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ABSTRACT
Memory Spot is a microchip developed by HP Labs at Bristol. Compared to Radio Frequency 

Identification (RFID) devices, Smart Cards and other Near-Field Communication (NFC) devices, this chip
provides much larger storage capacity, faster data transfer rate, and smaller physical dimensions. The chip 
is normally passive and is energized by an external reader/writer over the Radio Frequency (RF) channel. 
The same RF channel enables data communication between the reader/writer and the powered chip. 
Memory spot potentially opens up a wide range of new consumer-oriented and enterprise service-oriented 
applications. This paper presents an application framework to help develop these memory spot related 
applications, by providing common functionalities across different applications, such as data 
synchronization, application management and application-device interaction. In general, these applications 
are involved with arbitrarily complex application data types, including database and data schema. Further,
in a disconnected and cross-organization environment, these applications require efficient, reliable and 
secure access and update of data to memory spot. Our application framework addresses these requirements, 
different from other frameworks that focus on RFID, Smart Cards and other NFC devices. To demonstrate 
the innovative applications enabled by memory spot and the application framework, we have prototyped 
the warranty spot application, which aims to significantly reduce computer-related warranty fraud, by 
having a memory spot permanently attached to each computer.

1. Introduction
Memory spot is a microchip invented at HPL Bristol [25, 18, 2, 8]. The physical size of the chip is only 

about 2 mm2. Through the Radio Frequency (RF) power coupling, the on-chip customized processor 
responds to the reader/writer over the RF channel on its embedded flash memory access. From a 
technology perspective, memory spot can be viewed as a Near Field Communication (NFC) device [17]. 
However, compared to Radio Frequency Identification (RFID) and other NFC devices, memory spot not 
only occupies a much smaller physical dimension, but also provides a much larger storage capacity (up to
512KB) and a faster data transfer rate (~10Mb/s). Due to the limited processing power on the chip, 
applications have to be deployed on a host device, which can be a PC or a mobile device like a Personal 
Digital Assistant (PDA) or cellular phone. The reader/writer is attached to the host as an accessory device.
Typically the application reads the data to the host cache through the reader/writer by positioning the 
reader/writer close to the spot (~ 1 mm away), manipulates the cached data at the host, and finally updates 
the data back to the spot. Because of its sufficient storage, applications can access the data on memory spot 
locally, anytime and anywhere, in contrast to other reference-only systems like RFID that have to rely on 
an online infrastructure for actual data access.

Memory spot can potentially become a significant enabler for a large collection of applications, 
including voice-annotated documents, electronic passport, medical history tracking, computer warranty 
tracking, etc. These applications span across both consumer and enterprise service domains.

We envisage memory spot as an integrated part of a much larger information processing system, which 
involves both the people that access the spot and the online infrastructure that the application occasionally 
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interacts with. In enterprise service-oriented applications, such as to keep track of a computer’s 
configuration, service and warranty entitlement over its lifetime, or to record medical history information
[4], memory spot allows data access such that different people from different organizations can read and 
update the data. Consequently, memory spot becomes a cross-organization data fusion point. Further, data 
access cannot rely on an always-on infrastructure, as otherwise the key value of self-contained local storage 
would be largely diminished.

For memory spot and its applications to be operated in a disconnected and cross-organization 
environment, our goal is to figure out how to provide a flexible programming environment to rapidly 
develop memory spot applications that can efficiently, reliably, and securely access and update the data 
stored in a memory spot. In particular, we have identified the following major technical challenges on data 
management:

• Flexible application data types: Data type definitions differ among applications, e.g. only an integer
counter is required for a spot-enabled public transit pass, but complete computer service history
requires an in-memory database (with different database tables) for efficient data inspection via
SQL. A unified data modeling scheme is required to flexibly express arbitrarily complex data types;

• Reliable and efficient data access and update: The communication channel between the 
reader/writer and the chip is inherently unreliable, since the distance to the chip is often not well-
controlled by the user. Sufficient feedback on the status of data access and update is required in 
order to assist the user to recover the communication channel promptly. Furthermore, flash-
memory’s write access is relatively slow due to memory cells’ re-programming, which demands an 
efficient data update scheme different from a traditional file system;

• Scalable storage: For the applications involved with multimedia data, such as document scanning 
and voice annotation, the contents could exceed a single memory spot’s storage capacity;

• Data Security: data integrity, data confidentiality and data access control are crucial to high-value 
application data. However, one should not expect support from an always-on infrastructure to help 
ensure data security at the time of data access.

Our research objective is twofold. The first one is to develop a software infrastructure to provide 
common functionalities, including data management, to enable rapid development of various memory spot 
applications in different application domains. The second one is to investigate and develop compelling 
applications that can bring new service and revenue opportunities to the IT sector including HP. We believe 
that the technical challenges identified above are also common to the family of NFC microchip storage 
devices that provide on-chip storage access through power coupling over the wireless communication 
channel.

The rest of this paper is structured as follows. Section 2 describes two application examples, voice spot
on voice annotation and warranty spot on computer service and warranty history tracking. Voice spot will 
be used in other sections for example illustration and warranty spot will be detailed in Section 8. Warranty 
spot is the most comprehensive application prototype that we have developed so far. Section 3 provides the 
overview of the application framework, which is located between the hardware and the end-user 
applications. Section 4 details various techniques in data management, including automatic data mapping, 
reliable and efficient data caching and updating.  Section 5 describes major memory spot application 
features and management of these applications. Section 6 details data security features offered in the 
application framework with the on-chip hardware support, in particular, digital signature and data access 
control. Section 7 uses voice spot to demonstrate how a memory spot application can be developed. Section 
8 focuses on warranty spot application and the prototype. Section 9 contrasts this work to related work in 
RFID, Smart Cards and other NFC devices. Finally, Section 10 offers some conclusions and future 
directions.

2. Application Examples
Two application examples, voice spot and warranty spot, are provided to explain how memory spot can 

be attached to host devices or physical media and become an information carrier to convey additional 
information in a unique way, because of its sufficient storage capacity and miniature size. In particular, a 
voice spot enables digital multi-media insertion onto a piece of physical paper, and a warranty spot 
facilitates lifetime tracking of the warranty/service information for a computer. 
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2.1 Voice Spot
In this example, a project proposal is printed on paper and a memory spot is attached to the front page of 

this document. A hand-held device (such as a PDA or a cellular phone) equipped with voice recording 
capability hosts the voice spot application. The owner of the document makes an initial voice record to the 
spot to state that the spot is associated with this particular document. The physical document (along with 
the spot) is passed on to the proposal reviewers. Each reviewer reviews the paper document, and voice 
annotates the spot with his or her comments. Each review from a reviewer can contain multiple voice 
annotation sections, and the reviewer can specify which pages are under which annotation section.

The document is circled between the reviewers. At the end, the document is returned back to the 
document owner. The document owner uses the handheld host device to retrieve all the voice comments 
from the memory spot. The owner can listen through all the comments, sorted by the reviewers or by page 
numbers. By incorporating the comments recorded on the memory spot, the owner can create a new version 
of the document.

If necessary, this new version of the document is printed out. A new memory spot is attached to this new 
paper document. A new round of proposal review may be started over again.

