A

invent

Endless Documents : A Publication as a Continual Function*
John Lumley Roger Gimson and Owen Rees

Digital Media Systems Laboratory

HP Laboratories Bristol

HPL-2007-111 (R.1)

21°" September, 2007*

XML; XSLT; SVG; document Variable data documents can be considered as
construction; functional functions of their bindings to values. The Document
programming Description Framework (DDF) treats documents in this

manner, using XSLT semantics to describe document
functionality and a variety of related mechanisms to
support layout, reference and so forth. But the result of
evaluation of a function could itself be a function: can
variable data documents behave likewise? We show
that documents can be treated as simple continuations
within that framework with minor modifications. We
demonstrate this on a perpetual diary.

* ACM Symposium on Document Engineering 2007, 28-31 Aug.2007 Winnipeg, Canada
" Internal Accession Date Only
© Copyright 2007 ACM Approved for External Publication

Endless Documents: A Publication as a Continual Function

John Lumley
Hewlett-Packard Laboratories
Filton Road, Stoke Gifford
BRISTOL BS34 8QZ, U.K.
john.lumley@hp.com

ABSTRACT

Variable data documents can be considered as functions of their
bindings to values. The Document Description Framework (DDF)
treats documents in this manner, using XSLT semantics to describe
document functionality and a variety of related mechanisms to sup-
port layout, reference and so forth. But the result of evaluation of
a function could itself be a function: can variable data documents
behave likewise? We show that documents can be treated as simple
continuations within that framework with minor modifications. We
demonstrate this on a perpetual diary.

Categories and Subject Descriptors
1.7.2[Computing Methodologies]: Document Preparation —
desktop publishing, format and notation, languages and systems,
markup languages, scripting languages

General Terms: Languages

Keywords: XSLT, SVG, Document construction, Functional
programming

1. INTRODUCTION & MOTIVATION

The Document Description Framework[1] (DDF), is an architec-
ture for variable content documents based on separation of data,
logical structure and presentation, and a view of the document as
an extensible function. Using an XML tree as the main syntactic
representation, constructional semantics are supported by sections
of XSLT and an SVG-based geometric presentation by a hierarch-
ical tree of layout instructions[2]. A suite of support tools imple-
ments the evaluation of such sets of such documents on variable
bindings, managing the creation, merging, binding, evaluation and
observation of the results into final printable forms, such as PDF.

Viewing a DDF document as effectively a function (or fragments
of a functional program) has been very useful in engineering solu-
tions to several documentation problems by making separation of
different scopes and roles relatively easy and robust. But we were
always aware that we were only scratching the surface of some of
the possibilities. One of the types of document we were curious
about was that of a 'continual' document, that is one that may con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

DocEng’07, August 28-31, 2007, Winnipeg, Manitoba, Canada.

Copyright 2007 ACM 978-1-59593-776-6/07/0008...$5.00.

Roger Gimson
Hewlett-Packard Laboratories
Filton Road, Stoke Gifford
BRISTOL BS34 8QZ, U.K.
roger.gimson@hp.com

Owen Rees
Hewlett-Packard Laboratories
Filton Road, Stoke Gifford
BRISTOL BS34 8QZ, U.K.
owen.rees@hp.com

tinue and grow as new information is added, but for which it is mean-

ingful, and useful, to observe its presentation content at stages dur-

ing its binding 'life’. Examples of such documents are:

e A diary where entries are added in a sequential order and where
the bulk, but not all, of the new data appears at the 'end' of the
major sequence.

e A patient's simple medical record. As new data is added, from
a variety of sources, content can be added at several parts of
the document. For example a temperature reading may add to
a chart and a table. Lab tests might add both a complete new
page and an additional entry in an earlier summary table.

We built such a document within our framework, specifically one
for which presentation is generated at each stage of data binding
only on the consequences of the new data. To put it differently, we
build as much of the document 'presentation’ (including layout) as
possible, as early as possible, leaving large sections that will remain
invariant for the remainder of the lifetime of the document, includ-
ing the binding of 'new' data. In this paper we report on how we
can define and process a document which can be continual.

We use the term 'continuation' loosely here, to describe both an
indication that variable data is 'to be continued..' and also program
sections that support the continual functionality.

2. ADOCUMENT WITH 'CONTINUATIONS'
Our challenge is to define a document which is even capable of
accreting new information and adding to its display at each sub-
sequent step of data binding, and ensure that the processing
machinery can evaluate this correctly. We made experimental
design choices which will restrict the types of document definable:

e 'Continuation' is indicated actively in the binding of data (by
embedded 'to be continued..' markers) rather than passively (e.
g. the absence of 'stop' signals or process-step parameters.)

e Accretion of additional data does not modify elements already
bound and processed. For example the presentation of a state-
ment that is an existential qualification over data ('"None of these
accounts are overdrawn'), would require removal or modifica-
tion if additional data conflicts with this.

e 'Continued' data is substantially the same type as that already
bound - the continuation implies 'and more of the same'.

e The continuation is at the 'end' of the data stream.

