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Advances in virtualization technology are enabling the creation of resource pools of
servers that permit multiple application workloads to share each server in the pool.
Understanding the nature of enterprise workloads is crucial to properly designing and
provisioning current and future services in such pools. This paper considers issues of
workload analysis, performance modeling, and capacity planning. Our goal is to
automate the efficient use of resource pools when hosting large numbers of enterprise
services. We use a trace based approach for capacity management that relies on i) the
characterization of workload demand patterns, ii) the generation of synthetic workloads
that predict future demands based on the patterns, and iii) a workload placement
recommendation service. The accuracy of capacity planning predictions depends on our
ability to characterize workload demand patterns, to recognize trends for expected
changes in future demands, and to reflect business forecasts for otherwise unexpected
changes in future demands. A workload analysis demonstrates the burstiness and
repetitive nature of enterprise workloads. Workloads are automatically classified
according to their periodic behavior. The similarity among repeated occurences of
patterns are evaluated. Synthetic workloads are generated from the patterns in a manner
that maintains the periodic nature, burstiness, and trending behavior of the workloads. A
case study involving six months of data for 139 enterprise applications is used to apply
and evaluate the enterprise workload analysis and related capacity planning methods.
The results show that when consolidating to 8 processor systems, we predicted future
per-server required capacity to within one processor 95% of the time. The accuracy of
predictions for required capacity suggests that such resource savings can be achieved
with little risk.
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Abstract— Advances in virtualization technology are enabling of lightly utilized servers that incur high cost of ownenshi
the creation of resource pools of servers that permit multiple jncluding facilities cost, such as rent and power for corimgut

application workloads to share each server in the pool. Un- gnq cooling, high software licensing cost, and high cost for
derstanding the nature of enterprise workloads is crucial to human management activities

properly designing and provisioning current and future services i L .
in such pools. This paper considers issues of workload analysis, Many enterprises are now beginning to exploit resource
performance modeling, and capacity planning. Our goal is to pools of servers supported by virtualization mechanisnas th

automate the efficient use of resource pools when hosting large enable multiple application workloads to be hosted on each
numbers of enterprise services. We use a trace based approachserver. The primary motivation for enterprises to adopthsuc

for capacity management that relies oni) the characterization T L o .
of workload demand patterns, ii) the generation of synthetic technologies is increased flexibility, the ability to quicke-

workloads that predict future demands based on the patterns, PUrpose server capacity to better meet the needs of appiicat
and iii) a workload placement recommendation service. The workload owners, and to reduce overall costs of ownership.

accuracy of capacity planning predictions depends on our ability Unfortunately, the complexity of these environments pnese
to characterize workload demand patterns, to recognize trends additional management challenges. There are many workload

for expected changes in future demands, and to reflect business finit b be hosted b h d h K
forecasts for otherwise unexpected changes in future demands a finite number can be hosted by each server, and each work-

A workload analysis demonstrates the burstiness and repetitive 10ad has capacity requirements that may frequently change
nature of enterprise workloads. Workloads are automatically based on business needs. Capacity management methods are
classified according to their periodic behavior. The similarity not yet available to manage such pools in a cost effective
among repeated occurrences of patterns is evaluated. Synthet manner.

workloads are generated from the patterns in a manner that Th | of Kis t id it t
maintains the periodic nature, burstiness, and trending behavior € goal Of our work IS 10 provide a capacity managemen

of the workloads. A case study involving six months of data Process for resource pools that lets capacity plannershmatc
for 139 enterprise applications is used to apply and evaluate supply and demand for resource capacity in a just in time man-

the enterprise workload analysis and related capacity planning ner. In this paper we characterize the workloads of entspri
methods. The results show that when consolidating to 8 processora_ppncationS to gain insights into their behavior. The ginss

systems, we predicted future per-server required capacity to . .
within one processor 95% of the time. The accuracy of predic- support the development of capacity management services fo

tions for required capacity suggests that such resource savings theé process.
can be achieved with little risk. We use a trace based approach for the capacity management

services. The services implemeitthe characterization of
workload demand patternsi) the generation of synthetic