2.2 Warranty Spot 
This application and the related solution architecture will be described in more detail in Section 8. We 

provide only a brief explanation here. 
A memory spot is permanently attached to a computer and over its lifetime, machine configuration, 

service records and part warranty entitlements are all stored to the memory spot, by technicians or end-user 
customers or other authorized personals. Such computer information is ready for retrieval right next to the 
computer, without resorting to the centralized database, which does not exist today. Currently, such 
computer-related information is only available at the disjoint databases scattered across different 
organizations. To acquire comprehensive information about a computer under warranty is time consuming, 
or very often impossible as cross-organizational access is unavailable due to the issues in access 
authorization or internet connectivity, among others. As a result, the memory spot becomes a data fusion
point of data provided from different organizations, regarding the computer that the spot is attached to. 

The spot is called warranty spot, because it is originally designed to reduce warranty fraud for the 
computer under service contract. It can also be leveraged to improve service efficiency, as all the historical 
information on the computer is available, right next to the computer, independent of whether the computer 
is still functional or not.

The initial memory spot is created at the end of the manufacturing line, when all the major hardware 
components are configured. Once the computer is installed to the customer site and becomes operational, 
every time a technician from a different service provider is dispatched to provide the service, the technician 
can locally determine the most recent system configuration and whether the failure part is under warranty, 
by retrieving the information stored on the warranty spot, without relying on the online databases that 
might not have access rights granted to the external service providers, or at the time of the service, either an 
online connection is not available or the online service is temporally down. After the technician finishes the 
computer service, the service record is updated to the memory spot, along with the information about the 
hardware add-on parts and the warranty associated with the newly introduced parts. All data input will bear 
the provider’s digital signature to prevent data tampering and facilitate future data traceability. 

Once the technician is back to the online environment (such as the office), the fully cached information 
from the memory spot can be used to provide data back up, in case the memory spot attached to the 
computer is maliciously destroyed or accidentally corrupted. The same information can be used to
automatically fill a filed report. Furthermore, once this cached information is sent to the warranty 
administration department, the claimed part’s warranty entitlement can be verified, in contrast to the 
current practice that only relies on the part serial number to determine the warranty entitlement. 

3. Overview
We have developed a multi-layered application framework as shown in Figure 1. At the bottom, the 

framework relies on the hardware abstraction called the Reader/Writer APIs, which expose the memory 
spot as a file system to the application framework. The reader/writer APIs cover the file-level read or write 
access to the memory spot from the reader/writer via the RF channel. With this hardware abstraction, the 
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application framework and thus the application become unaware of the physical realization of the 
reader/writer (and the memory spot as well). As a result, the actual hardware can be substituted by the pure 
software simulator counterpart, as long as the simulator follows exactly the same reader/writer APIs. In 
practice, the simulator allows application developers to develop memory spot applications, without the real 
memory spot hardware devices in place. Only at the late software-hardware integration stage, will the real 
hardware devices be required. 

The communication layer is comprised of two subsystems: event subsystem and data subsystem. The 
data subsystem creates a wrapper to synchronize file-level data access exposed from the reader/writer APIs. 
The event subsystem allocates a monitor thread to actively monitor the RF communication channel to 
detect whether a memory spot is available and in-range for reading or writing. The event subsystem also
intercepts the calls to the reader/writer APIs, discovers and filters various abnormal hardware access events 
derived from the return of these calls. The events on either data availability or hardware abnormal access 
are then translated into high-level events, which can be propagated in the application framework and 
eventually reach the application. 

The core runtime layer incorporates a collection of software modules. In particular, the Runtime 
Management module is responsible for the start and shutdown of the application framework and the 
occupied resources (e.g., threads, communication channel). The Application Management module is 
responsible for locating a collection of applications installed on the host, determining whether an 
application has sufficient capability required by the target memory spot, and starting an appropriate
application. The Reader/Spot Interaction Management module is to keep track of the memory spots that are 
being cached, to subscribe to the events raised from the communication layer and to promptly translate the 
captured events into visual and sound cues to the user. The Data Management module is to handle file 
system caching, data object serialization, reliable and efficient data caching and updating, and data security 
that primarily deals with data integrity and data access right control. The Reusable UIs packages different 
UI components that can be incorporated into different applications’ UI front-ends, to display the status of 
data processing, or to render the events raised by the framework into text or sound, in order to actively 
engage the user into this human-in-the-loop system.

At the top of the framework is a collection of memory spot applications, which are event driven. A 
generic memory spot application is provided with concrete implementation, to handle data retrieval and 
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Figure 1: Memory Spot Application Framework Overview 
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data updating, to respond to the events raised from the lower application framework layers, etc. To further 
simplify user-level programming, hierarchical data objects’ access and their marshaling/unmarshaling are 
provided automatically via code generation, based on the user-defined data model. 

4. Data Management 
A memory spot application starts with data retrieval from memory spot, and then performs data 

inspection on the cached data. If the data is updated by the application, the data needs to be synchronized 
back to the spot, before the application is terminated. In this data life cycle, data management is responsible 
for data object serialization between the memory spot and the application in a flexible way (described in 
Section 4.1), file system caching and synchronization (described in Section 4.2), and data updating in a 
reliable and efficient manner (described in Section 4.3). Data security, certainly an important aspect in data 
management, is separately addressed in Section 5.

4.1 Automatic Data Mapping 
Application data is stored as a linear sequence of bytes in memory spot. For each memory spot, the 

reader/writer APIs expose application data as the files in a file system. In general, the following application 
data types have been identified:

• Data Structures, ranging from a simple integer (such as the counter in the public transit pass), to
hierarchical data structures (such as the data in voice spot and warranty spot).

• Files, including document files in *.pdf and *.doc, media files in *.wav and *.JPEG, etc. If the 
application files have application-specific meta-data to encode further information on these files,
e.g., the voice annotation’s starting time and end time, such meta-data can be expressed in a 
hierarchical data structure, with one particular data element in the data hierarchy being designated 
to hold the fully scoped file name of the file to establish the linking between the file and its meta-
data. 

• Database, in particular, the in-memory database hosted in the address space of the application. 
Database and SQL provide a platform that greatly simplifies data inspection and data manipulation.

To unify data modeling of all these different application data types, we exploited the Interface 
Definition Language (IDL), the specification language commonly adopted for the middleware platforms 
like CORBA or COM. In general, the IDL supports arbitrary and complex hierarchical data type 
specification. An example of the IDL specification for voice spot is shown in Figure 2, in which all the data 
elements are structured hierarchically to form a data tree, with the root of the tree being with the type of 
VoiceSpotData. 

From the user-defined IDL data specification, the IDL compiler automatically produces code for 
hierarchical data tree’s access and update, and serialization/de-serialization. In addition to the root node, the 
serialization/de-serialization can be performed at a particular sub-tree as well. The data serialization engine 
commonly exists in a middleware infrastructure. The particular one that we have incorporated into our 
application framework is the IIOP serialization engine in a CORBA-like infrastructure called ORBLite
[21]. The IIOP serialization output is a binary stream. 

With this hierarchical data mapping that simplifies the application’s data access, the data flow between 
the application and the memory spot regarding data access and update is shown in Figure 3. To the 
application, data access can be at the file level or at the finer data record level. 

Furthermore, mapping between hierarchical data structure and database is supported. To database 
related applications, data modeling starts with IDL. For a table, each data row is expressed as a data 
structure in IDL, called the row data type. The entire database table is expressed as a sequence of the data
elements sharing the same row data type. In a data structure, for the SQL data types like SQL_INT, 
SQL_FLOAT and SQL_STRING, the IDL already provides the counterparts like long, float and 
string. For other SQL data types such as SQL_DATE, we have to define a row data structure called 
Date in IDL to express the corresponding fields of SQL_DATE. 

