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Abstract 

 

This paper presents a case study of business 

and systems modelling for a Utility Computing 

service. Our analysis is focused mainly on 

service pricing, resource flexing, and costs 

related to preventive security measures. We 

further present a discrete event model of a 

Utility Computing service, and show how the 

information obtained from such a model can aid 

business and design decisions. 
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1. Introduction 

 

Utility Computing is expected by many 

technologists to be one of the next major 

sources of income in the IT services market. 

While a considerable number of providers 

already hit the market, others are still studying 

the full potential of utility computing services. 

Most of the research is focused on the possible 

business models and their pricing, architecture 

of the infrastructure, and ways of securing 

utility computing services. Because of the many 

possible alternatives in designing and offering a 

utility computing service, we propose a 

modelling methodology to explore these 

possibilities and their interaction.  We make use 

of Demos 2000 [2] as our modelling and 

simulation platform. Our analysis is mainly 

focused on system scrubbing, flexing, and utility 

computing service pricing. 

 

2. Utility Computing 

 

Utility Computing is more of a different 

approach to computing resource than a new 

computing technology. The main idea is to offer 

computing resource as a utility on a pay-per-use 

basis, similarly to electricity and gas. Thus one 

no longer needs to invest in infrastructure, run 

it, maintain it, and secure it, in order to have 

computer resource at one’s disposal. A number 

of services are possible that fall under the Utility 

Computing paradigm. Data-oriented services 

offer bulk storage and bandwidth ― ideal for 

backup purposes for instance. Computation-

oriented services are, however, more common. 

These offer computational power normally on a 

per CPU hour basis, well-suited for movie 

rendering and other computationally intensive 

applications. At a higher level stand 

Application-oriented services. Here the service 

provider offers some proprietary software 

together with the necessary computer hardware 

on which to run it. Common examples of the 

applications offered are Customer Relationship 

Management Software (CRM), Database 

Management Systems, and e-Accounting 

software. 

Generally the infrastructure is located in a 

Data Centre where it can be managed and 

maintained easily by the service provider, and 

the client can access the resource remotely. In 



Computation-oriented services (on which we 

focus mainly in this text) the client can have 

different degrees of remote access. At one 

extreme is the Farm Renting model, in which 

the client is allocated a network of machines 

(alternatively referred to as a Farm) over which 

he has complete control. At the other extreme is 

the Job Submission model, in which the client is 

presented with a web interface with which he 

submits his application together with a control 

script. The client can then retrieve the results of 

the computation from the web interface. The 

Farm Renting model allows the client to debug 

his applications before and during the job 

execution, whereas in the Job Submission model 

the application needs to be free of any bugs. On 

the other hand, the Job Submission model 

presents less exposure and hence better security. 

Moreover, it allows for better use of the 

infrastructure, because farms need not be 

allocated in fixed sizes. A Resource Flexing 

scheme can be used to allocate idle resources for 

job computation during periods of low load. In 

general this should increase the amount of 

available resources for when the next job 

request arrives, thereby maximizing the overall 

throughput of the infrastructure. 

 

3. Securing the Utility Computing 

Infrastructure 

 

The Utility Computing market is already a 

rather competitive market with a number of 

providers that offer a range of different services. 

Security is not yet, however, a major issue. 

Many providers claim that their services are 

secure but none of them specifies in detail the 

security measures that they employ. It is almost 

certain that when utility computing becomes 

more ubiquitous, a number of security incidents 

will occur in which clients will experience 

significant financial losses and service providers 

will suffer damage to their reputations. So, at a 

time when the utility computing market will be 

even more competitive, trust might be the 

discriminating factor between service providers. 

A number of security measures are possible in 

order to secure a utility computing 

infrastructure. Amongst others, there are: 

scanning of uploads against malware, 

encryption and authentication services between 

machines (through IPsec, TLS, or SSH for 

instance), farm separation (through 

routers/firewalls and/or vlans), IDS/IPS/AIS, 

and system scrubbing. In our analysis, we have 

focused mainly on system scrubbing, and 

categorized it on four different levels. 

 

• System Reuse: This offers the least amount 

of protection. Here the machine is presented 

to the client with a used system where the 

client is allocated a new user account on the 

system with the previous users’ accounts 

disabled. Vulnerabilities in the operating 

system could allow previous users to infect 

the system with malware, or allow the 

current user to access previous users’ data. 

In the former case, the risk can be mitigated 

by scanning the uploaded data. Apart from 

confidentiality breaches, malware can also 

degrade the machines’ performance. It is 

worth mentioning that if previous users 

delete (without overwriting) their data, then 

it becomes accessible to subsequent users. 

While if they retain it, it can’t be accessed 

directly by another user. 

 

• System Refreshing:  Here the client is 

offered a machine with a freshly installed 

system. This in principle should eliminate 

the risk that the system is infected with 

malware and ensures that the system 

operates at its maximum performance. 

However the client may still recover data 

stored by the previous clients. 

 

• Clearing: This refers to the removal of data 

so that it may not be reconstructed using 

normal system capabilities (i.e., not through 

physical access to the media). For this 

purpose, a single overwrite of all the 

memory space is normally enough. This 



process is more intensive in comparison to a 

system refresh where only the File 

Allocation Table is erased before installing 

the operating system.  

 

• Sanitization: This is intended to protect 

against data recovery even in the event that 

the attacker has physical access to the 

media. This is normally accomplished 

through multiple overwrites or degaussing. 

