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Abstract

An SLA/Contract is an agreement between a client and a service provider. It specifies

desired levels of service and penalties in case of default. It is of interest from the Service

Providers point of view, to determine the optimal contract, that will maximize its utility. In this

work we model the situation based on the notion of Moral Hazard: providing a good service is

costly and results are affected by the resources involved. As a consequence, a credible contract

must fulfill the incentive compatibility constraint. We extend the above model to take into

account the possibility that there might different types of clients, and that the Service Provider

will offer a menu of contracts intended for each of these clients, as a means of maximizing utility.

From the Service Providers point of view, finding an optimal contract will consist of solving a

nonlinear optimization problem subject to constraints. We derive conditions under which these

constraints will take a simple form and we analyze a scenario, in which, the randomness comes

from the Response Time of a given IT Service, and the input is the number of servers that will

be dedicated to each client.
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1. Introduction

An SLA/Contract is an agreement between a provider and a consumer, it is comprised of Service
Level Objectives that guarantee quality of service, such as availability, performance and reliability,
a promise of payment and penalties to impose in case of violation and other characteristics (such
as validity period, scope and restrictions).

This work will focus on how to find the optimal contract from the Service Provider’s (SP) point of
view. We model SLA/Contracts using the concept of Moral Hazard and Adverse Selection. The
intent is to maximize the SP’s utility while keeping the customer’s utility in mind.

The basic idea is that the provider, through some costly effort (investment, use of scarce resources
such as number of CPU’s, number of engineer hours, etc.), can increase the quality of the service,
but that there is also an additional stochastic component to it. In this hidden action we identify the
concept of Moral Hazard. Greater levels effort increase the probability of a good quality outcome.
In the context of the services that an IT provider, better infrastructure on average provides better
performance, but some unforeseen incidents(extra demand, breakdown of a system, etc.) may still
lead to poor quality. The client can observe a quality, but not the effort. Therefore, the only way
to induce a high level of effort is through a compensation system that is “steep”m i.e. payments
will be higher when observed quality is better. Nonetheless, this affects the provider, since she may
sometimes be punished for low quality even if the effort put in the process was high. Of course,
sometimes she will be rewarded in excess for her effort. The basic trade-off is then set: “steeper”
compensation systems will induce higher effort, but they will shift more risk (in terms of earnings)
to the provider, who is risk averse and will charge more for the service.
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2. Theoretical Model

2.1 Basic Model

The provider delivers a service quality qm ∈ QM ⊆ IR (measured in monetary terms) to the client.
This quality level depends stochastically on the effort level e ∈ E ⊆ IRne that the provider invests
in the client. Clients will not be able to observe the level of effort that the SP has assigned to each
one of them. The service quality in monetary terms qm will depend on an observable and verifiable
variable q ∈ Q ⊆ IRnq that we will call the (true) quality of service. We suppose that there is a
function g : Q→ QM that takes the variable q and assigns to it the monetary value of the quality of
service qm, which will represent how the client values quality. g will be non-decreasing and concave
in each one of the components of q. We assume that the distribution function of the (true) quality,
given a level of effort e is fq(q|e) and with cumulative function Fq(q|e), and its support will be a
cube in IRnq ,

⊗nq
p=1[qp, q̄p], independent of e.

Since the level of effort is not observable by the client, a contract can only specify a payment con-
tingent on the quality, that is observable and verifiable. We assume that the payment will be a
function of monetary quality of service, which will be observable since it is a deterministic function
of quality. We will denote this payment rule as p̄(q) = p(g(q)) = p(qm). It is important that the
qm variable is single dimensional, because otherwise the problem becomes much more complex.

The client has a utility function V , so for a realized level of quality, his utility will be V (qm−p(qm)).
The provider, on the other hand, has a utility function that depends on effort and money, so for a
given level of effort e and quality qm, her utility is U(p(qm), e). We assume V ′ > 0 and V ′′ ≤ 0 and
that ∂U

∂p > 0, ∂U
∂e < 0, ∂2U

∂2p ≤ 0 and ∂2U
∂2e ≥ 0 (see figure 1). Then the provider chooses e and p(qm)

to solve

max
p(),e

∫
U(p(qm), e)fqm(qm|e)dqm (1)

subject to ∫
V (qm − p(qm))fqm(qm|e) ≥ V̄ (2)

e ∈ argmaxe′
∫
U(p(qm), e′)fqm(qm|e′)dqm (3)

The objective is to maximize the expected utility of the service provider. (2) (called participation
constraint, from now on “PC”), states that the utility level of the client has to be above a certain
level V̄ . This level reflects the opportunity cost of the resources involved, and for this simple model
will be considered a parameter. The constraint (3) is now a credibility constraint. The promised
effort level has to be optimal given the contract, since otherwise the client would not trust a contract
with such a promised effort level.

In terms of q this optimization can be written equivalently as:

max
p(),e

∫
U(p(g(q)), e)fq(q|e)dq (4)
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subject to ∫
V (g(q)− p(g(q)))fq(q|e)dq ≥ V̄ (5)

e ∈ argmaxe′
∫
U(p(g(q)), e′)fq(q|e′)dq (6)

Figure 1: One Client Model

Service Provider

•Provides quality q

•Effort e

•Utility U(payment p(g(q)),effort e)

Client

•Pay p(g(q))

•Utility V(g(q)-p(g(q)))

•Perceived quality g(q)

2.2 The General Model

We can enrich the model to take into account that the SP could have different clients, that can be
classified in “types”. The agents that belong to a particular type will differ from the other types
because they can have different valuations of the service, and utility functions. The Service Provider
will offer a menu of contracts, to satisfy the different necessities of the clients and therefore extract
more payments.

The main constraint is that Service Provider does not know which client is which, since the partic-
ular valuation for the service is private information of the client, or that he has to offer all contracts
to all clients for legal reasons. Given this constraint, the contracts have to satisfy a self-selection
property: each client selects the contract that was designed for his particular type because is the
one that gives him the greatest utility level.