Once the database schema is modeled in IDL, after the application retrieves the memory spot data (a
binary file), the data is first constructed as a hierarchical data tree. A database table is then constructed and 
populated on-the-fly in the address space of the application. The data schema for the table can be 
automatically constructed by extracting the type definition of the row data structure via reflection. That is, 
the name of the column matches the filed name in the row data structure, and the data type of the column 
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matches (or converted, in the case of SQL_DATE and the like, as the matching is implicitly defined) the 
type of the corresponding data field. Right before the application is closed, if the database is changed, the 
entire database is de-populated into a new instance of data tree, which is further de-serialized into a binary
file and eventually this binary file is updated to memory spot, to reflect the changes conducted by the 
application.

The technique of transforming hierarchical data structure from/to binary data sequence described above, 
is called automatic data mapping. It provides a universal data modeling mechanism and the corresponding 
runtime support to greatly simplify application development, when application data access and update 
needs to be performed at the record level. 

4.2 File System Reliable Caching and Updating 
With automatic data mapping, the application still requires a reliable file system to support reading, 

writing and updating of the file (or files) to this file system. This reliability requirement stems from the 

module VoiceSpot {
 struct VoiceRecord { 

 long PageNumber; /*the page number associated with the document*/

 long StartTime; /*the start time of the voice annotation*/

 long EndTime; /*the end time of the voice annotation*/

 string StoredFileName; /*where the actual voice media is recorded*/

 };  
/*each person can have multiple voice records*/

 typedef sequence<VoiceRecord> VoiceRecords;

 struct PersonRecord {
 VoiceRecords Records; /*all the voice records from the same person*/

 string Owner; /*the name of the person that contributes the voice records*/

};

/* multiple reviewers to annotate the document*/

typedef sequence <PersonRecord> PersonRecords;

/*all these reviews are associated with a particular version of the document*/  

 struct DocumentVersionAnnotation { 
string DocumentVersion; /*the version of the document being annotated*/

string DocumentName; /*the name of the document*/

PersonRecords VoiceRecords; /*all the voice records from multiple people*/

};

/*the root node of the single data tree*/

 typedef DocumentVersionAnnotation VoiceSpotData;
};
Figure 2: IDL Application Data Specification
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physical characteristics of the underlying hardware and the communication link between the reader/writer 
and the memory spot. The communication channel facilitates not only data transfer but also power coupling 
from the reader/writer. The power coupled to the spot drives a highly customized processor to read/write 
the spot’s flash memory [18]. The distance between the reader/writer and the spot has to be within the 
range of 1~2 mm, and these two devices have to be well aligned. In a typical operational environment,
during a complete read/write operation issued by the application, it is difficult to guarantee that the user can 
steadily hold the reader/writer to the memory spot without interrupting the communication in the middle, 
especially when writing a large data file. To the current memory spot with 32KB storage capacity, writing 
32KB currently takes about 4 seconds. 

Even more troublesome, if the application has to deal with reading/updating of files multiple times, each 
time a file operation is issued, before the operation can proceed, the user has to be notified by the 
application to approach the reader/writer close to the spot to establish the communication link. 

To spare the application the burden of actively being responsible of reliable data communication, a file 
system cache is provided by the application framework. Each memory spot has a unique file system cache.  
With this cache, the user-to-spot interaction follows the two-sensing model. At each sensing, the user has to 
approach the reader/writer to the spot within a sufficiently close range with a good alignment. The first 
sensing happens when the application has the spot data to be fully cached into a local file system at the host 
computer. The second sensing happens when the application decides to synchronize the local cache with 
the spot, if the cache has been modified by the application. Once the cache is synchronized with the spot, 
the local cached file system is deleted. In between these two sensing instances, the application only 
interacts with the cached file system on the host, which is a reliable file system, as it is located either in 
memory or on a hard drive. 

To each memory spot, the duration between the commencement of the spot data caching from the spot, 
and the finishing of the data synchronization back to the spot, is defined as a data communication session. 
We also call this local cached file system that we just introduced the high-level file system (HLFS). 
Correspondingly, the flash-memory oriented file system that resides below the reader/writer APIs is called 
the native flash file system (NFFS). 

A state machine is created for each memory spot’s caching. The data caching state machine is shown in 
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Figure 3: Automatic Data Mapping for Hierarchical Data Access and Update 
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Figure 4. Each state is associated with an action that encapsulates the invocations to the reader/writer APIs. 
The state machine ensures that caching is always continued from the last healthy state, should a transient 
failure occur. Transient failures are due to the communication link that can be temporarily broken. In 
Figure 4, an unrecoverable failure can happen, when an inherent failure happens to the NFFS located on the 
memory spot, such as being not formatted or being corrupted. Such unrecoverable failure can be detected
by examining the runtime exception thrown from the call to the reader/writer APIs. The unrecoverable 
failure can also happen, when the total number of the exceptions (due to the transient failures) captured 
exceeds the predefined limit. Once an unrecoverable failure incurs, the file system caching is aborted and 
the incomplete file system instance is deleted. In turn, an HLFS related abortion event is raised. Should the 
spot caching be reissued at a second time, the caching is started from the initialization state, with 
the associated action to clean and initialize a new HLFS file system instance. 

If without unrecoverable failures, the HLFS will be established eventually. The application can then 
start to invoke file system related operations onto the HLFS. In our design, each operation has an 
interceptor deployed at the beginning of the operation, to keep track of the state of the HLFS and store the 
historical state information into a state monitor. Each HLFS instance is attached with a state monitor 
instance. The state information can include, for example, which files have been read/deleted/modified,
which file attributes (in particular, the read-only attribute) have been modified, and when is the last time the 
read/write operation was issued. 

Through the interceptor, the actual overall size of the file system is monitored as well, and compared 
against the total affordable space provided by the NFFS. If based on the model of the NFFS, the overall 
size exceeds the physical capacity of the NFFS, an exception on “file system is full” is thrown. This 
proactive measure allows the application to promptly handle the file system full exception, instead of being 
unaware of such failure situation until the late synchronization stage between the NFFS and HLFS, as at 
that time it is too late for the application to recover the failure by returning to a proper historical state. 

When the HLFS is required to perform data synchronization between the local cache and the memory 
spot, the second state machine, i.e., the data synchronization state machine, is formed, as shown in Figure 
4.  By examining the state monitor attached to the HLFS, an update scheduler can determine at each state, 
what are the reader/writer APIs that need to be performed to the NFFS. For instance, at the “file deletion” 
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state, the files that need to be deleted are determined by the scheduler and then file deletion operations are
carried out in sequence.

Similar to the caching, data synchronization will continue until it finishes successfully, in which some 
transient errors might be encountered, but with no unrecoverable failures. If an unrecoverable failure 
happens, data synchronization is aborted. Unlike the caching, which does not modify data on the spot, the 
premature abortion during data synchronization does introduce data inconsistency. However, because the 
local HLFS is always available and keeps the most recent and consistent files, as long as no timing 
limitation is imposed on how long the data communication session should be, data synchronization can be 
repeated, if the most recent synchronization abortion is due to the situation that the number of the transient 
failures exceeds the predefined limit. For the situation in which the inherent hardware failures happens 
(such as file system corruption), the recovery action can be taken by the user to reformat the spot (e.g., 
when the NFFS is corrupted) or even replace the spot (e.g., when the spot is totally destroyed), once such a 
failure is communicated to the user. As a result, because of the HLFS, data synchronization to the NFFS is 
always able to be completed eventually. 

