
                                                       

       
Activity-Based Scheduling of IT Changes♦ 
 
David Trastour, Maher Rahmouni, Claudio Bartolini 
Trusted Systems Laboratory  
HP Laboratories Bristol 
HPL-2007-103 
July 3, 2007* 
 
  
 
 
ITIL, change 
management, 
scheduling 

Change management is a disciplined process for introducing required changes
onto the IT environment, with the underlying objective of minimizing 
disruptions to the business services as a result of performing IT changes.
Currently, one of the most pressing problems in change management is the
scheduling and planning of changes. Building on an earlier mathematical
formulation of the change scheduling problem, in this paper we take the
formulation of the problem one step further by breaking down the changes into
the activities that compose them. We illustrate the theoretical viability of the
approach, discuss the limit of its applicability to real life scenarios, describe 
heuristic techniques that promise to bridge the scalability gap and provide
experimental validation for them. 

 

* Internal Accession Date Only 
♦ AIMS 2007, LNCS 4543, pp. 73-84, 2007                             Approved for External Publication 
© Copyright 2007 Springer-Verlag Berlin Heidelberg 



A.K. Bandara and M. Burgess (Eds.): AIMS 2007, LNCS 4543, pp. 73–84, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Activity-Based Scheduling of IT Changes 

David Trastour1, Maher Rahmouni1, and Claudio Bartolini2 

1 HP Labs Bristol, UK 
2 HP Labs Palo Alto, USA 

{david.trastour,maher.rahmouni,claudio.bartolini}@hp.com 

Abstract. Change management is a disciplined process for introducing required 
changes onto the IT environment, with the underlying objective of minimizing 
disruptions to the business services as a result of performing IT changes. 
Currently, one of the most pressing problems in change management is the 
scheduling and planning of changes. Building on an earlier mathematical 
formulation of the change scheduling problem, in this paper we take the 
formulation of the problem one step further by breaking down the changes into 
the activities that compose them. We illustrate the theoretical viability of the 
approach, discuss the limit of its applicability to real life scenarios, describe 
heuristic techniques that promise to bridge the scalability gap and provide 
experimental validation for them. 

1   Introduction 

As defined in the IT infrastructure library (ITIL, [1]), change management is a 
disciplined process for introducing required changes onto the IT environment. A good 
and effective change management process must minimize disruptions to the business 
services as a result of performing IT changes. 

The main driver for IT organisations to adopt ITIL is the need to improve service 
quality [2]. Change management has a direct impact on service quality as it tries to 
understand and reduce risks. This makes change management a major ITIL process, 
often implemented early on when adopting ITIL, alongside incident management and 
configuration management. 

Our research agenda in change management is driven by the results of a survey 
with IT change managers and practitioners in 2006 [3].  The survey highlighted that 
currently, the top three problems in change management are: 1) scheduling and 
planning of changes, 2) handling high number of urgent changes, and 3) dealing with 
ill-definition of request for changes. To respond to these challenges, we have projects 
underway on assessment of risk in change management, on assisted design of changes 
and on business-driven scheduling of changes. In this work, we formalize the change 
scheduling as an optimization problem and we develop methods to solve it to 
optimality. We build on our previous work by extending our conceptual model for 
change scheduling and breaking down the changes into the activities that compose 
them. As an example, we reuse the calculation of business impact defined in [5] and 
use it as the objective function of the optimization problem.  



74 D. Trastour, M. Rahmouni, and C. Bartolini 

The problem with scheduling changes is that IT practitioners have little visibility 
into business risk and impact of changes onto customers. In order to make as much 
information as possible transparently available to all the stakeholders, ITIL 
recommends the creation of a change advisory board (CAB). The typical CAB is 
made up of decision-makers from IT operations, application teams, and business 
units—usually dozens of people—who meet weekly to review change requests, 
evaluate risks, identify impacts, accept or reject changes, and prioritize and schedule 
the ones they approve. However, CAB meetings are usually long and tedious and 
consume a great amount of time that could be made available to deal with change 
building, testing and deployment, with consequent benefit for the IT organization’s 
efficiency. The problem is further complicated by the ever increasing number of 
changes and the constantly growing complexity of IT infrastructure. It is not 
uncommon for CABs to receive several hundreds of changes per week (such volume 
of change has been observed in HP outsourcing customers). 

