

Economic Aspects of a Utility Computing Service

Jean Paul Degabriele, David Pym
Trusted Systems Laboratory
HP Laboratories Bristol
HPL-2007-101
July 3, 2007*

Utility Computing,
modeling, DEMOS
2000, pricing,
security, flexing

This paper presents a case study of business and systems modelling for a Utility
Computing service. Our analysis is focused mainly on service pricing, resource
flexing, and costs related to preventive security measures. We further present a
discrete event model of a Utility Computing service, and show how the
information obtained from such a model can aid business and design decisions.

* Internal Accession Date Only Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.

Economic Aspects of a Utility Computing Service

Jean Paul Degabriele David Pym

Trusted Systems Laboratory, Hewlett-Packard Laboratories,

Filton Road, Stoke Gifford, Bristol BS34 8QZ, UK

{jeanpaul.degabriele, david.pym}@hp.com

Abstract

This paper presents a case study of business

and systems modelling for a Utility Computing

service. Our analysis is focused mainly on

service pricing, resource flexing, and costs

related to preventive security measures. We

further present a discrete event model of a

Utility Computing service, and show how the

information obtained from such a model can aid

business and design decisions.

Keywords: Utility Computing, Modelling,

DEMOS 2000, Pricing, Security, Flexing.

1. Introduction

Utility Computing is expected by many

technologists to be one of the next major

sources of income in the IT services market.

While a considerable number of providers

already hit the market, others are still studying

the full potential of utility computing services.

Most of the research is focused on the possible

business models and their pricing, architecture

of the infrastructure, and ways of securing

utility computing services. Because of the many

possible alternatives in designing and offering a

utility computing service, we propose a

modelling methodology to explore these

possibilities and their interaction. We make use

of Demos 2000 [2] as our modelling and

simulation platform. Our analysis is mainly

focused on system scrubbing, flexing, and utility

computing service pricing.

2. Utility Computing

Utility Computing is more of a different

approach to computing resource than a new

computing technology. The main idea is to offer

computing resource as a utility on a pay-per-use

basis, similarly to electricity and gas. Thus one

no longer needs to invest in infrastructure, run

it, maintain it, and secure it, in order to have

computer resource at one’s disposal. A number

of services are possible that fall under the Utility

Computing paradigm. Data-oriented services

offer bulk storage and bandwidth ― ideal for

backup purposes for instance. Computation-

oriented services are, however, more common.

These offer computational power normally on a

per CPU hour basis, well-suited for movie

rendering and other computationally intensive

applications. At a higher level stand

Application-oriented services. Here the service

provider offers some proprietary software

together with the necessary computer hardware

on which to run it. Common examples of the

applications offered are Customer Relationship

Management Software (CRM), Database

Management Systems, and e-Accounting

software.

Generally the infrastructure is located in a

Data Centre where it can be managed and

maintained easily by the service provider, and

the client can access the resource remotely. In

Computation-oriented services (on which we

focus mainly in this text) the client can have

different degrees of remote access. At one

extreme is the Farm Renting model, in which

the client is allocated a network of machines

(alternatively referred to as a Farm) over which

he has complete control. At the other extreme is

the Job Submission model, in which the client is

presented with a web interface with which he

submits his application together with a control

script. The client can then retrieve the results of

the computation from the web interface. The

Farm Renting model allows the client to debug

his applications before and during the job

execution, whereas in the Job Submission model

the application needs to be free of any bugs. On

the other hand, the Job Submission model

presents less exposure and hence better security.

Moreover, it allows for better use of the

infrastructure, because farms need not be

allocated in fixed sizes. A Resource Flexing

scheme can be used to allocate idle resources for

job computation during periods of low load. In

general this should increase the amount of

available resources for when the next job

request arrives, thereby maximizing the overall

throughput of the infrastructure.

3. Securing the Utility Computing

Infrastructure

The Utility Computing market is already a

rather competitive market with a number of

providers that offer a range of different services.

Security is not yet, however, a major issue.

Many providers claim that their services are

secure but none of them specifies in detail the

security measures that they employ. It is almost

certain that when utility computing becomes

more ubiquitous, a number of security incidents

will occur in which clients will experience

significant financial losses and service providers

will suffer damage to their reputations. So, at a

time when the utility computing market will be

even more competitive, trust might be the

discriminating factor between service providers.

A number of security measures are possible in

order to secure a utility computing

infrastructure. Amongst others, there are:

scanning of uploads against malware,

encryption and authentication services between

machines (through IPsec, TLS, or SSH for

instance), farm separation (through

routers/firewalls and/or vlans), IDS/IPS/AIS,

and system scrubbing. In our analysis, we have

focused mainly on system scrubbing, and

categorized it on four different levels.

• System Reuse: This offers the least amount

of protection. Here the machine is presented

to the client with a used system where the

client is allocated a new user account on the

system with the previous users’ accounts

disabled. Vulnerabilities in the operating

system could allow previous users to infect

the system with malware, or allow the

current user to access previous users’ data.

In the former case, the risk can be mitigated

by scanning the uploaded data. Apart from

confidentiality breaches, malware can also

degrade the machines’ performance. It is

worth mentioning that if previous users

delete (without overwriting) their data, then

it becomes accessible to subsequent users.

While if they retain it, it can’t be accessed

directly by another user.

• System Refreshing: Here the client is

offered a machine with a freshly installed

system. This in principle should eliminate

the risk that the system is infected with

malware and ensures that the system

operates at its maximum performance.