For the model, let’s suppose that there are N clients, which can be classified in k types. We denote
by θj the “type” of agents in the class j, and we assume that there is an amount µj of those agents.
The Service Provider will offer a menu of contracts, each of them designed for one type of client.
As before the contracts will offer a payment given the realized monetary quality qim that client i
receives. We will denote the contract intended for agents of type θj as pθj (qm). The Service Provider
will devote independent efforts for each client, which we will denote {ei,θj}i∈{1,...µj},j∈{1...k}, that
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is, the effort that the i’th client of type θj will be assigned, will be ei,θj . The utility function of the
Service Provider will take the form U({pθj (·)}j ,

∑
i ei), that is, it will depend on payments and the

sum of efforts dedicated to each client, with ∂U
∂pi

> 0, ∂U
∂ei

< 0, ∂2U
∂2pi
≤ 0 and ∂2U

∂2ei
≤ 0 (see figure 2)

Figure 2: Multi-Client Model

Clients of type 1
Utility V

Quality in $ g(q)

Pay p(g(q))

Clients of type 2
Utility V

Quality in $ g(q)

Pay p(g(q))

Clients of type 3
Utility V

Quality in $ g(q)

Pay p(g(q))

Service Provider
Effort e

Utility U

Quality q

Clients of the same type, say θj will have the same utility function V (·|θj), the same gθj function and
reservation utility V̄ (θj), that will relate true quality to monetary quality of service, and distribution

function of quality qθj ∈
⊗nqθj

p=1 [q
p,θj

, q̄p,θj ] contingent on effort, fθj (qθj |e). The distribution function
of monetary quality will depend on the effort level that each client receives, and will be independent
of the effort given to other clients. The optimization problem that the Service Provider will face is,

max
{pθj (·)}j ,{ei,θj }j,i∈{1,...,µj}

∫
U({pθj (gθj (qi,θj ))}i,j ,

∑
i,j

ei,θj )
∏
j,i

fθj (q
i,θj |ei,θj )d−→q (7)

subject to∫
V (gθi(q)−pθi(gθi(q))|θi)fθi(q|er,θi)dq ≥

∫
V (gθi(q)−pθj (gθj (q))|θi)fθi(q|et,θj )dq ∀j 6= i,∀r, t

(8)∫
V (gθi(q)− pθi(gθi(q))|θi)f(q|ei) ≥ V̄ (θi) (9)

{ei,θj}j,i∈{1,...,µj} ∈ argmax{e′i,θj }

∫
U({pθj (gθj (qi,θj ))}i,j ,

∑
i,j

e′i,θj )
∏
j,i

fθj (q
i,θj |e′i,θj ) (10)

As before the objective is to maximize the expected utility of the service provider. (8) is the Self
Selection Constraint, it states that in the optimal contract each client type will prefer their own
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contract to the ones intended for other client types. (9) and (10) are the Participation Constraint
and Credibility Constraint, respectively.

The optimization problem presented above is complicated. If we introduce a number of assumptions
on the utility functions and the distributions of quality given the efforts the framework will be much
simplified (details in appendix).

For simplicity, in this work we focus in optimizing over functions p(·) that are linear. That is,
we are looking for contracts that are linear in monetary quality of service. This contracts are
simple and could easily be implemented in real applicatons. However all the results concerning
FOA can also be applied if we are optimizing over a subset containing concave functions. With the
assumptions made (7)-(10) and it will become,

max
{pθj (·)}j ,{eθj }j

∫
U({pθj (gθj (qθj ))}j ,

∑
j

µjeθj )
∏
j

fθj (q
θj |eθj ) (11)

subject to∫
V (gθi(q)− pθi(gθi(q))|θi)fθi(q|eθi)dq ≥

∫
V (gθi(q)− pθj (gθj (q))|θi)fθi(q|eθj )dq ∀j 6= i (12)

∫
V (gθi(q)− pi(gθi(q))|θi)f(q|ei) ≥ V̄ (θi) (13)

{eθj}j ∈ argmax{e′θj }

∫
U({pθj (gθj (qθj ))}j ,

∑
j

µje
′
θj )
∏
j

fθj (q
θj |e′θj ) (14)

That is, all clients of the same type will have the same amount of effort assigned and the expected
utility of the provider will be simplified to an integral over

∑k
j=1 nqθj variables.

6



3. Non-Bernoulli Utility Functions

In the framework outlined in previous sections we assumed that the utility of the SP and the client
could be computed as an expected utility. Now we want to allow for the possibility that the utility
of the agents doesn’t have that form, that is, it is not a Bernoulli Utility Function. Our framework
will remain the same, except that now the utilities of the agents will not be written as an expected
utility, and they will be a function of the random variable of profits, that will, in turn, depend on
the level of effort. We present two examples of non Bernoulli utilities, one of them is the Exp-Var
and the other one is related to a the concept of the CVaR, used in finance to quantify risk. Both
functions will depend on the expected profits and a measure of risk. Given a random variable X,
that describes the behavior of uncertain profits, and with pdf fX(x) and cdf FX(x).1

Example 1 (Exp-Var Utility Function)

Definition 1 The Exp-Var Utility function is defined as

Ũ(X) = IE(X)− τ
∫

(x− IE(X))2fX(x)dx.