Besides the negative impact on efficiency imposed by CAB meetings, various 
other factors impact the effectiveness of the change management process, the effect of 
which could be mitigated by careful scheduling: 

• because of the complexity of infrastructures and the number of possible 
stakeholders, CABs can’t accurately identify “change collisions” that occur when 
two simultaneous changes impact the same resource or application; 

• it is difficult to understand cross-organization schedules since large organizations 
have multiple CABs with no coordination between them. 

In this paper, we discuss how our approach to activity-based scheduling of IT 
changes allows us to tackle these problems. The remainder of this paper is structured 
as follows. In section 2 we introduce concepts and design relevant data structures that 
are the bases for the formalization of the activity-based change scheduling problem 
(presented in section 3). In section 4 we provide experimental validation of the 
approach.  We discuss related work in section 5 and draw our conclusions in 
section 6. 

2   Related Work 

Our work belongs to the research domain in IT service management, and in particular 
of business-driven IT management (BDIM).  For a comprehensive review of 
business-IT management, see [9]. The research in Business-driven IT management 
covers automation and decision support for IT management processes, driven by the 
objectives of the business.  

The novelty of the work presented here, (as well as for [5] that preceded it), is that 
our approach targets the dimensions of people and processes in IT management rather 
than the technology dimension of it as the most notable early efforts in business-
driven IT management do, in particular the ones that were applied to (see 
[9,10,11,12,13,18] for service level management, [12,14,15] for capacity 
management, and [19] for security management on the service delivery side of  
ITIL [1]). 



 Activity-Based Scheduling of IT Changes 75 

More relevant to our line of research are BDIM works that touch on IT support 
processes, such as incident management, problem management, change management 
itself and configuration management. The management by business objectives (MBO) 
methodology that we described in [16] - and that we applied there to incident 
management – is also the driver for this work. However, the focus of this paper is on 
the solution of the scheduling problem itself, whereas in our previous paper we did 
lead to the formulation of (mixed integer programming) incident prioritization 
problem, but we touched on it just as an example of putting the MBO methodology to 
work. Besides, the scheduling problem considered here reaches a far deeper level of 
complexity than the incident prioritization problem. 

Coming to change management, Keller’s CHAMPS [17] (CHAnge Management 
with Planning and Scheduling) is the seminal work. At a first level of analysis, the 
formulation of the scheduling problem that we present here can look very similar to 
the scheduling optimization problem that CHAMPS solves. While this provide mutual 
validation of both approaches, it has to be noted that CHAMPS addresses the 
automation aspects of the change management process and deals in particular with 
software deployment, whereas in this work we look at scheduling as a decision 
problem, offering support for negotiation of the forward schedule of change in CAB 
(change advisory board) meetings. In particular, CHAMPS assigns activities to 
servers, whereas in our formulation activities are assigned to technicians and affect 
configuration items. Another significant difference in the two approaches is that this 
work takes into account the IT service model: hardware components, applications and 
services and their dependencies. This allows us to model and avoid conflicts between 
changes.  

With respect to our previous work, in [4] we introduced a mathematical 
formulation of the business impact of performing IT changes. In [5], we presented a 
conceptual model of change scheduling and evaluated the business impact of a change 
schedule. While the algorithm presented in [5] was only dealing with assigning 
changes to change windows, here we take the scheduling problem to the next level of 
detail, by actually scheduling down to the level of the single change activities 
composing the change, and producing detailed schedules for maintenance windows. 
[5] also concentrated on providing a plausible business-oriented utility function to 
maximize, whereas here we are here agnostic as far as the objective function is 
concerned.  

Finally, scheduling is a field which has received a lot of attention. A great variety 
of scheduling problems [20] have been studied and many solution methods have been 
used. Staff scheduling problems in particular have been well studied [Ernst]. Our 
problem can be seen as a generation of a generalized resource constraint scheduling 
problem [21]. Our problem has the additional difficulty that one need to avoid 
conflicting change activities on IT components. 

3   Change Scheduling 

As seen in the introduction, CAB members need to have up-to-date change 
information to be able to make good decisions. Such information includes the detailed 
designs of changes, the topology of the underlying IT infrastructure and services, the 



76 D. Trastour, M. Rahmouni, and C. Bartolini 

calendars of change implementers. We now briefly recall the sections of the 
conceptual model presented in [5] that are relevant to our more detailed problem 
description. We extend the model to include the notion of change activities. We then 
move on to presenting the mathematical formalization of the activity-based 
scheduling problem. 

