O}

invent

DataBank: An Economics Based Privacy Preserving System
for Distributing Relevant Advertising and Content

Rajan M. Lukose, Mark Lillibridge
Information Services and Process Innovation Laboratory
HP Laboratories Palo Alto

HPL-2006-95
June 26, 2006*

distributed systems,
privacy,
cryptography,
economics,
advertising,
personalization,
search

A critical feature of successful new advertising models has been their
reliance on knowledge of various types of personal user data in order to
make advertisements relevant and useful. This has raised many concerns
about privacy and control over personal data. The preservation of
privacy would appear to be in direct conflict with the successful new
advertising models, which depend on knowledge of personal user data.

Here we present a system and its associated advertising model that shows
this need not be the case. DataBank is a system for the delivery of
relevant advertising (and content more generally) while preserving the
privacy of user data as much as possible. The system relies on an
economic pricing mechanism, similar in spirit to economic approaches to
spam, and a privacy-preserving targeting mechanism in order to achieve
relevance. We explicitly consider the possibility of payment of
compensation to consumers directly for the piecemeal use of their private
data. This variation raises the possibility of users "gaming the system"”, a
problem for which we provide a novel, efficient cryptographic solution.

* Internal Accession Date Only Approved for External Publication
© Copyright 2006 Hewlett-Packard Development Company, L.P.

DataBank: An Economics Based Privacy Preserving
System for Distributing Relevant Advertising and Content

Rajan M. Lukose and Mark Lillibridge
HP Labs
1501 Page Mill Road
Palo Alto, CA 94304

{rajan.lukose, mark.lillibridge}@hp.com

ABSTRACT

A critical feature of successful new advertising models has
been their reliance on knowledge of various types of per-
sonal user data in order to make advertisements relevant
and useful. This has raised many concerns about privacy
and control over personal data. The preservation of privacy
would appear to be in direct conflict with the successful new
advertising models, which depend on knowledge of personal
user data.

Here we present a system and its associated advertising
model that shows this need not be the case. DataBank is
a system for the delivery of relevant advertising (and con-
tent more generally) while preserving the privacy of user
data as much as possible. The system relies on an economic
pricing mechanism, similar in spirit to economic approaches
to spam, and a privacy-preserving targeting mechanism in
order to achieve relevance. We explicitly consider the possi-
bility of payment of compensation to consumers directly for
the piecemeal use of their private data. This variation raises
the possibility of users “gaming the system”, a problem for
which we provide a novel, efficient cryptographic solution.

Categories and Subject Descriptors

H.3.5 [Information Systems Applications]: Online In-
formation Services—Data sharing

General Terms

Economics, Algorithms

Keywords

privacy, spam, pricing, advertising, filtering, recommenda-
tions, commitment

1. INTRODUCTION

Advertising has emerged as a successful and robust busi-
ness model on the web that subsidizes the production of

many valuable aggregations of content and a wide variety of
services. One critical feature of the newer advertising mod-
els has been their reliance on knowledge of various types
of personal user data in order to make advertisements rel-
evant and useful. The simplest example is the successful
sponsored-search business model in which the data is sim-
ply the search terms entered.

As online services accumulate increasing amounts of lon-
gitudinal user profile data in centralized stores in order, at
least in part, to deliver more personalized advertisements,
the issue of privacy has become more important. The preser-
vation of privacy would appear to be in direct conflict with
the new lucrative business models, which depend on knowl-
edge of personal user data.

Here we present a system that shows that an effective
advertising model need not violate privacy. DataBank is a
system for the delivery of relevant advertising (and content
more generally) while preserving the privacy of user data as
much as possible. The system relies on an economic pric-
ing mechanism, similar in spirit to economic approaches to
email spam [9, 5], in order to achieve relevance. It is clear
that increasing the cost of sending messages, especially ad-
vertisements, will make sent messages more relevant to the
recipients. If this increase in relevance is not to occur by
simply reducing the number of messages sent, means must
be available to target messages only to recipients strongly in-
terested in them. Accordingly, DataBank provides a mecha-
nism that allows precisely targeting messages to users based
on their behavior, while simultaneously preserving privacy
as much as possible.

DataBank uses a very strong privacy model: all personal
user data is kept locally on the user’s computer. Only the
personal data necessary to charge advertisers is sent to a
DataBank server and then only when authorized by the user.
The user can see exactly what information will be released in
advance. Contrast our model with alternatives where users’
personal data is accumulated on central servers, which are
attractive targets for attackers.

We also explicitly consider the possibility of payment of
compensation to consumers directly for the piecemeal use of
their private data. This variation departs from most of the
prior literature on economic approaches to information dis-
tribution. It raises a set of new questions regarding the set
of economic equilibria that are likely to result. While a com-
plete analysis of these economic considerations is underway
and beyond the scope of this paper, we present heuristic ar-
guments that demonstrate the existence of interesting equi-
librium regimes. These regimes are made possible in part

by a novel, efficient cryptographic solution to the problem
of users “gaming the system”.

Our motivation in considering payments to users stems
from the observation that user data (especially behavioral
data) clearly has great economic value. Companies therefore
have strong incentives to gather as much personal data as
possible on users. This tendency need not necessarily be a
concern to privacy advocates since there are some economic
forces that motivate companies to be careful with the data
they collect [2]. Nevertheless, technological solutions that
allow some of the benefits of personalized, targeted, and
relevant advertising, while preserving user control of their
private data are worth exploring in our view.