In the distant past data centers were made up of smafbrkloads that predict future demands based on the patterns
numbers of large mainframe computers that each hosted sawe iii) a workload placement recommendation service. Our
eral application workloads with many users. Capacity plagan process automates data gathering and analysis steps that ad
experts helped to ensure that sufficient aggregate capaagy dress these questions. As a result it enables human opetator
available just in time, as it was needed. With the advent bfndle the questions more quickly and accurately with lower
distributed computing new application workloads were typlabor costs.
cally assigned to their own smaller servers. The increnhenta To demonstrate the effectiveness of our proposed capacity
cost of capacity from smaller servers was much less expensimanagement approach, we obtained six months of data from
than the incremental cost of capacity on mainframes. Cgpacin enterprise data center. The data describes the timengaryi
planners would often anticipate an application’s workloademands of 139 enterprise applications. We use the data to
demands two years in advance and pre-provision a new serdemonstrate the effectiveness of our approach. The results
with sufficient capacity so that the workload could grow intshow that when consolidating to 8 processor systems, we
it. However, the explosive growth in both enterprise cormuut predicted per-server required capacity to within one pssoe
and Internet computing has led to server sprawl in data cent®5% of the time while enabling a 35% reduction in proces-
Enterprise data centers are typically full of large numbesor usage as compared to today’s current best practice for

I. INTRODUCTION



workload placement. The remainder of the paper presents awlude affinity between workloads, e. g., workloads must or

results in more detalil. must not be placed on the same physical server, and affinity
between workloads and a list of one or more specific servers.
Il. CAPACITY MANAGEMENT PROCESS The workload demand prediction servides several pur-

This section describes the capacity management processPRges:
envision and its corresponding services. The processrefi@  « it implements pattern discovery techniques;
combination of sub-processes that implement various usesca « it helps to recognize whether a workload’s demands
for resource pool operators. Examples of use cases include: change significantly over time;

« determine resource pool capacity needed to support a itsupports the generation of synthetic traces that reptese

number of workloads; future demands for each workload to support capacity
« add/remove a workload to a resource pool; planning exercises; and,
. add/remove capacity to a resource pool; « it provides a convenient model that can be used to support
« rebalance workloads across resources in a pool; forecasting exercises.

« reduce load on a server resource in a pool by recommeridie service is described in Section Il
ing new workload placements for some of its workloads; The capacity management process further relies on the
« report significant changes in workload demand behaviotksey concept of acapacity management plarmA capacity

and, management plan is a calendar based data store that keeps
« adjust per-workload forecasts, trends or quality of servidrack of: workload identities, forecasts, and resourceessc
requirements. quality of service requirements; resources that are as®ati

To support such use cases we must start with a definitionW#h @ pool; and assignments of workloads to resources. As
required capacityRequired capacitys the minimum amount & calendar based data store, the plan keeps track of such
of capacity needed to satisfy resource demands for Wormodaformation as a function. of date.and time. The information
on a server resource [11]. Given a definition for requirel§ Used to support capacity planning.
capacity, we implement:

« an admission control service;

I1l. WORKLOAD DEMAND PREDICTION

. As stated in Section II, the workload demand prediction
» a workload placement Service, and,. service has several purposésto decide on a workload’s de-

» a workload demand prediction service. mand patternii) to recognize whether a workload’s demands
The admission control servicdecides whether a resourc&hange significantly over timeii) to support the generation
pool has sufficient resources to host a new workload. If 9 synthetic demand traces that represent future demamds fo
it reports which server the workload should be assigned i@ach workload, e.g., demands for several weeks or months

We consider workloads that exploit multiple resources asj@o the future, to support capacity planning exercises, an
collection of individual workloads possibly having workld jy) to provide a convenient model that can be used to support
placement constraints that must be addressed by the wdrklggrecasting exercises. This section describes the tecksige

placement service. used to implement this service.
The workload placement servicee employ recommends

where to place application workloads among servers in the Extracting Workload Patterns

pool to reduce the number of servers used or to balancélMe now present methods for deducing patterns, assessing
workloads across the servers. The service implements a tréweir quality, and classifying them with regard to qualigy.
based approach for characterizing resource demands andniew approach is presented that assesses the similaritygamon
recommending solutions. Basically, each workload is attaraoccurrences of a pattern.

terized using a time varying trace of demands for its key 1) Pattern Analysis: Given a historic workload trace
capacity attributes such as processor usage and memorg.ushg= (I (tn));<n<n Which is represented byN contiguous
The workload placement service includes greedy algorithrdemand valuesl (t,) we extract a demand patterR =

for consolidating workloads onto a small set of servers @nd f(p(tm))1<m<m m<n/2 With M contiguous demand valugxtn)
balancing the workloads across some fixed number of servawith the assumption that the workload has a cyclic behavior.
It also includes a genetic algorithm based optimizing dear®his assumption is evaluated later in the classificatiorspha
that aims to improve upon the greedy solutions. In each ca&ecording to a classical additive component model, a time
the algorithms simulate multiple assignment scenarioghEaseries consists of a trend component, a cyclical component,
scenario considers the placement of zero or more workloadsand a remainder, e.g., characterizing the influence of noise
each server. The aggregate demand of the workloads assighiee trend is a monotonic function, modeling an overall ugivar
to a server is characterized using a trace that is the suns ofat downward change in demand.