4.3 File System Efficient Updating 
A popular application category for memory spot is data journaling, which holds a collection of data 

records to keep track of the history of a logical entity over time. Voice spot and warranty spot described in 
Section 2 indeed fall into this specific category. Once a record is introduced, it should stay permanently.  
When the content of a record needs to be updated, in order to preserve the history, a new data record is 
created, along with additional information to denote the “update” relationship between the two data 
records. Such a requirement is similar to version control system, in which a versioned object should never 
be destroyed.

In each data communication session, the application might introduce several new data records. The 
binary file, that is, the serialization result of the data tree, does not always have the newly introduced 
records to be located at the end of the file. This can happen, if there exist multiple row data types in the 
application, each of which corresponds to a different table, and all the tables are serialized into one single 
binary file. The insertion of a new record into a table that is not the last one in the serialization sequence, 
will certainly lead to the insertion of a byte sequence in the middle of the binary file.

Following a conventional file system’s updating mechanism, the old file would have to be removed 
from the memory spot, before the updated file is copied to the spot. This happens even when only one byte 
in the file is modified. To a flash memory device like memory spot, this update approach becomes 
inevitably slow because of flash memory’s electronic characteristics. In fact, in flash memory, when a 
block is written once, further data update onto the block needs to be erased first. This process is called re-
programming. Correspondingly, the first-time write to a flash memory block is called programming. Re-
programming is a much slow process compared to read and programming [26, 6, 15]. To the particular 
memory spot with 32KB storage capacity that we have, the erase of a block takes 20 ms, whereas byte-
writing takes only 20 us (and therefore for a 128B block, it takes 2.56 ms). In contrast, reading is extremely 
fast. In fact, reading a byte only takes 60ns in this particular memory spot chip. 

As a result, when no free memory block is left, data updating to memory spot requires block re-
programming. In addition, such updating is always over the unreliable communication channel. A scheme 
that can reduce the data that needs to be actually synchronized over the RF communication channel 
between the HLFS and the NFFS, becomes very important for data synchronization. 

We exploited the data chunking scheme used for file synchronization over the Internet [7], to divide a 
file into a collection of chunks. The chunk boundaries are uniquely determined by the file’s content. 
Furthermore, localized data modification leads to only localized modification of chunks and thus we only 
need to update these chunks back to the spot. The mechanism is schematically shown in Figure 5. 

The rest of this section shows how to realize the chunking mechanism for each individual file that has 
been designated for intelligent data updating in the HLFS. This approach does not require the modification 
of the reader/writer APIs and therefore no change to the NFFS. In the HLFS, the files that are subject to 
only small modification in each run of the application, are marked as the fast update files, and become 
eligible for efficient data updating. Correspondingly, we introduce a special file system operation in HLFS 
called FileUpdate, which takes the inputs that include the file name, and the binary sequence that 
represents the entire file content.

Furthermore, we introduce a special binary file called the super chunk file into the HFLS, which records 
the file names of all the fast update files, and the sequence of the hash values of the chunks that belong to 
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each of the fast update file. This super chunk file is a binary file, whose data semantics is expressed in IDL, 
as shown in Figure 6.

Following the chunking algorithm, a fast update file is partitioned into multiple chunks. Each chunk is 
recorded as a file into the native memory spot file system (NFFS), with the file name being the hash value 
of the entire chunk’s byte sequence. The chunks are invisible to the application, since the application only 
interacts with the HLFS. The HLFS provides chunk aggregation, according to the relationship specified in
Figure 6, and exposes only the fast update files to the application but no chunks.

In the NFFS, to distinguish other regular files in the NFFS, a chunk file is assigned with a file attribute, 
e.g., 0x40000000, and a super chunk file is assigned with a different file attribute, e.g., 0x80000000. The 
same file attributes are then picked up by the HLFS for data aggregation.

When the application decides to perform data synchronization between the HLFS and the NFFS, the 
reverse transformation happens. The normal files are treated identically as before, only the fast update files 
need to undergo the chunking. After the chunking, the new hash value sequence is compared with the 
previous version of the chunking result recorded in the super chunk file.  The update scheduler introduced 
in Section 4.2 is slightly adjusted to accommodate the fast update files. The adjustment happens to the 
chunk files, for adding a chunk file (if the chunk is newly introduced), or deleting a chunk file (if the chunk 
disappears). The super chunk file is updated as well, to reflect the new version of the fast update files.  

typedef octect[20] HashOfChunk; /*a SHA1 hash value is 160 bits*/

typedef struct FileAttribute {
string FileName;  /*the file name of the fast update file in HFLS*/

long size;   /*the size of the file*/

long creationTime; /*the date when the file is created*/

long modificationTime; /*the date when the file is created*/ 

}
typedef struct SuperChunk {
 FileAttribute fileAttributes; /*a fast update file’s attributes*/

 sequence <HashOfChunk> correspondingChunks;/*a sequence of chunks*/

};
/*the binary file that contains all the super chunks*/

typedef sequence <SuperChunk> SuperChunks; 

Figure 6: IDL specification of Super Chunk
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Figure 5: Chunking Modification for Data File Updating 
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To examine the overhead introduced by the chunking algorithm, assume that there is only one fast 
update file in the HLFS. There are two overheads involved. The first one is due to the update of the super 
chunk file. The second one is due to the change of the chunk boundaries, when one byte change occurs to a 
particular fast update file. To update of the supper chunk file, the entire file content needs to be transferred 
over and written to the spot. The file has a total size of: 

HashChunksAttributeFile SizeNSize •+−

where SizeFile-Attribute denotes the total meta data size for a file, NChunks denotes the total number of chunks in 
the fast update file, and SizeHash denotes the size of the hash value for a chunk. 

The second overhead can be found from [7], which can be represented statistically as follows: 

AverageSize•α
where α denotes the chunking update overhead with a value less than 2, and SizeAverage is the average size 
of the chunk in the fast update file. 

Note that the total fast update file can be statistically represented as NChunks*SizeAverage. As a result, the 
overhead, compared to the conventional file system file updating that writes the entire file content, can be 
described statistically as:

AverageChunks

AverageHashChunksAttributeFile

SizeN
SizeSizeNSize

•
•+•+− )()( α

In the implementation, SFile-Attribute is 16, SizeHash is 20. The SizeAverage is controllable. Suppose we choose it 
to be much larger than SizeHash, such as 2K. The overhead can be simplified to become:

ChunksN
α

For a memory spot with a 32KB capacity, with all the parameters above, and assume the spot holds a single 
fast update file, the overhead is less than 12.5%. For a 512KB, if we choose 8KB chunks, the overhead is 
less than 3.1%. 

The overhead about is calculated only for one modification occurs to the file. If an update leads to 
multiple modifications, each one will likely introduce its own overhead. But as long as the chunking yields 
the chunk number that significantly exceeds α , we always have a win in data updating through chunking.

5. Application and Application Management
This section presents the common functionalities provided by the application framework, regarding 

memory spot application and application management. 

