

The Global Computer

Alan H. Karp
HP Laboratories Palo Alto
HPL-2006-9
January 12, 2006*

distributed
computing, single
system image,
computing utility

The problems collaborating with others across the network are apparent
to anyone who has tried doing it. That being the case, we should attempt
to create an environment that doesn’t have those issues. One approach is
to make it appear to people and programs that there is only one computer
in the world. In building such a system we’ll have to solve problems of
scalable performance, naming, security, discovery, and manageability. If
we’re to succeed in hiding the boundaries between machines, the
solutions we come up with will have to be part of a coherent architecture.

* Internal Accession Date Only Approved for External Publication
© Copyright 2006 IEEE Published in The Fourth International Conference on Creating, Connecting and
Collaborating through Computing (C5 2006), 26-27 January 2006, Berkeley, CA, USA.

The Global Computer

Alan H. Karp
Hewlett-Packard Laboratories

Alan.Karp@hp.com

Abstract
The problems collaborating with others across the

network are apparent to anyone who has tried doing
it. That being the case, we should attempt to create
an environment that doesn’t have those issues. One
approach is to make it appear to people and programs
that there is only one computer in the world. In build-
ing such a system we’ll have to solve problems of
scalable performance, naming, security, discovery,
and manageability. If we’re to succeed in hiding the
boundaries between machines, the solutions we come
up with will have to be part of a coherent architec-
ture.

1. Introduction
It’s easier to collaborate with someone on the

same computer than with someone on a different com-
puter. Few people dispute the truth of that statement.
The question, then, is why not put everyone in the
world on the same computer. Since there’s no one
piece of hardware that can support all the people in
the world, the question becomes how to make all the
computers in the world look like a single computer, a
concept called the Global Computer [1].

This vision isn’t a new one. Several people pro-
posed variations on the idea of a computing utility [2]
[3] [4]. These concepts are coming to fruition in such
technologies as the Grid [5] and the Services Oriented
Architecture [6]. However, none of these is quite as
grandiose as the vision of a Global Computer, al-
though the Worldwide Computer [7] comes close.

One important difference between these other ap-
proaches and the Global Computer is the starting
point. The others start from a model of network com-
puting and project it into the machine. The Global
Computer starts from the model of a single computer
and projects it outward into the network, as was done
in formulating Actors [8]. The difference is signifi-
cant. The former approach makes the network visible
at all times. It is as if we used URLs to access all files,

even local ones. Starting from a model of local com-
puting makes it possible to hide the complexity of the
network environment to a greater extent. It’s more
like the way we deal with remote files. Once the drive
is mapped, all access is done as if the file is local.

This goal of hiding the fact that there is a network
applies to all resources and services. Perhaps the sim-
plest example is printing in an office environment.
You decide to print, select a printer, and your output
appears. There’s no need to know which machine
controls the printer, nor is there any need to move files
explicitly from one place to another. Once things are
configured, all the details are handled by the system.
It’s just as if the printer is a device on your computer.

Contrast this simplicity with the way we share
files. One day in 1990, when I was sharing an office
with David Bailey, I asked him for one of his FFT
routines. I watched as he moved his mouse from one
X-window on his SGI workstation to another, did a
remote login, inserted the file into an email, and sent
it to me. A few seconds later, I got the email, opened
it, and copied the file to a different machine. What’s
surprising is that few people ever give this process a
moment’s thought. It is just the way it’s done.

It is possible to do better. An example is the
Transparent Computing Facility (TCF) [9], which
came as part of IBM’s AIX operating system. TCF
provided a shared space for a cluster of machines that
included a common file system and execution envi-
ronment for a heterogeneous collection of IBM main-
frames and personal computers. If David and I had
been part of the same TCF cluster, David would just
have told me the name of the file, and I would have
accessed it. Alternatively, I could have just run a pro-
gram that used the file without needing to know where
it was. Most of my early thinking about the Global
Computer came from my experience with TCF.

Clearly, it’s impossible to make the network com-
pletely disappear. There are different failure modes
and different latencies. Importantly, “Quantity has a
quality all its own,” as Stalin is reported to have said.

The sheer scale of the Global Computer will make it
look different than a single computer. Nevertheless,
the goal is to make the network aspects of the global
computer like an automobile windshield. Most of the
time you’re not aware that it’s there, but you can focus
on it when you need to.