per-workload time varying demands. The service recommends/Ne illustrate our process for extracting a representative
the best workload placement it can find over all serverseeitrdemand pattern from a workload using Figure 1. Figure 1(a),
for consolidation or for load leveling. Finallyghe service illustrates a three week workload demand trace with a public
accepts additional constraintsn workload placements thatholiday during the second week.
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(d) Extracted Pattern from Workload

Fig. 1. Extracted Pattern for Workload

an overlay of harmonics for the time-varying magnitude of
demand. The periodogram shows the intensjtyith which

a harmonic of a wavelength is present in the workload.
The most dominant frequencies provide information aboeit th
duration of a potential pattern. Intuitively, if the peragtam
function has a local maximum at> 0, then it is likely that
there exists a representative pattern of lengtin general, it

is not the case that the wavelength with the global maximum,
named may is most representative. Thus, we determine a set
A ={A1,...,\} of local maxima positions, with(};) > ™%

for every 1< i < k. For instance, in the periodogram in
Figure 1(b), we detect two local maxima. The first maximum
proposes a wavelength of 1 day and the second maximum
proposes one at 7 days.

In addition to the periodogram, we calculate thato-
correlation function for the workload demand trace. For a
formal definition and further details on auto-correlatiemd-
tion see reference [3]. Figure 1(c) shows the auto-coroslat
function for the workload. It describes dependencies withe
workload curve, i. e., the similarity between the workloautl a
the workload shifted by a lag. A high valuep for the auto-
correlation at lagy denotes that the workload curve shifted by
g looks similar to the original one. Thus, if the auto-cortiela
shows local extrema at multiples of a lag it is a strong
indicator that there exists a temporal dependency of length
g. In the same way as with the periodogram, we determine a
set of hypothesef\y,1,...,Aksn} Of significant local extreme
positions and add them to the &t

Workloads from enterprise data centers typically show a
periodicity which is a multiple of hours, days, weeks, and
so forth. Due to unavoidable computational inaccuracies an
influences of irregular events and noise, the wavelengtis in
can diverge slightly from these typical periods. We perform
a comparison to calendar specific periods and determine for
every wavelength candidat; the best matching multiple
of hours, days, and weeks and augméntwith corrected
wavelengths so that they are also considered.

In the second step, we select the best candidate wavelength
N from the A\j € A. For each);, we compute the average
magnitude forp at multiples ofA;. For example, ifA; =1
day, then we take the average mffrom observations at lags
of one day. IfA; =7 days, then we take the averageppfrom
observations at lags of seven days. If the workload exhibits
pattern with length\; then the workload after shifting it by
multiples ofA; is similar to itself and thus the auto-correlation
function exhibits high values at the lags- A |[ve N*}. The
average magnitudg; is a measure of similarity among cyclic
repetitions in demand fak;. For our example in Figure 1(c),

N =7 days has the highest average magnitoldes compared
to other values for\j and is recognized as the best pattern
length. This implies that the pattern length M = 2016

To start the analysis, we identify the cyclical componeriitervals of durationd = 5 minutes. We note that the figure

that describes the periodic characteristics of the worklda

does not illustrate lags beyond 11 days even though they are

determine the yet unknown duratitvhof the pattern, we begin included in the computation.

with an evaluation of the workload'periodogram function

as shown in Figure 1(b). A Fourier transformation [7] gives There are 288 5-minutes intervals per day.



Total Minutes | Week 1 Week 2 Week 3 only use the most recent occurrences when estimating future

Week 1 - 181 69 .

Week 2 181 i 171 workloads if demands have clearly changed. We now present

Week 3 69 171 - an automated test to recognize whether there are significant
TABLE | differences between occurrences of a pattern.

The test is motivated by the Chi-square test [4]. It is
designed to highlight extreme differences in load behavibe
test compares two occurrences at a time. For an occur@nce
we define a difference for time interva), as p(tm) — 1°(tm)-