2.1. An Eager Diary

We'll show the approach with a simple diary, to which new 'days'
are bound in succession. The pictures are the actual presentations
resulting from the progressive evaluation of this diary within a DDF
processing workflow. This diary contains three sections

e A title page, with a summary of each day contained in the diary.

e A page for each completed day, containing data for that day,
gleaned from newly bound input.

e A 'work-hours' chart showing the working time for each com-
pleted day in the week.

The variable data to be bound is a simple XML structure of sev-
eral <day/ >s with simple descriptions as shown in Figure 1.

<diary>
<day date="Mon" start="9" end="17">Got up</day>
<day date="Tues" start="10" end="17"

>Went to work</day>
<day date="Wed" start="8" end="18">Travelled</day>
<contd/>

</diary>

Figure 1. An example of some days for the diary

We use <contd/ > as the specific marker: the document anticip-
ates that it will be the last child of an entry. The diary is bound
progressively to three different sets of days in a workflow (Figure
2). The 'empty’ diary (actually a template), contains boilerplate con-
tent and necessary program to respond to variable binding. We then
evaluate this document over the data for several days with a con-
tinuation (setting one-off parameters such as page size), yielding
a result document which is both presentable, and still a 'function’.

Data Data Data
Mon-Wed Thurs-Fri Weekend

¢ .
page=A35] |
orient=landscape e ey A

P "m‘ ,'/::rnhl m\

Figure 2. Process graph for 3-stage bindings to a diary

After the first binding we have content for Monday to Wednesday
appearing in all three sections with a presentation shown in Fig-
ure 3. (We can display visible markers where the continuations sit,
though ordinarily there is no presentation at these points.)

rMy diary) > p—)

Diary for Wed

Mon:Got up
Tues:Went to work Travelled. Qui dolorem ipsum, quia
Wed:Travelled 4 4 dolor sit, amet, consectetur, adipisci
...to be continued..... velit, sed quia non numquam eius
modi tempora incidunt, ut labore et
dolore magnam aliquam quacrat
voluptatem.

\ S
7 Y .
Working Hours
Day Hours
. Mon
a_,-‘ Tues
') Wed
(\““ ...to be continued.....
co®
. v

Figure 3. Pages of the diary after its first stage of binding

]

There are now three continuations — in the summary, between 'day’
pages (displayed as a separate page here) and at the foot of the
working-hours diagram. At each of these points in the document's
presentation description there is now new program code that will
consume new content and add new presentation.

We can now proceed to bind data for the second part of the week:
these program sections now operate, generating material for
Thursday and Friday (but nof Monday to Wednesday as that present-
ation already exists in the document at this stage). Since we claimed
the week still continued in the new data this processing leaves addi-
tional continuation program points, as shown in Figure 4.

My diary

Mon:Got up

Tues:Went to work
Wed:Travelled

...to be continued.....
Thurs:Stayed in bed late
Fri:Gardening

...to be continued.....

Diary for Wed

Travelled. Qui dolorem ipsum, quia
dolor sit, amet, consectetur, adipisci

{ velit, sed quia non numquam eius

{ modi tempora incidunt, ut labore et
dolore magnam aliquam quaerat
voluptatem.

Working Hours

Day Hours

Mon
Tues [0 7 I
Wed [ENNNTY |
...to be continued.....

Thurs
Fri

...to be continued.....

Figure 4. Diary pages after its second stage of binding

The third stage completes it with the weekend (without a continu-
ation), giving a final result shown in Figure 5. This has no remain-
ing program and will not alter with the addition of any further data.

My diary

Mon:Got up

Tues:Went to work
Wed:Travelled
Thurs:Stayed in bed late
Fri:Gardening
Sat:Solomon Grundy died

Diary for Fri

Gardening. Quis autem vel eum iure

reprehenderit, qui in ea voluptate velit
esse, quam nihil molestiae
consequatur, vel illum, qui dolorem

. eum fugiat, quo voluptas nulla
Sun:Solomon Grundy buried pariatur?

Working Hours

Diary for Sun

Day Hours
Solomon Grundy buried. Obcaecati Mon
cupiditate non provident, similique Tues
sunt in culpa, qui officia deserunt Wed [T |
mollitia animi, id est laborum et Thurs [BB 7 I
dolorum fuga Fri (1D > I

Sat

Sun [J

S

Figure S. Diary pages after its third and final stage of binding

3. DEFINING THE DOCUMENT

To enable the document to have this ability to self-continue as a

function if required, it must have extra capability in two broad areas:

e necessary (possibly modified new) program should appear in the
result document and

e program and layout constructions behave appropriately when
continuations appear in the variable data to which they respond.

Eventually we'd like this to be declared as simply as possible, for
example by adding a 'can be continued' declaration to some descrip-
tion of the anticipated data ('diary/day continuable') and automat-
ic analysis will add such capability. In this paper we add the neces-
sary features 'by hand' to template documents to achieve these res-
ults. Our approach is to add declarative annotations to program ele-
ments describing lower-level requirements and then (as the program
is itself XML) modify results according to these annotations.