We first need a model of the IT services that are under change control. ITIL calls 
configuration item any component of the IT infrastructure (hardware or software) that 
is required to deliver a service. The configuration management database (CMDB) 
holds the collection of configuration items, along with their dependencies. We model 
the CMDB as a directed graph where the nodes are configuration items and where 
edges represent direct dependencies between configuration items. Such dependencies 
can be containment dependencies (i.e. a web server instance runs a given server) or 
logical dependencies (i.e. a J2EE application depends on a database server). 

A request for change (RFC) represents a formal proposal for a change to be made. 
The RFC contains a high-level textual description of the change. It also specifies an 
implementation deadline, by which the change must be implemented. Penalties may 
apply if not.  

During the planning phase of the change management process, the high-level 
description of the change contained in the RFC is refined into a concrete 
implementation plan. The implementation plan describes the collection of activities 
and resources (people, technology, processes) that are required to implement the 
change. The plan also specifies dependency constraints between activities. As 
commonly done in project management [6], the dependency constraints are expressed 
in the form of a lag time and a dependency type, finish-before-start, start-before-
finish, finish-before-finish or start-before-start constraints. 

A change activity represents an elementary action that must be performed in order 
to complete a step of the change implementation. An activity has an associated 
expected duration and requires a set of implementation resources. As seen previously, 
it might also depend on other activities. Finally, a change activity may affect one or 
more configuration items.  

An implementation resource is any technical resource that is required to perform a 
change activity, such as a change implementer or a software agent. Our model 
attaches an hourly cost to each implementation resource. 

Finally, change windows are pre-agreed periods of time during which maintenance 
can be performed for an IT service. Such windows are usually found in service level 
agreements (SLA) or operating level agreements (OLA). 

With this conceptual model in mind, we can define the activity-based scheduling 
problem. Our solution to the problem consists of two phases. In the first phase, 
changes are assigned to pre-defined change windows. This is modeled in figure 1 with 
the change window assignment association. In the second phase, activities are 
assigned to implementation resources within each change windows, and this results in 
an assignments being created. 

If we look at the activity-based scheduling problem as an optimization problem, several 
objective functions can be considered: minimizing the total cost of implementing changes, 
maximizing the number of changes to implement or minimizing the downtime of certain 
applications. We thoroughly discussed alternative objective functions definition in [5] 
 



 Activity-Based Scheduling of IT Changes 77 

 

Fig. 1. Change scheduling conceptual model 

and will not go into nearly as much detail in this paper. However, the objective 
function does play a role in the mathematical formulation of the problem, and we will 
cover it from this point of view in the following section 

4   Mathematical Formulation of the Activity-Based Change 
Scheduling Problem 

Let }1:{ NicC i ≤≤=  be the set of changes that have been designed, built and tested 

and are ready to be scheduled. Each change ic  is composed of a set of activities 

}1:{ , ijii AjaA ≤≤= , where each activity jia ,  has an estimated duration ji,δ .  

The scheduling of changes is done over a given time horizon. Let W  be the 
number of predefined change windows Www ≤≤1: that are pre-allocated within this 

time horizon. We refer to time within each change window through the index 

wtt Δ<≤0: . 

Let }1:{ Rkrk ≤≤  be the set of implementation resources that are necessary to 

implement changes. Let twk ,,κ  be the capacity of resource kr  
at time t  in window 

w . This capacity allows us to model both the availability of a resource (when 
0,, =twkκ  the resource is unavailable) and the degree of parallelism of a given 

resource (a resource can perform up to twk ,,κ  activities in parallel). Let ji,ρ  be the set 

of resources that are necessary to implement activity jia , . 