The chosen value for the pattern length Mf intervals The differences for ¥ m< M express the variation of the oc-
is used to calculate the patte= (p(tm));mem fOr the currenceo with respect to the pattern. We partition the differ-
workload. First we define occurrences for the pattern and thence values into three buckets. The three buckets havesange
define the pattern’s demand valuem). GivenM, we divide [-100 —10],(—10,10], (10,100, respectively. The differences
the workloadL into N/M complete occurrences and possiblyn the rangg —10,10] are deemed to be inconsequential from a
one partial occurrence. L& be the occurrences of the pattermesource pool capacity management perspective. The mght a
for o <N/M+1. Thus, occurrence is a subtrace of the traceleft buckets define the extreme differences from the pattern
L with values!®(tm) = | (tniom) for each I<m<M. For A Chi-square test can be used to determine whether a pair
every intervaly, in the pattern we calculate a weighted averagsf occurrencesp ando’, have statistically similar numbers of
p(tm) for the interval. The weighted average is computed usingservations per bucket. However, we have found that inter-
intervalsty, from the occurrence® of the pattern. We define preting the computed Chi-square statistic is problemati

MINUTES PERDAY OF EXTREME DIFFERENCES INLOAD BEHAVIOR

a weight for each occurrenaeand intervalm as: value of the statistic is sensitive to the number of obsemat
1°(tm) in the right and left buckets and the interpretation of thieiea
Wom = T(t) depends on pattern lengths. Instead, we choose to conkaler t
0 m

sum of the absolute differences in counts for the left anltrig
With these weights we compute the weighted average demafigtkets. This sum tells us whether the occurrences diften fr
for each intervalty as p(tm) = YoWom-1°(tm). We use the the pattern in a similar way. The sum is a count of intervals
weighted average to emphasize the importance of largeesalgng can be expressed in terms of the number of minutes per
over smaller values for capacity management. day that the occurrences have differences in extreme bahavi
Figure 1(d) shows the pattern and an occurrence of therapie | gives the resulting minutes per day differences
pattern together in one diagram. The curves closely resemp| extreme load behavior as computed for the workload in
one another. Figure 1(a). Weeks 1 and 3 have differences in extreme
2) Quality and ClassificationThe classification phase de-penavior of approximately 69 minutes per day. Week 2 differs
cides which workloads have periodic behavior. The classificiom the other weeks. It has differences in extreme behavior
tion is based on two measures for the quality of the pattergy 181 and 171 minutes per day as compared with week 1
The first measure ip’ from Section Ill-A.1. Larger values gnq week 3, respectively. This is likely due to the holidagtth
for o’ imply a better quality of fit. The second measurgccyrred in week 2. In the case study we consider the impact
characterizes the difference between occurrer@eand the of giternative values for a threshold that decides whetpzia
pattern. The difference0 is computed as the average absole,ccurrences differs significantly in behavior.
error { = 215”‘SM‘°“,)\](tm)_l ) hetween the original workload
and the patter?. Smaller differences suggest a better quality. Analyzing the Trend

of pattern. To characteri trend of th kload we calculate th
To classify the quality of patterns for a large number of o characterize a tfend of the worioad we caicufa’e the

workloads, we employ & means cluster algorithrf.0] with aggregate demand difference of each occurrence of the pat-

clustering attributes{ and p’. The algorithm partitions the ten from the original workload.. Let G, be th? d|fferer_1ce
patterns into three groups that we interpret as having gfro etween thep(ty) and thg der;]and value for intervy in
medium, or weak patterns. Weak patterns are not regarc} E occurrenceo. \We defmgc as the aggregate demr?md
as having a periodic pattern because no clear cycle could erence of occurrer;ce with respect to thg patterR as:
deduced for the trace. This may be due to changes in worklgad_ > 1<m<m (P(tm) —1°(tm)). Further, we define the trerd

behavior during the analyis period or because the pattesn the gradient of the linear least squares fit [8] through the
a duration greater than half the analysis period valuesc® for the occurrence® as ordered by time. The trend

3) Similarity of Behavior for Pattern Occurrencesive T estimates the change of demand over time with respect to

expect a certain amount of variation in demands amoH&e pattern.
occurrences of a pattern. These may be due to random u&e
behavior, holidays, etc.. However, larger variations neflect
a repurposing of a server or a change in business condition®Ve now consider a process for generating a synthetic trace
that affect capacity management. We may choose to igndecerepresent a future workload demand tratéor some time
atypical occurrences when estimating trends for demand period in the future. Typically, we generate traces to repne

r . . .
Generating Synthetic Workload Traces and Forecasting



100%

al

demands for a time period that is several weeks or months 09 percentie —
into the future. o0% - 095 Percentle

Our goal for a synthetic trace is to capture théghs and 80% -
lows of demand anatontiguous sequenced demand. These
are critical for modeling a workload’s ability to share raswe
capacity with other workloads and to model required capgacit
for the workload. Furthermore, our approach must be able t
introduce an observed trend or forecast information.