Furthermore, we argue that some companies earn large
economic rents from advertisers for the valuable services
they provide based (in part) on their collection of user data.
But user data also belongs to the users who may themselves
wish to earn economic value from their own data. The Data-
Bank architecture allows exploring these issues more deeply.
Finally, given concerns about privacy, we believe that mech-
anisms such as DataBank may increase welfare for both ad-
vertisers and consumers by permitting and encouraging ex-
changes that would otherwise not occur.

The remainder of the paper proceeds as follows: In Sec-
tion 2, we review related work and place the contributions
of this paper into context. Section 3 presents an overview
of the DataBank system and architecture, introducing local-
client profile storage and querying, the charging system im-
plemented in our prototype, and discusses the incentive is-
sues that arise. Section 4 discusses the gaming problem
that can arise when users are compensated for viewing ads,
presents the options to ameliorate it, and explains a novel
solution for a restricted class of ads. Section 5 presents a
new and more efficient implementation of set commitment,
a cryptographic primitive needed by our gaming problem
solution. Finally, Section 6 concludes.

2. RELATED WORK

Prior research on economic approaches to solving the prob-
lem of spam email [9, 5] have demonstrated that the cost to
the sender of the communications channel has a strong effect
on the relevance of messages to recipients. Senders in these
proposals are motivated to target messages to recipients,
but the proposals typically leave unspecified the method by
which messages can be targeted in practice. Our system
implements the ability for senders to sort users into “types”
(required by Zandt [9]); moreover, these types can be chosen
so that they can be used to distinguish between recipients
based on the value of a given message to them (required by
Loder et al. [5]).

The DataBank architecture is designed to provide this ca-
pability without the wholesale release of real-time personal
data to centralized data stores. This is made possible by
bringing the queries to the data rather than the reverse,
and takes advantage of low bandwidth costs to do so. In
this regard, its operation is similar to that of the Shock sys-
tem [6], which used the same technique to target messages
while preserving privacy; Shock, however, relies on social
pressure to prevent spamming, which is known not to work
in large groups.

Commercial systems such as AllAdvantage.com have in
the past attempted to compensate users for viewing adver-
tising messages. These companies’ business models failed in

part because they did not have sufficient controls to restrict
users gaming the system.' In this paper we analyze the
gaming problem specific to compensating for clickthroughs,
and provide a novel, practical cryptographic solution.

Our cryptographic solution is related to prior work that
uses Merkle trees to commit to data sets [4, 8, 3]. How-
ever, because that work addresses applications such as time
stamping and efficient distribution of certificate revocation
information, it makes no attempt to preserve secrecy. Here
we are concerned as well with the secrecy, including zero-
knowledge, aspect of set commitment due to the privacy
concerns of our system. Micali et al. [7] considers the same
problem for database queries in general, but uses different
techniques. Our method favors efficiency over query richness
in order to meet our application needs.

3. THE DATABANK SYSTEM

DataBank is a messaging system which assumes the exis-
tence of advertisers, or content producers of any kind, who
are willing to pay to reach consumers with their advertise-
ments or content.

The DataBank system has user data privacy and control,
message relevance, and ease of use as its three main ob-
jectives. Data privacy and control are achieved by an ar-
chitecture that is, in our prototype implementation, device-
centric. That is, user profile data, which is descriptive of
users, is stored locally on client devices. Our prototype uses
client PCs as the devices.

3.1 Architecture

Figure 1 diagrams the basic architecture of DataBank.
There are three types of agents in the system: advertisers
(or producers of content of any kind), a broker, and clients
(associated with users). Each DataBank client device must
be running the DataBank software. This software operates
as a process running in the background that logs activity
of various kinds to a database stored on the client and as-
sociated with the user. This client profile can include any
information deemed useful. In our prototype software, the
client logs URLs visited by the user, search engine keywords
entered by the user, and software installed on the client.
Each of these different kinds of data is stored as a separate
type in the client database.

Messages from advertisers are sent to the broker. Each
message contains a query and a hyperlink with some short
descriptive text to an advertisement. Messages are thus
small and can be on the order of 1 KB. The broker gathers up
messages from the advertisers and periodically sends them,
when requested, to clients. All clients receive all (new) mes-
sages asynchronously, which explains the broadcast layer in
Figure 1. (Bandwidth requirements are discussed in more
detail in Section 3.2).

Upon receipt of a message, the client runs the enclosed
query against its local database. If the query is not satisfied
by the database, then the message is discarded. If the query
is satisfied, then the message is kept for future display to the
user (the prototype client interface will be described later).
Note that at this point, regardless of query satisfaction, the
privacy of the user is maintained: neither the broker or any
advertiser knows whether the query has been satisfied.

!See http://news.com.com/2100-1023-251949.html for more
information.

advertisers

advertiser advertiser advertiser

consumer Y,

\\ T attention v
0t : %
TvAs) ! B
[message | broker i !
query g) i '
advertisement ~_/ i !
B i !
i i
\ $ payments 4
I equal to i
. vAB) :
_ to consumers £
b 'y who view ads !
consumers may be . 0
presented with ad broadcast layer \ &
when the query / 3 .
matches profile ‘ z
and \
B'>=A
AN
\
\
4
T oy
e
client software client software| iclient software|
profile profile profile
A A
S o
PC - o=
consumers

Figure 1: The DataBank system.

To make the discussion concrete, suppose Volvo wishes
to target users looking to buy a safe SUV that are not al-
ready considering Volvo. Volvo accordingly might choose
to send a message to users who have searched on the term
“SUV safety” and have visited the domains “lexus.com” and
“acura.com”, but not the domain “volvo.com”. The adver-
tisement might consist of a web page describing the safety
features of Volvo’s new SUV. In this case, the query is easily
expressed in DataBank’s query language, and the message
also contains some descriptive text describing the advertise-
ment along with a URL to the full advertisement on the
manufacturer’s website.