 

 Clearing and Sanitization do not refer 

exclusively to secondary storage. Main memory 

and other memory buffers (such as the network 

card’s memory buffer) may contain sensitive 

information as well.  In [1], the United States 

Department of Defence defines a Sanitization 

Matrix which lists procedures suitable for 

clearing and sanitizing several storage media.   

 

4. Pricing a Utility Computing Service 

 

As in any other utility service, the business 

model employed and the service pricing play a 

pivotal role in its success. The business model 

has to suit the customers’ needs in terms of 

accessibility, scalability, and usability amongst 

others. Most prominent are the Subscription and 

the Metered Usage business models. Hybrids of 

these models are also common – Metered 

Subscription is commonly employed by Internet 

Service Providers and Mobile Network 

Providers.  A more detailed discussion of 

business models for utility computing services 

can be found in [3]. 

 In [5], Low and Byde propose a pricing 

strategy based on auction. It is claimed that this 

scheme should keep a balance between supply 

and demand. There are, however, some subtle 

differences between traditional auction-based 

markets (such as a vegetable market) and the 

utility computing market. In utility computing, 

the consumption of goods may stretch over a 

considerable time span. Thus the present 

demand would affect the future supply and not 

just the present one. An auction based market is 

comparable to a feedback control system. A 

delay in the feedback loop reduces the system’s 

stability resulting in an oscillatory behaviour 

which deviates from the equilibrium point. 

Another difference is that buyers may arrive 

sparsely in which case a buyer is unlikely to 

have any competitors or else the bidding stage 

has to be prolonged thereby degrading the 

service accessibility. Additionally, an auction 

scheme fails to take into account the risk 

incurred in accepting a relatively small job 

request, and then be unable to fulfil a more 

sizeable (and more profitable) job request at a 

later stage. In [4], Paleologo points out the 

inadequacy of a traditional Cost-Plus pricing 

methodology for utility services. Paleologo 

suggests a Price-at-Risk pricing methodology 

which takes into account the uncertainty in the 

pricing decision. 

Our contribution is to demonstrate how 

computer simulation, based on executable 

models [2], can aid the pricing decision stage. 

We have built a model of a utility computing 

service. The model can be used for instance to 

calculate parameters such as the Capacity and 

the Multiplexing Gains used in the Price-at-Risk 

methodology. It can be used to quantify the gain 

obtained from a flexing strategy, or the costs of 

including one of the system scrubbing schemes 

discussed earlier. In our model, we associate a 

Service Level with each job request. This 

determines the amount of resources to be 

allocated for the job. In general the faster a job 

is computed the better for the client. Thus 

clients will demand services that require large 

amounts of resource for relatively short periods. 

Such a demand profile tends to reduce the 

effective capacity of the infrastructure. In view 

of this we recognise some appropriate properties 

for a just pricing scheme.  

 

• It should encourage a constant load and 

discourage an erratic load pattern.   

• The cost to compute a job should be 

proportionate to its size. 



• The cost to compute a job should increase as 

the quality of service improves. 

 

We have implemented two similar pricing 

schemes that follow these guidelines. 

 

Scheme #1 

 

A price is paid per CPU-hour which depends 

on the Service Level. The Service Level in turn 

determines how many machines (on average) 

will be allocated for the job. A possible flaw of 

this scheme is that a client can split his job into 

smaller ones, submit them simultaneously as 

separate jobs, and process them at a lower 

quality of service. Hence he effectively gets the 

same Service Level at a lower price. For 

instance assume that: 

 

Service 

Level 

Machines 

Allocated 

Cost per 

CPU-hour 

1 10 £1.00 

2 50 £1.20 
 

Table 1. 

 

Client A submits a 1000 CPU-hour job at 

Service Level 2. His job takes 20 hours and is 

charged 1200 Pounds. 

 

Client B splits his 1000 CPU-hour job into five 

200 CPU-hour jobs and submits them 

simultaneously at Service Level 1. This takes 20 

hours and he is charged only 1000 Pounds. 

 

Scheme #2  

 

A price is paid per CPU-hour which depends 

on the Service Level. The Service Level 

determines the amount of time taken to compute 

the job. So the number of allocated machines 

depends also on the job size. Of course, not 

every job request can be supplied with the 

highest Service Level. Bigger jobs get better 

value for money.  This might seem unfair but is 

reasonable if we consider that the client should 

always get a better service than he would get if 

he were to invest in infrastructure of his own.  

 

5. The Model 

 

The model was implemented using the 

Demos 2000 modelling language [2]. The code 

for the model is given in the Appendix. Demos 

2000 is a semantically justified modelling 

language developed by Birtwistle, Christodolou, 

Taylor, and Tofts [2]. Our model consists of 

four main entities: Clients, Farms, Scrubbing 

Processes, and the Allocator. 

 

 

 
Figure 1. 

 

The client’s sole purpose is to generate job 

requests. Each client makes requests 

independently, where the time interval between 

each request is governed by an exponential 

distribution. A job request consists of two 

Farm 1 

Farm 2 

Farm 3 

Machine Pool 

Scrub 

Scrub 

Scrub List 

Farm List 

Allocator 

Client A Client B 



parameters:  a job size W in CPU-hours and a 

Service Level QoS. The QoS is interpreted in 

accordance with the pricing scheme employed, 

but in general the higher the QoS the faster the 

job computation. 

Farms are created by the Allocator entity in 

response to successful job requests from clients. 

Each farm corresponds to a single job, after 

which the farm is released on job completion. 

The farm process is implemented as a loop 

which continuously waits for instructions (in the 

form of syncs) mainly from the Allocator. Five 

instructions are defined.  