2. What a computer is
If we are to give the user the illusion that there is

only one computer in the world, we need to under-
stand what the essence of a computer is to the user.
All would agree that a computer consists of a proces-
sor with volatile and permanent storage. There must
be a means of communicating with the computer, both
to tell it what to do and to receive results. These
means include keyboards, monitors, printers, and net-
works.

Most users also include the software environment,
as part of their mental model of a computer. The op-
erating system provides certain abstractions, such files
and network connections. There are also applications
that people feel are needed for a usable system. If the
Global Computer provides these features, it will look
like a computer to its users.

Anyone who has ever used a timeshared main-
frame will understand what kind of computer it will
look like. There’s a big, shared pile of resources, con-
sisting of computation, memory, and disk. There’s a
single file system with a name space understood by all
users. Any user can access any file just by naming it,
given the right permissions, of course. All programs
share a common execution environment. The schedul-
ing of tasks to the processors is rarely of interest to the
user.

An interesting question in the era of personal
computing is whether or not the concept of a user ac-
count is important. Many people today are the sole
users of their computers. It is fair to say that the login
screen on many personal computers is more about
keeping strangers out than about determining which
legitimate user is sitting at the keyboard. Your cell
phone is another example. It’s a computer, but the
concept of a user never enters your mind as you make
a call.

3. Features and issues
One thing that makes implementing the Global

Computer hard is that, unlike the mainframe, there’s
nobody in charge. More precisely, there are many
bodies in charge, each responsible for a small portion
of the Global Computer. Finding a way to give them

adequate control while preserving the illusion of a
single computer is a key challenge.

3.1. Common Execution Environment
One of the goals of the Global Computer is to en-

able resource sharing. Hence, any program should be
able to run on any computer compatible with it. Such
an environment would also provide a straightforward
means to run parallel jobs. Just run fork() and allow
the scheduler to start the process on another machine.

A common execution environment also allows for
dynamic load balancing. A program can be run on
any compatible machine in the Global Computer.
Further, if a program has been compiled for more than
one architecture, the scheduler can decide between
running the job on a heavily loaded supercomputer or
an idle workstation.

An intriguing idea comes from combining a com-
mon execution environment with process migration, a
feature supported by TCF [10]. Say that you start a
job just before going home for the evening. If it isn’t
finished when people start showing up for work in the
morning, it can be migrated to a location where people
are just going home. Such heliophobic computing
keeps your application in the dark.

A common execution environment also means
that support people can be anywhere in the world.
The result is that you can get 24 hour support, but no
one has to work the night shift. Overnight support for
France could be handled from Tahiti, that for the US
from India, that for Russia, well, from Russia. In
other words, keep your applications in the dark, not
your support people.

System availability would no longer be a problem
for business continuity. A machine capable of running
a business critical application would always be avail-
able, barring a worldwide disaster. Further, such ap-
plications would be using a large number of machines
throughout the Global Computer. The loss of one of
them would only degrade performance by a small
amount.

3.2. Dealing with latency
A common execution environment also implies

the need for a sophisticated file replication strategy.
No one will use a system if network delays increase
access times too much. Caching data locally on first
access won’t hide the initial delay, but most files are
used more than once. Prefetching of files that are
commonly used together would further reduce appar-
ent network delays.

Clearly, every file won’t be replicated to every
machine in the Global Computer. Some files, such as
compilers and editors, will be replicated to any ma-
chine that can run them. Others will be replicated
only when being used by a distributed group.

It’s not clear whether extensive use of file replica-
tion will increase or decrease network traffic. Replica-
tion increases traffic because a change sent over the
network might not be needed before the next change is
made. Replication decreases network traffic because
more file requests will be handled locally.

Replication will probably increase the aggregate
amount of disk space used, but maybe by less than
might be expected. Common practice is to keep a local
copy of every file you might ever need. If you could
get a file after a small delay just by naming it, there
would be less incentive to do that, especially for very
large files. Also, replicated copies may be the only
backup needed.

Recently developed technologies, such as Ocean-
Store [11] and BitTorrent [12] should prove useful in
the Global Computer. They provide interesting ways
to store and retrieve files in a large scale environment.
Since the network shows through their interface, they
should be used by the infrastructure rather than the
application API.