To generate an occurrenoefor L’ we rely on the historical
pattern occurrence®. A value 19 (ty) is chosen randomly
from the correspondinty, values fromO. Given a sufficiently
large number of future occurrenc&¥, we will obtain the :
same time varying distribution of demands a€inThis gives 0% - — = pos po v oS o
us a pattern of demands that captures the lows and highs of Worldoad Number
demand in a representative way. Furthermore, we note tha,gig. 2
the occurrences may have a tremd For the sequence of
historical pattern occurrences we normalize the demandesal
so that the trend is removed with respect to the last occoererevery 5 minutes starting January 1st, 2006. Our case study
before constructing’. This allows us to forecast demands foconsiders:
synthetic traces based anand time into the future. « a characterization of the data center’'s workloads;

Demandsl? (ty) in the synthetic trace are augmented to . results from workload demand pattern analysis;
reflect the trendt. We assume an additive model. For each « an analysis of similarity among occurrences of patterns;
future occurrence’, we compute an absolute value based on . a validation of the trending and synthetic workload gen-

70%

60% [

50% |

40%

Normalized cgu Demand in %

30%

10%

Top Percentile of CPU Demand for Applications underdgt

T that must be added to each demand in occurrenc&he eration techniques; and
furthero' is into the future the greater the change with respect. a walk-forward test that employs the pattern matching,
to the historical data, assumings not zero. trending, and synthetic workload generation methods.

To better model burstiness in demand we must take inAo
account sequences of contiguous demands in the tradée “~
accomplish this by randomly selecting blocks intervals ~ This section illustrates the nature of the enterprise appli
tm,tmi1,- . ., tmyb At @ time from the occurrencé In this way, tion workloads under study. We show percentiles of demands

the synthetically generated traces have contiguous segserfnd durations for bursts of demands. Figure 2 gives the
of demand that are similar to the historical trace. percentiles of CPU demand for the 139 applications over a

In our capacity management process, we repeat our analy§&iod of 5 erks. We chose to limit the duration to 5 weeks so
steps using multiple randomly generated instancds tf bet- that we didn’t exaggerate the peak de|_”nands beyond what we
ter characterize the range of potential behavior for theave May use as part of the proposed capacity management process.

system. Multiple instances better characterize intesastin | Ne demands we illustrate are normalized as a percentage wit
demands among multiple workloads. respect to their peak values. Several curves are shown that

Finally, a workload patter#® provides a convenient way tolllustrate the 99th, 97th, and 95th percentile of demandels w
express what-if-scenarios and business forecasts thaiaare @S the mean demand (the workloads are ordered by the 99th

observable to us from historic data. Suppose we have a pattegrcentile for clarity). The figure shows that more than bélf

P with O occurrences and we require a change to the pattef]. Studied workloads have a small percentage of points that
Then, we can express a change once with respeBtrather &€ Very large with respect to their remaining demands. The
than ,once for each of the possibly many occurrences. left-most 60 workloads have their top 3% of demand values

between 10 and 2 times higher than the remaining demands
IV. CASE STUDY in the trace. Furthermore, more than half of the workloads
observe a mean demand less than 30% of the peak demand.
To evaluate the effectiveness of our methods and proces$bgese curves show the bursty nature of demands for most
we obtained six months of workload trace data for 138f the enterprise applications under study. Consolidasingh
workloads from a data center. The data center specializesbirsty workloads onto a smaller number of more powerful
hosting enterprise applications such as customer rekdtipn servers is likely to reduce the capacity needed to suppert th
management applications for small and medium sized busgierkloads.
nesses. Each workload was hosted on its own server so we us&n additional and complementary property for a workload is
resource demand measurements for a server to characteizétie maximum duration of its contiguous application demands
workload’'s demand trace. The measurements were origindihile a system must be provisioned to handle sustained bursts
recorded using vmstat and sar. Each trace describes resoofchigh demand, short bursts may not significantly affect the
usage, e.g., processor and memory demands, as measwattload’s users. For example, if a workload’s contiguous

Workload Characterization
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demands above the 99th percentile of demand are never longer

than 10 minutes then it may be economical to support the Fig. 4. Lengths of Workload Demand Patterns
workload’s 99th percentile of demand and allow the remajnin
bursts to be served with degraded performance [6].