 

1. Lease Expired signals that the time allocated 

for the job has come to an end. In response 

to this, the farm releases its machines and 

halts. 

2. Work Completed signals the event that the 

job has been completed, in which case the 

farm releases its machines but continues to 

exist until a Lease Expired message is 

received. A state parameter is included to 

indicate the freshness of the message. The 

signal is fresh if the state parameter matches 

the current state of the farm.  

3. Resource Instruction instructs the farm to 

take or release a number of machines. A 

Resource Instruction increments the current 

state of a farm and reschedules a new Work 

Completed instruction. 

4. Flexing Query interrogates the farm for any 

flexing machines that it currently holds and 

can return back to the Allocator in order to 

fulfill job requests. 

5. Work Query interrogates the farm for the 

amount of work in CPU hours needed to 

complete the job. This information is used 

by the Allocator to determine to which farm 

the idle machines should be allocated for 

flexing.  

 

Scrubbing Processes are created by the 

Allocator in order to scrub a set of machines, 

before they are allocated to a farm. Machines 

are grabbed from the resource pool and held by 

a Scrubbing Process for a period of time defined 

by the model parameter scrubTime. Each of the 

four scrubbing schemes described earlier can be 

modeled by varying this parameter. On 

completion the Scrubbing Process would 

consult the Scrub List to determine to which 

farm(s) it should forward the machines. Finally 

the Scrubbing Process would release the 

machines, send the corresponding Resource 

Instruction signals to the intended farms, and 

terminate. 

The Allocator is the central entity in the 

model, and controls most of the remaining 

entities. Its main responsibilities are: processing 

job requests, managing and flexing resources, 

and maintain records (such as the Farm List and 

the Scrub List). The flexing strategy adopted in 

the model uses a single-farm flexing algorithm. 

In the event that a set of machines are idle, the 

Allocator consults the Farm List and 

interrogates every farm with a Work Query. The 

idle machines are all allocated to the farm with 

the longest life expectancy. The life expectancy 

L of a farm F having a workload WF and MF 

machines is given by: 

 

L = (WF - MF × TS) / (MF + MI) 

 

where MI = Idle Machines and Ts = Scrub Time. 

The scheme is zero-risk as each farm is always 

allocated enough machines to complete the job 

in the allotted time span. 

The basic operation of the model is depicted 

in Figure 1, showing the flow of information 

between entities and how machines progress 

through their cycle. Clients submit job requests 

(W, QoS) to the Allocator. The Allocator 

determines the number of machines required to 

fulfill the request and checks how many 

machines are available. It starts by checking 

how many machines are idle. If these are not 

enough it consults the Scrub List for any 

machines destined for flexing. If the machines 

destined for flexing together with the idle 

machines do not add up to the required amount, 

the Allocator consults the Farm List for farms 



which have flexing machines and sends them a 

Flexing Query. The farms reply with the amount 

of machines that they can release (and still 

complete their job in time). If the total number 

of machines is enough to fulfill the request a 

farm is allocated, otherwise the job request is 

denied. A  Scrubbing Process is created to clean 

the idle machines and the machines retrieved 

from other farms, while the machines retrieved 

from other Scrubbing Processes are redirected to 

the new farm by amending the Scrub List. The 

Allocator loops indefinitely waiting for job 

requests and other messages (such as job 

completion notifications). Each time it is 

inquired it checks for any idle machines and 

goes through the flexing subroutine.  

 

6. Results   

 

The model has various potential 

applications. Some of these are: 

 

• To determine the probability that an amount 

of machines will be enough to cater for a 

certain demand distribution; 

• To calculate the gain in capacity that can be 

attained by a particular flexing strategy; 

• To determine how distinct Service Levels 

should be priced; 

• To quantify the impact of implementing a 

scrubbing scheme in a flexed architecture; 

• To estimate parameters necessary for the 

Price-at-Risk methodology; 

• To provide insight for SLA design. 

 

QoS Job Duration Probability Price 

1 6 Months 0.05 £ 0.10 

2 4 Months 0.15 £ 0.14 

3 2 Months 0.15 £ 0.20 

4 1 Month 0.20 £ 0.30 

5 2 Weeks 0.25 £ 0.40 

6 1 Week 0.10 £ 0.60 

7 3 Days 0.06 £ 0.90 

8 1 Day 0.04 £ 1.50 
 

Table 2. 

 

The sample model found in the Appendix was 

run a number of times, each with a different 

amount of machines. The Pricing scheme used 

was that described in scheme #2 where the price 

of each Service Level is listed in Table 2. The 

probability associated with each Service Level 

is the probability that a job request demands that 

Service Level. Figure 2 depicts a plot of the 

revenue attained by each run as the number of 

machines is increased. The experiment was 

repeated for a Scrub Time value of 1 hour 

instead of 5 hours, and once again with no 

flexing. Figure 3 represents the same three 

experiments but the abscissa represents the 

percentage of jobs denied. 
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Figure 2. 

 

Jobs Denied vs Machines

0

10

20

30

40

50

60

70

80

90

100

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

8
5
0
0

9
0
0
0

9
5
0
0

1
0
0
0
0

Amount of Machines

Jobs Denied (%)

Flexed,Ts=5hrs Flexed,Ts=1hr NotFlexed,Ts=5hrs  
 



Figure 3. 