5.1 Event Based Programming 
Memory spot applications are designed to be event-based, to respond to the events raised from the 

application framework. Different layers within the application framework introduce their own events. 
These events are propagated up to the application level eventually. The application can choose to respond
to the specific events that it is interested in and ignore the others. Currently, there are two types of events:
error events that represent the incurrence of abnormal system behaviors, and status update events that 
represent the status of normal system behaviors. Events are about:

• The proximity and interaction to the physical spot. Examples of events are “spot in range”, and 
“spot out of range”, “channel not available”, “read progress on channel” and “write progress on 
channel”. These error or status events are raised from the communication layer;

• The file system and its caching to the host computer. Examples of events are “file system cached”, 
“file system not formatted”, “file system corrupted”, “file system aborted”, “file permission 
violation”, etc. These error or status events are raised from the data management unit in the core 
runtime layer;

• The reader/spot interaction management. Examples of events are “read/write state change” and 
“cache cleaning failed”. These error or status events are raised from the data management unit as 
well.

These well-defined error or status events in the framework can be reported to the user with either visual 
or sound effects, to actively engage the user in this human-in-the-loop system.
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Notice that some of the abnormal execution related events, such as “file permission violation”, can have 
their exception counterparts defined in the application framework. Therefore, right after an abnormal event 
is raised, the corresponding exception can be thrown. The difference between error events and their paired 
exceptions, lie in the fact that the exceptions are always propagated in only a single execution thread, 
whereas to the events, there can be potentially two threads involved: one thread to raise the event, and the 
other thread to respond to the raised event. 

Under this event-based programming paradigm, in a normal data communication session, an application
typically experiences the following five phases:

• The application is started and registered to the application framework. The application then 
subscribes to a collection of events that it is interested in, including the event of “file system 
cached”;

• The “file system cached” event is raised from the application framework, right after the 
reader/writer approaches to the spot and the framework successfully caches the data to the HLFS. 
To respond to this event, the application starts to perform data processing on the cached data;

• If the cache is modified during the application’s data processing, data synchronization between the 
HLFS and the memory spot is required. This action is performed after receiving the command from 
the user;

• Finally, the application is closed. 

5.2 Memory Spot Application 
A generic memory spot application provides common functionalities shared by memory spot 

applications. Each memory spot application is always inherited from this generic application. The generic 
application provides the implementation on:

• Application Start and Shutdown: the application automatically registers itself to the framework
when the application is started, and un-registers itself from the framework when the application is 
shutdown.

• Event Registration/Un-Registration and Default Event Handlers: All the pre-defined runtime 
events are registered by the application when the application starts, and un-registered when the 
application is shut down;

• Data Access and Data Update: A file can be read from the HLFS, or be written/updated to the 
HLFS;

• Data Commit: the entire HLFS has its data synchronization back to the memory spot, before the 
application is shutdown. 

• Query on Cached Spots:  More than one memory spot can be cached at the host. Each cached 
spot can be selected to become an active spot. Once the memory spot becomes active, the 
application can perform  access to its HLFS;

• Automatic Data Marshaling: if the application deals with hierarchical data structures, the data 
tree can be populated and depopulated automatically, by providing the binary file name and the 
data type of the root node in the tree;

• Capability Matching: It ensures that each time the spot data is accessed or updated, the 
application has the right capability to process the spot data, based on the capability matching
specified by the memory spot (detailed in Section 5.3).

With the support from this generic memory spot application, each user-defined application provides 
both the customized event handlers to override the default implementation, and the capability matching 
criteria to proactively determine whether the application is capable of processing the data stored on the 
memory spot.  

To distinguish different applications, each user-defined application is assigned with a UUID. Different 
versions of the same application become distinctive, once each application version is also with a different 
UUID. 

5.3 Dynamic Application Activation
There are two mechanisms to activate the application. The first mechanism, called static application 

activation, is to designate a single application for launching at the time the application framework is 
started. The second mechanism, called dynamic application activation, is to have the application to be 
launched by the framework automatically, after the spot data is cached into a HLFS and the spot is selected 
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to become the active spot. 
To support dynamic application activation, all dynamic application candidates are located in a 

predefined directory (or directories).  In .NET, these applications are packaged in DLL or EXE format. To 
determine which application is eligible for activation among a collection of application candidates, 
capability matching is required. The information on matching criteria comes from the active memory spot. 
The criteria can be specified in XML in a configuration file that is a read-only (created at spot 
manufacturing, and no user modification is allowed). The matching criteria can be as simple as to have the 
application’s UUID specified in the configuration. The application framework uses code reflection to 
retrieve the UUID from the candidate application and determines whether the candidate application has the 
correct UUID. The XML configuration could additionally provide an Internet location to download the 
corresponding application code, should the application is not available at the host. A more sophisticated 
capability matching can be provided via the configuration file that follows an application-specific data 
schema definition. 

Since memory spot can provide sufficient storage capacity, the entire application code can be potentially 
stored in a spot as well. After the spot data is fully cached into a HLFS, the corresponding DLL or EXE file 
is copied onto a predefined application loading directory. Consequently, the application is chosen for 
dynamic launching. 

If the application code is downloaded from the memory spot or the Internet, the application management 
needs to make sure that the digital signature of the downloaded code does come from a trusted software 
publisher and no code tampering incurs. 

6. Data Integrity and Access Control
Data security is critical to memory spot applications in both consumer and enterprise domains. The data 

stored in the spot can be potentially personal and private, and therefore disallows public access. 
Unauthorized data modification can potentially have negative legal and financial impacts. Memory spot has
built-in hardware support to allow data to be accessed and updated only when the reader/writer is 
authenticated by the spot [18, 1]. The authentication mechanism follows the challenge/response protocol,
similar to the symmetric key authentication mechanism adopted in Smart Card devices [14]. Once the user 
is authenticated, data access is granted for all data stored on the chip. In the current hardware support, there 
is no finer application data access enforcement, both for files and hierarchical data structures. 

In general, instead of limiting the data on the spot to be privately owned by a particular person, we 
assume that data on memory spot is accessible and updatable, by different people from different 
organizations, selectively. Therefore, in the application framework, we were focused on the following two 
data security features:

• Data Integrity: for the data stored on the memory spot, how to verify that data records are really
provided by a particular user, and whether they have not been tampered ever since. One particular 
example is the service records in warranty spot, each of which is stored to memory spot right after 
the technician completes a computer service;  

• Data Access Control: how to determine that a particular data record, or a particular data access or 
update operation, is granted to a particular user.  One example in voice spot is that a reviewer can 
only append the voice records to the spot; only the document owner can format and erase the entire 
voice spot.

The primary challenge herein is how to provide such data security features, in an environment where we do 
not have the online Internet access and enterprise-level authentication and authorization security services, 
at the time the data is accessed or updated to the spot. Consequently, the online access should be postponed
by an indefinite period of time, from the time when the data is accessed or updated to the spot. This 
operational constraint is critical, as the primary advantage offered by memory spot over other referential 
devices such as RFID is its self-contained local storage.

In addition to the hardware authentication feature mentioned above, we also take advantage of other 
hardware support. In particular, each spot has a write-once memory segment on the chip. Once the data is 
written onto this special segment, the data becomes read-only and can not be erased any more. This 
segment stores the following information: 

• A Universally Unique Identifier (UUID) provided by the hardware manufacturer to the spot, as the 
identity of the memory spot. Currently, the UUID has the size of 128 bytes;

• A memory spot header to record spot-specific and application-specific information. 