3.3. Naming
Naming is an important issue that is often given

little attention in distributed systems. It needs special
attention in the Global Computer. After all, we
wouldn’t want an application to break just because
someone renamed a computer.

Two properties are particular important, spatial
and temporal integrity. Spatial integrity means that
the name used to refer to a resource, such as a file, is
independent of the locations of both the resource and
the requester. Temporal integrity means that the
name of an object doesn’t change just because some
event has occurred.

If we start from a model of network computing
and project inward, naming appears to be a simple
matter of partitioning the namespace. That’s not so
easy when there isn’t a central authority. Although
the Domain Name System (DNS) does work, even it
has a number of problems. There are private DNS
servers, and there’s a potential for a split as objections
to US control arise. Another issue is that the name for
a resource behind a firewall is often different from the
name used when outside the firewall, a violation of
spatial integrity. Firewalls also break the global
uniqueness of IP addresses. Most wireless networks

have a machine with an IP address of 192.168.1.101
because that’s the default router configuration. IP
addresses also change as machines move across sub-
nets

Naming is also critical to security if it is possible
to hijack a name from its legitimate owner. Some
schemes make the hash of the public key of an object
part of its name. However, that means that its name
changes when the key expires, typically once a year,
which violates temporal integrity.

3.4. Management
The Global Computer isn’t a mainframe, and peo-

ple wouldn’t be happy if it were. Many moved to de-
partmental scale machines as soon as minicomputers
became available and later to personal computers.
There were many reasons for this trend, but few would
argue that management issues, particularly control
and charging were important factors.

A mainframe is a precious resource. It’s impor-
tant that one malicious user not interfere with the
work being done on behalf of others. Hence, main-
frames were tightly controlled by a central organiza-
tion. Adding a new user often involved getting mul-
tiple approvals and waiting several days. We see the
same problem arising, albeit in a more distributed
environment, on systems, such as the Grid [5] and
PlanetLab [13].

Another reason people moved away from central
computing was how much they were being charged.
Many organizations charged enough to recover their
costs, which included amortization of the hardware,
software fees, and personnel. The Global Computer
will have to find an equitable method for dealing with
this issue as people share their resources.

One thing people did like about the mainframe
world was the availability of support. Centralized
support means that updates, including security
patches, are applied in a timely manner. There is
someone to manage software licenses and deal with
support contracts. Individuals are largely free from
worry about security issues, such as who can use the
system and what rights people have.

A common execution environment and view of a
single file system also simplifies many management
tasks. For example, applying an update to a browser
that is replicated to most of the machines in the Global
Computer means that many people benefit from the
action of performing a single update. Of course, mak-
ing this all work without breaking anything will be a
challenge.

3.5. Security
Security is a large topic, with aspects ranging

from authentication to privacy to physical security.
Many of the methods that have been developed for the
Web are applicable to the Global Computer. Others
aren’t.

One particular aspect that needs rethinking is ac-
cess control. Today, our computer systems use Access
Control Lists (ACLs) as a means of expressing access
rights. There are problems with that approach in a
dynamic environment because of the burden on ad-
ministrators [14] and when crossing administrative
boundaries. An approach based on explicit authoriza-
tions [15] may be better suited to this environment.

In spite of the fact that a geographically dispersed
set of machines is harder to protect than one in a
locked room, the security on the Global Computer is
likely to be tighter than what we have today. There’s
a reason that corporate computers are better protected
than home computers, a professional security team.
Many machines, not just in homes, but in small busi-
ness and universities as well, are vulnerable because
there’s no one knowledgeable to provide support.

If there is the appearance of only one computer in
the world, it will certainly have full time security and
auditing organizations. A common execution envi-
ronment, view of a single file system, and a flexible
means of expressing access control policies will make
distributed security support simpler.

There are still challenges. With a common execu-
tion environment, I may be running someone else’s
program on my machine. I’ll want to limit what that
program can do just as I want to limit the damage that
an erroneous or malicious program that I run can do.
Similarly, if I run my program on someone else’s
computer, I want to protect the program from the com-
puter. In general, that’s impossible, so the Global
Computer will need a means for people to express
limits on where their jobs run.

3.6. Discovery
It’s hard enough to find something on your own

computer. Imagine how hard it will be on the Global
Computer. Search engines do an adequate job of al-
lowing people to find specific resources on the Inter-
net, and these tools are being made available for indi-
vidual machines [16]. These desktop search tools will
have to adapt their relevance scoring algorithms to the
Global Computer. It’s quite likely there will be more
collections named “baby photos” than any individual
cares to see.