However the client may still recover data

stored by the previous clients.

• Clearing: This refers to the removal of data

so that it may not be reconstructed using

normal system capabilities (i.e., not through

physical access to the media). For this

purpose, a single overwrite of all the

memory space is normally enough. This

process is more intensive in comparison to a

system refresh where only the File

Allocation Table is erased before installing

the operating system.

• Sanitization: This is intended to protect

against data recovery even in the event that

the attacker has physical access to the

media. This is normally accomplished

through multiple overwrites or degaussing.

 Clearing and Sanitization do not refer

exclusively to secondary storage. Main memory

and other memory buffers (such as the network

card’s memory buffer) may contain sensitive

information as well. In [1], the United States

Department of Defence defines a Sanitization

Matrix which lists procedures suitable for

clearing and sanitizing several storage media.

4. Pricing a Utility Computing Service

As in any other utility service, the business

model employed and the service pricing play a

pivotal role in its success. The business model

has to suit the customers’ needs in terms of

accessibility, scalability, and usability amongst

others. Most prominent are the Subscription and

the Metered Usage business models. Hybrids of

these models are also common – Metered

Subscription is commonly employed by Internet

Service Providers and Mobile Network

Providers. A more detailed discussion of

business models for utility computing services

can be found in [3].

 In [5], Low and Byde propose a pricing

strategy based on auction. It is claimed that this

scheme should keep a balance between supply

and demand. There are, however, some subtle

differences between traditional auction-based

markets (such as a vegetable market) and the

utility computing market. In utility computing,

the consumption of goods may stretch over a

considerable time span. Thus the present

demand would affect the future supply and not

just the present one. An auction based market is

comparable to a feedback control system. A

delay in the feedback loop reduces the system’s

stability resulting in an oscillatory behaviour

which deviates from the equilibrium point.

Another difference is that buyers may arrive

sparsely in which case a buyer is unlikely to

have any competitors or else the bidding stage

has to be prolonged thereby degrading the

service accessibility. Additionally, an auction

scheme fails to take into account the risk

incurred in accepting a relatively small job

request, and then be unable to fulfil a more

sizeable (and more profitable) job request at a

later stage. In [4], Paleologo points out the

inadequacy of a traditional Cost-Plus pricing

methodology for utility services. Paleologo

suggests a Price-at-Risk pricing methodology

which takes into account the uncertainty in the

pricing decision.

Our contribution is to demonstrate how

computer simulation, based on executable

models [2], can aid the pricing decision stage.

We have built a model of a utility computing

service. The model can be used for instance to

calculate parameters such as the Capacity and

the Multiplexing Gains used in the Price-at-Risk

methodology. It can be used to quantify the gain

obtained from a flexing strategy, or the costs of

including one of the system scrubbing schemes

discussed earlier. In our model, we associate a

Service Level with each job request. This

determines the amount of resources to be

allocated for the job. In general the faster a job

is computed the better for the client. Thus

clients will demand services that require large

amounts of resource for relatively short periods.

Such a demand profile tends to reduce the

effective capacity of the infrastructure. In view

of this we recognise some appropriate properties

for a just pricing scheme.

• It should encourage a constant load and

discourage an erratic load pattern.

• The cost to compute a job should be

proportionate to its size.

• The cost to compute a job should increase as

the quality of service improves.

We have implemented two similar pricing

schemes that follow these guidelines.

Scheme #1

A price is paid per CPU-hour which depends

on the Service Level. The Service Level in turn

determines how many machines (on average)

will be allocated for the job. A possible flaw of

this scheme is that a client can split his job into

smaller ones, submit them simultaneously as

separate jobs, and process them at a lower

quality of service. Hence he effectively gets the

same Service Level at a lower price. For

instance assume that:

Service

Level

Machines

Allocated

Cost per

CPU-hour

1 10 £1.00

2 50 £1.20

Table 1.

Client A submits a 1000 CPU-hour job at

Service Level 2. His job takes 20 hours and is

charged 1200 Pounds.

Client B splits his 1000 CPU-hour job into five

200 CPU-hour jobs and submits them

simultaneously at Service Level 1. This takes 20

hours and he is charged only 1000 Pounds.

Scheme #2

A price is paid per CPU-hour which depends

on the Service Level. The Service Level

determines the amount of time taken to compute

the job. So the number of allocated machines

depends also on the job size. Of course, not

every job request can be supplied with the

highest Service Level. Bigger jobs get better

value for money. This might seem unfair but is

reasonable if we consider that the client should

always get a better service than he would get if

he were to invest in infrastructure of his own.

5. The Model

The model was implemented using the

Demos 2000 modelling language [2]. The code

for the model is given in the Appendix. Demos

2000 is a semantically justified modelling

language developed by Birtwistle, Christodolou,

Taylor, and Tofts [2]. Our model consists of

four main entities: Clients, Farms, Scrubbing

Processes, and the Allocator.

Figure 1.

The client’s sole purpose is to generate job

requests. Each client makes requests

independently, where the time interval between

each request is governed by an exponential

distribution. A job request consists of two

Farm 1

Farm 2

Farm 3

Machine Pool

Scrub

Scrub

Scrub List

Farm List

Allocator

Client A Client B

parameters: a job size W in CPU-hours and a

Service Level QoS. The QoS is interpreted in

accordance with the pricing scheme employed,

but in general the higher the QoS the faster the

job computation.