To represent conflicts between changes, we also need a model of the service 
hierarchy and of the configuration items that are being changed. Let }1:{ Ilil ≤≤  be 

 



78 D. Trastour, M. Rahmouni, and C. Bartolini 

 the set of configuration items. Let lA
~

 be the set of activities that directly impact 

configuration item li . Let lD  be the set of configuration items that depend on li  (i.e. 

the transitive closure of its direct dependants).  
Possible solutions to the scheduling problem are characterized by the binary 

variables wiu , and twkjix ,,,, . The variables have the following meaning: wiu ,  is equal 

to 1 if change ic  is scheduled in change window w , and is equal to 0 otherwise. 

twkjix ,,,,  is equal to 1 if the implementation of activity jia ,  by the resource kr  starts 

in change window w at time t  and is equal to 0 otherwise. Finally the variables twll ,,  

will be used to represent resource locking in order to avoid conflict; more specifically 

twll ,,  is equal to 1 when the configuration item li  is locked by a change activity at 

time t  in change window w .   
We now model the constraints of the problem. When omitted, the ranges for each 

index are as follows: Nii ≤≤1: , iAjj ≤≤1: , Rkk ≤≤1: , Www ≤≤1: , 

wit Δ<≤0: , and Iil ≤≤1: . 

iu
W

l
i,k ∀≤∑

=1

1  (1) 

wiux
i iwA

j

R

k

A

j
jiki

T

t
twkji ∀∀=∑∑ ∑∑

= = =

−

=

,.
1 1 1

,,

1

1
,,,, ρ  (2) 

⎩
⎨
⎧

Δ<≤+−Δ∀
∀∀∀∀

=
wjiw

twkji tt

wkji
x

1:

,,,
0

,
,,,, δ

 (3) 

Equation (1) ensures that each change is executed at most once. In equation (2) we 
make sure that if a change is scheduled to be executed in a change window, then all 
the activities that it comprises of are implemented within that change window. This 
also ensures that a change cannot span several change windows, which is undesirable 
as this situation would leave the infrastructure in an unknown state and would likely 
result in service unavailability. 

Equation (3) ensures that any activity that is started in a change window is 
completed within the bounds of the change window.  

⎩
⎨
⎧

∈∀
∀∀∀

=∑
−

= ji
wi

T

t
twkji kk

wji
ux

w

,
,

1

0
,,,, :

,,

ρ
 (4) 

⎩
⎨
⎧

∉∀
∀∀∀∀

=
ji

twkji kk

twji
x

,
,,,, :

,,,
0

ρ
 (5) 



 Activity-Based Scheduling of IT Changes 79 

Equations (4) and (5) guarantee that the appropriate resources are used in the 
implementation of each activity. In particular, (4) states that if the change is scheduled 
for a given window, then sometime during that window all the necessary resources 
are scheduled to start working on it. Conversely, (5) prevents this from happening if 
the for the resources that are not required.  

As far as capacity constraints are concerned, their expression in terms of the 

wiu , and twkjix ,,,,  
variables does not come naturally. However, we observe that they 

can naturally be expressed via a binary variable signaling when an activity is being 
executed (recall that twkjix ,,,,  only specifies when the activity starts). To this end, we 

introduce the auxiliary variable twkjiz ,,,, , whose value is 1 at all time during activity 

execution and 0 otherwise. twkjiz ,,,,  is in turn best calculated through the introduction 

of two more auxiliary variables: twkjis ,,,, , that is indefinitely equal to 1 after the 

activity started and 0 otherwise; and  twkjif ,,,, , that is indefinitely equal to 1 after the 

activity finished and 0 otherwise. 

twkjixs
t

wkjitwkji ∀∀∀∀∀=∑
=

,,,,
0

,,,,,,,,
τ

τ  (6) 

twkjixf
jit

wkjitwkji ∀∀∀∀∀= ∑
−

=

,,,,
,

0
,,,,,,,,

δ

τ
τ  (7) 

twkjifsz twkjitwkjitwkji ∀∀∀∀∀−= ,,,,,,,,,,,,,,,,  (8) 

The interpretation of these auxiliary variables is best understood graphically, as 
shown in the table below. 

Table 1. Illustration of problem variables for an activity of duration 5 

t  0 1 2 3 4 5 6 7 8 9 10 

twkjix ,,,,
0 0 0 1 0 0 0 0 0 0 0 

twkjis ,,,,
0 0 0 1 1 1 1 1 1 1 1 

twkjif ,,,,
0 0 0 0 0 0 0 0 1 1 1 

twkjiz ,,,,
0 0 0 1 1 1 1 1 0 0 0 

 
Capacity constraints can now be quite naturally expressed: 

twkz
N

i

twk

A

j

twkji

i

∀∀∀≤∑∑
= =

,,
1

,,
1

,,,, κ  (9) 



80 D. Trastour, M. Rahmouni, and C. Bartolini 

The auxiliary variable f and s come very useful also when specifying precedence 
constraints between change activities. For example, we can naturally express a finish-
before-start precedence constraint between two activities 

1, jia
 
and

 2, jia with equation 

(10). 
21,, jjiλ  represent an additional lag that can be modeled if needed. 

twksf
W

w
jji

T

t
twkjitwkji

w

∀∀∀≤−∑∑
=

−

=

,,
1

,,

1

0
,,,,,,,, 2121

λ  (10) 

Start-before-finish, start-before-start and finish-before-finish constraints are 
expressed through similar linear compositions of twkjis ,,,,  and twkjif ,,,, . 