The first term is the expected profits, τ is a constant and the second term is the variance of profits.
The second term implies that the agents dislike risk, be it the SP or the clients, because it is
a measure of how volatile profits can be. The Exp-Var function has the following advantageous
property, in the context of the multi-dimensional effort,

Property 2 If g(q) =
∑nq
i=1 gi(qi), X = p(g(q))−φ(e), with p(·) linear, and f(q|e) =

∏nq
i=1 fi(qi|e)

then

Ũ(p(g(·)), e) =
nq∑
i=1

(
IE(p(gi(qi)))− τ

∫
(p(gi(qi))− IE(p(gi(qi))))

2
fi(qi|e)dqi

)
− φ(e)

where IE(p(gi(qi))) =
∫
p(g(qi))fi(qi|e)dqi ∀i

That is, if we assume X is the profit from one client and the value of quality is a sum in each
component of the quality, and those components have independent distributions, the utility will
be “separable as a sum” in the sense that is outlined above. Note also that in the many client
framework if X is the sum of the sum of payments from all clients, minus the total cost we will have
a similar separability property. The advantage of this property is that, since each term of the sum
consists on a one dimensional integral, sufficient conditions for FOA are more easily to be verified.

Example 2

Definition 3 (Value at risk) For any level α ∈ (0, 1) the value at risk, VaRα(X) as

VaRα(X) = −inf{z|IP{X ≤ z} > α}.
1In our framework X = p̄(q|e)− φ(e), where φ is convex in e.
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Definition 4 (Lower α-tail of X) The lower α-tail of a r.v. X is the random variable Xα with
distribution function

FXα =
min{α, FX}

α
.

Definition 5 (CVaR, conditional value-at-risk) For any α ∈ (0, 1) the conditional value-at-
risk, CVaR is defined as

CVaRα(X) = −IE(Xα).

where Xα is the lower α tail of X.

The utility function that we propose is the following,

Ũ(X) = IE(X)− τCV aRα(X). (15)

The CVaR is a measure of risk. For example, if FX(·) is continuous, the CVaR will be the mean
of the lowest α% of the profits. If the SP has N clients, and we assume that the payments from
each one of them is contingent on quality and therefore also a random variables that we will call
{Pi}Ni=1, then a possible utility function for the service provider would be,

Ũ({Pi}Ni=1) =
N∑
i=1

(IE(Pi)− τCV aRα(Pi))− φ(e)

where φ(·) is a convex function and represents the costs of effort and e summarizes the efforts
assigned to all clients. In Property 15 we present conditions under which FOA will be valid for this
particular type of non-Bernoulli utility function.
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4. First Order Approach

Solving (4)-(6) is, in general, difficult, because of the last constraint. However, under certain con-
ditions, if the maximization problem in (6) has an interior solution and the solution is unique, the
last constraint can be simplified to an equality constraint which corresponds to the First Order
Condition of the Optimization Problem in (3).2 We will assume that efforts are chosen from an
open set and that therefore we will only have to prove uniqueness of a stationary point3. This
will happen, in particular, when the expected utility of the SP is concave in effort at the optimal
contract.
This is known as the first order approach (FOA), and the conditions under which it is valid will
depend on U and fq(q|e). In this section we study conditions that allow us, in the context of SLAs,
to apply such a method.

A sufficient condition to be able to use the FOA is that the objective function be concave in
e. If q is uni-dimensional we have the following results, From Jewitt (1988),

Property 6 If Fq(q|e) satisfies (16)-(17), then, for every function ũ(·) : IR→ IR in C1 concave and
non-decreasing,

∫
ũ(q)fq(q|e)dq, will be concave in e and therefore, if U(p(qm), e) = u(p(qm))−φ(e),

with u concave and φ(·) convex in e, then the optimization problem (1)-(3), solved for p(·) of linear
form with positive slope, will satisfy FOA.∫ y

−∞
Fq(q, e)dq is nonincreasing convex in e for each value of y (16)

∫ ∞
−∞

qfq(q, e)dq is nondecreasing and concave in e (17)

Proof. See Appendix

Corollary 7 If Fq(q|e) is convex in e for each q, then, if U(p(qm), e) = u(p(qm)) − φ(e) with
u concave and φ(·) convex in e,

∫
u(p(g(q)))fq(g(q)|e)dq, will be concave in e, and therefore, the

optimization problem (1)-(3), solved for p(·) of linear form with positive slope, will satisfy FOA.

This results can be extended to the case in which we have multi-dimensional q, if some assumptions
are made. If the Service Provider is risk neutral, the FOA approach can be used imposing conditions
similar to (16)-(17) per component, without imposing any further conditions over the form of fq(q|e).
Let q = (q1, q2, . . . , qnq ).

Property 8 If the Service Provider is risk neutral, that is, U(x, e) = x−φ(e), and g =
∑nq
i=1 gi(qi),

then if for every i, Fqi(qi|e) =
∫ ∫ qi
−∞ fq(q|e)dqidq−i satisfies (16)-(17), then the optimization prob-

lem (1)-(3), solved for p(·) of linear form with positive slope, will satisfy FOA.
2Note that this applies also for the case in which the set of efforts is not IRne : the first order condition will

correspond to the gradient of a Lagrangian.
3An stationary point is one in which the gradient of the SP’s utility with respect to e becomes 0
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If the SP is not risk neutral, further assumptions have to be made on the form of the distribution
function. In general we have to require that

∫
U(p(g(q)), e′)fq(q|e′)dq be concave in e, or that it

has a unique stationary point (since we are assuming an interior solution).

Property 9 If U(p(g(q)) =
(∏nq

i=1 ũi(qi)
)
φ(e), with ũi(·) > 0 concave and φ(e) > 0 concave,

fq(q|e) =
∏nq
i=1 fqi(qi|e), and (16)-(17) are satisfied for each Fqi(qi|e), then the optimization problem

(1)-(3), solved for p(·) of linear form with positive slope, will satisfy FOA, in terms of the ln(U) .

If the utility function is separable as a multiplication but is now negative, we will need further
assumptions to use FOA. However, we have to ask for a much stronger condition, which is that the
logarithm of the utility be convex in e for every contract.