Assuming a user’s profile matches the query described,
the user is notified through the client interface that a new
message has arrived. If, and only if, the user clicks on the
presented hyperlink to the advertiser’s website, is it possible
for the advertiser (and the broker) to know that the user has
matched the query. Optionally, the user may request to view
the query. The user may also simply discard the message
without following the hyperlink as well.

3.2 Bandwidth

In the DataBank system, the privacy requirement places
somewhat of a burden on the network, by broadcasting mes-
sages. As is often the case, the privacy requirement causes
a tradeoff with efficiency. Nevertheless, the bandwidth re-
quirements can be made modest and manageable.

The key issue is the average message size, and the rate at
which new messages are created. In the DataBank system,
we allow for targeting to occur based on reduced “factors”
as well as raw data. These factors are essentially pre-defined

semantic categories composed of lower level data elements
(e.g., the “car shopper” factor can exist in the client and is
a summarization of a more complex query based on URLs
visited or searches done, etc.). Factors reduce message size.

We estimate that a meaningful message can be as small as
300 bytes. Even if there are 10,000 new messages/day, the
bandwidth load on the client would only be 3 MB, which is
quite manageable, especially using a polite download scheme
over a broadband connection. On the server side, bandwidth
costs at current market prices are such that the cost per
month to support roughly 10 million users at 1,000 messages
per day is approximately $20K.

3.3 Payments

The system as described so far is susceptible to spam. We
define spam as an (untargetted) message that is likely to
be irrelevant to a very large fraction of its recipients. Up
to this point, there is no significant cost to a spammer for
sending a message with a query that trivially match every
user profile.

In the same spirit as some approaches to the problem of
spam email [9, 5], DataBank employs an economic approach
that makes the sending of messages by advertisers costly.
While there are a variety of ways to do this, each with their
own consequences on participant incentives, here we focus
on the method shown in Figure 1.

The DataBank client allows the user to set an individual
threshold “ask” price A. Advertisers, as a part of message,
must additionally set a “bid” price B that represents the
amount they are willing to pay per clickthrough for that
advertisement. In general, the broker may transform the bid
B to B’ = f(B) before forwarding the altered message to the
client. In addition to query satisfaction, only if B’ > A, will
the hyperlink to the advertisement be presented to the user.
Thus, if a user does not wish to see many advertisements,
she can set her threshold A very high (making it less likely
that B’ > A). Alternatively, she can set her threshold very
low if she is more inclined to see advertisements.

Given that per-click payments on search engines such as
Google can be often be several US dollars (and sometimes
tens of dollars; the average is approximately $0.60 [1]), Data-
Bank allows that a portion of the funds an advertiser pays
can go directly to the consumer. If a user chooses to click on
the hyperlink to the advertisement, she is entitled to a pay-
ment of V(A, B) once she clicks. To compensate the broker
for various costs (administrative, maintenance, legal, repu-
tational, etc.), the broker receives a payment T'(V (A, B)).

As an example of the choice of payment functions, let us
choose B = f(B) = B, V(A,B) = A, and T(V(A,B)) =
B — A. In this case, when a user with threshold A qualifies
for a message (i.e., her user profile satisfies the message’s
query) whose bid price B’ > A, and furthermore clicks on
the presented link to the advertisement, she is paid exactly
A. The advertiser is charged B, and the broker is paid B— A.

Note that in this simple case, there is a chance that B = A
so the broker receives 0. However, this problem can easily
be solved, for example, by using a bid transformation func-
tion in which the broker is paid a fixed fraction ¢ of B, and
the value of B transmitted with the message to the client is
actually the remainder B’ = (1 —¢)B. Then, in cases where
B’ > A, the broker receives the fixed fraction upon click-
through, in addition to the difference between the reduced
effective bid and ask prices.

3.4 Incentives

To summarize, under the scheme in Figure 1, advertisers
are able to target messages to users with great precision
based on their locally stored, private profile data. Users are
able to receive messages, while maintaining control of their
private data.

The threshold pricing scheme described in the previous
section is designed to create the right types of incentives for
advertisers and consumers, so that advertisers reach those
who are most likely to want to receive their messages, and
consumers receive messages that are most likely to be rel-
evant to them, while maintaining control over their private
data, and furthermore, monetizing their own data.

Advertisers naturally seek to minimize their costs and so
would like to lower B. Consumers, depending on the op-
portunity cost of their participation in the system, may ei-
ther seek to lower their asking price A (in order to make
money using the system, regardless of the intrinsic informa-
tion value of messages), or raise it to an appropriate level in
order receive useful information and compensation.

A formal economic analysis of the resulting equilibrium
(including laboratory experiments with human subjects) is
underway, and we provide here a heuristic analysis. For
users with relatively high opportunity costs for using the
system, we assume the cost of gaming the system will not
be worth their effort and time. However, for those with low
opportunity costs, gaming the system may be an attractive
proposition. Those users will be likely to lower their thresh-
old in the hopes of gathering many messages on which to
click.

However, if this behavior is prevalent, advertisers in equi-
librium will not send messages subject to such gaming since
they will not be receiving enough for their investment. The
question then becomes whether, in equilibrium, any mes-
sages are sent at all. This problem resembles the problem
of click fraud in current (highly successful) advertising busi-
ness models such as Google’s AdWords and AdSense pro-
grams. These business models survive because (apparently)
the problem of click fraud can be kept under control; adver-
tisers are aware of click fraud, and discount what they are
willing to pay to account for it.