 

It can be seen from Figure 2 that the red and 

blue plots attain the maximum possible revenue 

while the green plot approaches this maximum 

more slowly. A small increase in revenue due to 

a reduced Scrub Time is also evident. Instead of 

contrasting the revenue attained by each 

configuration, we can make a comparison in 

terms of investment. In particular we can 

compare the amount of infrastructure required to 

fulfill the same amount of requests and hence 

attain the same revenue. For instance from 

Figure 3 we can see that for a flexed 

configuration with 5000 machines the job denial 

ratio is 7.9 %. On the other hand the non-flexed 

configuration requires 6000 machines to attain 

an almost equivalent job denial ratio of 6.7 %. 

Hence in this scenario an increase in investment 

of 20% is required to attain the same revenue as 

a flexed architecture. 
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Figure 4. 

 

As mentioned earlier, high QoS values 

diminish the effective capacity of the 

infrastructure. This, of course, should be 

reflected in the service pricing. Our model can 

be used to quantify the effective capacities 

attained by each QoS, and hence determine a 

fair price for each Service Level. The model 

was adjusted such that each QoS is priced at 

10p/CPUhr. Then it was run eight times, where 

in each run all job requests were processed at 

one particular Service Level. Figure 4 shows the 

revenue attained for each Service Level. As a 

starting point for a fair pricing scheme, we 

could adjust the price of each Service Level 

such that all bars attain the same revenue. For 

instance according to these results, Service 

Level 8 should cost three times as much as 

Service Level 7. 

A rather unexpected effect, portrayed in 

Figure 4, is that in going from Service Level 4 

down to Level 1, the revenue is seen to 

decrease. In our model the client pays for the 

service on job completion. The simulation 

runtime here is two years, and the job 

processing times vary from 1 day to 6 months, 

depending on the Service Level. Thus, at lower 

Service Levels there is a greater amount of work 

which is not yet paid for at the end of the run. 

This situation might amount to a serious cash-

flow problem. On top of this, one can add 

inflation and maintenance costs, which also 

increase as computation intervals get longer. So, 

if clients are to pay on job completion, it may 

not be viable to offer Service Levels between 1 

and 4. Alternatively, one could circumvent this 

problem by changing to a business model in 

which the client pays either in advance or 

periodically until the job is completed.  

 

7. Related Work 

 

A good summary of the various pricing and 

business models that have been proposed for 

utility computing can be found in [7]. Oceano, 

described in [8], is a utility computing 

infrastructure prototype developed at IBM. 

Including features such as scrubbing and 

flexing, Oceano proves to be quite in line with 

our utility computing model, although it is 

intended for web services rather than 

computation services. Yu, Buyya, and Tham [6] 

suggest a cost-based scheduling scheme in order 

to improve the internal workflow of a job. 

Potentially there might be scope to augment this 

scheme with a flexing strategy. 

 



8. Conclusions and Future Work 
 

We demonstrated some of the potential that 

discrete event modelling holds for economic 

studies in relation to Information Technology 

and Information Security. In this paper we 

examined the case of Utility Computing, and 

showed how our simple model can help in 

business decisions, as well as exploring a bigger 

fraction of the possibility space. 

In our analysis we aimed to keep the model 

as simple as possible. Two issues that are 

overlooked in this model are Farm 

Fragmentation and the Atomic Transaction 

nature of distributed jobs. The flexing algorithm 

moves machines from farm to farm without any 

notion of machine location, resulting in Farm 

Fragmentation. Mainly this is due to the 

difficulty in associating location with resource 

elements in DEMOS 2000. Thus our model does 

not represent the network traffic overhead which 

may result from a particular flexing algorithm. 

Secondly, distributed jobs are normally 

composed of smaller atomic transactions. 

However in the model it is assumed that job 

computation can be split into arbitrarily small 

transactions. By stepping the Allocator entity in 

discrete time and some other modifications it 

should be easy to include this in the model. 

Another limitation is that the implemented 

flexing strategy assumes jobs are arbitrarily 

distributable. Unfortunately this applies only to 

a limited set of problems, such as an exhaustive 

search of a cryptographic key. Therefore the 

20% increase in infrastructure utilization 

mentioned in section 6 is essentially an upper 

bound of the flexing gain that the implemented 

flexing algorithm can attain. Thus if the cost of 

implementing such a flexing scheme is more 

than the cost of increasing the computing 

infrastructure by 20%, then such a scheme is 

obviously not viable.  

Possible directions for future work could be 

to amend the model to portray these factors. The 

flexing strategy could be upgraded to a 

multiple-farm flexing scheme where idle 

machines are distributed among multiple farms 

rather than one farm. Risky flexing, where some 

jobs may not be completed on time, can also be 

investigated. The model could be amended to 

include maintenance and upgrading costs for a 

more thorough business continuity study. Jobs 

could be portrayed by a more general model, 

such as the one presented in [6]. Finally, it 

should be noted that the model can be easily 

adapted to portray other utility computing 

services, such as Web Services. 
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Appendix 
 

//===================================================================== 

// Utility Computing Model: Allocator Version 2.5c (Single Farm Flexing  

// + Revenue + Pricing Scheme #2) 

//===================================================================== 

// 

// Jean Paul Degabriele David Pym 

// 

// 7th March 2007 
 

 

 

// Basic Model Framework 

// ===================== 

// 

// Clients submit job requests of a certain size in CPU-hours, 

// and a maximum computation time, determined by the QoS. 

// The Resource Allocator evaluates the request and if it can 

// be satisfied a farm is allocated to compute the job. In order 

// to maximise resource utilisation, the Resource Allocator is 

// allowed to flex the resources between farms. 

