). Approach E can then be interpreted as replacing Q̃
(t)
Xj

(x) in the

expression (25) with Q
(t)
Xj

(x), the unmodified decoder soft output, and restricting the summation

in (18) to one term, namely,

ξ2κ+1 = arg max
ξ̃2κ+1:ξ̃κ+1=x

∏

−κ≤j≤κ
j 6=0

Q
(t)
Xi+j

(ξ̃κ+j+1)

= ẑi−1
i−κ, x, ẑ

i+κ
i+1 .
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Output bit error rate

Channel Denoised Decoded A B C E F

0.18000 0.09375 0.05182 0.00468 0.00002 0.00000 0.00000 0.00000

0.19000 0.10251 0.07925 0.02006 0.00053 0.00000 0.00000 0.00000

0.20000 0.11185 0.10335 0.04278 0.00478 0.00000 0.00000 0.00000

0.21000 0.12075 0.12655 0.06509 0.01756 0.00001 0.00000 0.00000

0.22000 0.13045 0.14800 0.08563 0.03831 0.00005 0.00002 0.00001

0.23000 0.14119 0.16917 0.10573 0.05993 0.00060 0.00050 0.00075

0.24000 0.15198 0.18857 0.12405 0.08078 0.00436 0.00510 0.00880

0.25000 0.16284 0.20749 0.14177 0.10093 0.01597 0.02000 0.03099

0.26000 0.17418 0.22449 0.15941 0.12032 0.03712 0.04164 0.05952

0.27000 0.18580 0.24094 0.17529 0.13967 0.06302 0.06461 0.08862

Table 6: Results for Approaches A to F with a (16000, 4000) RA code and Data Set 1 (Figure 3).

Up to normalization, the summation in update (25) over this one term becomes

P̃
(1)
Xi

(x) = P̂X2κ+1(ẑi−1
i−κ, x, ẑ

i+κ
i+1 )πzi

[x]

which corresponds exactly to the update of Approach E.

A range of algorithms between Approaches E and F can be obtained through alternative re-

strictions of the summation in (25), to, for example, allowing for only one error in the context (as

opposed to zero above), or two, etc, relative to the hard decision sequence.

V-5 Results

In this section, we present the results of experiments carried out on the data sets of Section III-2

with Approaches C, E, and F. Results for Approaches A and B are also included, for comparison

purposes. Approach D was found to uniformly and significantly underperform Approaches C, E,

and F in our experiments and we omit it from the comparisons below to simplify the presentation.

The channel coding setup (RA codes, etc.) is identical to that described at the end of Section IV.

For Data Sets 1 and 2, the noisy output from the channel is decoded with each of the algorithms

discussed in Section III-1 and Sections IV to V-4. The hard decision channel decoding block for

Approach A is a standard belief propagation decoder. The context sizes for Data Sets 1 and 2 are

identical to those chosen for the experiments detailed at the end of Section IV.

The BER results for Data Sets 1 and 2 are presented, respectively, in Tables 6 and 7 and plotted

in Figures 11 and 12. From the figures it can be inferred that, for an output bit error rate of 10−4,

iterative denoising and decoding schemes yield coding gains over Approach B of 1.4-1.5dB for Data

Set 1 and 1.4-1.8dB for Data Set 2.
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Figure 11: Bit-error rate of Approaches A–F applied to Data Set 1 (Figure 3).

From Figures 11 and 12 we observe that the iterative decoding and denoising schemes C, E,

and F substantially outperform the non-iterative schemes A and B. Among the iterative schemes,

Approach F seems to give the best performance as the channel noise decreases, though no single

scheme completely dominates the others for all noise levels.

We perform a similar experiment for Data Set 3 (HTML data), with the same channel coding

set-up. We restrict the experiment to Approach E, which competed well with the best iterative

algorithms for the image data, and include the results for Approaches A and B for reference. As

mentioned in Section III-2, we use a “character-aware” scheme for denoising, where the context

size K is varied from 16 to 23 based on the noise levels.