Property 10 If U(p(g(q)), e) = −
(∏nq

i=1 ui(qi)
)
·φ(e) with ui(·) > 0 convex functions and φ(e) > 0

convex, fq(q|e) =
∏nq
i=1 fqi(qi|e), then the optimization problem (1)-(3), solved for p(·) of linear form

with positive slope, will satisfy FOA if ln
(∫
ui(qi)fqi(qi|e ∈ Ei)

)
and ln(φ(e)) are convex, for every

p(·).

Proof. Turn the problem into a minimization by multiplying by minus one and take logarithm of
the product.

By analogy with what has been showed for multi-dimensional q results can be derived for the
Multi-Client case.

4.1 FOA Conditions for some common distributions

As it was seen in the previous section, conditions (16)-(17) can guarantee the validity of the first
order approach in many different contexts. Therefore it is useful to study the distributions f(x|e)
that will satisfy them. One of the most used probability distributions in practice is the Normal
distribution. It might seem difficult to verify condition (16) for a quality variable that is Normal
for each e, since the Normal cumulative distribution function doesn’t have a closed form. In the
next result, conditions under which a Normal distribution that is affected by effort in its mean and
variance, will satisfy (16), are derived.

Property 11 Let F (q, µ, σ) be the cdf of the normal distribution with mean µ(e) and variance
σ2(e). If R(y−µσ ) · σ is convex and non-increasing in effort for every R such that R′ ≥ 0 and
R′′ ≥ 0, then F (x, µ, σ) will satisfy condition (16).

Proof. See Appendix

A similar result can be derived for a truncated normal

Corollary 12 Consider a r.v q with the following pdf,

fq(q|e) =

 e
− (t−µ)2

σ

σ
√

2π
d(e) if t ∈ [−cσ + µ, cσ + µ]

0 ∼

10



Where d(e) =
∫ r(e)−µ
−r(e)−µ

e
(x+µ)2

2σ2

σ
√

2π
=
∫ r(e)

σ

− r(e)σ
e
x2
2√
2π

, µ(e) and σ(e) depend on e and c is a constant.

If R(y−µσ ) · σ is convex and non-increasing in effort for every R such that R′ ≥ 0 and R′′ ≥ 0
and cσ + µ is concave, then F (x, µ, σ) will satisfy condition (16).

Corollary 13 Let F (q, µ, σ) be the cdf of the log-normal distribution with mean µ(e) and variance
σ2(e). If R(y−µσ )·σ is convex and non-increasing in effort for every R such that R′ ≥ 0 and R′′ ≥ 0,
then F (x, µ, σ) will satisfy condition (16).

Similarly, the following result can be shown

Property 14 If a random variable X that depends on a parameter θ, with cdf F (x, θ), has the
property that through a change of variable we have that F (x, θ) = F (r(θ)x, 1), then, if X depends
on e only through θ and R(y · r(θ))/r(θ) is convex and non-increasing in effort for every R such
that R′ ≥ 0 and R′′ ≥ 0, then

• F (x, θ) will satisfy condition (16).

• For any number of independent realizations of X, n, the distribution of the kth percentile as
defined in (19), will satisfy condition (16).

Property 15 If a random variable X that depends on a parameter θ, with cdf F (x, θ), has the
property that through a change of variable we have that F (x, θ) = F (r(θ)x, 1), then, if X depends
on e only through θ, then the non-Bernoulli utility function defined by (15) will be concave in e if
(17) is satisfied.

4.2 If First Order Approach conditions are not verified

Sometimes the conditions for the first order approach to be valid are not easily verifiable. This is
the case, for example, when the utility function is a CARA, Property 10 will generally be difficult
to verify and might not be true. Also, if the utility function used doesn’t fulfill the separability
conditions that we require in the previous sections, those properties will not apply. However, in
many cases even if we don’t have the sufficient conditions, FOA will still be valid as long as in the
optimal contract the utility function of the provider has a unique stationary point in e given the
payment schedule p(·). A heuristic would then be to pose the problem assuming that FOA is valid,
find the corresponding payment schedule p∗(·) and effort e∗ that maximize the providers utility and
then verify the uniqueness of the stationary point in e ex-post, given the payment schedule p∗(·).
In fact, even if there is not a unique stationary point one needs only to verify that the value of e∗

is the global maximum of the utility of the provider, given p∗(·).
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5. SLA determination in a n-tier IT Service Scenario

SLA/contracts for IT Services often contain clauses regarding desired levels of response time. To
provide a certain level of response time, a service provider has to use costly resources. The response
time obtained as a result will still be stochastic around an average value. In our framework an
optimal menu of contracts has to take into account the randomness of any particular measure of
response time, and the characteristics of the different types of clients. Consider a context in which
to meet a prescribed metric of Response Time a Service Provider has to provision computing re-
sources, in the form of compute servers. This is frequently the case for Application Service Providers
such as e-commerce sites). In this article, we look at single tiered services (e.g. Database services,
web server utilities, Application server utilities etc.) The Response Time of such a single-tiered
IT Service is modelled using a simple analytic queuing theory model. We suppose we have an IT
Service that receives requests, that arrive according to a Poisson process of parameter λ. Servers
handle the requests and their service time will also behave as a r.v. If at any given time all servers
are occupied with requests, all requests that arrive thereafter will wait in queue to be serviced. If
we suppose that the requests, that one server receives, behave as a Poisson of parameter λ̃ and
the service time of the server is exponential of parameter µ, it is a known result from queuing
theory that the total Response Time will be exponentially distributed with parameter µ − λ̃. If
the workload is shared equally among the compute servers, then each server will receives requests
at a rate λ/e, where e, the effort variable, is the number of servers, then the Response Time will
distribute exponentially with parameter λ̄(e) = µ− λ

e .