//  

// 

// Notes specific to this version 

// ============================== 

// 

// The flexing algorithm is very crude. The free machines are allocated 

// as a chunk to one farm only. Each client submits job requests of a  

// certain size in CPU-hours, and specifies a maximum computation time. 

// The allocator flexes the resources so as to maximise their 

// utilisation. 

 

 

 

// ======================== 

// Parameter Initialisation 

// ======================== 

 

 

// Scaling Constants (hrs = timing unit) 

// ===================================== 

 

   cons hrs    = 1; 

   cons mins   = hrs/60; 

   cons secs   = mins/60; 

   cons msecs  = secs/1000; 

 

   cons days   = 24 * hrs; 

   cons weeks  = 7 * days; 

   cons months = 28 * days; 

   cons years  = 365 * days; 

 

 



// Parameter Constants 

// =================== 

 

   cons null = 0; 

 

   cons instrLeaseExpired = 1; 

   cons instrWorkCompleted = 2; 

 

   cons takeMachines = 3; 

   cons releaseMachines = 4; 

 

  

// Model Parameters 

// ================ 

 

   cons runtime      = 1 * years; 

   cons numMachines  = 5000; 

   cons numClients   = 10; 

 

   cons scrubTime    = 5 * hrs; 

 

 

// Stochastic Parameters 

// ===================== 

 

   cons requestInterval = negexp(100 * hrs); 

   cons requestSize = puni(10000, 100000); // Job Size (work in CPUhrs) 

   cons serviceLevel = pud[(0.05,1),(0.15,2),(0.15,3),(0.2,4),(0.25,5), 

   (0.1,6),(0.06,7),(0.04,8)];      // Quality of Service 

 

 

// Pricing Parameters 

// ================== 

 

   cons QoSPrice[1] = 0.10; 

   cons QoSPrice[2] = 0.14;  

   cons QoSPrice[3] = 0.20; 

   cons QoSPrice[4] = 0.30; 

   cons QoSPrice[5] = 0.40; 

   cons QoSPrice[6] = 0.60; 

   cons QoSPrice[7] = 0.90; 

   cons QoSPrice[8] = 1.50; 

 

   cons QoSTime[1] = 6 * months; 

   cons QoSTime[2] = 4 * months; 

   cons QoSTime[3] = 2 * months; 

   cons QoSTime[4] = 1 * months; 

   cons QoSTime[5] = 2 * weeks; 

   cons QoSTime[6] = 1 * weeks; 

   cons QoSTime[7] = 3 * days; 

   cons QoSTime[8] = 1 * days; 

 

 

// Universal Variables 

// =================== 

 

   var t = 0; 



   var clock = 0; 

   var idleMachines = numMachines; 

   var scrubbingMachines = 0; 

   var requestsSubmitted = 0; 

   var jobsCompleted = 0; 

   var jobsDenied = 0; 

   var revenue = 0; 

 

 

// Resources 

// ========= 

 

   res(machines, numMachines);    // current pool of unassigned machines  

                                  // available for work. 

   res(lockIM, 1); 

   res(lockSM, 1); 

   res(lockRS, 1); 

   res(lockJC, 1); 

   res(lockJD, 1); 

   res(lockA, 1);      // group of mutually exclusive transactions 

 

 

// Bins 

// ==== 

 

   bin(farmList, 0); 

   bin(scrubList, 0); 

 

 

// ================= 

// Class Definitions 

// ================= 

 

 

class client (cid) = { 

 

  local var work    = 0;          // Amount of CPU Hrs 

  local var QoS     = 0; 

   

  repeat { 

     

    hold(requestInterval); 

     

    work := requestSize; 

    QoS := serviceLevel; 

       

    syncV(jobRequest, [cid, work, QoS], []); 

  } 

} 

 

 

 

class farmProcess(owner, argFid, work, argTmax) = { 

 

// After job completion the farm is kept alive with state stop == 1  

// in order to cater for any 'takeMachine' instructions from ScrubProcesses 

   



  local var startTime = DEMOS_TIME; 

  local var lastTime = startTime; 

  local var workRemaining = work; 

  local var lifeExpectancy  = 0; 

  local var farmMachines  = 0; 

  local var flexMachines = 0; 

  local var stop = 0; 

  local var currentState = 1; 

 

  local var recipient = 0; 

  local var state = 0; 

  local var action = 0; 

  local var amount = 0; 

 

  local var fid = argFid; 

  local var Tmax = argTmax; 

 

 

  entity(LEASEEXPIRED, scheduleInstr(#fid, instrLeaseExpired, null, #Tmax), 0); 

//schedule lease expiry 

 

  while [stop < 2] 

  { 

 

 

    try[getSv(leaseExpired, [recipient], recipient == fid)] then 

    { 

      try [stop < 1] then 

      { 

        putR(machines, farmMachines); 

        putSV(leaseExpired, [farmMachines]); 

      } 

      etry[] then {putSV(leaseExpired, [0]);} //farm was already released 

 

      stop := 2;  

    } 

 

 

 

    etry[getSv(workCompleted, [recipient, state], recipient == fid)] then 

    { 

      try[currentState == state] then // check instruction is valid 

      { 

        getR(lockJC, 1); jobsCompleted := jobsCompleted + 1; putR(lockJC, 1); 

        putR(machines, farmMachines); 

        putSV(workCompleted, [1, farmMachines]); 

        farmMachines := 0; 

        stop := 1; 

      } 

      etry[] then {putSV(workCompleted, [0, 0]);} 

    } 

 

 