The experiments for Data Set 3 are presented in Table 8 and plotted in Figure 13. From the

figure it can be inferred that, for a bit error rate of 10−4, Approach A yields a coding gain of about

0.3dB over a plain decoder, Approach B, in turn, yields a coding gain of approximately 0.5 dB

over Approach A, and Approach E yields a coding gain of about 0.9dB over Approach B. Thus,

we observe continued significant performance gains in decoding for yet a third type of data (with

Data Sets 1 and 2 corresponding to two different types of image data), providing empirical evidence

of the universality of our schemes. In the next section, we study the universality properties more

directly by evaluating the proposed DUDE-enhanced decoding structures along with corresponding

source-distribution-aware (and hence non-universal) enhanced decoding structures on synthetic
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Output bit error rate

Channel Denoised Decoded A B C E F

0.20000 0.02704 0.10464 0.00564 0.00003 0.00000 0.00000 0.00000

0.21000 0.02965 0.12742 0.01441 0.00027 0.00000 0.00000 0.00000

0.22000 0.03248 0.14902 0.02655 0.00116 0.00000 0.00000 0.00000

0.23000 0.03558 0.16954 0.03942 0.00326 0.00001 0.00000 0.00000

0.24000 0.03879 0.18908 0.05125 0.00654 0.00006 0.00002 0.00001

0.25000 0.04215 0.20752 0.06170 0.01098 0.00028 0.00017 0.00005

0.26000 0.04555 0.22504 0.07061 0.01614 0.00089 0.00093 0.00041

0.27000 0.04922 0.24149 0.07817 0.02155 0.00244 0.00274 0.00155

0.28000 0.05305 0.25744 0.08464 0.02739 0.00512 0.00615 0.00400

0.29000 0.05717 0.27237 0.08979 0.03367 0.00929 0.01120 0.00817

0.30000 0.06130 0.28658 0.09370 0.04027 0.01472 0.01765 0.01380

Table 7: Results for Approaches A to F with a (16000, 4000) RA code and Data Set 2 (Figure 4).

data generated by Markov sources.
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Figure 12: Bit-error rate of Approaches A–F applied to Data Set 2 (Figure 4).

Output bit error rate

Channel Denoised Decoded A B E

0.12000 0.08368 0.00000 0.00000 0.00000 0.00000

0.13000 0.09239 0.00001 0.00000 0.00000 0.00000

0.14000 0.10092 0.00002 0.00001 0.00000 0.00000

0.15000 0.10950 0.00027 0.00003 0.00001 0.00000

0.16000 0.11787 0.00460 0.00039 0.00002 0.00000

0.17000 0.12626 0.02369 0.00481 0.00013 0.00001

0.18000 0.13447 0.05209 0.02135 0.00170 0.00001

0.19000 0.14262 0.07943 0.04570 0.01024 0.00004

0.20000 0.15076 0.10437 0.06948 0.02874 0.00038

0.21000 0.15889 0.12748 0.09117 0.05074 0.00430

0.22000 0.16703 0.14912 0.11113 0.07186 0.02255

Table 8: Results for Approaches A, B, and E with a (16000, 4000) RA code and Data Set 3.
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Figure 13: Bit-error rate of Approaches A, B, and E applied to Data Set 3
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VI Markov sources

In this section, we evaluate the performance of the proposed schemes on channel-encoded binary

Markov sources. The channel code and baseline channel decoder are again, respectively, the RA

code and belief propagation decoder of Sections IV and V-5, while the Markov sources are first-order

with symmetric transition probabilities. We compare the performance of the proposed schemes to

analogous non-universal enhanced decoders, denoted as Hard BCJR+BP, Soft BCJR+BP, and