14

6.1 Data Integrity 
We use digital signature to ensure data integrity. The digital signature is performed on the data records

stored on the spot. A data record is referred to a data node located at any arbitrary hierarchy (except at the 
leaf node level) in a hierarchical data tree constructed from the byte sequence stored on memory spot. 
Which hierarchy is at the appropriate level to evaluate and then assign digital signature is dependent upon 
individual applications. Digital signature S of a data record R is actually embedded in R as one of the data 
fields, denoted as R.signature. Given R, S is generated in the following operation sequences:

(1) Assigning the corresponding data field  R.signature to be null;
(2) Applying the data marshaller of R (via automatic data mapping described in Section 4.1) to R, and 

obtain byte sequence, B[];
(3) Applying digital signature generation algorithm on B[], to obtain S;
(4) Assign S to R.signature.

These steps can be combined and described as:

Correspondingly, to perform digital signature verification on R requires the byte sequence from 
Marshal(R, R.signature = null). Furthermore, we need to have a public key embedded along with the 
digital signature. In our implementation, we choose X.509 digital certificate. The X.509 certificate allows
us to check other aspects of the certificate, including the holder’s name, the organization issuer, and the 
expiration time. All of this information can be further verified by walking through the Certificate Authority
(CA) chain [5] embedded in the digital certificate. For example, the certificate is signed by HP’s CA, which 
can be further signed by VeriSign’s CA. To verify the involved CA chain, we need to have all the involved 
CAs’ public key certificates to be pre-installed onto the host computer. To a particular memory spot 
application, at the time the application is installed, the digital certificates of the involved CAs have to be
installed. Alternatively, the certificate verification can be deferred until the time when the online 
connection is available. We then have all the required public key certificates to be installed, as a one-time 
effort.

One other issue that can not be ensured without the online connection is digital certificate revocation, if 
the digital certificate is revoked before the certificate is expired. If such checking is required, similarly, we 
can have it deferred until the online service infrastructure becomes available. 

Digital signature can be applied to each individual file. What is required is to create a data record that 
contains a fully qualified file name to the file, and a byte sequence to hold the file’s digital signature and 
public certificate. Similarly, Digital signature can be applied to the entire memory spot’s application data. 
This can be useful for memory spot backup, in case the memory spot is either accidentally corrupted or 
maliciously destroyed. From the digital signature and the public certificate, we can determine whether the 
backup data is corrupted, and who is the person that performed the data backup. 

6.2 Data Access Control 
Recall from Section 4, application data represents itself in three different ways. At the application level, 

data access is viewed as different data records in a hierarchical data tree. At the file system level (either in a 
HLFS or a NFFS), data is represented in a binary file. In the physical memory spot chip, data is represented 
as a collection of byte segments stored in different flash-memory blocks. In the application framework, our 
focus on data access control is at both application data records, and the file system in HLFS. We consider
the file system as a whole as a particular resource, which supports the operations such as formatting. 

Therefore, application data records and files are two different types of resources under our software data 
access control. Each resource is with a fully qualified name. In terms of data records, the qualified name is
derived, by starting from the root node with name of “/”, and descending down to the particular data 
element under the current interest, with the type names of the nested data structure elements along the path
to be concatenated in sequence. For example, the data element: page number, of the voice record described
in Figure 2, is “/VoiceSpotData/VoiceRecords/PersonRecord/Records/VoiceRecord/PageNumber”. To a 
file, since the current NFFS and thus the HLFS only support a flat file system with only one directory level, 
the name of the file is the file’s fully qualified name. 

Regarding data records, the right can be the following: 
(1) create/update a composite tree node;

))nulleR.signatur,R(Marshal(SignatureeR.signatur ==  
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(2) add/remove/update a child element node in the tree node that represents an array or sequence of 
data elements.

With respect to the NFFS and HLFS file system, the rights involved are read, write and update of the files. 
Note that update is distinguished from write, as we have a particular update operation introduced in Section 
4.3.

We augmented the IDL to allow access control on hierarchical data structures, by having access control 
to a data structure become an attribute associated with the data structure.  Correspondingly, the IDL 
compiler is modified for code generation to accommodate such language extension. An example of access 
control specification is shown in Figure 7.

So far, we assume that the read right is always granted to users. To enforce read access, we can resort to
the hardware authentication that we mentioned early. That is, if a user is able to pass the spot’s 
authentication, the user is automatically granted the right to read, for all the data stored on the spot.

We adopt the certificate-based authorization approach [22] to enforce correct resource access in memory 
spot applications. The enforcement is only performed for data write and update. With this certificate-based
approach, the access control enforcement can be done in the offline environment, once all the necessary 
certificates have been downloaded in advance from the online trusted environment. The entire access 
control subsystem is shown schematically in Figure 8. Every time the resource access request is issued
from either the application data manager regarding hierarchical data access, or the HLFS regarding file 
system access, the policy engine will interpret the rules and determine whether the resource access should
be granted. 

Access Control Related Attributes and Certificates 
To support policy verification, the following information is stored permanently in the memory spot 

header:
(1) The application policy certificate, along with the digital signature of the policy certificate and the 

public key certificate of the signing authority. Alternatively, what needs to be stored includes
only the digital signature and the URL location to download the policy certificate and the public 
key certificate. In an online environment, the certificates are downloaded. By digital signature 
comparison, the policy engine can determine whether the policy certificate downloaded really is 
the one specified by the target memory spot;

(2) the application UUID, so that the policy engine can tie the current application being enforced to 
the target memory spot; 

(3) Other attributes that are related to memory spot and the application. e.g., the specification of the 
organization (s) in which the spot will be owned. For voice spot, we can specify the organization 
is “hp.com”, for example. For the memory spot that is attached to a physical passport, we can 
have the name of home country associated with the passport holder to be specified. 

[owner (create, modify)]

struct VoiceRecord { 

 long PageNumber; /*the page number associated with the document*/

 long StartTime;  /*the start time of the voice annotation*/

 long EndTime;   /*the end time of the voice annotation*/

string StoredFileName; /*where the actual voice media is recorded*/

};  

[owner (create, add, remove), reviewer(read, add)] 

typedef sequence<VoiceRecord> VoiceRecords; /*each person can have multiple voice records*/

Figure 7: Role-Based Access Right Specification in IDL
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Aside from the policy certificate which is either stored in the spot or downloaded from the Internet, the 
user attributes certificate is required by the policy engine. This user attributes certificate specifies a unique 
role that the current user belongs to. The user needs to install this certificate in a user-specific environment, 
before the application is started. The role can be explicitly specified in the attributes certificate.
Alternatively, the role can be dynamically evaluated, based on some declarative specification on spot 
header information and even some application data information. For example, the role of the voice spot’s 
owner, can be dynamically evaluated by having the current spot’s UUID to match the spot identifier
specified in the user attributes certificates. If not matched, then the role is defaulted to be reviewer. Another 
example is to have the spot to record the electronic passport, in which the role of the passport of “visitor”,
can be determined by comparing the current user’s organization attribute on the attributes certificate with 
the organization attribute specified on the spot. In the user attributes certificate, an expiration date can be 
issued, if we intend to have the right granted to only within a finite period. 

With all the three pieces of information: the application policy certificate, the user attributes certificate, 
and memory spot header, the policy engine is able to perform policy enforcement to a particular application
that is accessing the spot data on behalf of the current user.

Policy Engine 
Data access is enforced at different data access points. To the application hierarchical data structures, the 

enforcement is performed when application data synchronization to memory spot is called. By comparing
the newly updated tree with the existing tree on the cache, the policy engine can go over the rules specified 
in the policy certificate one by one and determine whether some rules about data hierarchy are violated, 
before the corresponding updated binary file (containing the serialized result) is written or updated to the 
HLFS. 