 

    etry[getsV(resInstr, [recipient, action, amount], recipient == fid)] then 

    { 



      workRemaining := workRemaining - (farmMachines * (DEMOS_TIME - lastTime)); 

//recalculate remaining work 

      lastTime := DEMOS_TIME; 

 

 

      try [action == takeMachines] then  

      { 

        try [stop == 0] then  

        {getR(machines, amount); farmMachines := farmMachines + amount;} 

 

        // If farm has been released, then forward machines to pool and start 

Allocator's flexing routine 

        etry [] then {getR(lockIM, 1); idleMachines := idleMachines + amount; 

putR(lockIM, 1); syncV(flex, [], []);} 

      } 

 

      etry [] then 

      { 

        putR(machines, amount); 

        farmMachines := farmMachines - amount; 

      } 

 

      currentState := currentState + 1; 

 

 

      try [(farmMachines > 0) && (stop < 1) ] then 

      { 

        lifeExpectancy := workRemaining / farmMachines;       

        entity(WORKCOMPLETED, scheduleInstr(#fid, instrWorkCompleted, 

#currentState, #lifeExpectancy), 0); 

      } 

      etry [] then {} 

 

      putSV(resInstr, []); 

 

    } 

 

 

 

    etry[getsV(flexingQuery, [recipient], recipient == fid)] then 

    { 

      workRemaining := workRemaining - (farmMachines * (DEMOS_TIME - lastTime)); 

//recalculate remaining work 

      lastTime := DEMOS_TIME; 

 

      flexMachines := farmMachines - (workRemaining / (startTime + Tmax - 

DEMOS_TIME)); 

      try [flexMachines - rnd(flexMachines) > 0] then {flexMachines := 

rnd(flexMachines);} etry [] then {flexMachines := rnd(flexMachines) - 1;} 

      putSV(flexingQuery, [flexMachines]); 

    } 

 

 

 

    etry[getsV(workQuery, [recipient], recipient == fid)] then 

    { 



      workRemaining := workRemaining - (farmMachines * (DEMOS_TIME - lastTime)); 

//recalculate remaining work 

      lastTime := DEMOS_TIME; 

 

      putSV(workQuery, [workRemaining, farmMachines]); 

    } 

  } 

} 

 

 

 

class scrubMachines(id, amount) = { 

 

  local var stop = 0; 

  local var sid = 0; 

  local var fid = 0; 

  local var fidList = 0; 

  local var flexing = 0; 

  local var flexList = 0; 

  local var cost = 0; 

  local var amt = 0; 

 

  getR(lockSM, 1); scrubbingMachines := scrubbingMachines + amount;  

putR(lockSM, 1); 

  getR(machines, amount); 

  hold(scrubTime); 

  getR(lockSM, 1); scrubbingMachines := scrubbingMachines - amount;  

putR(lockSM, 1); 

  putR(machines, amount); 

 

  getR(lockA, 1); 

 

  while [getVB(scrubList, [sid, fid, flexing, amt], sid == id)] 

  { 

    syncV(resInstr, [fid, takeMachines, amt], []); 

 

    try [getVB(farmList, [fidList, flexList, cost], fidList == fid)] then 

{flexList := (flexList + flexing) - (flexList * flexing); putVB(farmList, 

[fidList, flexList, cost]);} 

    etry [] then {} // farm does not exist anymore, machines are forwarded to the 

machine pool 

  } 

 

  putR(lockA, 1); 

} 

 

 

 

class scheduleInstr(recipient, instruction, parameter, delay) = {              // 

schedule farm instructions 

 

  local var reply = 0; 

 

  hold(delay); 

 

  try [instruction == instrLeaseExpired] then 

  {syncV(aLeaseExpired, [recipient], []);} 



 

  etry [instruction == instrWorkCompleted] then 

  {syncV(aWorkCompleted, [recipient, parameter], []);} 

     

  etry [] then {} 

} 

 

 

 

class numberService = { 

  local var num = 100 + numClients; 

 

  repeat { 

    getSV(nextID, [], true); 

      num := num + 1; 

    putSV(nextID, [num]); 

  } 

} 

 

 

 

class monitor = { 

 

  local var lastIdleMachines = idleMachines; 

  local var idleWork = 0; 

 

  repeat { 

 

    hold(1); 

    clock := clock + 1; 

 

    trace("Monitoring at time instant %v", clock); 

    trace("idleMachines=%v", idleMachines); 

    trace("scrubbingMachines=%v", scrubbingMachines); 

    trace("requestsSubmitted=%v", requestsSubmitted); 

    trace("jobsDenied=%v", jobsDenied); 

    trace("jobsCompleted=%v", jobsCompleted); 

    trace("revenue=%v", revenue); 

 

    idleWork := idleWork + (idleMachines + lastIdleMachines)/2; 

    lastIdleMachines := idleMachines; 

    trace("idleFraction =%v", idleWork/(numMachines * clock)); 

  } 

} 

 

 

 

class allocator = { 

 

  local var Tmax = 0; 

  local var requestedMachines = 1; 

 

  local var id = 0; 

  local var state = 0; 

  local var valid = 0; 

  local var work = 0; 

  local var QoS = 0; 



 

  local var sid = 0; 

  local var fid = 0; 

  local var fidNew = 0; 

  local var fidFlex = 0; 

 

  local var flexing = 0; 

  local var cost = 0; 

  local var amount = 0; 

  local var farmMachines = 0; 

  local var farmFlexMachines = 0; 

  local var farmWorkLoad = 0; 

  local var lifeExpectancy = 0; 

  local var maxLifeExpectancy = 0; 