Figure 3 presents the maximum duration of the contiguous
demands above 99th percentile of the workload demand. The
figure shows that for 50% of the workloads the periods of a
high load are very time-limited:

» 23.7% of t_he Wgrkloads have a longest busy period less completely during the duration of the workload trace,

than 15 minutes;

o 34.5% of the workloads have a longest busy period less €.g., the workload in Figure 5. )
than 20 minutes: These results suggest that pattern matching methods deduce
« 53.3% of the workloads have a longest busy period le§g@sonable patterns for 107 out of 139 cases.
than 30 minutes.
Therefore, for a significant portion of the enterprise agpli
tions under study, allowing a time-limited degraded afgtlan
performance (e.g., up to 30 min.) is likely to offer signifita
savings in the amount of capacity that must be provisione

« 32weakpatterns. The weak patterns inclugeworkloads
showing no cyclic behavior, e.g., constant or random
demandsii) workloads that have been interrupted several
times, e.g., by intermediate peaks with 100% load each
lasting a couple of days, dii) workloads that changed

C. Similarity of Behavior for Pattern Occurrences

As discussed in Section 1lI-A.3, we need to understand
when there are significant differences in a workload’s patte
Jgccurrences. Significant differences may cause a pattelve to
classified as weak.
B. Workload Pattern Analysis Figure 5 shows a 14 week workload demand trace for a
This section presents general results for the workloaebrkload classified as having a weak pattern. There is a clear
pattern analysis. The results we present consider worklodigcontinuity in behavior at week 10 and what appear to be
demand traces from April, 1st 2006 to July, 8th 2006. To begihree separate patterns.
we offer a general overview of the workloads. Figure 4 gives The pattern chosen for this workload is influenced heavily
a summary of the pattern lengths for the 139 workloads. Tl the first 8 weeks of the workload. Figure 6 shows a plus-
pattern analysis extracts patterns with lengths betwessethminus CDF for variability of differences in demand with

hours and seven weeks: respect to the overall pattern for each of the 14 weeks. The
. 68% of the workloads exhibit a weekly behavior, and figure shows that there are large differences in the tailfief t
« 17% of the workloads exhibit a daily behavior. differences in demand with respect to the pattern. Table Il

We note that not all of the pattern lengths are directly eglap SNOWs the range of minute per day differences in extreme
a multiple of days, for example one workload exhibits a Eg]rorpehawor for the occurrences with respect to Week'l. Thetabl

cyclical behavior with a period of 10 days, 10 hours, and 4¥10Ws that weeks 1 through 8 have average differences of
minutes. Thus having knowledge of the patterns can help 3gProximately an hour per day — except for week three which
recognize when workloads with different pattern duratieifs @S @ difference of 109 minutes per day, while the others have

have collisions for their larger demands.

Using the clustering algorithm, we classified the 139 pat- | Week 2 — 8 | Week 9| Week 10| Week 11 — 14
terns in the following way. There were Week 1| 36 — 66 (109] 241 817 302 — 630
« 31 strong patterns. Most of the 31 strong patterns cor- for week 3) ‘ ‘ ‘
respond to batch jobs that exhibit a very distinct cyclic TABLE |I
behavior; RANGE OF MINUTES PERDAY OF DIFFERENCES INEXTREME L OAD
« 76 mediumpatterns. The medium patterns typically in- BEHAVIOR

clude interactive and/or mixed batch and interactive work;
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- arise when applying this method. This section discusses two
of them, and how we address them.

First, public holidays, runaway operating system procgsse
and failed operating system processes may each influende wha
is perceived as a trend. Long term trends are less affected by
these events. Pattern similarity can warn of occurrencas th
Fig. 6. \Variability of Differences in Demand with Respect tattern deviate from the observed pattern, and such occurrences can
be excluded from a trend.

. Secondly, sufficient historical data is needed to predict a
differences of 4 or more hours per day. Thus the approach Weng for a period of time into the future. For example, a

present is able to distinguish such changes in demandssacigg,imum of two weeks of data are needed to predict a weekly
occurrences and can provide insights into why some pattetfs,g. However, short term trends, e.g., on the order of days
are _classmed as yveak. _ or weeks, may exist that are not representative of the longer
Figure 7 considers all 139 workloads for a five weefprm For example, the last week of a month may always
analysis period. Five weeks is a typical period for our use gfye greater demands than the first three weeks. Depending on
these methods. It shows the percentage of workloads that hg,ere the historic data starts, trending methods may igenti
a fraction of occurrences pairs with differences in extremg, increasing or decreasing short term trend. These trends
behavior of less than 60, 120, and 180 minutes per day, respggist hut each has a particular time into the future for which
tively. We see that the 120 minute per day scenario has 3}f4s relevant. Significant historical data is needed to eet
of workloads where all occurrences are similar, and 20% gtds that are on the timescale of quarter years. At these
workloads where no more than 20% of occurrences are simil,%r,.]ger timescales applications demands may change, due to
This corresponds well to the breakdown of pattern qualifyey, application functionality or software releases, orifess
we observed from the clustering algorithm of Section IV-Bongitions may change thereby making such trends lesslusefu
for these same 5 weeks. The clustering algorithm had 24%; |ong timescales business forecasts aim to capture such
strong patterns and 19% weak patterns. We note that our Ng&ptions. They must be represented in the capacity plan.
approach lets us classify the quality of a patttern on a per-yith knowledge of the above limitations, we can still exploi
workload basis, i.e., without the need for clustering. F® t yending for shorter timescales in the capacity management
60 minute threshold, only the top 30% of workloads ha"ﬁrocess. Figure 8 shows a workload along with a trenbat
more than 50% of occurrence pairs being similar. As expectgg compute using three weeks of historical data. The figure
the 60 minute threshold is more strict causing more pairs gfows a slowly decreasing trend 2.3 units of demand per