The entire hierarchical data tree constructed in the address space of the application is always visible to 
the application. It is the application’s responsibility to enforce data write/update protection proactively, by 
following the rules specified in the policy certificate, rather than wait until the application data is serialized 
and ready for data synchronization. If the policy is violated, the application framework will refuse to 
perform data synchronization. 

With respect to the file system access, it is enforced when the HLFS file system’s write/update is called 
from the application. An internal call from other modules within the application framework is immune 
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Figure 8: Certificate-Based Access Control on Memory Spot 
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from such enforcement.
In the actual implementation for policy verifier, data access enforcement can be achieved by having the 

call interceptor deployed at the beginning of each operation involved with resource access. The interceptor 
delegates the resource request to the policy verifier. The policy verifier can be implemented as a general
rule interpretation engine. Alternatively, we can come up with an application-dependent verifier. The
policy verifier can be developed at the time the application is developed and packaged as a DLL (called the 
Verifier DLL). This DLL is digitally signed by the trusted authority to prevent code tampering. To support
this code checking, the verifier DLL has a strong name to be associated with, and is forced to link to the 
application to ensure its association to the correct version of the application. The association can be 
achieved at the compilation time, by having the application implementation to create a policy verifier 
instance and register this instance to the application framework runtime.

7. A Programming Example
We use voice spot application to illustrate how a memory spot application is developed in the 

application framework. The application data schema has already been shown in Figure 2. 

7.1 Application 
Figure 9 shows the overall application class layout. It is inherited from the generic memory spot 

application MemorySpotApplication. It has a UUID to be assigned as a class level custom attribute. 
The default constructor provides the application-specific initialization. For this particular application, only 
two methods defined in MemorySpotApplication are required to provide the overridden 
implementation: the event handler OnFileSystemCached for “file system cached”, and the application-
defined capability matching CapabilitiesMatch. 

The event “file system cached” is raised after the HLFS is successfully constructed from the cached spot 
data. In the handler OnFileSystemCached, the most recent memory spot that has been cached is 
retrieved, via the method called LatestMEmorySpot. The associated memory spot is designated as the 
active memory spot, via the assignment of the property called ActiveMemorySpot. The root node of the 
application data is created, and the method on data retrieval is performed via the method called 
RetrieveData. Once the data is populated into the in-memory data tree, if no exceptions are
encountered, the event ApplicationDataReadyEvent is to signal that application data is ready to 
use. All the three methods mentioned above, namely LatestMEmorySpot, ActiveMemorySpot and 
RetrieveData, are all declared and implemented in MemorySpotApplication. However, the 
event, ApplicationDataReadyEvent, is specific to this application, and thus is only introduced in 
this particular application. Other high-level application processing can subscribe to this application-defined 
event in order to perform further data processing. 

As we do not provide our own user-specific capability matching, the method CapabilityMatching
simply returns true. 

7.2 Application Start and Shutdown
The programming pattern on how to start and shutdown application is shown in Figure 10.  The 

application is registered to the application runtime by identifying itself with its own UUID, and then the 
runtime is launched, following static application activation. Once the application is finished with possible 
data synchronization back to the spot, we can shutdown the entire application runtime. 

8. Warranty Spot 
This section describes how to exploit memory spot to reduce warranty fraud in computers. We explain 

computer-related warranty fraud, and why a memory spot attached physically to the computer helps reduce 
warranty fraud. We also present the service architecture on warranty spot application, which is an 
enterprise service application that spans across multiple organizations. We also present the application 
prototype to demonstrate our application framework.
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8.1 Computer Warranty Fraud
HP has recently confirmed that 6% to 8% of its warranty claims are fraudulent, an estimated $142 to 

$189 million in warranty fraud per year [23]. The root cause is that there is no integrated information 
system to systematically keep track of computer hardware configuration, computer service records, and 
warranty entitlements associated with a computer system and its major hardware components, over the 
lifetime of the computer. Its lifetime is from the time the computer is at the end of the computer assembly 
line to the time when the computer’s parts are being upgraded, repaired or replaced, and ultimately when 
the computer retires. Currently, such computer-related information is only available at the disjoint 
databases scattered across different organizations. To acquire comprehensive information about a computer 
under warranty is time consuming, or very often impossible because of cross-organizational access 
availability (authorization, internet connectivity, etc). In fact, the whole warranty entitlement creation, 
update and enforcement process involves other organizations external to HP, including distribution 
channels, authorized service providers (ASP), etc.  In particular, we see the following problems that 
contribute to frequent warranty fraud:

• Inability to tie constituent subassemblies and components to the computer as a whole. Without such 
system/part relationships recorded, damaged parts from out-of-warranty computers can be swapped 
into the computers under warranty and therefore become eligible for warranty service;

[GuidAttribute("CA761232-ED42-11CE-BACD-00AA0057B223")]

public class VoiceSpotApp: MemorySpotApplication

{

public VoiceSpotApp() {

…..

}

public override void OnFileSystemCached (object sender, MemorySpotFileSystemEventArgs args) {

 try 
{

//(1) Retrieve the most recent memory spot as the active spot
IMemorySpot spot = this.LatestMemorySpot();
this.ActiveMemorySpot = spot;
//(2) Retrieve the data from the spot 
IMemorySpotApplicationData data = 

new MemorySpotApplicationData 
(ApplicationDataTransformation.Unmarshal,
new PersonRecordsHolder());

RetrieveData (data, "VoiceAnnotate.dat");
AppDataReadyEventArgs args = new AppDataReadyEventArgs(data);
OnApplicationDataReadyEvent (args);

}
catch (ApplicationDataAccessException) 
{

….
}

} 

public override bool CapabilitiesMatch (IMemorySpotApplicationManifest  capabilities){

return true; 

}

}

Figure 9: The Overall Voice Spot Application Class Definition 
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• Inability to aggregate all information about a computer from the disjoint databases to make an 
accurate assessment for a service request regarding this computer. In practice, to ensure customer 
satisfaction, if no evidence is found to invalidate the service request in 4 minutes, the request has to 
be granted;

• Inability to access centralized warranty databases by field technicians from an external ASP, as they 
usually do not have connectivity or access rights to the HP-owned databases. However, they are 
authorized to initiate the service based on limited computer information;

• Inability to determine at the time of field service whether the malfunctioned part is installed by an 
authorized personnel. Should such a situation be confirmed, the warranty is voided.

The Warranty Fraud Monitoring (WFM) database in HP [24] was built for such backend processing. It 
records computer-level warranty entitlements, service logging (with reported symptoms) at the call center, 
services being dispatched, and part-to-customer shipping history. With the WFM and other databases, a 
data mining tool has been developed to identify warranty fraud. Although the tool has shown its 
effectiveness, it is not designed to proactively stop warranty fraud at the first place.

8.2 Information Fusion via Memory Spot
To proactively reduce warranty fraud, instead of consolidating the disjointed databases that would 

require a tremendous effort, we adopt an approach that facilitates computer history information to be 
available right next to the computer, and enables proactive fraud prevention. It is based on memory spot, 
with the spot being permanently attached to the computer. The spot records the computer’s hardware 
configuration (mother board, memory modules, etc), service records (part repair/upgrade/replacement), and 
warranty entitlements of the computer and its parts over its lifetime [16]. We called this particular memory 
spot Warranty Spot.