We argue that messages will be sent in equilibrium as long
as targeting is effective in providing relevant, information-
ally rich messages to enough participants. The automat-
ically created profiles, which can in principle include any
data available to the client, are designed to allow for high-
quality targeting. Like the attention bond mechanism of
Van Alstyne et al. [5], the ability of senders to craft usefully
targeted messages is key.

It is also, of course, critical to make gaming difficult or
even impossible. It turns out that it can be made strictly
impossible, but only for a class of messages which are char-
acterized by the fact that their associated queries are unpre-
dictable by users. For messages outside that class, various
techniques can be used to ameliorate the problem, but we
believe it cannot be stopped completely. How to deal with
gaming is discussed more fully in Section 4

3.5 Interface

Our prototype implementation of DataBank is fully func-
tioning and runs on Microsoft Windows clients. The server
component of the system (the broker) runs on an open source
stack. Figure 2 shows the two components of the client inter-

DataBank 5
offers for Iohn
Safety of New SUVs -- $1.25
Volvo is known for safety. Click to
see objective safety data on the
newest Volvo SUV versus other SUVs.
hide preferances
thrashald L e et ey O A o et LN o oty e Lt okt]
$7.01 i
avoildble amount: $1.25 options

Al DataBank: 51.25 201 PM

Figure 2: The DataBank client interfaces.

face. The lower portion of the figure shows the always visible
indicator in the systray portion of the desktop which sum-
marizes the amount available to the user for clickthroughs.
The upper portion of the figure shows the main client inter-
face which is a small application window that appears when
the user clicks on the systray indicator.

As shown in the figure, the user can easily set her thresh-
old for the minimal clickthrough payment she is willing to
consider. In this case, the threshold is set to $1.01 and the
advertiser is willing to pay $1.25 for a clickthrough. (In this
version of the prototype, the broker receives no payment,
and V(A, B) = B.) The ad message is targeted in accor-
dance with the example discussed in Section 3.1. Thus, only
users who matched that specific query would have received
this message, and possible payment. Users can easily raise
their threshold using the slider if they wish to receive fewer
and more relevant messages. Through configuration options,
users are also easily able to delete their local profile database
as well as pause and restart logging.

Payments are implemented using the PayPal Web Services
API, using email addresses that are part of the configuration
settings of the client software. The server (broker) interface
is not shown. It straightforwardly allows the creation of
messages including bid price setting and query construction.

4. COMPENSATING USERS

Because advertisers are charged an appreciable amount
for each ad shown and ads may be precisely targeted, we
expect DataBank ads to be highly relevant to the users they
are shown to. Thus, users may wish to voluntarily watch

DataBank ads for free, although they may demand a higher
level of relevance (i.e., set a higher threshold) than adver-
tisers would prefer.

If we can offer users incentives for watching ads, we can
increase the benefit of DataBank to both users and adver-
tisers. To see this, consider a user that is willing to watch
ads costing their advertiser $10 for free. He has learned
from experience that cheaper ads are not relevant enough
for him. Now consider an advertiser that wishes to show an
advertisement worth $8 (i.e., the advertiser expects to make
$8 on average from showing the ad) to the user. While this
advertisement is likely not relevant enough to the user that
he is willing to watch it for free, he may well be willing to
watch it for a $1 incentive. By charging the advertiser $7, $1
of which is given to the user, we can make both the adver-
tiser and the user $1 better off than if no user incentive was
available, leaving the advertisement unseen. Incentives need
not be in cash; for example, $1 worth of frequent-flier miles
on the airline of the user’s choice could be offered instead.

However, offering incentives for watching ads if not done
with great care can lead to severe gaming problems that
destroy the utility of the DataBank system. If users can
earn valuable incentives through particular behaviors that
are targeted by incentive paying ads, they will be motivated
to game the system by performing those behaviors (perhaps
in an automated manner) solely to earn the incentives; this
breaks the linkage between those behaviors and the users’
receptiveness to the ads’ messages. While the previous ad-
vertisement may be worth $8 when shown to one of the users
it is targeted at, if there are nine gamers for every targeted
user, then the ad will be worth only $0.80 per clickthrough,
which is too little to pay the incentive from.

We know of three basic ways to address this gaming prob-
lem: choosing incentive types that do not appeal to gamers,
capping incentives, and unanticipatable incentives.

4.1 Unappealing incentives

One approach is to pay incentives only to charities of the
user’s choice rather than to the user themselves. While this
reduces the value of each incentive somewhat, it dispropor-
tionately reduces the motivation to game the system: peo-
ple who are okay with stealing from advertisers are unlikely
to value donations highly. Likewise, poor people or people
with little disposable income but a lot of spare time (e.g.,
teenagers) may be highly motivated to game a system for
cash, but would have little interest in benefiting charities.
Requiring a credit card with a reasonable limit or other form
of income verification in order to receive incentives may also
help reduce gaming.

Restricting incentives to discounts on the products being
advertised is another approach: a gamer, by definition, is
not interested in the products being advertised. Discounts
cannot be used for advertisements that are not expected to
result in product purchases such as branding messages. Like
payments to charity, discounts are less effective incentives
than straightforward cash payments for watching ads. In
the case of discounts, this stems from users’ uncertainty of
their true value. Users’ uncertainty has two sources. First,
users are uncertain whether the original pre-discounted price
advertised is fair. For example, an Acme widget with an ad-
vertised “retail” price of $100 plus a $20 discount might well
be readily available elsewhere for $70, meaning that the “dis-
count” is really nothing of the sort. Requiring advertisers to

provide pricing guarantees (“if you can find an Acme widget
elsewhere in the next five days cheaper than $100, we will
send you the price difference plus $5”) may ameliorate this
source of uncertainty.