occurrences to be regarded as dissimilar. Likewise the 13y that correctly anticipates decreasing demands onveoor t
minute threshold is less restrictive. We choose to use tle 12aaks into the future.

minute threshold because it has a good correspondence with
the clustering based classification system. E. Representativeness of a Synthetic Trace with Trending

In this section, we illustrate the representativeness of a
synthetic workload trace generated using our approach. We

The approach to trending that we employ assumes ase three weeks of historic data from May 14 through June 4
additive model. Historic data is used to estimate the exggecto generate a synthetic trace for the next two weeks, using
change in demand from one occurrence to the next. Thiending, and compare the characteristics with that of the
change is applied repeatedly when generating the synthetatual workload data for the following two weeks, namely
traces for future occurrences. There are a few challenggs thune 5 through June 18. Figure 8 shows the corresponding
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Laew1a | Synhete workioad « The nexty weeks of data are then simulated with respect
126413 - to C;. This simulation gives the actual capacity for the

nexty weeks.

« The difference between a server’s estimated and actual
capacity gives the absolute error for the estimate of capac-
ity. The negative errors reflect “under-estimated” capacit
while the positive errors correspond to “over-estimated”
capacity. We use a plus-minus CDF that reflects both

o7 08 0910 a2 types of errors for the walk-forward test.
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« The steps in the walk-forward test are repeated iteratively
Fig. 9. Comparing Periodogram of Synthetic and Original i with w weeks of data but now starting with weeks 2, 3,
and so on.

o Leti be the step number in the walk-forward test. Step
i computes a new configuratid® and a new set of dif-

. . ferences between estimated and actual required capacity
To further assess the representativeness of the synthetic

. A " values for each server.
trace as compared with the historic data, we see that Fig-

ures 9 and 10 show that the periodogram and auto-correIatiorWetcgrs'der ar;_ dontgglng tprocess vghere fthe wo:cklloads are
functions for the two data sets are very similar. Finallye th'epeatedly consolidated onto a number of powerlul Servers

required capacity values for the historic, synthetic, aciia over t|.me.. The Servers have 8 processors. In generalz the
future workload demands were 508, 455, and 461 units gﬁ;nsohdatlon requweq 13 to 15 of these servers at a .t'me'
demand, respectively. The corresponding contiguous ofst 0 evaluate the e_ffecnveness (.)f workload de_mand pre dictio
demand that were beyond the 99-percentile were 160, 60, (athOd_S we consider several d'ﬁ?rent scenarios for géngra
35 minutes, respectively. Thus the synthetic trace has b&\,{pthetm workloads. The scenarlos_ include:

a similar pattern and required capacity as the actual demarfl Use pattern analysis and trending;

trace it aimed to predict. In the next section, we furtheidate ~ P) USe pattern analysis alone; _
aspects of this workload demand prediction service. ¢) all workloads are associated with daily pattern; and,
d) all workloads are associated with a 30 hour pattern

F. Walk-Forward Test (specifically chosen to be incorrect).

In this section, we exploit the workload demand prediction For our study we usev =5 weeks of historic input for
service as part of the capacity management process. #yé process and predict required capayity 1 week andy =
conduct a walk-forward test over the six months of data ® weeks into the future. Figures 11 and 12 show CDFs of
emulate how well our capacity management process wowgtors in predictions for required capacity for the scesmri
have served the data center for the six months. over the entire walk-forward test. A negative error suggest

« Starting with the first week, a window witlv weeks of that a method estimates less capacity than is actually nedjui

data is used to recommend a consolidated configuratifor a server.

Cy, i.e., each workload is assigned to a specific server, forFigure 11 shows the results for the one week prediction.
the system. The configuration reports expected capacBgenariosa) andb) are pretty much indistinguishable. Trend-
values for each server in the configuration. Multipléng avoided two large but similar negative errors. A fixeddai
synthetic traces, in our case thirty, are used to determin@aitern without trending, scenaric), caused several larger
range of estimates for required capacities for each serveegative errors tham), i.e., values less than -1 processor.
The greatest observed required capacity for a serverTike clearly incorrect 30 hour pattern from scenatjaccaused
chosen as the estimate for required capacity of the sengavere errors.

historical, synthetic, and future workload demands. Tkeadr
is clearly useful at this timescale.