   

  local var flexMachines = 0; 

  local var scrubMachines = 0; 

 

 

  putVB(farmList, [0, 1, 0]);           // dummy farm => list is never empty & 

                                        // acts as a marker; fid = 0, flexing = 1 

  putVB(scrubList, [0, 0, 1, 0]);       // dummy scrub process; sid = 0, fid = 0, 

                                        // flexing = 1, amount = 0 

 

 

 

  repeat 

  { 

 

  // Check for Job Requests 

  // ====================== 

 

 

    try [getSV(jobRequest, [id, work, QoS], true)] then 

    { 

      getR(lockRS, 1); requestsSubmitted := requestsSubmitted + 1;  

putR(lockRS, 1); 

 

      // INITIALISE VARIABLES 

 

      Tmax := QoSTime[QoS] + scrubTime; 

      requestedMachines := rnd(work / QoSTime[QoS]) + 1; 

      flexMachines := 0; 

      scrubMachines := 0; 

 

 

      // CHECK MACHINE AVAILABILITY 

 

      getR(lockA, 1); 

      try [idleMachines < requestedMachines] then 

      { 

 getVB(scrubList, [sid, fid, flexing, amount], sid == 0); //put marker at the 

end 

 putVB(scrubList, [sid, fid, flexing, amount]); 

 

 sid := 1; 

        while [sid != 0] 



        { 

   getVB(scrubList, [sid, fid, flexing, amount], flexing == 1); 

   scrubMachines := scrubMachines + amount; 

   putVB(scrubList, [sid, fid, flexing, amount]); 

 } 

      } 

      etry [] then {} 

 

 

      try [idleMachines + scrubMachines < requestedMachines] then 

      { 

 getVB(farmList, [fid, flexing, cost], fid == 0); //put marker at the end 

        putVB(farmList, [fid, flexing, cost]); 

 

 fid := 1; 

        while [fid != 0] 

        { 

   getVB(farmList, [fid, flexing, cost], flexing == 1); 

          putVB(farmList, [fid, flexing, cost]); 

    

   try [fid != 0] then 

          {  

            syncV(flexingQuery, [fid], [farmFlexMachines]); 

     flexMachines := flexMachines + farmFlexMachines; 

          } 

          etry [] then {} 

        } 

      } 

      etry[] then {} 

 

 

 

  // IF REQUEST CAN BE FULFILLED THEN CREATE FARM & ALLOCATE MACHINES 

 

      try [idleMachines + scrubMachines + flexMachines >= requestedMachines] then 

      { 

 syncV(nextID, [], [fidNew]); 

 entity(FARMPROCESS, farmProcess(#id, #fidNew, #work, #Tmax), 0); // id = cid 

 putVB(farmList, [fidNew, 0, (work * QoSPrice[QoS])]); 

 

 

 try [idleMachines >= requestedMachines] then 

 {syncV(nextID, [], [sid]); entity(SCRUBMACHINES, scrubMachines(#sid, 

#requestedMachines), 0); putVB(scrubList, [sid, fidNew, 0, requestedMachines]); 

getR(lockIM, 1); idleMachines := idleMachines - requestedMachines; putR(lockIM, 

1); requestedMachines := 0;} 

 

 etry [idleMachines < requestedMachines && idleMachines > 0] then 

 {syncV(nextID, [], [sid]); entity(SCRUBMACHINES, scrubMachines(#sid, 

#idleMachines), 0); putVB(scrubList, [sid, fidNew, 0, idleMachines]); getR(lockIM, 

1); idleMachines := 0; putR(lockIM, 1); requestedMachines := requestedMachines - 

idleMachines;} 

 

 etry [] then {} 

 

 

 try [requestedMachines > 0 && scrubMachines > 0] then 



 { 

   getVB(scrubList, [sid, fid, flexing, amount], sid == 0); //put marker at 

the end 

   putVB(scrubList, [sid, fid, flexing, amount]); 

 

   sid := 1; 

          while [sid != 0 && requestedMachines > 0] 

          { 

     getVB(scrubList, [sid, fid, flexing, amount], flexing == 1); 

 

     try [sid != 0] then 

            { 

              try [amount <= requestedMachines] then 

       {putVB(scrubList, [sid, fidNew, 0, amount]); requestedMachines := 

requestedMachines - amount;} // delete original record 

 

       etry [] then 

       {putVB(scrubList, [sid, fidNew, 0, requestedMachines]); 

putVB(scrubList, [sid, fid, 1, amount - requestedMachines]); requestedMachines := 

0;} 

            } 

            etry [] then {putVB(scrubList, [sid, fid, flexing, amount]);} 

   } 

 } 

 etry [] then{} 

 

 

 try [requestedMachines > 0] then 

 { 

   getVB(farmList, [fid, flexing, cost], fid == 0); //put marker at the end 

          putVB(farmList, [fid, flexing, cost]); 

 

   fid := 1; 

          while [fid != 0 && requestedMachines > 0] 

          { 

     getVB(farmList, [fid, flexing, cost], flexing == 1); 

 

     try [fid != 0] then 

            { 

              syncV(flexingQuery, [fid], [farmFlexMachines]); 