Farms are created by the Allocator entity in

response to successful job requests from clients.

Each farm corresponds to a single job, after

which the farm is released on job completion.

The farm process is implemented as a loop

which continuously waits for instructions (in the

form of syncs) mainly from the Allocator. Five

instructions are defined.

1. Lease Expired signals that the time allocated

for the job has come to an end. In response

to this, the farm releases its machines and

halts.

2. Work Completed signals the event that the

job has been completed, in which case the

farm releases its machines but continues to

exist until a Lease Expired message is

received. A state parameter is included to

indicate the freshness of the message. The

signal is fresh if the state parameter matches

the current state of the farm.

3. Resource Instruction instructs the farm to

take or release a number of machines. A

Resource Instruction increments the current

state of a farm and reschedules a new Work

Completed instruction.

4. Flexing Query interrogates the farm for any

flexing machines that it currently holds and

can return back to the Allocator in order to

fulfill job requests.

5. Work Query interrogates the farm for the

amount of work in CPU hours needed to

complete the job. This information is used

by the Allocator to determine to which farm

the idle machines should be allocated for

flexing.

Scrubbing Processes are created by the

Allocator in order to scrub a set of machines,

before they are allocated to a farm. Machines

are grabbed from the resource pool and held by

a Scrubbing Process for a period of time defined

by the model parameter scrubTime. Each of the

four scrubbing schemes described earlier can be

modeled by varying this parameter. On

completion the Scrubbing Process would

consult the Scrub List to determine to which

farm(s) it should forward the machines. Finally

the Scrubbing Process would release the

machines, send the corresponding Resource

Instruction signals to the intended farms, and

terminate.

The Allocator is the central entity in the

model, and controls most of the remaining

entities. Its main responsibilities are: processing

job requests, managing and flexing resources,

and maintain records (such as the Farm List and

the Scrub List). The flexing strategy adopted in

the model uses a single-farm flexing algorithm.

In the event that a set of machines are idle, the

Allocator consults the Farm List and

interrogates every farm with a Work Query. The

idle machines are all allocated to the farm with

the longest life expectancy. The life expectancy

L of a farm F having a workload WF and MF

machines is given by:

L = (WF - MF × TS) / (MF + MI)

where MI = Idle Machines and Ts = Scrub Time.

The scheme is zero-risk as each farm is always

allocated enough machines to complete the job

in the allotted time span.

The basic operation of the model is depicted

in Figure 1, showing the flow of information

between entities and how machines progress

through their cycle. Clients submit job requests

(W, QoS) to the Allocator. The Allocator

determines the number of machines required to

fulfill the request and checks how many

machines are available. It starts by checking

how many machines are idle. If these are not

enough it consults the Scrub List for any

machines destined for flexing. If the machines

destined for flexing together with the idle

machines do not add up to the required amount,

the Allocator consults the Farm List for farms

which have flexing machines and sends them a

Flexing Query. The farms reply with the amount

of machines that they can release (and still

complete their job in time). If the total number

of machines is enough to fulfill the request a

farm is allocated, otherwise the job request is

denied. A Scrubbing Process is created to clean

the idle machines and the machines retrieved

from other farms, while the machines retrieved

from other Scrubbing Processes are redirected to

the new farm by amending the Scrub List. The

Allocator loops indefinitely waiting for job

requests and other messages (such as job

completion notifications). Each time it is

inquired it checks for any idle machines and

goes through the flexing subroutine.

6. Results

The model has various potential

applications. Some of these are:

• To determine the probability that an amount

of machines will be enough to cater for a

certain demand distribution;

• To calculate the gain in capacity that can be

attained by a particular flexing strategy;

• To determine how distinct Service Levels

should be priced;

• To quantify the impact of implementing a

scrubbing scheme in a flexed architecture;

• To estimate parameters necessary for the

Price-at-Risk methodology;

• To provide insight for SLA design.

QoS Job Duration Probability Price

1 6 Months 0.05 £ 0.10

2 4 Months 0.15 £ 0.14

3 2 Months 0.15 £ 0.20

4 1 Month 0.20 £ 0.30

5 2 Weeks 0.25 £ 0.40

6 1 Week 0.10 £ 0.60

7 3 Days 0.06 £ 0.90

8 1 Day 0.04 £ 1.50

Table 2.

The sample model found in the Appendix was

run a number of times, each with a different

amount of machines. The Pricing scheme used

was that described in scheme #2 where the price

of each Service Level is listed in Table 2. The

probability associated with each Service Level

is the probability that a job request demands that

Service Level. Figure 2 depicts a plot of the

revenue attained by each run as the number of

machines is increased. The experiment was

repeated for a Scrub Time value of 1 hour

instead of 5 hours, and once again with no

flexing. Figure 3 represents the same three

experiments but the abscissa represents the

percentage of jobs denied.

Revenue vs Machines

0

5000000

10000000

15000000

20000000

25000000

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

8
5
0
0

9
0
0
0

9
5
0
0

1
0
0
0
0

Amount of Machines

Revenue (GBP)

Flexed,Ts=5hrs Flexed,Ts=1hr NotFlexed,Ts=5hrs

Figure 2.

Jobs Denied vs Machines

0

10

20

30

40

50

60

70

80

90

100

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

8
5
0
0

9
0
0
0

9
5
0
0

1
0
0
0
0

Amount of Machines

Jobs Denied (%)

Flexed,Ts=5hrs Flexed,Ts=1hr NotFlexed,Ts=5hrs

Figure 3.