SLA/contracts vary, in terms of the performance metric of response time that is used. The quality
variable that is appropriate to use in the developed framework will depend on the particular per-
formance metric in which any particular contract is written. For example, if a contract specifies,
that the hourly average Response Time is lower or equal than 25 ms, the quality variable we pro-
pose for this case would be the realized hourly Response Time. This quality variable will follow
a probability distribution that can be derived under this framework in which each Response Time
behaves exponentially. In general, a befitting quality variable will be one that appears explicitly
in the SLA to specify a determined level of service, and in terms of which penalties will depend.
In the previous example, the clause could specify penalties such as, the SP will pay a penalty of
10, 000 if the average response time is between 25 and 35 ms and 20, 000 if the average response
time is between 35 and 45 ms.

In this work we focus on some likely SLA clauses: (a) contracts that specify a desired average
of response time lower than t, over a period of length T̄ ; (b) contracts that are in terms of per-
centiles, such as 95% of the requests have a response time lower than t, over a period of length T̄ ;
(c) combinations of the two previous types, such as 95% of the hourly averages have to be lower or
equal than t, over a period of length T̄ .

12



5.1 Mean Response Time

If an SLA is written in terms of the Average Response Time, computed during a length of time T̄ .
If the total number of requests is n and the respective realized Response Times are t1, t2, t3, . . . , tn,
a possible Quality Variable, to fit this context, would be −t̄n = −

∑n
i=1 ti
n , that is, minus the

Average of Response Time 4. The distribution of the average as an statistic depends on the original
distribution of the sample.

5.1.1 Distribution of the Mean if Response Times are Exponentially Distributed

If we assume that the Response Times are exponentially distributed, the distribution of the mean
Response Time, conditional on the total number of requests, n, will be a Gamma(n, 1

nλ̄
)

f−t̄n(t) =
(λ̄n)ntn−1e−λ̄nt

Γ(n)
(18)

If we know that the process of arrival of requests is also exponentially distributed, we can determine
the distribution of the Average Response Time as

f−t̄(t) =
∞∑
n=0

e−λeλ̄ntln
(
λ̄n
)n
t−1+n

Γ(n)Γ(1 + n)

However, for the sake of computational simplicity, we could estimate the quantity of requests by its
mean, λT̄ , in which case to determine the distribution of t̄ we would have to replace n = λT̄ in (18).

This quality variable satisfies the conditions to use the FOA approach as it can be seen in Property
14.

5.1.2 Normally Distributed Mean

If the sample is big enough, from the Central Limit Theorem, we can assume that the mean has a
Normal Distribution. This is useful if we are not sure of the underlying distribution of each response
time or of any other quality variable that we are analyzing. In this case, since each response, has
mean µ = 1

λ̄(e)
and variance σ2 = 1

λ̄(e)2
, a normally distributed mean will be a N( 1

λ̄
, 1
nλ̄2 ). However,

assuming normality of response time might not be so appropriate for this particular case because
the Normal distribution takes on any value in the real line, and response time is positive. An
alternative would be to use a truncated normal distribution, that is for some positive function r(e)
with −r(e) + µ ≥ 0 we will have that

f−t̄(t) =

 e
− (t+µ)2

σ

σ
√

2π
d(e) if t ∈ [−r(e)− µ, r(e)− µ]

0 ∼
4Note that utility has to be increasing in quality

13



Where d(e) =
∫ r(e)−µ
−r(e)−µ

e
(x+µ)2

2σ2

σ
√

2π
=
∫ r(e)

σ

− r(e)σ
e
x2
2√
2π

. Note that if r(e) = constant · σ(e), d(e) = d will not

depend on e. In that case −t̄ will satisfy conditions (16)-(17) as it is shown in the appendix, using
Property 11.

5.2 Percentiles

It is common that a Service Level Requirement is in terms of the quantile of response time, such as
“95% of the realizations of Response Time have to be less than 5 seconds”. A quality variable for
this type of contract could then be related to the realized 95 percentile of response time, measured
during a time period.

We will use the following definition of the kth percentile. If n is the number of requests, and
x1, x2, . . . , xn represent the ordered values of Response Time.

Pk = xj , where j = round((n− 1) · k

100
+ 1) (19)

Let Tnk be the RV of the kth percentile given that there were n requests during the measurement
period. Let’s assume that the distribution of Response Times are iid and if F (t) is the cumulative
distribution function of each Response Time. The kth percentile is an order statistic, therefore its
distribution will be,

fTn
k

(t) =
d

dt

n∑
i=j

IP(t1 ≤ t, t2 ≤ t, . . . , ti ≤ t, ti+1 ≥ t, . . . , tn ≥ t) =
n!

(j − 1)!(n− j)!F (t)j−1(1−F (t))n−jf(t).

(20)

where j is given by (19).

5.2.1 Distribution of the Percentile if Response Times are Exponentially Distributed

If we assume that the Response Time of the servers system is exponentially distributed. In (20),
we would have that ti i ∈ {1, 2, . . . . , n} are r.v. iid, exponentially distributed, with parameter
λ̄ = µ− λ

e . This is not consistent with the fact that we are assuming that only n events took place,
however if n is much bigger than the quantity of people in queue at any given time, the assumption
becomes reasonable.

The probability distribution function of Tnk will be:

fTnk (t) =
n!

(j − 1)!(n− j)!
(1− e−λ̄·t)j−1(e−λ̄·t)n−j λ̄e−λ̄·t.

where j is defined by (19).

We will take n to be the mean of arrivals, that is n = λT̄ , where T̄ is the length of the mea-
surement period.
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If we take the quality variable to be minus the kth percentile of response time, we would have
that the utility of the client is increasing in quality. Under this conditions, using Property 14 it can
be verified that the FOA conditions (16)-(17) will be fulfilled.

5.3 Contracts that are in terms of means and percentiles

Using what has been discussed above, we can easily derive the probability distributions for quality
variables that have to be in terms of percentiles and means.

1. If a contract is in terms of percentiles of averages, such as 95% of the hourly averages have to
be lower or equal than t, over a period of length T̄ , its probability distribution will be given
by (20), where F will be a Gamma or a Normal, depending on which distribution we choose
to represent the mean. Later, using property 14, FOA conditions can be verified.