 

       try [farmFlexMachines <= requestedMachines && farmFlexMachines > 0] 

then 

       {syncV(resInstr, [fid, releaseMachines, farmFlexMachines], []); 

syncV(nextID, [], [sid]); entity(SCRUBMACHINES, scrubMachines(#sid, 

#farmFlexMachines), 0); putVB(scrubList, [sid, fidNew, 0, farmFlexMachines]); 

requestedMachines := requestedMachines - farmFlexMachines; putVB(farmList, [fid, 

0, cost]);} 

 

       etry [farmFlexMachines > requestedMachines] then 

       {syncV(resInstr, [fid, releaseMachines, requestedMachines], []); 

syncV(nextID, [], [sid]); entity(SCRUBMACHINES, scrubMachines(#sid, 

#requestedMachines), 0); putVB(scrubList, [sid, fidNew, 0, requestedMachines]); 

requestedMachines := 0; putVB(farmList, [fid, 1, cost]);} 

 

              etry [] then {putVB(farmList, [fid, 0, cost]);} 

            } 



            etry [] then {putVB(farmList, [fid, flexing, cost]);} 

          } 

 } 

 etry [] then {} 

 

      } 

      etry[] then{getR(lockJD, 1); jobsDenied := jobsDenied + 1; putR(lockJD, 1);} 

 

      putSV(jobRequest, []); 

 

      putR(lockA, 1); 

    } 

 

 

 

  // Check for Farm Expiry 

  // ===================== 

 

 

    etry [getSv(aLeaseExpired, [id], true)] then 

    { 

      getR(lockA, 1); 

 

      try [getVB(farmList, [fid, flexing, cost], fid == id)] then {}  

      //remove farmList entry unless already removed 

      etry [] then {} 

 

      syncV(leaseExpired, [id], [amount]); 

      getR(lockIM, 1); idleMachines := idleMachines + amount; putR(lockIM, 1); 

 

      putR(lockA, 1); 

 

      putSV(aLeaseExpired, []); 

    } 

 

 

 

  // Check for Farm Work Completion 

  // ============================= 

 

 

    etry [getSv(aWorkCompleted, [id, state], true)] then 

    { 

      getR(lockA, 1); 

 

      try[getVB(farmList, [fid, flexing, cost], fid == id)] then 

      { 

        syncV(workCompleted, [id, state], [valid, amount]); 

        try [valid == 1] then 

        { 

          getR(lockIM, 1); idleMachines := idleMachines + amount; putR(lockIM, 1); 

          revenue := revenue + cost;                 //record revenue 

                                                     // & delete farmList entry 

        } 

        etry [] then {putVB(farmList, [fid, flexing, cost]);}   //invalid msg 

      } 

      etry [] then {} // farm has been released already! 



 

      putR(lockA, 1); 

      putSV(aWorkCompleted, []); 

    } 

 

 

 

 

  // Check for Farm Liveness Queries 

  // ===============================  

 

 

    etry [getSV(farmAlive, [id], true)] then 

    { 

      getR(lockA, 1); 

 

      try [getVB(farmList, [fid, flexing, cost], fid == id)] then 

      {putVB(farmList, [fid, flexing, cost]); putSV(farmAlive, [1]);} 

 

      etry [] then 

      {putSV(farmAlive, [0]);} 

 

      putR(lockA, 1); 

    } 

       

       

 

  // Dummy Sync to start Flexing Routine 

  // =================================== 

 

 

    etry [getSV(flex, [], true)] then {putSV(flex, []);} 

 

 

 

  // After that an Allocator msg has been processed, allocate any free machines 

  // for flexing. (This can be optimised further by allocating the machines to  

  // more than one farm.) 

  // ========================================================================== 

 

 

    try [idleMachines > 0] then 

    { 

      getR(lockA, 1); 

 

      getVB(farmList, [fid, flexing, cost], fid == 0); //put marker at the end 

      putVB(farmList, [fid, flexing, cost]); 

 

      // CHOOSE THE FARM WITH THE LONGEST FLEXING TIME ESTIMATE 

 

      lifeExpectancy := 0; 

      maxLifeExpectancy := 0; 

      fidFlex := 0; 

 

      fid := 1; 

      while [fid != 0] 

      { 



        getVB(farmList, [fid, flexing, cost], true); 

        putVB(farmList, [fid, flexing, cost]); 

 

        try [fid != 0] then 

        { 

          syncV(workQuery, [fid], [farmWorkLoad, farmMachines]); 

 

          try [(farmMachines > 0)&&(farmWorkLoad/farmMachines > scrubTime)] then 

// check farm is still alive after scrubbing 

          { 

            lifeExpectancy := (farmWorkLoad - farmMachines * scrubTime) / 

(farmMachines + idleMachines); 

            try [lifeExpectancy > maxLifeExpectancy] then {fidFlex := fid; 

maxLifeExpectancy := lifeExpectancy;} 

            etry [] then {}  

          } 

          etry [] then {} 

        } 

        etry [] then {} 

      } 

 

      putR(lockA, 1); 

 

      // SCRUB MACHINES AND FLEX 

 

      try [fidFlex != 0] then 

      { 

        syncV(nextID, [], [sid]); 

        entity(SCRUBMACHINES, scrubMachines(#sid, #idleMachines), 0); 

        putVB(scrubList, [sid, fidFlex, 1, idleMachines]); 

        getR(lockIM, 1); idleMachines := 0; putR(lockIM, 1); 

      } 

      etry [] then {} 

    } 

    etry [] then {} 

  } 

} 

 

 

 

// ============== 

// Run Simulation 

// ============== 

 

entity(MONITOR, monitor, 0); 

entity(ALLOCATOR, allocator, 0); 

t := 101; do numClients {entity(CLIENT, client(#t), 0); t := t + 1;} 

entity(NUMBERSERVICE, numberService, 0); 

 

hold(runtime); 

 

close; 

 

 

 

 

 

 