It can be seen from Figure 2 that the red and

blue plots attain the maximum possible revenue

while the green plot approaches this maximum

more slowly. A small increase in revenue due to

a reduced Scrub Time is also evident. Instead of

contrasting the revenue attained by each

configuration, we can make a comparison in

terms of investment. In particular we can

compare the amount of infrastructure required to

fulfill the same amount of requests and hence

attain the same revenue. For instance from

Figure 3 we can see that for a flexed

configuration with 5000 machines the job denial

ratio is 7.9 %. On the other hand the non-flexed

configuration requires 6000 machines to attain

an almost equivalent job denial ratio of 6.7 %.

Hence in this scenario an increase in investment

of 20% is required to attain the same revenue as

a flexed architecture.

Revenue vs QoS

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

1 2 3 4 5 6 7 8

QoS

Revenue (GBP)

Figure 4.

As mentioned earlier, high QoS values

diminish the effective capacity of the

infrastructure. This, of course, should be

reflected in the service pricing. Our model can

be used to quantify the effective capacities

attained by each QoS, and hence determine a

fair price for each Service Level. The model

was adjusted such that each QoS is priced at

10p/CPUhr. Then it was run eight times, where

in each run all job requests were processed at

one particular Service Level. Figure 4 shows the

revenue attained for each Service Level. As a

starting point for a fair pricing scheme, we

could adjust the price of each Service Level

such that all bars attain the same revenue. For

instance according to these results, Service

Level 8 should cost three times as much as

Service Level 7.

A rather unexpected effect, portrayed in

Figure 4, is that in going from Service Level 4

down to Level 1, the revenue is seen to

decrease. In our model the client pays for the

service on job completion. The simulation

runtime here is two years, and the job

processing times vary from 1 day to 6 months,

depending on the Service Level. Thus, at lower

Service Levels there is a greater amount of work

which is not yet paid for at the end of the run.

This situation might amount to a serious cash-

flow problem. On top of this, one can add

inflation and maintenance costs, which also

increase as computation intervals get longer. So,

if clients are to pay on job completion, it may

not be viable to offer Service Levels between 1

and 4. Alternatively, one could circumvent this

problem by changing to a business model in

which the client pays either in advance or

periodically until the job is completed.

7. Related Work

A good summary of the various pricing and

business models that have been proposed for

utility computing can be found in [7]. Oceano,

described in [8], is a utility computing

infrastructure prototype developed at IBM.

Including features such as scrubbing and

flexing, Oceano proves to be quite in line with

our utility computing model, although it is

intended for web services rather than

computation services. Yu, Buyya, and Tham [6]

suggest a cost-based scheduling scheme in order

to improve the internal workflow of a job.

Potentially there might be scope to augment this

scheme with a flexing strategy.

8. Conclusions and Future Work

We demonstrated some of the potential that

discrete event modelling holds for economic

studies in relation to Information Technology

and Information Security. In this paper we

examined the case of Utility Computing, and

showed how our simple model can help in

business decisions, as well as exploring a bigger

fraction of the possibility space.

In our analysis we aimed to keep the model

as simple as possible. Two issues that are

overlooked in this model are Farm

Fragmentation and the Atomic Transaction

nature of distributed jobs. The flexing algorithm

moves machines from farm to farm without any

notion of machine location, resulting in Farm

Fragmentation. Mainly this is due to the

difficulty in associating location with resource

elements in DEMOS 2000. Thus our model does

not represent the network traffic overhead which

may result from a particular flexing algorithm.

Secondly, distributed jobs are normally

composed of smaller atomic transactions.

However in the model it is assumed that job

computation can be split into arbitrarily small

transactions. By stepping the Allocator entity in

discrete time and some other modifications it

should be easy to include this in the model.

Another limitation is that the implemented

flexing strategy assumes jobs are arbitrarily

distributable. Unfortunately this applies only to

a limited set of problems, such as an exhaustive

search of a cryptographic key. Therefore the

20% increase in infrastructure utilization

mentioned in section 6 is essentially an upper

bound of the flexing gain that the implemented

flexing algorithm can attain. Thus if the cost of

implementing such a flexing scheme is more

than the cost of increasing the computing

infrastructure by 20%, then such a scheme is

obviously not viable.

Possible directions for future work could be

to amend the model to portray these factors. The

flexing strategy could be upgraded to a

multiple-farm flexing scheme where idle

machines are distributed among multiple farms

rather than one farm. Risky flexing, where some

jobs may not be completed on time, can also be

investigated. The model could be amended to

include maintenance and upgrading costs for a

more thorough business continuity study. Jobs

could be portrayed by a more general model,

such as the one presented in [6]. Finally, it

should be noted that the model can be easily

adapted to portray other utility computing

services, such as Web Services.

Acknowledgements

We are grateful to Chris Dalton, Brian

Monahan, Chris Tofts, and Mike Yearworth for

their advice on various aspects of this paper.

References

[1] DoD 5220.22-M National Industrial

Security Program Operating Manual (NISPOM)

available from:

http://www.usaid.gov/policy/ads/500/d522022m

.pdf

[2] A. Christodolou, R. Taylor, and C. Tofts,

2000. Demos 2000. http://www.demos2k.org

[3] M. A. Rappa, “The utility business model

and the future of computing services”, IBM

Systems Journal, Vol. 43, No 1. 2004, available

from:

http://www.research.ibm.com/journal/sj/431/rap

pa.html

[4] G. A. Paleologo, “Price-at-Risk: A

methodology for pricing utility computing

services”, IBM Systems Journal, Vol. 43, No 1.