Second, the value of a $20 discount depends on how likely
the user is to actually buy the product in question. If there
is a 10% chance he will buy, it is worth $2, but if there is
only a 1% chance he will buy, it is only worth $0.20. This
is especially problematic because the user needs to decide
before he sees the advertisement in question, and hence be-
fore he knows what product the discount is for. The user’s
threshold cannot be used to bound the buying probability:
the amount the advertiser is forced to pay for showing an
ad ensures that the advertiser expects to make at least that
amount; however, because the expected profit is the profit
of a sale times the probability of the user buying the prod-
uct, the buying probability is relatively unconstrained by the
user’s threshold. The user is thus forced to assume an av-
erage buying probability when weighing the value of offered
discounts.

This information asymmetry—advertisers have a better
idea of the buying probability—makes discounts inefficient.
Advertisers of rarely desired, but very profitable products
pay less for the same of amount of incentive effect, lead-
ing them to advertise disproportionately, lowering the aver-
age probability and thus the incentive power of a given dis-
count below what it should be. Note that discounts unlike
other incentives do not contribute to making ads more rele-
vant because they are paid only to highly interested users—
discouraging spam requires charging advertisers per unin-
terested user.

It may be possible to address the second source of uncer-
tainty by providing an estimated buying probability with
each ad based on the conversion rate (conversions per click-
through) to date or of a sample population. Unless a sample
population is used, early estimates will be too low because
of the time lag between viewing an ad and purchasing the
advertised product. This suggests an advertiser may wish
to use a high bid price to reach enough users in a randomly
chosen subset of users to establish a high buying probability
then switch to a lower bid price plus a (now fairly valued)
discount to reach the remaining users. If these estimates can
be made accurate enough, users may be willing to accept a
lower bid price for ads with high estimated buying proba-
bility because of these ads’ demonstrated relevance to their
targeted users.

4.2 Capping incentives

Another approach to dealing with the gaming problem is
to limit the total amount of incentives available to each per-
son in a given period. If the total amount of incentives avail-
able is equal to the expected amount of incentives earned by
a non-cheating user plus an amount small enough that it is
not worth gaming the system to get, only rarely targeted
users that earn substantially less than the cap will be mo-
tivated to game the system. Lowering the cap further will
decrease the number of these users at the cost of decreasing
the effectiveness of incentives for more frequently targeted
users. A simpler formulation where every ad has the same
incentive is to pay every user who watches at least some
minimal number of ads per time period a fixed amount.

It is important that the cap be per person, not per user,
so that gamers cannot evade the cap by each creating many

virtual user accounts. We believe requiring each user to
have a unique non-P.O. box residential address in order to
collect incentive checks will mostly prevent this. Unfortu-
nately, while adopting a cap will reduce gaming, we do not
believe it by itself will reduce gaming enough to make paying
incentives viable.

4.3 Unexpected incentives

The final approach to dealing with the gaming problem is
to limit incentives to ads targeting unanticipatable groups
of users; that is, almost no one would have anticipated that
ad’s target behaviors would be the target of an ad with an
incentive. We have in mind here the often flashy ads that in-
augurate an advertising campaign for a new product rather
than the bread-and-butter ads that repeatedly target new
parents for baby strollers. Each product could be adver-
tised this way only once. Care must be taken to ensure that
the target behavior includes sufficient negative features (be-
haviors that targeted users must not have performed) that
gamers attempting to earn incentives by performing (or at
least claiming to have performed) all the behaviors they can
think of will not be targeted.

The key to making this approach work is preventing users
from copying rewarded behaviors. Because users are not
all online and receptive to ads at the same time, it is very
hard to avoid there being be a sizable time period between
when the first users are rewarded for viewing a given ad
and when the incentive expires. In the absence of a mech-
anism to prevent it, early users will be strongly tempted
to tell their friends how to qualify for the same incentive
they received. The design of such a mechanism is made
harder by the fact that we cannot trust DataBank clients
because users can modify them, by the fact that it must pre-
serve users’ privacy, and by the fact that our privacy model
requires that rewarded users can determine—possibly with
some hacking—what behaviors they were rewarded for.

We have devised a mechanism that solves this problem us-
ing a cryptographic primitive we call set commitment. Infor-
mally, set commitment allows one party called a commiter to
commit to the contents of a set to a second party called a ver-
ifier without revealing anything about the set and then later
reveal the (non-)membership of selected elements to the sec-
ond party, again without revealing anything else about the
set. Which elements to reveal information about are cho-
sen by the commiter and it is computationally infeasible for
him to lie to the verifier. Set commitment is a generalization
of regular cryptographic commitment, which involves a first
party committing to a value to a second party and then later
optionally revealing it. Micali et al. [7] first describe gen-
eral set commitment under the name zero-knowledge sets,
giving an inefficient implementation. We use instead a more
limited, but substantially more efficient implementation we
independently discovered; see section 5 for a description of
our set commitment scheme.