2. If a contract is in terms of averages of percentiles, such as the average of the hourly 95
percentiles have to be lower or equal than t, over a period of length T̄ , we know what the
probability distribution of the percentiles will be and the distribution of the average of per-
centiles has to be determined. However, in this case, the Central Limit Theorem will tell us
that if the average is taken over a big sample of percentiles, the average will be Normal, in
which case we will need only to determine the mean and variance of the percentiles.

6. A Numerical Example

We computed optimal menus of contracts for different scenarios, using different utility functions
and quality variables.

Two particular types of Utility functions were considered. Given a random variable X, that de-
scribes the behavior of uncertain profits, and with probability density function fX(x)

1. CARA Utility Function
For outcome x, the utility will be u(x) = (1−e−αx) the Expected Utility will then be U(X) =∫
u(x)fX(x)dx. The CARA Utility Function has constant risk aversion equal to α. In figure

3, it can be seen that the greater the parameter α the more concave the CARA function is and
the more the agent dislikes risk. In our framework we will have U(p(g), e) = u(p(g) − φ(e))
where φ(e) is convex in e.

2. Exp-Var function U(X) = IE(X)− τ
∫

(x− IE(X))2fX(x)dx
The first term is the expected profits, τ is a positive constant and the second term is the
variance of profits. The second term conveys the risk aversion of the agent.

6.1 Scenario: Mean Response Time and CARA Utility Function

We considered a case in which the quality variable is q = −t̄, where t̄ is the the realized Average Re-
sponse Time, and is Gamma distributed. The g function, which represents the monetary valuation
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Figure 3: CARA Utility Function
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that a client gives to the quality variable, was taken to be of the following form

gk,m,t(x) =
{
m(q − t) + k; if x ≤ t
k if x ≥ t

Different types of clients are parameterized by having different values k,m and t. The g function
will increase linearly in −t̄, with slope m, until a point in which it becomes constant and equal to k.
The reason to assume this form of g function is that we assume that the clients value more quality
up to a certain point in which they “saturate”: greater quality does not increase his monetary util-
ity any further. In this scenario we assume that the clients and the SP have CARA utility functions.

We will let the parameter of risk aversion α to vary for all agents. The value of T̄ was taken
to be 0.5 and we assume there is the same proportion of clients from each client type. The opti-
mization problem was solved using the First Order Approach although conditions given in property
10 were not verified. The validity of the approach was verified ex-post. The set of efforts per client
will be bounded below. For practical reasons in the numerical computations, for each client type
θj , eθj was taken such that eθj ∈ [

λθj
µθj

+ ε,∞), with ε small. We don’t include the multipliers that

correspond to the lower bounds of effort in the First Order Condition that represents (10), because
we assume that the solution of (10) will be interior, which is later verified in practice.
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6.1.1 Varying Risk Aversions

As a first analysis let’s suppose that the SP is facing clients that have the same valuations of the
service, that is, the same g function, that is shown in figure 4, but they differ in the risk aversion
parameters α. Clients of type 1, 2 and 3 will have risk aversion equal to 3, 1.5 and 0.1, respectively.
The values of V̄ were varied with α keeping the certainty equivalent fixed. In tables 1 and 2 we
present the parameters used for the computation of the optimal menu of contracts and in table 3
we present the optimal menu of contracts obtained.

Figure 4: “g function” (m=10, k=150000, t=-2)

-3.5 -3 -2.5 -2 -1.5 -1 -0.5

-5

-4

-3

-2

-1

1

g function

-(Average Response Time)
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Table 1: Parameters Service Provider
Cost Parameter of SP
2200 1.5

Table 2: Parameters Clients
Type of Client V̄ mu lambda Risk Parameter of Clients

Type 1 0.78 5 100 3

Type 2 0.53 5 100 1.5

Type 3 0.049 5 100 0.1

In figure 5 we present a plot of the contracts obtained. The dashed lines represent the mean
payments that each client type will make. The clients of type 1 who are the most risk averse will
pay more for qualities that are above the mean than the other client types, and will pay less for
qualities under the mean. The opposite is true for clients of type 3 who are the least risk averse.
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Table 3: Optimal Menu of Linear Contracts
Type of Client Level of Effort Slope Intercept

Type 1 23.46 0.75 -0.13

Type 2 23.39 0.64 0.04

Type 3 23.27 0.44 0.34

If now we change the risk aversion parameter of the service provider from 1.5 to 0.5, the slopes of

Figure 5: Different Risk Aversions
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the linear contracts become higher for all three client types, as it is shown in figure 6. In order to
asses the optimality of the menu of contracts presented we pose ourselves the question of what the
profits would be if the SP offered a different menu of contracts. If the SP offers only one contract
to all clients, the self-selection constraints will be satisfied trivially. If we were to offer only one of
the contracts of the three presented in table 3 it would have to be the contract offered to the clients
of type 1, because the contract intended for their own type is the only contract that clients of type
1 are willing to accept. In figure 7 (left) we present the losses that the SP would experience if she
offered such contract, with respect to the optimal menu of contracts in table 3. Profits made from
payments of clients of type 1 will remain constant, while profits from the other two client types will
be lower. In table 4 we present the optimal contract that the SP would offer to each client type if
she could know which type is which, we refer to this as the “perfect discrimination case”. If the SP
were to offer one of the three, as before, the only contract that would be accepted by type 1 clients
would be the one that is optimal for their client type. In figure 7 (right) we present the differences
between this contract and the optimal menu of contracts in table 3. The losses are lower in this
case, but they are positive. Note also that these client types are identical in every respect except
for their risk aversion factors.
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Figure 6: Changing Risk Parameter of Service Provider
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Table 4: Optimal Contracts with Perfect Discrimination
Type of Client Level of Effort Slope Intercept Profits per Client Type

Type 1 23.44 0.70 -0.05 48350.25
Type 2 23.37 0.59 0.12 48443.54
Type 3 23.28 0.44 0.34 48573.78

Figure 7: Comparisons with Optimal Menu of Contracts
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6.1.2 Gold, Bronze and Silver Clients

The framework presented above allows us to compute optimal menu of contracts for clients who were
different in many dimensions. In figure 8 we present the g function for three hypothetical types of
clients, the first type will have parameters m = 1, k = 1, t = −2, the second, m = 2, k = 3

2 , t = −1,
and the third, m = 1

2 , k = 0.8, t = −3. We will refer to them as type “Gold”, “Silver” and “Bronze”,
respectively, and we will assume that there is the same amount of clients of each type.