The following constraints deal with the possibility of conflicting change activities 
on the infrastructure. 

twllz twl

Aa

R

k
twkji

ji
lji

∀∀∀=∑ ∑
∈ =

,,.
1

,,
~

1
,,,,

,,
ρ

 (11) 

twDlllll ltwltwl ∀∀∈′′∀≤ ′ ,,:,,,,,  (12) 

Equation (11) ensures that the lock twll ,, is set and that, among the activities that have 

an effect on the configuration item li , only one activity is active at a time (possibly 

using several resources ji,ρ ). Equation (12) states that all dependent configuration 

items lD  are affected when the configuration item li  is being worked on. 

Other additional constraints can be imposed to make the model work in a practical 
setting. For example, one could require to have a minimum number of changes 
scheduled (i.e. 90% of changes must be scheduled). Or change managers and 
supervisors may want to restrict some changes to take place within certain given 
change windows, or to restrict the permissible schedules of some activities in other 
ways. The expression of these additional constraints lends itself quite usefully to the 
case in which only a marginal re-scheduling is necessary due to the incumbency of 
some changes. In this case, the user may want to prevent re-scheduling of changes 
whose implementation date is approaching. All these constraints can be naturally 
expressed through linear combinations of the wiu , and twkjix ,,,, . 

In order for the problem formulation to be complete, we now express its objective 
function. Depending on the requirements of the change managers and supervisors, 
different instances of objective function could be used. As an example, when we 
minimize the total cost of implementing changes, including the estimated business 
impact [4], the objective function becomes: 

∑∑
= =

W

w

N

i
wiwi u

1 1
,, .minimize φ  (13) 



 Activity-Based Scheduling of IT Changes 81 

This completes the theoretical development of the activity-based change 
scheduling problem. In the next section we will discuss experimental validation of the 
method described here. 

5   Experimental Validation 

We have implemented the mathematical programming formulation presented in this 
paper using CPLEX [7]. Due to the complexity of the problem definition, it turns out 
that in the worst case scenario our formulation does not scale up to a number of 
changes in the order of the hundreds. This formulation has however been a valuable 
instrument to better understand user requirements, as it allowed us to quickly capture 
and test additional user constraints, and to compare alternative objective functions 
such as the minimization of the makespan or of the number of conflicts. 

For practical applications of the algorithm, we therefore need to develop heuristic 
solutions, while we will still use the complete formulation to validate the accuracy of 
the heuristics for low-dimension cases. We therefore developed a priority-based list 
scheduler [8] where the business impact plays the role of the priority function. 

To compare the performance of the two implementations and to gauge the quality 
of the solutions produced by the priority-based list scheduler, we have developed a 
random generator of changes and resources. The generator takes as input: the number 
of change requests submitted per day, the average number of activities per change, the 
number of managed services, the number of configuration items and the number of 
available implementers. The changes and resources generator produces the following: 

• service model along with the dependencies between configuration items; 
• service level agreement penalties; 
• for each change, its type (emergency, routine and normal) and its implementation 

deadline. For example, the deadline of an emergency change is set to 2 to 4 days 
from its submission date on average; 

• for each change, its reference random plan, modeled as a dependency graph 
between activities; 

• for each activity, its duration, its required locks on configuration item and its 
required resources. 

We have run series of experiments comparing both implementations with different 
loads of changes and resources. We have fixed the number of services to 20, the 
number of configuration items to 100, the average number of activities per change to 
5 and we varied the number of changes and the number of resources as shown in 
Table 2. 