Iterative BCJR+BP, that exploit knowledge of the source statistics. Hard BCJR+BP corresponds

to Approach A with a BCJR denoiser using the actual Markov chain parameters replacing the DUDE

block in Figure 2. Similarly, Soft BCJR+BP is Approach B but with the sDUDE block in Figure 7

replaced by a version of BCJR that emits the computed clean symbol posteriors. These posteriors

then serve as inputs to the belief propagation decoder, as in Approach B. Iterative BCJR+BP

carries out belief propagation on the augmented factor graph of Figure 14, similarly to what is

done in [7] and in Approaches C and F above. The factor graph of Figure 14 is similar to that of

Figure 10. In this case, the factors tj correspond to the Markov transition probabilities,

tj(xj , xj+1) = pXj+1|Xj
(xj+1|xj) =

{

π if xj+1 6= xj

1 − π if xj+1 = xj

Unlike in Approaches C and F, Iterative BCJR+BP involves standard belief propagation on the

augmented factor graph. The schedule of message updates, however, is similar to C and F and

entails multiple outer iterations of an inner subiterative process comprised, in turn, of numerous

iterations back and forth between {tj} and {xj}, sufficiently many, in fact, to implement the full

sequence BCJR, followed by numerous iterations between {xj} and {cj}, while holding the messages

from {tj} fixed. After at least two outer iterations of this subiterative process, hard decisions are

taken at the variable nodes. As in Approaches C and F, negligible improvement in performance is

seen beyond two iterations.

The results are shown in Figure 15 for a Markov source with transition probability π = .05,

and as mentioned, the rate 1/4 regular RA code also used in Sections IV and V-5. To simplify the

plot, we have omitted the results for iterative universal Approaches C and E, which are similar to

those of Approach F, with Approach E being slightly inferior to C and F for noisier channels. For

π = .05, the universal and (corresponding) non-universal error rates are found to track each other

closely in all cases. Though we omit the plots, we find, as π decreases from .05, that the universal

and non-universal hard decisions schemes remain fairly close in performance, while there is some

divergence in performance for the corresponding soft decision schemes. This is most likely due to

slower convergence of the sDUDE estimated clean symbol posteriors to the actual posteriors used by

the BCJR based schemes. Evidence of this slower convergence can already be seen in Table I in [26]

for the case of BSC crossover δ = .20, Markov transition π = .01, and a sequence length of 106,
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Figure 14: Factor graph for Iterative BCJR+BP enhanced decoding.

where Bayes optimal denoising (e.g. BCJR) significantly outperforms the DUDE. These empirical

observations are consistent with the theoretical analysis in [26], which shows a convergence penalty

that increases with δ.

As additional reference points, we can derive the theoretical maximum values of the BSC

crossover probability δ that allow, respectively, reliable uncompressed and compressed channel en-

coding of the Markov source at the coding rate of 1/4 source symbols per channel symbol used in the

experiments of Figure 15, with possibly source dependent encoding and decoding. In uncompressed

channel encoding, which is the paradigm assumed throughout the paper, the source symbols are

transmitted in the clear as part of the channel codeword, while compressed channel encoding is

the classical Shannon paradigm of source-channel coding for which separate data compression and

channel encoding is asymptotically optimal. Let H(X|Z) denote the conditional entropy rate of

the Markov source X given its noisy version Z, which is a function of δ and π. Let h(δ) denote

the binary entropy function evaluated at probability δ, so that 1 − h(δ) is the capacity of a BSC

with crossover δ, and let R denote the rate of source symbols per channel symbols of the uncom-

pressed encoding. According to Theorem 1 of [40], uncompressed channel encoding at rate R with
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Figure 15: Performance of universal Approaches A, B, and F, and non-universal analogues Hard
BCJR+BP, Soft BCJR+BP, and Iterative BCJR+BP for π = .05. Data length is 106 bits.

asymptotically vanishing error probability is possible if and only if

H(X|Z)

1 − h(δ)
≤

1 −R

R
. (26)

Correspondingly, the classical source channel separation theorem implies that compressed chan-

nel encoding at rate R source symbols per channel symbol, with asymptotically vanishing error

probability, is possible if and only if
H(X)

1 − h(δ)
≤

1

R
, (27)

where H(X) = h(π) is the entropy rate of the symmetric Markov source with transition probability

π.