2004, available from:

http://www.research.ibm.com/journal/sj/431/pal

eologo.html

[5] C. Low and A. Byde, “Market-Based

Approaches to Utility Computing”, Technical

Report HPL-2006-23, HP Laboratories, Bristol,

available from:

http://www.hpl.hp.com/techreports/2006/HPL-

2006-23.pdf

[6] Jia Yu, Rajkumar Buyya, and Chen Khong

Tham, “Cost-based Scheduling of Scientific

Workflow Applications on Utility Grids”,

Proceedings of the 1st International Conference

on e-Science and Grid Computing (e-Science

2005), December 2005, pp. 140-147.

[7] Buyya R, Abramson D, Giddy J, Stockinger

H. “Economic models for resource management

and scheduling in Grid computing”,

Concurrency and Computation: Practice and

Experience 2002; 14(13–15):1507–1542.

[8] K. Appleby, S. Fakhouri, L. Fong, G.

Goldszmidt, M. Kalantar, S. Krishnakumar, D.

Pazel, J. Pershing, and B. Rochwerger, “Oceano

– SLA Based Management of A Computing

Utility,” in 7th IFIP/IEEE Intl. Symp. on

Integrated Network Management, May. 2001,

pp. 855–868.

Appendix

//===

// Utility Computing Model: Allocator Version 2.5c (Single Farm Flexing

// + Revenue + Pricing Scheme #2)

//===

//

// Jean Paul Degabriele David Pym

//

// 7th March 2007

// Basic Model Framework

// =====================

//

// Clients submit job requests of a certain size in CPU-hours,

// and a maximum computation time, determined by the QoS.

// The Resource Allocator evaluates the request and if it can

// be satisfied a farm is allocated to compute the job. In order

// to maximise resource utilisation, the Resource Allocator is

// allowed to flex the resources between farms.

//

//

// Notes specific to this version

// ==============================

//

// The flexing algorithm is very crude. The free machines are allocated

// as a chunk to one farm only. Each client submits job requests of a

// certain size in CPU-hours, and specifies a maximum computation time.

// The allocator flexes the resources so as to maximise their

// utilisation.

// ========================

// Parameter Initialisation

// ========================

// Scaling Constants (hrs = timing unit)

// =====================================

 cons hrs = 1;

 cons mins = hrs/60;

 cons secs = mins/60;

 cons msecs = secs/1000;

 cons days = 24 * hrs;

 cons weeks = 7 * days;

 cons months = 28 * days;

 cons years = 365 * days;

// Parameter Constants

// ===================

 cons null = 0;

 cons instrLeaseExpired = 1;

 cons instrWorkCompleted = 2;

 cons takeMachines = 3;

 cons releaseMachines = 4;

// Model Parameters

// ================

 cons runtime = 1 * years;

 cons numMachines = 5000;

 cons numClients = 10;

 cons scrubTime = 5 * hrs;

// Stochastic Parameters

// =====================

 cons requestInterval = negexp(100 * hrs);

 cons requestSize = puni(10000, 100000); // Job Size (work in CPUhrs)

 cons serviceLevel = pud[(0.05,1),(0.15,2),(0.15,3),(0.2,4),(0.25,5),

 (0.1,6),(0.06,7),(0.04,8)]; // Quality of Service

// Pricing Parameters

// ==================

 cons QoSPrice[1] = 0.10;

 cons QoSPrice[2] = 0.14;

 cons QoSPrice[3] = 0.20;

 cons QoSPrice[4] = 0.30;

 cons QoSPrice[5] = 0.40;

 cons QoSPrice[6] = 0.60;

 cons QoSPrice[7] = 0.90;

 cons QoSPrice[8] = 1.50;

 cons QoSTime[1] = 6 * months;

 cons QoSTime[2] = 4 * months;

 cons QoSTime[3] = 2 * months;

 cons QoSTime[4] = 1 * months;

 cons QoSTime[5] = 2 * weeks;

 cons QoSTime[6] = 1 * weeks;

 cons QoSTime[7] = 3 * days;

 cons QoSTime[8] = 1 * days;

// Universal Variables

// ===================

 var t = 0;

 var clock = 0;

 var idleMachines = numMachines;

 var scrubbingMachines = 0;

 var requestsSubmitted = 0;

 var jobsCompleted = 0;

 var jobsDenied = 0;

 var revenue = 0;

// Resources

// =========

 res(machines, numMachines); // current pool of unassigned machines

 // available for work.

 res(lockIM, 1);

 res(lockSM, 1);

 res(lockRS, 1);

 res(lockJC, 1);

 res(lockJD, 1);

 res(lockA, 1); // group of mutually exclusive transactions

// Bins

// ====

 bin(farmList, 0);

 bin(scrubList, 0);

// =================

// Class Definitions

// =================

class client (cid) = {

 local var work = 0; // Amount of CPU Hrs

 local var QoS = 0;

 repeat {

 hold(requestInterval);

 work := requestSize;

 QoS := serviceLevel;

 syncV(jobRequest, [cid, work, QoS], []);