The second type values high quality of service more than the other two (higher k), however, his
profits decrease faster as quality goes down, also his saturation point is higher. The third type
requires lower levels of service, he has a low saturations point, and his profits don’t decrease very
fast if quality becomes lower, he also values the highest quality less. The first one would be the
“middle” type. We will give each client type a different parameter α and a different value of V̄ .

Figure 8: Gold, Silver and Bronze Clients
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In tables 5 and 6 we present the parameters for the SP and for each client type. The Gold clients
will have a higher risk aversion parameter and V̄ , and the Bronze clients will have the lowest value
for those two parameters.

Table 5: Parameters Service Provider
Cost Parameter of SP
1000 0.1

In figure 9 we present the optimal linear contract and the respective levels of effort and in dashed
lines, the mean payments. The SP will make more more profits from clients of type Gold, as it can
be seen in figure 10.
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Table 6: Parameters Clients
Type of Client V̄ mu lambda Risk Parameter of Clients

Gold 0.1 5 100 0.3

Silver 0.08 5 100 0.2

Bronze 0.05 5 100 0.1

Figure 9: Optimal Contract
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The contracts have to be translated into (true) quality. In figure 11 we present the contracts in
terms of (true) quality, and in dashed lines the mean payments for each client type. Note that
the mean payments will be very close to the highest payments possible. This is because the efforts
assigned to each client, for this example, will deliver a quality inside the area of saturation with
high probability.
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Figure 10: Profits from each client type
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Figure 11: Quality vs Payment
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6.2 Scenario: Mean Response Time and Exp-Var Utility Function

Very similar results are obtained when the Exp-Var utility function is used. For this function we
didn’t verify sufficient conditions for the FOA approach, but its validity is confirmed ex-post. The
value of T̄ was taken to be 2 and we assume there is the same proportion of clients from each client
type. The “g” function that was used is the same as in the first part of the previous scenario, and
is showed in figure 4. In tables 7 and 8 and in figure 12 we represent graphical representations of
the contracts obtained.

Table 7: Parameters Service Provider
Cost Parameter of SP
2200 6

Table 8: Parameters Clients
Type of Client V̄ mu lambda Risk Parameter of Clients

Type 1 0.5 5 100 3

Type 2 0.5 5 100 1.5

Type 3 0.5 5 100 0.1

Table 9: Optimal Contracts
Type of Client Level of Effort Slope Intercept

Type 1 23.02 5.95 -7.93

Type 2 22.99 4.78 -6.17

Type 3 22.89 1.66 -1.49

Note that it is not straightforward to make comparisons between the contracts obtained using the
CARA utility function and the Exp-Var. If the agents have different utility functions, their prefer-
ences will be different, even if both utility functions were appropriate to represent their preferences,
a calibration of the parameters has to be made. However, we can see from the results obtained (see
table 9 and figure 12) that we get analogous interpretations for the contracts for different clients
given their risk parameter.

If now we decrease the risk parameter of SP from 6 to 2, we can see in figure 13 that the slopes of
the contracts for every client will increase, this has a similar interpretation as in the previous case.
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Figure 12: Optimal Contract
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Figure 13: Optimal Contract
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7. Conclusions

In this paper we propose a game theoretic approach to find an optimal SLA/Contract given the
characteristics of the client and service provider. We extend the first basic model to take into ac-
count the possibility that the service provider will offer different contracts to different client types,
in order to cover different necessities and extract more profits. We presented also a numerical exam-
ple, in which a number of insights, that were consistent with economical intuition, were obtained.
We also analyzed the conditions under which a First order Approach can be used, based on the
literature of the principal-agent problem. In practice, the usefulness of our model, if calibrated
correctly, is to give benchmarks for future contracts, in each stage of an eventual negotiation pro-
cess. For calibrations purposes, information of past contracts can be used. It is important to note
that there is still are aspects of the determination of SLA/Contracts that are not tackled here. For
instance, our framework requires that the agents have a great deal information about each other.
This is not generally the case, since, in reality, there might exist a gap of information between the
agents. A possible line for future research that could be accounted for, and in turn, this could also
give us a greater understanding on how the negotiation process takes place. Also, research on the
behaviour of IT systems, given the amounts of inputs that are used, is of great importantance in
this context, since it will affect the nature of the contract to be signed.
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8. Appendix

8.1 Multi-Client Model

Consider the following forms of utility function of the Service Provider,

U({pθj (gθj (qi,θj ))}i,j ,
∑
j,i

ei,θj ) =
∑
j,i

φj(pθj (gθj (q
i,θj ))− Φ(

∑
j,i

ei,θj ) (21)

or

U({pθj (gθj (qi,θj ))}i,j ,
∑
j,i

ei,θj ) =

∏
j,i

φj(pθj (gθj (q
i,θj ))

Φ(
∑
j,i

ei,θj ) (22)

with ∂U

∂pθj (gθj (qi,θj ))
≥ 0, ∂U

∂ei,θj
> 0 ∂2U

∂2pθj (gθj (qi,θj ))
≥ 0, ∂2U

∂2ei,θj

′
≥ 0.