The idea behind our mechanism is to divide advertising
into two phases. First, each client commits to its current
user profile to a DataBank server by a deadline, treating
each present queryable-about feature of the user profile as
an element of the to-be-committed-to set. Second, ads ac-
companied by their targeting queries and offered incentives
are sent to all the clients. When a user wants to accept
the incentive associated with an ad that targets them, their
client reveals to the DataBank server only the features (pos-

itive or negative) of their committed-to user profile required
to prove that it satisfied that ad’s query. If the DataBank
server is convinced and that user’s client’s commitment was
made by the deadline, then the incentive is paid.

The user’s privacy is protected by the secrecy properties
of set commitment: absolutely no information is released
unless the user claims an incentive, and even then only the
minimum necessary to claim the incentive is released. If de-
sired, the client can explain exactly what information must
be released in order to claim an incentive. The commitment
properties, in turn, protect the system from gaming: in or-
der to claim an incentive, a user must have qualified for it
before the deadline and hence before anyone other than the
advertiser saw the associated query; copying the behavior
of other users who received the incentive afterwards will not
qualify a user for the incentive. No amount of client hacking
can change this.

In practice, of course, this process would be repeated with
overlapping phases; each ad would query a version of a user’s
profile that had been previously committed to. The need
to represent user profiles as a set of features and to make
queries satisfiable by a small number of positive and negative
features (the cost of revealing is proportional to the number
of elements revealed) somewhat limits the expressibility of
queries under this mechanism even with careful design.

5. OUR COMMITMENT SCHEME

We count each demonstration that a element is (is not) in
a committed-to set as a separate membership (non-member-
ship) proof. Thus, revealing that 1 and 2 are in a set but
3 is not requires two membership and one non-membership
proofs.

Micali et al. [7] describe how to implement a set commit-
ment scheme that allows generating as many membership
and non-membership proofs as desired; however, its com-
mitment step essentially requires three modular exponenti-
ations and one hash per element in the set to be committed
to. This is too slow for our purposes because we wish to
use sets containing tens of thousands or even hundreds of
thousands of elements. For example, we would like to in-
clude each URL visited by the user in the last month as a
separate feature.

Accordingly, we use a more limited, but more efficient set
commitment method of our own devising. In exchange for
limiting in advance the number of non-membership proofs
that can be generated, we can reduce the commitment cost
to essentially one hash per element in the set to be commit-
ted to plus a number of hashes dependent on the number of
non-membership proofs desired.

We illustrate our scheme using a series of increasingly
complicated schemes, leading up to the full scheme. Like
Micali et al., we assume the set to be committed to, call it
S, consists of L-bit values for some value of L. This can be
arranged by cryptographically hashing each of the original
elements and then keeping only the first L bits of each hash;
sufficiently large values of L ensure that the assignment of
two features of interest to the same L-bit value is vanishingly
small.

5.1 Commitment without secrecy

For our first scheme, in the commitment step we encode
the features of set S in the leaves of a complete height L
prefix Merkle tree. See figure 3 for an example where L = 3

root hash

“0 “r

T) L [

“00” ‘ ‘017 “10” ‘117

A 4 A 4

00006 OO

‘000" 001" “010" ‘011" “100” 101" *110" 1117

A 4

Figure 3: A height 3 complete prefix Merkle tree
encoding {0012,1012,1102}; all pointers contain the
hash of the node they point to.

and S = {0012,1012,1102}. A prefix tree of height L is a
binary tree of height L 4+ 1 which maps L-bit strings to leaf
nodes in the following manner: Start at the root node. Each
time you come to a node (including the root node), go left if
the next bit of the string (starting from the left) is a 0 and
right if the next bit of the string is a 1. In figure 3, “000”
is mapped to the first (leftmost) leaf node node, “001” to
the second leaf node, “010” to the third leaf node, and so
on. We encode which elements are present in the set by
indicating in each leaf node whether or not the L-bit string
that maps to it is in the set.

Because the generated tree is a Merkle tree, each of the
pointer fields holds the cryptographic hash of the contents
of the node its pointer points to rather than the location
of the node it points to. We finish the commitment step
by providing the cryptographic hash of the root node to
the second party. Any collision-free hash function may be
used for our scheme; we currently use MD5, but may switch
to SHA-2. For the simplified analysis of this paper, we will
assume the cryptographic hash function used is equivalent to
a random oracle. Revealment is easy: to reveal element e’s
membership status simply provide the leaf node e is mapped
to and all its ancestors to the second party. The second party
verifies such statements by checking that the revealed path
is a valid path (i.e., each node’s hash agrees with the pointer
to it) from the previously revealed root hash.

The properties of Merkle trees ensure that the first party
cannot change his mind between the commitment and re-
vealment steps about the tree. Doing so requires producing
two different nodes with the same hash, which is compu-
tationally infeasible. Our encoding of element membership
ensures that the same tree cannot be used to show the ele-
ment is both in and not in the set at different times. Thus,

root hash
\
I [)]
A4 y
rs > Iy Is q) e
A A, Y
r7 T Ig f9 T Fo T4 T l12
“001” “101” “110”

Figure 4: An alternate encoding replacing “N”-only
subtrees with null; pointer i is blinded using the
random value 7r;.

our first scheme provides the desired commitment proper-
ties. It, however, does not preserve secrecy and is terribly
inefficient for large values of L as it requires over 2° hashes,
which is likely exponentially larger than the size of set S.

The lack of secrecy comes from the fact that the second
party may be able to determine the contents of unrevealed
nodes whose hashes are known by guessing their contents
then checking if their hashes match. For example, if the
first party reveals the fact that “001” is present, the second
party will be able to determine that “000” is not present
using the pointer to its leaf node contained in the revealed
immediate parent of the “001” leaf node.