3.1. Propagating Program

If our document has program sections that builds the day 'page’, then
these elements must be mapped forward into the result document,
so it can be used for days to come. In DDF documents most pro-
gram elements are <xsl:template/> trees. Because we eval-
uate the effect of binding a DDF document on data by compiling
the document into an XSLT program (which is then run with the
data set as input), we can mark program elements we want 'copied
through": the compiler will produce appropriate 'code-producing’
code. Simple attributes (@ddf : retain) identify such elements.

Some program elements may need to be carried forward in an eval-
uated state as their dependencies might only appear in an early
workflow stage. For example, the diary may be parameterised in
terms of a standard page size (44, A5, Letter) and orientation (por-
trait, landscape): this is set externally at the start (Figure 2) and
not subsequently. In this case the <xsl:variable/> elements
describing page dimensions should be carried forward as bound stat-
ic values and not computations. Again the compiler can detect the
annotation and generate code to build a suitable result program ele-
ment. (A compiler that can analyse the internal dependency graphs
for variables in the source could determine this need and arrange
for complete propagation of a binding.)

3.2. Responding To Continuation

We have to construct the 'program'’ of the document so it can respond
correctly to 'and some more later' appearing in the input. For this
we must tackle three issues:

e Detecting the presence of the continuation. This could either be
done at 'top-level' or distributed to points where decisions are
taken based on bound data.

e Arranging for these decision points to add calls to future pro-
cessing when encountering continuation.

e Defining program and layout operations to respond correctly.

Firstly we must detect the continuation and when one appears add
declarations for eventual reprocessing (i.e. code to trigger new pro-
cessing). If the document is built in an XSLT 'push' form, with tem-
plates matching suitable data instances and patterns, then we can
simply add templates to match continuations, which contain code
for future processing where we would ordinarily add content. These
templates operate wherever continuations are detected in incoming
data and leave program to generate new content subsequently at
appropriate places in the presentation. In our example three places
in the presentation processed 'day' data (summary, page-per-day and
worksheet) - each of these responded correctly to the continuation
marker appearing in its input.

For 'pull-mode' XSLT forms (controlled iteration over data) spe-
cific alternative control flows need to be added . For simple iter-

ations this is relatively straightforward, but complex requirements
(such as processing the last day specially) may make this difficult.

3.2.1. Partial Geometric Layout

Ultimately the final document presentation is graphical and geomet-
ric, and in the case of DDF a (large) SVG-based tree. This may
contain sections of program that will be executed later, generated
as a consequence of continuation. As such program is written in
XSLT and clearly distinguishable, we ignore such sections in
'observing' the final result, when we produce a graphical rendition
for a browser or a PDF document.

Program sections that define geometric layouts, which in DDF are
combinator functions over sets of children, present much more of
a challenge. A detailed knowledge of the semantics of the combin-
ation are required to design how (or even whether) partial sections
can be evaluated.

For example a uni-directional 'flow' of a sequence of parts can (by
associativity) be replaced by a flow of partial flows; completely
bound flows can be evaluated and treated subsequently as an atom-
ic piece. (Macdonald [3] describes some of the problems involved
in geometric layout of partially bound assemblies, focussing on
exploiting invariances such as this)

But something as simple as a self-sizing table can't be completely
broken down into independent sub-tables, as the size of cells can
depend upon the size of new-cells 'yet to be bound'. So in these cases
we may have to resort to speculative evaluation, providing test
choices to determine whether pre-evaluated or re-evaluated altern-
atives should be used.

In our diary we've managed to produce output avoiding specula-
tion, by making each day's main section a separate page and using
simple flows where continuation occurs within a page. Elements on
the summary page are placed within a simple flow and the work-
flow table is actually a flow of several 'constant width' tables.

4. STATUS AND FUTURE DEVELOPMENT

It is possible to define and process certain types of continually act-
ive documents within DDF, as the example in this paper shows. To
take this further we need to examine i) a model for supporting spec-
ulative evaluation, ii) approaches to partial evaluation of geomet-
ric layouts, iii) adding fuller analysis of internal dependencies, such
that the consequences of bindings can be propagated as far as pos-
sible and iv) how such models can be generated automatically from
'non-continual' document samples. The approach will need to be
refined in terms of theoretical functional concepts such as closures.

5. REFERENCES

[1] Lumley, J., Gimson, R. and Rees, O. A Framework for Struc-
ture, Layout & Function in Documents. In Proceedings of the
2005 ACM symposium on Document engineering. 2005.

[2] Lumley, J., Gimson, R. and Rees, O. Extensible Layout in Func-
tional Documents. In Digital Publishing, Proc. of SPIE-IS&T
Electronic Imaging, Vol 6076. 2006.

[3] Macdonald, A., Brailsford, D. and Lumley, J. Evaluating Invari-
ances in Document Layout Functions. In Proceedings of the
2006 ACM symposium on Document engineering. 2006.

	HPL-2007-111R1-tipg.pdf
	Endless Documents : A Publication as a Continual Function(
	Digital Media Systems Laboratory
	HP Laboratories Bristol
	HPL-2007-111 (R.1)