 }

}

class farmProcess(owner, argFid, work, argTmax) = {

// After job completion the farm is kept alive with state stop == 1

// in order to cater for any 'takeMachine' instructions from ScrubProcesses

 local var startTime = DEMOS_TIME;

 local var lastTime = startTime;

 local var workRemaining = work;

 local var lifeExpectancy = 0;

 local var farmMachines = 0;

 local var flexMachines = 0;

 local var stop = 0;

 local var currentState = 1;

 local var recipient = 0;

 local var state = 0;

 local var action = 0;

 local var amount = 0;

 local var fid = argFid;

 local var Tmax = argTmax;

 entity(LEASEEXPIRED, scheduleInstr(#fid, instrLeaseExpired, null, #Tmax), 0);

//schedule lease expiry

 while [stop < 2]

 {

 try[getSv(leaseExpired, [recipient], recipient == fid)] then

 {

 try [stop < 1] then

 {

 putR(machines, farmMachines);

 putSV(leaseExpired, [farmMachines]);

 }

 etry[] then {putSV(leaseExpired, [0]);} //farm was already released

 stop := 2;

 }

 etry[getSv(workCompleted, [recipient, state], recipient == fid)] then

 {

 try[currentState == state] then // check instruction is valid

 {

 getR(lockJC, 1); jobsCompleted := jobsCompleted + 1; putR(lockJC, 1);

 putR(machines, farmMachines);

 putSV(workCompleted, [1, farmMachines]);

 farmMachines := 0;

 stop := 1;

 }

 etry[] then {putSV(workCompleted, [0, 0]);}

 }

 etry[getsV(resInstr, [recipient, action, amount], recipient == fid)] then

 {

 workRemaining := workRemaining - (farmMachines * (DEMOS_TIME - lastTime));

//recalculate remaining work

 lastTime := DEMOS_TIME;

 try [action == takeMachines] then

 {

 try [stop == 0] then

 {getR(machines, amount); farmMachines := farmMachines + amount;}

 // If farm has been released, then forward machines to pool and start

Allocator's flexing routine

 etry [] then {getR(lockIM, 1); idleMachines := idleMachines + amount;

putR(lockIM, 1); syncV(flex, [], []);}

 }

 etry [] then

 {

 putR(machines, amount);

 farmMachines := farmMachines - amount;

 }

 currentState := currentState + 1;

 try [(farmMachines > 0) && (stop < 1)] then

 {

 lifeExpectancy := workRemaining / farmMachines;

 entity(WORKCOMPLETED, scheduleInstr(#fid, instrWorkCompleted,

#currentState, #lifeExpectancy), 0);

 }

 etry [] then {}

 putSV(resInstr, []);

 }

 etry[getsV(flexingQuery, [recipient], recipient == fid)] then

 {

 workRemaining := workRemaining - (farmMachines * (DEMOS_TIME - lastTime));

//recalculate remaining work

 lastTime := DEMOS_TIME;

 flexMachines := farmMachines - (workRemaining / (startTime + Tmax -

DEMOS_TIME));

 try [flexMachines - rnd(flexMachines) > 0] then {flexMachines :=

rnd(flexMachines);} etry [] then {flexMachines := rnd(flexMachines) - 1;}

 putSV(flexingQuery, [flexMachines]);

 }

 etry[getsV(workQuery, [recipient], recipient == fid)] then

 {

 workRemaining := workRemaining - (farmMachines * (DEMOS_TIME - lastTime));

//recalculate remaining work

 lastTime := DEMOS_TIME;

 putSV(workQuery, [workRemaining, farmMachines]);

 }

 }

}

class scrubMachines(id, amount) = {

 local var stop = 0;

 local var sid = 0;

 local var fid = 0;

 local var fidList = 0;

 local var flexing = 0;

 local var flexList = 0;

 local var cost = 0;

 local var amt = 0;

 getR(lockSM, 1); scrubbingMachines := scrubbingMachines + amount;

putR(lockSM, 1);

 getR(machines, amount);

 hold(scrubTime);

 getR(lockSM, 1); scrubbingMachines := scrubbingMachines - amount;

putR(lockSM, 1);

 putR(machines, amount);

 getR(lockA, 1);

 while [getVB(scrubList, [sid, fid, flexing, amt], sid == id)]

 {

 syncV(resInstr, [fid, takeMachines, amt], []);

 try [getVB(farmList, [fidList, flexList, cost], fidList == fid)] then

{flexList := (flexList + flexing) - (flexList * flexing); putVB(farmList,

[fidList, flexList, cost]);}

 etry [] then {} // farm does not exist anymore, machines are forwarded to the

machine pool

 }

 putR(lockA, 1);

}

class scheduleInstr(recipient, instruction, parameter, delay) = { //

schedule farm instructions

 local var reply = 0;

 hold(delay);

 try [instruction == instrLeaseExpired] then

 {syncV(aLeaseExpired, [recipient], []);}

 etry [instruction == instrWorkCompleted] then

 {syncV(aWorkCompleted, [recipient, parameter], []);}

 etry [] then {}

}

class numberService = {

 local var num = 100 + numClients;

 repeat {

 getSV(nextID, [], true);

 num := num + 1;

 putSV(nextID, [num]);

 }

}

class monitor = {

 local var lastIdleMachines = idleMachines;

 local var idleWork = 0;

 repeat {

 hold(1);

 clock := clock + 1;

 trace("Monitoring at time instant %v", clock);

 trace("idleMachines=%v", idleMachines);

 trace("scrubbingMachines=%v", scrubbingMachines);

 trace("requestsSubmitted=%v", requestsSubmitted);

 trace("jobsDenied=%v", jobsDenied);

 trace("jobsCompleted=%v", jobsCompleted);

 trace("revenue=%v", revenue);

 idleWork := idleWork + (idleMachines + lastIdleMachines)/2;

 lastIdleMachines := idleMachines;

 trace("idleFraction =%v", idleWork/(numMachines * clock));