5.2 Secrecy for membership proofs only

Our second scheme corrects both of these deficiencies at
the cost of not allowing non-membership proofs. We cor-
rect the efficiency problem by replacing subtrees containing
only “N” leaves by the special value null. To obtain se-
crecy, we switch to blinded pointers. A blinded pointer is a
pointer that can only point to one node and that can only
be followed with its creator’s aid. Figure 4 shows the result
of applying the second scheme to our example set S. We
denote pointers to null by slashes.

A blinded pointer’s value is computed by taking the hash
of the byte sequence composed of the contents of the node it
points to (or the empty string if it points to null) preceded by
a fixed-length large random number. Each blind pointer is
associated with a large random number; these random num-
bers are not considered to be part of any node. If each ran-
dom number has as many bits as a cryptographic hash then
(under the random oracle model) the blind pointer value by
itself reveals nothing about what node it may point to even
if infinite competition resources are available. The node,
if any, a blind pointer points to can be revealed by reveal-

root hash

“r e
3 T 4 3 T I3
“00” “01” “10” ‘ “11”
v A 2 2 c
r7 Ig fg o 1 T 2
“010” “011”]
“000” & & “111”

“100” “101”

001" 110

Figure 5: A blinded optimized prefix Merkle DAG
that reuses nodes and encodes {0013,1102}.

ing its associated random number; because of the properties
of cryptographic hash functions, a given blind pointer can
be revealed to point to only one thing. In essence, a blind
pointer is just an ordinary commitment to the hash of the
node it points to.

Revealment now involves also revealing the associated ran-
dom numbers of the pointers that lead to the leaf nodes
associated with the elements whose membership status is
being revealed; no other random numbers are revealed. For
example, the membership proof for 1012 using figure 4 is

(p17p2)> T2, (p57p6)7 T5, (p97p10)7 T10, “Y”

where p; is the contents of pointer field i. This hides all
information about the nodes pointed to, but not included in
the proof; e.g., in the above ps = hash(re;p11;p12) appears
random because rg is unknown.

Because the path taken to the leaf node associated with
an element in the set is independent of what other elements
are in the set, this hiding means that revealing membership
reveals nothing beyond what is intentionally revealed. This
property, unfortunately, does not hold for revealing non-
membership because the location of null pointers depends
on the membership status of many elements.

5.3 Allowing one non-membership proof

Our next scheme improves on the previous scheme by al-
lowing at most one non-membership proof without compro-
mising secrecy; as before, any number of membership proofs
can also be generated without leaking information. The key
idea is to reuse nodes with no “Y” descendants as much
as possible. See figure 5 for the result of applying this op-
timization to the example set {0012,1102} (S without the
element 1012 to simplify the figure). Notice that figure 5 has
only one “N” leaf node and only one node, labeled “c”, with
exactly 2 descendants, both of which are “N” leaf nodes.

foot hash

G(OOH

000" 001
Y Y o Y

"
A A
/ I\

I\ \ A JA / / /A
\ A / \ i\ I\ I\ i\
VAR /R /A /

/
/2 ;oA /A
\ [/AN / \ /A
FTIRY / \ / \ / \ / \ / \ / \
] v \ / \ / \ / \ \ / \
v \ / v/ / Vo \ / \
\ \ / \ \ / \ \ / \
\ / \o/ \ / v/ \ / \

Figure 6: A blinded optimized Merkle DAG that
reuses nodes within regions; node and region details
are omitted. Here K = 3, resulting in 8 regions,
I-VIII.

In general, this scheme uses at most L more nodes than
the previous scheme, one for each possible complete “N”-
only-descendants subtree. This scheme produces a directed
acyclic graph (DAG) rather than a tree; if the resulting DAG
is unfolded by duplicating reused nodes to form a tree and
the pointers are unblinded, the result is our first scheme.

The commitment properties hold as before (Merkle DAGs
work like Merkle trees in this regard). Because we are us-
ing blinded pointers, secrecy holds as long as the second
party cannot tell which revealed non-leaf nodes are reused
in the DAG: under this condition, the revealed paths are in-
distinguishable from those that would have been produced
from a version of the DAG that reuses only the “N” leaf
node. The only way for the second party to discover that
a non-leaf node has been reused is for it to see two proofs
that together demonstrate that the node is reachable in two
different ways from the root node.

Because no membership proof’s path goes through a reused
node, the only way secrecy can be lost is for two different
non-membership proofs to be generated that share a reused
non-leaf node. For example, in figure 5, the non-membership
proofs for “011” and “100” share the interior node labeled
“c”. The second party could deduce from this information
that “010” and “011” are also not present because reused
nodes under our scheme never have “Y” descendants. Thus,
if we restrict ourselves to never generating more than one
non-membership proof per committed-to set, we will never
leak information.

5.4 The full scheme

For our full scheme, we generalize the idea of the previous
scheme to allow a small number of non-membership proofs
to be issued. We divide up the prefix tree we generate into

regions and reuse nodes only within a region. By dividing up
the generated tree into regions based on the first K bits of
each string, we get 2% regions as illustrated in figure 6. Each
region has L — K + 1 reused nodes that encode each of the
possible subtrees containing no “Y” leaf node descendants.
Each region is thus the result of applying the at most one
non-membership proof scheme to the elements in the set that
start with that region’s prefix after stripping that region’s
prefix from those elements.

Under this construction, two non-membership proofs can
only have a reused node in common if they are for two el-
ements whose first K bits are the same. Thus, at the cost
of at most 2% (L — K 4 1) extra hashes, the first party can
issue up to 2% non-membership proofs so long as each is for
an element with a different K-bit prefix.