The current generation of search engines is not
suitable for automated search, since software is still
not very good at dealing with ambiguity. Search for
“gates” and you’ll see electronic gates, garden gates,
and Bill Gates. What’s needed is an ontology frame-
work for providing the needed context. Universal De-
scription, Discovery, and Integration (UDDI) [17] is
the standard for the Services Oriented Architecture,
but it is based on a central authority and has a limited
set of taxonomies. The Global Computer will need a
richer, more dynamic means of addressing the ontol-
ogy problem.

3.7. System updates
Updating a single computer is easy. Tell everyone

you’re shutting down at midnight. You can’t do that
on the Global Computer. For one reason, there’s no
midnight. What’s needed is a way to do rolling up-
dates. That implies reducing the number of global
agreements to the absolute minimum. Best would be
an architecture the relied on only pairwise agreements.
That might be possible if the system doesn’t require
all pairs of machines to be able to communicate.

4. Building it
The previous section raised a lot of issues, enough

to call into question the practicality of the idea. The
only way to put the doubts to rest is to build the Global
Computer, or at least enough of it to convince people
that it might actually work.

4.1. The first experiment
The first attempt at building the Global Computer

involved connecting three IBM supercomputers into a
single system image using TCF [1]. There were ma-
chines in Palo Alto and San Jose, California and one
in Yorktown Heights, New York. That wasn’t enough
machines to test scalability, and they were all owned
by the same company, so we sidestepped most of the
security concerns. Nevertheless, we were able to test
some of the usability features of the Global Computer.

Anyone who’s ever attempted to build something
as crazy sounding as a Global Computer will appreci-
ate the importance of not letting management know
what you’re up to. The advantage is freedom. The
disadvantage is lack of funding. We cobbled some-
thing together, but the network was far from ideal.
The result was a network bandwidth measured in tens
of KB/s and latencies of the order of a second. Sur-
prisingly, the system was useful.

Support was provided by one person working part
time. The common execution environment and shared

file system simplified much of the work. These fea-
tures also proved their value in other ways, as illus-
trated by some anecdotes.

One of our staff members was collaborating with
a Yorktown researcher on a circuit simulation project.
She installed the package they were using in a file
system replicated between Palo Alto and Yorktown.
Each of the collaborators had access to the software at
local disk speeds, yet there was only one version of the
code. When a change was made, it was available in a
matter of seconds at the other site.

Another occasion where this environment made
our lives easier occurred while preparing for a cus-
tomer benchmark. Most of the work was being done
on a model 3090-E in Palo Alto, but the bid was to be
for a model 3090-S. In order to know if the jobs would
meet the performance targets set in the benchmark we
had to make the runs on an S-model. Since we were
using a TCF cluster, the job was trivial. We simply
moved the work to a replicated file system. All runs
were made on the Yorktown S-model by simply typing
“on 1 a.out” in the TCF syntax. We had the advantage
of local disk speeds, the ability to keep working locally
even when the network was down, and it was easy to
compare the performance of the two machines.

One final example of the use of this environment
involved parallel processing. One of the Palo Alto
researchers had developed an iterative solver for linear
equations that is parallelizable with large granularity.
Over the course of a week, we converted his shared
memory program into a message passing version using

Unix fork and pipe commands. It was then a simple
matter to change the standard Unix fork() command to
an AIX/TCF rfork() command to run across the clus-
ter. In one run the job finished in 75 seconds on all 6
processors available to us. The best we did on the 3
processors in Palo Alto was 130 seconds.

IBM closed its Scientific Centers shortly after this
work was completed, so we were unable to expand the
test. Nevertheless, the positive experience that came
from the image of working on a single computer gave
weight to the desirability of the Global Computer.

4.2. A delivered product
About five years after the first experiment, I was

given the opportunity to try again at Hewlett-Packard
Laboratories. In typical industrial research style, we
were given six months to produce a demo good
enough to convince management to fund a full scale
project. A video we made of that demo [18] was com-
pelling enough to enable us to start work on a fully
functional prototype. The prototype, which we dubbed
Client Utility, or CU, had to deal with many of the
issues that we were able to ignore in the experiment at
IBM. Eventually, this prototype turned into E-speak
[19], the technology behind Hewlett-Packard’s E-
services initiative.