 }

}

class allocator = {

 local var Tmax = 0;

 local var requestedMachines = 1;

 local var id = 0;

 local var state = 0;

 local var valid = 0;

 local var work = 0;

 local var QoS = 0;

 local var sid = 0;

 local var fid = 0;

 local var fidNew = 0;

 local var fidFlex = 0;

 local var flexing = 0;

 local var cost = 0;

 local var amount = 0;

 local var farmMachines = 0;

 local var farmFlexMachines = 0;

 local var farmWorkLoad = 0;

 local var lifeExpectancy = 0;

 local var maxLifeExpectancy = 0;

 local var flexMachines = 0;

 local var scrubMachines = 0;

 putVB(farmList, [0, 1, 0]); // dummy farm => list is never empty &

 // acts as a marker; fid = 0, flexing = 1

 putVB(scrubList, [0, 0, 1, 0]); // dummy scrub process; sid = 0, fid = 0,

 // flexing = 1, amount = 0

 repeat

 {

 // Check for Job Requests

 // ======================

 try [getSV(jobRequest, [id, work, QoS], true)] then

 {

 getR(lockRS, 1); requestsSubmitted := requestsSubmitted + 1;

putR(lockRS, 1);

 // INITIALISE VARIABLES

 Tmax := QoSTime[QoS] + scrubTime;

 requestedMachines := rnd(work / QoSTime[QoS]) + 1;

 flexMachines := 0;

 scrubMachines := 0;

 // CHECK MACHINE AVAILABILITY

 getR(lockA, 1);

 try [idleMachines < requestedMachines] then

 {

 getVB(scrubList, [sid, fid, flexing, amount], sid == 0); //put marker at the

end

 putVB(scrubList, [sid, fid, flexing, amount]);

 sid := 1;

 while [sid != 0]

 {

 getVB(scrubList, [sid, fid, flexing, amount], flexing == 1);

 scrubMachines := scrubMachines + amount;

 putVB(scrubList, [sid, fid, flexing, amount]);

 }

 }

 etry [] then {}

 try [idleMachines + scrubMachines < requestedMachines] then

 {

 getVB(farmList, [fid, flexing, cost], fid == 0); //put marker at the end

 putVB(farmList, [fid, flexing, cost]);

 fid := 1;

 while [fid != 0]

 {

 getVB(farmList, [fid, flexing, cost], flexing == 1);

 putVB(farmList, [fid, flexing, cost]);

 try [fid != 0] then

 {

 syncV(flexingQuery, [fid], [farmFlexMachines]);

 flexMachines := flexMachines + farmFlexMachines;

 }

 etry [] then {}

 }

 }

 etry[] then {}

 // IF REQUEST CAN BE FULFILLED THEN CREATE FARM & ALLOCATE MACHINES

 try [idleMachines + scrubMachines + flexMachines >= requestedMachines] then

 {

 syncV(nextID, [], [fidNew]);

 entity(FARMPROCESS, farmProcess(#id, #fidNew, #work, #Tmax), 0); // id = cid

 putVB(farmList, [fidNew, 0, (work * QoSPrice[QoS])]);

 try [idleMachines >= requestedMachines] then

 {syncV(nextID, [], [sid]); entity(SCRUBMACHINES, scrubMachines(#sid,

#requestedMachines), 0); putVB(scrubList, [sid, fidNew, 0, requestedMachines]);

getR(lockIM, 1); idleMachines := idleMachines - requestedMachines; putR(lockIM,

1); requestedMachines := 0;}

 etry [idleMachines < requestedMachines && idleMachines > 0] then

 {syncV(nextID, [], [sid]); entity(SCRUBMACHINES, scrubMachines(#sid,

#idleMachines), 0); putVB(scrubList, [sid, fidNew, 0, idleMachines]); getR(lockIM,

1); idleMachines := 0; putR(lockIM, 1); requestedMachines := requestedMachines -

idleMachines;}

 etry [] then {}

 try [requestedMachines > 0 && scrubMachines > 0] then

 {

 getVB(scrubList, [sid, fid, flexing, amount], sid == 0); //put marker at

the end

 putVB(scrubList, [sid, fid, flexing, amount]);

 sid := 1;

 while [sid != 0 && requestedMachines > 0]

 {

 getVB(scrubList, [sid, fid, flexing, amount], flexing == 1);

 try [sid != 0] then

 {

 try [amount <= requestedMachines] then

 {putVB(scrubList, [sid, fidNew, 0, amount]); requestedMachines :=

requestedMachines - amount;} // delete original record

 etry [] then

 {putVB(scrubList, [sid, fidNew, 0, requestedMachines]);

putVB(scrubList, [sid, fid, 1, amount - requestedMachines]); requestedMachines :=

0;}

 }

 etry [] then {putVB(scrubList, [sid, fid, flexing, amount]);}

 }

 }

 etry [] then{}

 try [requestedMachines > 0] then

 {

 getVB(farmList, [fid, flexing, cost], fid == 0); //put marker at the end

 putVB(farmList, [fid, flexing, cost]);

 fid := 1;

 while [fid != 0 && requestedMachines > 0]