Table 2.  Experiments with varying load  

 Activities per Change Changes CIs Services Resources 

Example 1 5 30 100 20 5 
Example 2 5 90 100 20 10 
Example 3 5 300 100 20 38 
Example 4 5 600 100 20 70 



82 D. Trastour, M. Rahmouni, and C. Bartolini 

The results of our experiments are shown in Table 3. Both algorithms were run on 
an HP Workstation XW8200 with a 3.2 GHz Xeon processor and 2GB RAM. For 
each implementation, Table 3 shows the processing time needed to schedule the 
examples defined in Table 2 as well as the estimated overall business impact. The 
business impact of assigning a change to a change window is calculated by summing 
up the following three components: 

1. Cost of implementing the change: each resource has an hourly rate  
2. Potential revenue loss: estimated loss in revenue due to the degradation of services 

impacted by the change. 
3. Penalties incurred from the violation of service level agreements including 

penalties for missing deadlines.   

Table 3. Comparison between PLS and CPLEX implementations 

Priority list scheduler CPLEX scheduler
Processing Time Overall Impact Processing Time Overall Impact

Example 1 0.5 sec $24 K 40 sec $18K
Example 2 8 sec $155K 4 hours $70K
Example 3 97 sec $376K ** **
Example 4 531 sec $948K ** **  

For low-dimension examples (less than a hundred changes), the CPLEX scheduler 
produces the optimal solution within an acceptable time. As the number of changes 
gets bigger, the processing time grows exponentially, making it impossible to apply it 
to real IT environments (thousands of changes per month). In examples 3 and 4, the 
scheduler ran over 12 hours without producing a result while the list scheduler took 
less than 10 minutes. 

Through analyzing the results produced by both implementations for small 
examples, there are some improvements that could be made to the list scheduler for 
producing better results. One improvement is to try to fit more changes into each 
change window by scheduling activities with smaller mobility (distance between its 
earliest possible assignment and its latest possible assignment) first, while giving 
priority to the highest impacted changes. Another improvement would be to sort the 
changes not according to their impact over one change window but over two or more 
change windows. As an example, let’s take two changes c1 and c2 and two change 
windows cw1 and cw2 and let’s assume that the impact of assigning: 

• c1 to cw1 is $10K 
• c1 to cw2 is $15K 
• c2 to cw1 is $8K 
• c2 to cw2 is $24K 

If we assign c1 to cw1 and c2 and cw2, the overall impact is $34K, but if we assign 
c2 to cw1 and c1 to cw2, the overall impact is $23K. 



 Activity-Based Scheduling of IT Changes 83 

6   Conclusions 

Building on an earlier mathematical formulation of the change scheduling problem, in 
this paper we presented a methodology and a tool which pushes the formalization of 
the problem to the next level of detail, by breaking down the changes into the 
activities that compose them. We illustrated the theoretical viability of the approach, 
discuss the limit of its applicability to real life scenarios, describe heuristic techniques 
that promise to bridge the scalability gap and provide experimental validation for 
them. 

In conducting our experiments and showing the prototype to domain experts, it 
emerged that end users would found it difficult to deal with schedules that are 
automatically generated. The tool we have produced assumes that the knowledge 
regarding change activities is complete and accurate. This is not necessarily the case 
in a production environment and may lead to problematic schedules. Rather than 
having a fully automated procedure, domain experts expressed the need to 
incrementally schedule sets of changes and to preserve pre-existing assignments as 
much as possible. They also recommended that all constraints should not be treated 
with the same importance and that some constraints should be relaxed based on 
preferences and user feedback. Our immediate next steps are to address these issues. 

Further along our research path we plan to take into account the fact that changes 
may fail during the course of their implementation, thereby possibly invalidating 
current schedules. We will do so by accommodating for back-out change plans in our 
schedule. The challenge ahead of us is that to indiscriminately account for each and 
every change failure in our models will most likely be overkill. Techniques assessing 
the likelihood of a change to fail given past history and present conditions look like a 
promising avenue to assess risk of failure and only scheduling for possible back-out if 
the change has a non-negligible likelihood of failing. 

References 

1. IT Infrastructure Library, ITIL Service Delivery and ITIL Service Support, Office of 
Government Commerce, UK (2003) 

2. ITIL Change Management Maturity Benchmark Study, White Paper, Evergreen, 
http://www.evergreensys.com/whitepapers_tools/whitepapers/cmsurveyresults.pdf. 