The restriction on which non-membership proofs can be
issued can be made less onerous by randomly assigning ele-
ments to each region. To do this, a random permutation is
applied to all the elements before they are added to the set.
The permutation used is published with the root hash.

For example, to commit to a set {0000002,0000012}, the
first party would choose a random permutation P and com-
mit to the set {P(0000002), P(0000012)} using the multiple
region scheme; the first party publishes the resulting root
hash and P. To prove that 1000002 and 1000012 are not
in the original set, he shows proofs that P(1000002) and
P(1000012) are not in the committed-to set. He can do this
safely as long as P(1000002) and P(1000012) differ in their
first K bits, which will happen with probability 1 — 27%.
Note that the probability he can do this is independent of
the other contents of his set, so whether or not he can pro-
vide a proof does not leak extra information.

More generally, the probability that the first party can

safely produce N non-membership proofs is approximately
N2

e2KFT (cf. the birthday paradox). If we want no more than
an € probability that the first party cannot produce N non-

membership proofs, then we need at least]g—j regions since
Inl—e > —e for 0 < € < 1 by Taylor expansion.

Thus, if we want to be able to issue N non-membership
proofs with probability 1—e, our scheme requires |S| + Lé\ef 2
hashes compared with Micali et al.’s 3|S| modular expo-
nentiations and |S| hashes.? Note that e is not a security
parameter, which needs to be extremely small. For Data-
Bank, it determines an upper bound on what fraction of
targeted users are missed; a value of 1/100 thus might be
appropriate. Because we do not expect to pay many un-
expected incentives per commitment period and we do not
expect individual queries to need to refer to many negative
features, we should be able to use quite small values of N.
As an example, L = 32, N = 6, and ¢ = 1/100 yields 57,600
extra hashes. Verifying a proof under our scheme requires
only L hashes whereas Micali et al. require 3(L—1) modular
exponentiations and L hashes.

If the queries and hence the non-membership proofs that
may be required are known in advance, the revealment step
can be made fail-proof: the DataBank server can choose
a permutation and value of K that definitely maps each
of the elements whose non-membership may need to be es-
tablished to a different region. The DataBank server then
requests clients to commit using the calculated permutation

2These calculations ignore operations on non-reused interior
nodes on the assumption that |S| > L.

and value of K. This does provide a little advance informa-
tion about the queries, but almost certainly not enough to
matter.

6. CONCLUSION

The success of advertising business models on the web
has highlighted the tension between privacy and advertising
relevance. In this paper we presented DataBank, a system
designed to simultaneously achieve as much privacy and con-
trol for user data as possible, while allowing for some of the
benefits of personalization based on private data. Within
our system, the benefits depend on advertisers sending mes-
sages that are likely to be relevant and useful to recipients.

We presented an economic approach, similar in spirit to
prior proposed spam solutions, which ensure that senders
will send relevant messages in equilibrium by making the
channel for the messages costly to senders. The DataBank
architecture allows this to be done with little privacy and
data control loss on the part of users, and provides a prac-
tical way for senders to have access, through DataBank
queries, to the raw data necessary to make messages rel-
evant.

We also examined the possibility for users in the system to
capture for themselves some of the economic value of their
own private data. Many methods for doing this are possible,
but we paid particular attention to one of the most difficult
methods, in which some of the per click amount charged to
advertisers is shared with users. We analyzed the resulting
substantial gaming issues, and provided a novel, efficient
and practical cryptographic solution that solves the gaming
problem for a class of messages, and we described various
ways to make the gaming problem manageable in the other
cases.

7. ACKNOWLEDGMENTS

We thank Joshua Tyler, Stephen Sorkin, and Norm Jouppi
for helping to develop the ideas in this work. We especially
thank Tyler for his server implementation, and Sorkin for
his implementation of our set commitment scheme.

8. REFERENCES

[1] http://blog.searchenginewatch.com/blog/050106-095817,
2005.

[2] J. A. Deighton. Digital Anonymity and the Law —
Tensions and Dimensions, chapter 6, pages 137-146.
T.M.C. Asser Press, 2003.

[3] P. T. Devanbu, M. Gertz, C. Martel, and S. G.
Stubblebine. Authentic third-party data publication. In
IFIP Workshop on Database Security, pages 101-112,
2000.

[4] S. Haber and W. S. Stornetta. How to time-stamp a
digital document. Journal of Cryptography,
3(2):99-111, 1991.

[5] T. Loder, M. V. Alstyne, and R. Walsh. An economic
answer to unsolicited communication. In ACM
Conference on Electronic Commerce (EC’04), 2004.

[6] R. M. Lukose, E. Adar, J. R. Tyler, and C. Sengupta.
Shock: communicating with computational messages
and automatic private profiles. In WWW ’03:
Proceedings of the 12th international conference on
World Wide Web, pages 291-300, New York, NY, USA,
2003. ACM Press.

[7]

8]

[9]

S. Micali, M. Rabin, and J. Kilian. Zero-knowledge
sets. In Proceedings of the 44th IEEE Symposium on
Foundations of Computer Science (FOCS 08), pages
80-91. IEEE Computer Society Press, 2003.

M. Naor and K. Nissim. Certificate revocation and
certificate update. In Proceedings 7th USENIX Security
Symposium (San Antonio, Tezas), Jan 1998.

T. V. Zandt. Information overload in a network of
targeted communication. Rand Journal of Economics,
35:542-560, 2004.