We can numerically solve for the largest δ for which (26) and (27) are satisfied for the values of

R and π used in the above simulations. To carry out this computation for (26), we express H(X|Z)

as

H(X|Z) = h(δ) + H(X) −H(Z)

= h(δ) + h(π) −H(Z),
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where H(Z) is the entropy rate of the hidden Markov source, which has no closed form expression,

but, following [41, 42, 43], can be estimated easily for different values of π and δ using a Monte Carlo

method. This technique is based on the asymptotic equipartition property (AEP) for stationary

ergodic sources, which states that (1/n) log P (Zn) converges to H(Z) with probability one. The

technique thus involves simulating a long realization of Zn, and computing its log-probability using

the standard dynamic programming technique (forward recursions from the hidden Markov process

literature). A binary search, coupled with this Monte Carlo entropy rate estimator, can be used to

estimate the maximal δ = δ∗, satisfying (26).

For R = 1/4 and a Markov source with π = .05, the case corresponding to Figure 15, we

obtain δ∗ ≈ .339, which is well above the values of δ achieving low error rates in the figure, e.g.,

δ ≈ 0.24 for a BER between 10−5 and 10−4 for either scheme F or the non-universal BCJR-based

schemes. The largest δ satisfying the compressed channel-encoding condition (27) is easily found

using numerical methods to be δ∗∗ ≈ .344 for these same parameter values. Interestingly, in this

case, the theoretical penalty for not compressing the source is fairly small, though it would grow

with increasing encoding rate.

The limits on uncompressed encoding have the most relevance to the proposed schemes, and

illustrate what may be possible with no additional restrictions on encoding and decoding (such

as complexity). Attaining them, however, has not been the objective of the paper, which rather

has focused on broadly applicable enhancements to the decoding of existing, practical families of

channel codes. Indeed, the gap from the limits observed in the experimental results is due not only

to the suboptimality of the decoders and their lack of knowledge of the source statistics, but also

substantially to the fact that we are using simple off-the-shelf channel codes which do not operate

close to capacity.

VII Conclusion

The proposed methods are practical approaches that harness the dual redundancy present at the

channel inputs (due to uncompressed data and error control coding) capitalizing on the knowledge

of the error control code at the decoder but without the requirement that the statistics of the

data be known at the encoder/decoder. An existing decoder system design, subject to standard

protocols and error-correcting codes, can be replaced by the algorithms presented in this paper,

without requiring any change in the corresponding encoder system.

A progression of schemes was described, offering a complexity-performance trade-off. The sim-

plest schemes (Approach A) feed the systematic (information) part of the encoded data to a hard-

decision denoiser, which in turn feeds a hard-input decoder. This simple configuration already

shows significant performance improvement over decoding alone. Further improvements in perfor-
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mance, at the cost of a moderate increase in complexity, are obtained by letting the DUDE scheme

output soft information, fed to a soft-input decoder (Approach B). The strongest, but also most

complex schemes (Approaches C–F) are iterative, feeding back a posteriori reliability information

on the decoded information symbols to variants of ssDUDE, an enhanced version of DUDE that

incorporates such information. These universal decoders show orders of magnitude improvement

over state-of-the-art decoders that do not take into account the source redundancy.

While this paper has focused on memoryless channels, analogous denoiser-enhanced decoders

can be constructed for channels with memory. The corresponding building blocks for such enhanced

decoders would be extensions of the DUDE to channels with memory [32, 33] combined with codes

and decoders targeting the relevant channels. The literature on the latter is extensive. Of particular

relevance might be recent work on extensions of LDPC/Turbo codes and iterative decoding to

channels with memory, as in e.g. [44, 45, 46, 47]. We leave the study of such enhanced decoders for

future work.
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