3. The Bottom Line Project. IT Change Management Challenges – Results of 2006 Web 
Survey, Technical Report DSC005-06, Computing Systems Department, Federal 
University of Campina Grande, Brazil (2006) 

4. Sauvé, J., Rebouças, R., Moura, A., Bartolini, C., Boulmakoul, A., Trastour, D.: Business-
driven support for change management: planning and scheduling of changes. In: State, R., 
van der Meer, S., O’Sullivan, D., Pfeifer, T. (eds.) DSOM 2006. LNCS, vol. 4269, pp. 23–
25. Springer, Heidelberg (2006) 

5. Rebouças, R., Sauvé, J., Moura, A., Bartolini, C., Boulmakoul, A., Trastour, D.: A 
decision support tool to optimize scheduling of IT changes. In: Proc. 10th IFIP/IEEE 
Symposium on Integrated Management (IM2007), Munich (May 2007)  

6. Elmaghraby, E., Kamburowski, J.: The Analysis of Activity Networks under Generalized 
Precedence Relations (GPRs). Salah Management Science 38(9), 1245–1263 (1992) 

7. ILOG Inc, ILOG CPLEX 10.1 user’s manual and reference manual 



84 D. Trastour, M. Rahmouni, and C. Bartolini 

8. Coffman, G.: Computer and Job-shop Scheduling Theory.Wiley and Sons Inc.(February 
1976) 

9. Sauvé, J.P., Moura, J.A.B., Sampaio, M.C., Jornada, J., Radziuk, E.: An Introductory 
Overview and Survey of Business–Driven IT Management. In: Proceedings of the 1st 
IEEE/IFIP International Workshop On Business-Driven IT Management (BDIM06), pp. 
1–10 

10. Liu, Z., Squillante, M.S., Wolf, J.L.: On maximizing service-level agreement profits. In: 
Proceedings of the ACM Conference on Electronic Commerce (2001) 

11. Buco, M.J. et al.: Managing eBusiness on Demand SLA Contracts in Business Terms 
Using the Cross-SLA Execution Manager SAM, International Symposium on Autonomous 
Decentralized Systems (April 2002) 

12. Sauvé, J., Marques, F., Moura, A., Sampaio, M., Jornada, J., Radziuk, E.: SLA Design 
from a Business Perspective. In: Schönwälder, J., Serrat, J. (eds.) DSOM 2005. LNCS, 
vol. 3775, Springer, Heidelberg (2005) 

13. Aib, I., Sallé, M., Bartolini, C., Boulmakoul, A.: A Business Driven Management 
Framework for Utility Computing Environments, HP Labs Bristol Tech. Report 2004-171 

14. Aiber, S., Gilat, D., Landau, A., Razinkov, N., Sela, A., Wasserkrug, S.: Autonomic Self–
Optimization According to Business Objectives. In: Proceedings of the International 
Conference on Autonomic Computing (2004) 

15. Menascé, D., Almeida, V.A.F., Fonseca, R., Mendes, M.A.: Business-Oriented Resource 
Management Policies for e-Commerce Servers, Performance Evaluation 42, Elsevier 
Science, 2000, pp. 223–239. Elsevier, North-Holland, Amsterdam (2000) 

16. Bartolini, C., Sallé, M., Trastour, D.: IT Service Management driven by Business 
Objectives – An Application to Incident Management. In: Proc. IEEE/IFIP Network 
Operations and Management Symposium (NOMS 2006) (April 2006) 

17. Keller, A., Hellerstein, J., Wolf, J.L., Wu, K., Krishnan, V.: The CHAMPS System: 
Change Management with Planning and Scheduling. In: Proceedings of the IEEE/IFIP 
Network Operations and Management Symposium (NOMS 2004), April 2004, IEEE 
Press, New York (2004) 

18. Bartolini, C., Sallé, M.: Business Driven Prioritization of Service Incidents. In: Sahai, A., 
Wu, F. (eds.) DSOM 2004. LNCS, vol. 3278, Springer, Heidelberg (2004) 

19. Wei, H., Frinke, D., Carter, O., et al.: Cost–Benefit Analysis for Network Intrusion 
Detection Systems, In: Proceedings of the 28th Annual Computer Security Conference 
(October 2001) 

20. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice Hall 
21. Demeulemeester, E.L., Herroelen, W.S: A Branch-And-Bound Procedure for the 

Generalized Resource-Constrained Project Scheduling Problem. Operations 
Research 45(2), 201–212 (1997) 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Europe ISO Coated FOGRA27)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