Workdad Preciction and Trendhg and application responsiveness by considering the rakttip
'orkloac rediction X age . . .
#o _Fedpaypatem  x - petween resource demand and the utilization of time-varyin
- capacity as allocated by workload managers [6].
- We believe that understanding workload patterns, trends,

, and forecasts, and using them for future demand prediction
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olon o # ) , is critical for a capacity management process that aims to
s “ R pred.aefcﬁpacimn one ! 2 ®  make efficient use of capacity for resource pools. The demand
prediction we consider predicts demands days and weeks into

Fig. 11. Predicting Capacity for 1 Week the future. We distinguish the methods we employ from those

1 | | | |

wOrgﬁ‘adprewg&‘%ggdpr@?gﬁg o0 that are typically used to predict demands several seconds
- or minutes into the future. Techniques for very short term
- predictions often use other approaches such as ARMA [3]
- or GARCH [9], [2] models. While these approaches may be
appropriate for the very short term their predictions glyick
N ‘ converge to a mean value for the time scales of interest to us.
2 3 [18] also describes methods for predicting workload demand
patterns that exploit periodograms and auto-correlafidrey
Fig. 12.  Predicting Capacity for 5 Weeks are similar to the methods we propose, but do not consider
trends, or synthetic workload generation as we developed in
this paper.

Figure 12 shows that the results for predicting required Traces have been used to support what-if analysis that
capacity 5 weeks into the future are very similar. The onlyonsider the assignment of workloads to consolidated serve
difference is errors were a little lower for scenaby i.e., \Mware Capacity Planner [17] and TeamQuest [13] offer
without trending, thare) with trending. This is reasonable.products that employ trace-based methods to support densol
Our historic window of 5 weeks of data is not likely to begation exercises. AutoGlobe [12] proposes a self-orgagizi
sufficient for predicting trends 5 weeks into the future fr ajnfrastructure where the available hardware is virtualjze
workloads for all steps in the walk-forward test. pooled, and monitored. They introduce a fuzzy logic based

For both 1 week and 5 week predictions, Scenaao controller to supervise all services running on the harewar
estimates per-server required capacity to within one @sme pjatform. If the controller recognizes an exceptional aiton
(out of eight processors) 95% of the time. it triggers actions to remedy the situation automaticalily.
addition to that, they introduce a static optimization medu
that uses historical demand information to compute woukloa

Existing studies of internet and media workloads [1], [Splacement recommendations. They calculate the recommenda
indicate that client demands are highly variable (“peak-teion using a greedy heuristic.
mean” ratios may be an order of magnitude or more), and thatWe believe the workload placement service we employ has
it is not economical to overprovision the system using “gealadvantages over other workload placement services describ
demands. However, we are not aware of similar studies for exbove. It supports both consolidation and load balancing
terprise workloads. We present results that illustratepik- services as needed in a comprehensive capacity management
to-mean behavior for 139 enterprise application worklodas process and is supported by a genetic algorithm that tends
understanding of burstiness for enterprise workloads eim hto improve upon greedy workload placement solutions. Fur-
to choosing the right trade off between the application ityial thermore, the workload placement methods go further than
of service and resource pool capacity requirements. THiéyabithe other methods by addressing per workload resource ac-
to plan and operate at the most cost effective capacity iscess quality of service specifications, classes of sernd,
critical competitive advantage. placement constraints.

Historically, enterprise capacity management groups have
relied upon curve fitting and queueing models to anticipate
capacity requirements for shared resources such as nragdgra We describe a capacity management process for resource
or large servers. Curve fitting and business level demapdols. The process relies on services that automate and sim-
forecasting methods are used to extrapolate measuremeglify management for resource pool operators. In this paper
of application demands on each resource. Queueing modsts focused on a workload demand prediction technique. A
may be used to relate desired mean response times for maree study exploited six months of data for 139 enterprise
specific workload classes [14], [15], [16] (e.g., batch or imapplications to evaluate the effectiveness of our methols.
teractive, payroll, accounts receivable) to target for imasn automated methods predicted the capacity of servers lgostin
resource utilizations. Unfortunately, this approach igigglly the workloads to within one processor out of eight 95% of the
a people intensive and hence expensive process. Our apprdane while reducing aggregate processor requirements By 35
accounts for the non-linear relationship between utilimat without significant risks. Such advance knowledge can help
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