Figure 1 shows the view of a single machine in
the CU architecture. The central parts, labeled
“Core”, in analogy to an OS kernel, and “Repository”
constituted a Logical Machine. Applications were run
by Clients, essentially processes that connected to the

Figure 1. Client Utility on a single machine.

Core. The Core maintained on behalf of each client a
Protection Domain, which included the client’s quotas
and a handle to a name space. The name space con-
tained mappings between strings meaningful to the
client and repository handles.

CU worked on a mailbox metaphor. A client
would send a message to the Core specifying a name
in its namespace. The naming component of the Core
would look up the repository entry associated with this
mapping in the client’s name space. The repository
entry contained, among other things, the destination
mailbox for requests to this resource. After further
processing, the message was delivered to that mailbox.

When two machines connected, they each set up a
proxy to handle requests from the other, as shown in
Figure 2. A proxy appeared as a local client to its
Core. After mutually authenticating, each proxy made
the resources in its name space available to clients on
the other machine by sending a serialization of the
repository entries. The importing proxy registered the
resource in its Repository and listed its mailbox as the
target for requests.

A client with a name bound to the repository han-
dle of a remote resource would send a message to the
Core specifying that name. The Core would forward
the request to the target mailbox, where the proxy
would pick it up. The proxy would serialize the re-
quest and send it to its counterpart. The receiving
proxy would deserialize the request and make a local
request to its Core. The Core would then forward the
request to the target mailbox where it would get proc-
essed. Replies followed the same path.

This approach had a number of advantages. Only
the proxies knew anything about the network. The
programming model was simplified because other
clients and the Core only knew about local messages.
Since the basic model was message passing, the failure
modes for local and remote requests were the same,
although the frequency and latency of failures was
different. In addition, the receiving client need not
have been the actual handler of the request. It may
have been a proxy for another machine. The ability to
export an imported resource description was all that
was needed to broker requests.

There were also some disadvantages. There was
additional latency, since a given request might pass
through an unknown number of machines. If any one
of them was off line, the resource was unreachable.
This problem was mitigated by allowing intermediar-
ies to introduce the machines they connected to, so
those machines could make a direct connection.

This architecture addressed many of the require-
ments of the Global Computer. The CU naming
scheme consisted of purely local names combined with
pairwise translations, similar to the way we talk about
“Nancy’s husband’s car” in casual conversation. This
representation is largely independent of local naming
decisions. The example still works if I get a new car
or Nancy gets a new husband. Allowing such local
renamings without breaking applications is an impor-
tant part of hiding the network from applications.
More importantly, this approach sidestepped all issues
related to partitioning a global name space (Section
3.3). A disadvantage was that you couldn’t send a

Carol’s Machine Bob’s Machine

Figure 2. Access between machines.

reference out of band, as we do when sending a URL
in an email.

A name could be bound to more than one handle,
which makes sense for stateless services and replicated
files. If a particular binding didn’t work, the system
would try another one. That’s one way we provided a
common execution environment (Section 3.1). A pro-
gram would run on any machine that provided a map-
ping to it. File replication was a higher level service,
but the name bindings made using it transparent to the
application (Section 3.2). A name binding could even
include a resource description, allowing the binding to
be delayed until invocation.

Access control was provided by the mappings in
the client’s name space (Section 3.5). Each mapping
represented a right to send messages to a specific re-
source. If there was no mapping for a particular re-
pository handle, there was no way for the client to
send a message to the corresponding resource. Split
capabilities [20] provided additional controls, which
allowed us to support Voluntary Oblivious Compli-
ance (VOC). Consider a simple request, say Bob ask-
ing Alice for a file. If Alice doesn’t care about the
rules, she will respond. Hence, following the rules is
voluntary. Say that Alice wants to comply with the
rules. In CU, she could just send Bob a name binding
for the file, oblivious of the rules. VOC ensures that
Bob can only use the handle if that use obeys policy.
Supporting VOC on the Global Computer will be a
necessity, since there will be many rules, and they will
change frequently.