The optimization problem will be much simplified. In the first case we can rewrite the objective
function as,∫

U({pθj (gθj (q
i,θj ))}i,j ,

∑
j,i

ei,θj )
∏
j,i

fθj (q
i,θj |ei,θj ) =

∑
i,j

∫
φj(pθj (gθj (q)))fθj (q|ei,θj )dq − Φ(

∑
i,j

ei,θj )

(23)

In the second case,

ln

(∫
U({pθj (gθj (q

i,θj )}i,j ,
∑
i,j

ei,θj )
∏
j,i

fθj (q
i,θj |ei,θj )

)
=
∑
i,j

ln(

∫
φj(pθj (gθj (q)))fθj (q|ei,θj )dq)−ln(Φ(

∑
i,j

ei,θj ))

(24)

If the U fulfills properties (21) or (22) there will not be unicity in (10). In particular, if
there is a solution {ei,θj}i∈{1,...µi},j∈{1...k}, any other set of efforts {ēi,θj}i∈{1,...µj},j∈{1...k} such
that

∑µj
i=1 ei,θj =

∑µj
i=1 ēi,θj ∀θj will also be a solution to (10). We will assume without loss

of generality that the solution will be symmetric. That is, er,θj = es,θj = eθj ∀s, t, and the
maximization problem in (7)-(10) will be over {pθj (·)}j , {eθj}j . In such case (23) will become,∑

j

µj

∫
φ(pθj (gθj (q)))fθj (q|eθj )dq − Φ(

∑
j

µjeθj )

and (24) will be,

∑
j

µj ln
(∫

φj(pθj (gθj (q)))fθj (q|eθj )dq
)
− ln

Φ(
∑
j

µjeθj )
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8.2 Foa Approach

Proof of Property (6). Let [q, q̄] be the support of the quality q, and let ũ : [q, q̄] −→ IR be a
concave and non-decreasing function,∫ q̄

q

ũ(q)f(q|e)dq = ũ(q̄)F (q̄|e)− ũ′(q̄)
∫ q̄

q

F (q|e)dq

+
∫ q̄

q

ũ′′(q̃)

(∫ q̃

q

F (q|e)dq

)
dq̃

F (q̄|e) = 1 and
∫ q̄
q
F (q|e)dq = q̄F (q̄|e)−

∫ q̄
q
qf(q|e)dq therefore, if (16)-(17) are satisfied, differenti-

ating inside the integral we can see that the first expression will be concave in e. Now, we conclude
notint that if p is concave and non-decreasing, then u(p(g(q))) will be concave and non-decreasing
in q.

8.3 Common Distributions

Proof of Property 11.∫ y

−∞
F (x, µ, σ)dx =

∫ y

−∞
Φ(
x− µ
σ

)dx =
∫ y−µ

σ

−∞
Φ(x)dxσ

The functionR(t) =
∫ t
−∞Φ(x)dx is convex and increasing in t since its first derivative is a cumulative

function and the second derivative a probability distribution function. Therefore, to know if for
a particular example will satisfy (16) it is only necessary to prove that R(y−µσ ) · σ is convex and
nonincreasing in effort, for convex and increasing R.

8.4 Example

Proof of FOA for Mean Response Time. We want to prove that (16) is satisfied.

F−t̄(t) = IP(−t̄ ≤ t) = IP(t̄ ≥ −t) =

{
Gamma(n,nλ̄(−t)))

Γ(n) if t ≤ 0
1 ∼

Now, ∫ y

−∞
F−t̄(t)dt =

{
−−yΓ(n,nλ̄(−y))

Γ(n) + Γ(1+n,nλ̄(−y))

nλ̄Γ(n)
if y ≤ 0

1
λ̄

+ y if ∼
1
λ̄

is nonincreasing and convex with respect to e, we need only to analyze the case t ≤ 0.

d

de

∫ y

−∞
F−t̄(t)dt = −

λΓ(1 + n,
(
−λe + µ

)
n(−y))

(λ− eµ)2Γ(1 + n)
(25)

d2

d2e

∫ y

−∞
F−t̄(t)dt =

λ(−y)
((
−λe + µ

)
n(−y)

)n (
e

(λ−eµ)n(−y)
e λ+ 2eµExpIntegralE

[
−n,

(
−λe + µ

)
n(−y)

])
e2(λ− eµ)2Γ(n)

(26)
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We conclude noting that (25) and (26) are negative and positive, respectively.5

Proof of (16) for Normal Mean Response Time. Let’s define µ = 1
λ̄

and σ = 1
λ̄

, let
−r(e) + µ ≥ 0 and r(e) = cσ(e) where c ≤ 0 is a constant.

∫ y

infty

F−t̄(t)dt =


0 if y ≤ −r(e)− µ
R( (y+µ)n

σ ) σ
d·n if y ∈ [−r(e) + µ, r(e) + µ]

R( r(e)σ )σ + (y − r(e) + µ) ∼

For the middle case, since R(n+nxλ̄(e))

λ̄(e)n
is convex and nonincreasing in e, where λ. The second

derivative with respect to e is

1
λ̄(e)3

((
R(n+ nxλ̄(e))− nxλ̄(e)R′(n+ nxλ̄(e))

) (
2λ̄′(e)2 − λ̄(e)λ̄′′(e)

)
+n2x2λ̄(e)2λ̄′(e)2R′′(n+ nxλ̄(e))

)
which is positive, since λ̄′(e) ≥ 0, λ̄′′(e) ≤ 0 and x is negative.

We conclude noting that −r(e) + µ = c0
1

λ̄(e)
, with c0 is a positive constant, and that 1

λ̄(e)
is

convex.

5Γ[a, b] =
∫∞
b ta−1e−tdt is the Incomplete Gamma Function, and ExpIntegralE[n, z] =

∫∞
1

e−zt

tn
dt is the expo-

nential integral function.
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