 {

 getVB(farmList, [fid, flexing, cost], flexing == 1);

 try [fid != 0] then

 {

 syncV(flexingQuery, [fid], [farmFlexMachines]);

 try [farmFlexMachines <= requestedMachines && farmFlexMachines > 0]

then

 {syncV(resInstr, [fid, releaseMachines, farmFlexMachines], []);

syncV(nextID, [], [sid]); entity(SCRUBMACHINES, scrubMachines(#sid,

#farmFlexMachines), 0); putVB(scrubList, [sid, fidNew, 0, farmFlexMachines]);

requestedMachines := requestedMachines - farmFlexMachines; putVB(farmList, [fid,

0, cost]);}

 etry [farmFlexMachines > requestedMachines] then

 {syncV(resInstr, [fid, releaseMachines, requestedMachines], []);

syncV(nextID, [], [sid]); entity(SCRUBMACHINES, scrubMachines(#sid,

#requestedMachines), 0); putVB(scrubList, [sid, fidNew, 0, requestedMachines]);

requestedMachines := 0; putVB(farmList, [fid, 1, cost]);}

 etry [] then {putVB(farmList, [fid, 0, cost]);}

 }

 etry [] then {putVB(farmList, [fid, flexing, cost]);}

 }

 }

 etry [] then {}

 }

 etry[] then{getR(lockJD, 1); jobsDenied := jobsDenied + 1; putR(lockJD, 1);}

 putSV(jobRequest, []);

 putR(lockA, 1);

 }

 // Check for Farm Expiry

 // =====================

 etry [getSv(aLeaseExpired, [id], true)] then

 {

 getR(lockA, 1);

 try [getVB(farmList, [fid, flexing, cost], fid == id)] then {}

 //remove farmList entry unless already removed

 etry [] then {}

 syncV(leaseExpired, [id], [amount]);

 getR(lockIM, 1); idleMachines := idleMachines + amount; putR(lockIM, 1);

 putR(lockA, 1);

 putSV(aLeaseExpired, []);

 }

 // Check for Farm Work Completion

 // =============================

 etry [getSv(aWorkCompleted, [id, state], true)] then

 {

 getR(lockA, 1);

 try[getVB(farmList, [fid, flexing, cost], fid == id)] then

 {

 syncV(workCompleted, [id, state], [valid, amount]);

 try [valid == 1] then

 {

 getR(lockIM, 1); idleMachines := idleMachines + amount; putR(lockIM, 1);

 revenue := revenue + cost; //record revenue

 // & delete farmList entry

 }

 etry [] then {putVB(farmList, [fid, flexing, cost]);} //invalid msg

 }

 etry [] then {} // farm has been released already!

 putR(lockA, 1);

 putSV(aWorkCompleted, []);

 }

 // Check for Farm Liveness Queries

 // ===============================

 etry [getSV(farmAlive, [id], true)] then

 {

 getR(lockA, 1);

 try [getVB(farmList, [fid, flexing, cost], fid == id)] then

 {putVB(farmList, [fid, flexing, cost]); putSV(farmAlive, [1]);}

 etry [] then

 {putSV(farmAlive, [0]);}

 putR(lockA, 1);

 }

 // Dummy Sync to start Flexing Routine

 // ===================================

 etry [getSV(flex, [], true)] then {putSV(flex, []);}

 // After that an Allocator msg has been processed, allocate any free machines

 // for flexing. (This can be optimised further by allocating the machines to

 // more than one farm.)

 // ==

 try [idleMachines > 0] then

 {

 getR(lockA, 1);

 getVB(farmList, [fid, flexing, cost], fid == 0); //put marker at the end

 putVB(farmList, [fid, flexing, cost]);

 // CHOOSE THE FARM WITH THE LONGEST FLEXING TIME ESTIMATE

 lifeExpectancy := 0;

 maxLifeExpectancy := 0;

 fidFlex := 0;

 fid := 1;

 while [fid != 0]

 {

 getVB(farmList, [fid, flexing, cost], true);

 putVB(farmList, [fid, flexing, cost]);

 try [fid != 0] then

 {

 syncV(workQuery, [fid], [farmWorkLoad, farmMachines]);

 try [(farmMachines > 0)&&(farmWorkLoad/farmMachines > scrubTime)] then

// check farm is still alive after scrubbing

 {

 lifeExpectancy := (farmWorkLoad - farmMachines * scrubTime) /

(farmMachines + idleMachines);

 try [lifeExpectancy > maxLifeExpectancy] then {fidFlex := fid;

maxLifeExpectancy := lifeExpectancy;}

 etry [] then {}

 }

 etry [] then {}

 }

 etry [] then {}

 }

 putR(lockA, 1);

 // SCRUB MACHINES AND FLEX

 try [fidFlex != 0] then

 {

 syncV(nextID, [], [sid]);

 entity(SCRUBMACHINES, scrubMachines(#sid, #idleMachines), 0);

 putVB(scrubList, [sid, fidFlex, 1, idleMachines]);

 getR(lockIM, 1); idleMachines := 0; putR(lockIM, 1);

 }

 etry [] then {}

 }

 etry [] then {}

 }

}

// ==============

// Run Simulation

// ==============

entity(MONITOR, monitor, 0);

entity(ALLOCATOR, allocator, 0);

t := 101; do numClients {entity(CLIENT, client(#t), 0); t := t + 1;}

entity(NUMBERSERVICE, numberService, 0);

hold(runtime);

close;