Since finding things is hard on one computer and
harder in the Global Computer, we devised an exten-
sible ontology framework [21] (Section 3.6). A
repository entry could have descriptions in one or
more ontologies, which would make it discoverable.
A search request would return name bindings to the
set of resources that matched. Treating the ontologies
as resources allowed us to use the naming system and
split capabilities to control who could find what re-
sources. It also meant that you could advertise a new
ontology in a widely known one. That let you extend
an existing ontology when you needed to describe
something new. CU also included an external
advertising service, based on the same extensible
ontology system, for finding resources on other logical
machines and defining communities.

With these features, management became just an-
other service. It was possible to export a resource for
managing a particular application to anyone providing
that service. Local versus central control was a matter
of policy rather than architecture (Section 3.4).

We built the Client Utility and measured its prop-
erties. Local requests were slow, about 1 microsecond
on a 200 MHz processor, the state of the art in 1999.
Remote requests were about 1 millisecond per hop.
These latencies ruled out fine grained use, but they are
orders of magnitude smaller than those measured
when using the current web services standards.

Scalability did not appear to be a problem. We
ran experiments with as many as 300 logical machines
on 60 processors running programs that made trivial
requests. At the high end of the test range, latencies
increased dramatically, but we determined that the
cause was the CPU load. We believe we could have
pushed the limits further had we been able to use more
physical machines.

A system based on this architecture [21] was de-
livered as the Beta 2.2 version of HP’s e-speak product
in December of 1999. That year was the start of the
dot com boom and the vision of profitable business to
business platforms overwhelmed that of the Global
Computer. The architecture was retargeted, with less
emphasis on transparency and low latency and more
on such business related issues as strong authentica-
tion. The new architecture [23] kept the basic struc-
ture of CU but changed the security model to use SPKI
certificates [24].

The e-speak product was used by five companies
to run significant parts of their businesses. The larg-
est configuration consisted of some 40 physical ma-
chines to support 400 engineers with access to nearly
10,000,000 resources. To the best of our knowledge a
legitimate request was never denied in 18 months of
operation, nor were any requests honored that should
not have been.

In 2001, HP decided to exit the middleware busi-
ness. That involved shutting down the E-speak Op-
eration and some other business units. Several groups
within and outside of HP continued to use their e-
speak platforms for a year or more. In fact, one of
them came live more than a year later. Maybe e-speak
did what they needed.

5. Getting there
There are numerous technical questions that must

be answered in building the Global Computer. How-
ever, addressing the social and business issues are
more important.

The Global Computer must be open. It won’t suc-
ceed if it is viewed as giving any company an advan-
tage. HP tried to avoid that trap by releasing e-speak
under the GNU Public License, but that wasn’t
enough. A corporate consortium won’t do. Experi-

ence has shown that jockeying for competitive advan-
tage often outweighs technical merit. An organiza-
tion, perhaps along the lines of Mozilla, will be neces-
sary.

The environment itself needs to be open. Relying
on digitally signed content from trusted sources gives
large companies too much of an edge. We need to be
able to use programs from many sources. One solu-
tion would be to enable installing and running a pro-
gram without giving up full control of our machines.
Any changes made by such programs should be re-
versible.

Whatever gets built must deal smoothly with ex-
isting applications. The world simply isn’t going to
rewrite all its software any time soon. Experience has
shown that it is often easy to write a wrapper that will
allow a legacy application to run in the Global Com-
puter, getting less than full advantage, of course. Per-
haps the simplest thing to do is modify the file system
to translate between the legacy interface and whatever
the Global Computer supports.

There will be many business opportunities on the
Global Computer, selling computing resources, deal-
ing with backups, providing support, and others that
haven’t been thought of yet. Central to enabling these
businesses will be risk mitigation. Credit card com-
panies provide this service for catalog and online
sales. Some comparable business, perhaps the
existing infrastructure, will be needed.

Dealing with communities will be important. For
example, typing “who” on a Unix machine gives a list
of logged on users. What happens when you type
“who” on the Global Computer? Clearly, we want the
result to apply to one or more communities of interest.
Communities also provide a convenient way to control
where our programs run and where our data resides.

Finally, and most importantly, we need to build it.
We can talk endlessly about this feature or that defi-
ciency. It’s only through practical experience that
we’ll ever get a Global Computer we can all use.

6. Conclusions
The Global Computer is a compelling vision, one

that has appeared sporadically over the past 40 years.
The questions of whether the perceived advantages
will have practical value and whether it can actually
be built were raised each time it was proposed.

We ran two experiments to answer those ques-
tions. The first showed that there are cases where the
single machine view provides value to users. The sec-
ond showed that it may be possible to address the
problems inherent in building it. Perhaps the third

time will be the charm, and we’ll all be on the same
computer in another 15 years.

7. References
[1] Karp, A., "The Global Computer", IBM Scientific

Center Report G320-3544 (1990), Also
http://www.hpl.hp.com/personal/Alan_Karp/publi
cations/global.pdf, I will be quoting freely from
this technical report without further attribution.

[2] McCarthy, J., MIT Centennial Speech of 1961
cited in Architects of the Information Society:
Thirty-five Years of the Laboratory for Computer
Science at MIT. S.L. Garfinkel Ed. MIT Press,
Cambridge MA, (1999)

[3] Fano, R.M., and Corbatò, F.J. Time-sharing on
computers. Scientific American 215(3), Sept., pp.
128–40 (1966)

[4] Dertouzos, M. The "information marketplace" in
electronic mail and message systems. In Proc.
AFIPS Workshop on Technical and Policy Per-
spectives. Washington, D.C., Dec. (1980).

[5] Foster, I., The Grid: Blueprint for a New Comput-
ing Infrastructure, 2nd Edition, Morgan Kauffman
(2004)

[6] Erl, T., Service-Oriented Architecture: Concepts,
Technology, and Design, Prentice Hall (2005)

[7] Anderson, D. P. and Kubiatowicz, J., “The
Worldwide Computer”, Scientific American,
March, pp. 40-47, (2002)

[8] Miller, M., private communication (2005)
[9] Popek, G. J. and Walker, B. J., The LOCUS Dis-

tributed System Architecture, MIT Press, Cam-
bridge, Massechusetts, (1985)

[10]Walker, B. J. and Richard M. Mathews, R. M.,
“Process Migration in AIX's Transparent Com-
puting Facility”, IEEE Technical Committee on
Operating Systems, 3(1):5--7, (1989)

[11]Kubiatowicz, J., Bindel, D., Chen, Y., Czerwin-
ski, S., Eaton, P., Geels, D., Gummadi, R., Rhea,
S., Weatherspoon, H., Wetley Weimer, W., Wells,
C., and Zhao, B., “OceanStore: An Architecture
for Global-Scale Persistent Storage”, Appears
in Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (ASPLOS
2000), November 2000

[12]BitTorrent,
http://www.bittorrent.com/introduction.html

[13]PlanetLab, http://www.planet-lab.org/
[14]Open Group, CDSA Explained, An indispensable

guide to Common Data Security Architecture,
The Open Group, (2001)

[15]Karp, A. H., “Authorization Based Access Con-
trol for the Services Oriented Architecture”,
Fourth Intl. Conf. on Creating, Connecting and
Collaboration through Computing (C5), Berkeley,
Ca, January (2006)

[16]Google, http://desktop.google.com/
[17]UDDI, http://www.uddi.org/
[18]Karp, A. H., video of Client Utility prototype,

http://www.hpl.hp.com/personal/Alan_Karp/
espeak/ClientUtilityDemo.rm (1996)

[19]Karp, A. H., "E-speak E-xplained", CACM, 46,
#7, pp. 113-118, July (2003)

[20]Karp, A. H, Rozas, G., Banerji, A., and Gupta, R.,
"Using Split Capabilities for Access Control",
IEEE Software, 20, #1, pp 42-49, January (2003)

[21]Kim, W. and Karp, A. H., "Customizable De-
scription and Dynamic discover for Web Ser-
vices", ACM Conference on Electronic Commerce
(ACM EC'04), New York, June 2004.

[22]Karp, A. H., Rozas, G., Banerji, A., and Gupta,
R.,"The Client Utility Architecture: The Precursor
to E-speak", HP Labs Technical Report, HPL-
2001-136, June (2001), also
http://www.hpl.hp.com/personal/Alan_Karp/cuarc
h/arch_overview_TR.html

[23]E-speak, Architecture Specification, Release A.0,
http://www.hpl.hp.com/personal/Alan_Karp/espea
k/version3.14/Architecture_3.14.pdf (2001)

[24]Ellison, C. M, Frantz, B., Lampson, B., Rivest,
R., Thomas, B. M., and Ylonen, T., “SPKI Cer-
tificate Theory”, RFC 2693, (1999)