The spot is first created and populated at the end of the manufacturing assembly line. System 
configuration and warranty information – details about all the constituent components of the computer – is 
written onto the spot. The spot is further updated at the distributors/value-added resellers to reflect warranty 
purchase or hardware customization. Once the computer is in service at the customer site, the spot always
contains an up-to-date version of the warranty and configuration of the computer, which can be accessed 
locally, independent of whether the computer is operative or not. Storing such information to the hard drive 
of the computer does not work if the computer can not be booted up, such as encountering hard disk crash.
The service technicians can immediately determine whether the part under service request has valid 
warranty, whether the part was originally a part of the computer under service, and whether the part was 
swapped in. The service technician updates the service details to the spot after finishing the service. Thus 
the spot stores a living history of the computer. For end-user replaceable parts (EURP), the customer 
should manage to obtain the reader/writer device to update service records.

Besides decision-making assistance right next to computer, this comprehensive computer-related 
information can be serialized as a flat file and transported via file upload or email attachment to remote 

//start the application, with the GUID being the application’s identifier
Guid appID = new Guid("CA761232-ED42-11CE-BACD-00AA0057B223");
//the runtime is a singleton
MemorySpotRuntime runtime = MemorySpotRuntime.Instance;
runtime.ApplicationID = appID;
runtime.Start();
…..
//to shut down the application
runtime.Shutdown();

Figure 10: Start and Shutdown the Memory Spot Application 
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parties, such as the call center, claims administration, return part processing center, etc. At the receiver, 
complete structural information from the spot is reconstructed to grant warranty claims, to determine 
replacement parts, to close service cases, etc.

Overall, the warranty spot is a data fusion point for different people across different organizations. The 
comprehensive computer-related information is self-contained, and locally accessible and updateable, 
without relying on a centralized system. Further, the spot and reader/writer device are designed to be low-
cost (less than $1/spot). Thus this solution is viable, especially for higher-end computer server systems.

8.3 Solution Architecture
Figure 11 shows the architecture for the warranty spot application. In the application, built upon the 

application framework is the data processing module, which contains two sub-modules. The first one is the 
In-Memory Database (IMDB), which is created on-the-fly from the data stored on the spot. It has a 
relational database that handles computer part/service/warranty entitlement (3 tables) input, update and 
SQL query-based inspection. Information navigation between different tables becomes available via the 
defined table relationships. The process of serializing all the computer-related information into a flat file, 
called imaging, can be performed via the data management services exposed by the application framework. 
The spot image is used for the purposes like warranty entitlement enforcement and data backup. Instead of 
real-time synchronization with the centralized databases, a backup service that prevents data loss requires 
minimum changes to the current IT infrastructure with simple and cost-effective implementation. Once the 
spot images are backed up, they become valuable for data mining tools beause they embody the updated 
history of the associated computers.

The second sub-module is on data repurposing, which transforms local data information on the spot for 
other purposes, e.g., to update the customer’s data center about the most recent computer configuration, to 
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populate field reports on the service just performed to the ASP’s data center, to update the centralized 
database with warranty entitlements just entered to the spot, etc. Note that all these actions can be deferred 
until an online connection is available.

8.4 Application Prototype 
The prototyping application has been implemented and successfully demonstrated. The application 

prototype provides the implementation on the portion that is hosted on the PC/handheld. Shown in Figure 
11, the implemented portion covers all the modules within the largest circle. In our implementation, we use 
the Tablet PC running on Windows XP as the hosting platform. In addition to the general reading and 
updating a memory spot offered by the application framework, the application prototype is capable of 
viewing and inserting records for hardware parts, the associated warranty, and the service records that deal 
with repairing/upgrading/diagnosing the old or new hardware parts. Furthermore, each time a successful 
update of the spot is finished, a copy of the application data is created into a binary file and stored in a pre-
defined directory (implemented with .NET isolated storage) on the host, ready to be uploaded to the online 
service provider for spot backup. The host also keeps track of all the service records done on this host by 
the technician. A XML-based render is able to transform each service record into a nice field report in an 
Internet browser. To support digital signature on each data record, the user needs to have a X.509 
certificate installed to the host. The screen shot of the application in action is shown in Figure 12.

9. Related Work 
In this section, we identify the physical devices that share similar physical properties with memory spot. 

These devices include the RFID, Smart Card devices and the NFC devices. We focus on the comparison of 
the involved application development frameworks associated with these devices, to the one that we 
developed for memory spot. 

RFID chips only provide referential information (e.g., the EPC code about the product that the chip is 
attached to, with 96-bit in storage). The RFID chips typically are read-only. Regarding the interaction with 
hardware chips, the RFID middleware [19] is concerned with how to collect the data from multiple chips 
simultaneously in a wireless broadcast channel. In terms of the high-level functionalities that span from the 
low-level device interaction to the high-level enterprise business applications, our memory spot application 

Figure 12: Screen Shot from Warranty Spot Application 



22

framework shares certain functionalities with the Ovum’s model [19] at the bottom three layers: data 
collection, data cache, and device management. Once the RFID data is successfully retrieved at the data 
collection layer, an event then propagates to the high-level middleware layer that deals with business 
information processing, such as database access, product tracking, inventory control, etc. Because the RFID 
chips only store the referential identifier information, unlike our memory spot application framework, there 
is no data management capability like data caching (which has different semantic definition in Ovum’s 
software stack) and synchronization, data serialization and data integrity checking, for individual chips. 

A smart card device provides an on-chip processor running an operating system to support on-chip 
downloadable applications [14]. An on-chip flash-memory based file system offers non-volatile and re-
programmable storage, with limited storage capacity (4 KB or less).  A smart card is often personally 
owned for applications like Secure-ID for identity authentication, or secure financial transaction with on-
chip crypto-coprocessor [11]. The Java Card [13] enables application development with restricted Java 
features supported by a trimmed down version of the Java VM. When a smart card device is in operation,
the reader and the card are in a contact mode. As a result, no eventing on the unreliable communication 
channel, as well as efficient and unreliable data caching and synchronization over this communication 
channel, is supported. Furthermore, no similar techniques are provided on smart card devices for automatic 
data mapping, data integrity and data access control, at the finer granularity than the file system support. A 
service framework called the Java Card Web Servlet (JCWS), which runs on a host computer (PC), is 
presented in [4]. This framework receives a remote service request from a local (remote) browser, and
interacts with the service proxy installed on the smart card to access the on-card file-based resources, such 
as files and applets. In terms of data security, hardware-level authentication on smart card has been 
addressed [14]. On-card file-level role-based access control is also addressed in some Smart Card
Operating Systems, such as in Microsoft Windows Card [20]. [3] exploits the use of role-based access 
control on files, each of which holds a database table or a view. 

NFC devices exploit the similar microchip storage technology as smart cards have, except that NFC 
reader devices interact with the microchip through the wireless connectivity [17]. Therefore, the interaction 
is in a contact-less mode. In fact, memory spot can be viewed as one member of the NFC device family. 
Sony’s FeliCa [9] is a popular NFC device widely used in Japan and other Asian countries to enable online 
payments via mobile phones, for the applications like ticketing, public transport access and retail store 
purchase. The device provides 5Kb and operates at 13.56MHz. MicroPass is another NFC chip that 
provides up to 64KB [12] storage capacity on the same carrier frequency of 13.56MHZ. Because of the 
carrier frequency difference, compared with memory spot, Felica card has much larger chip size (26.5mm 
in diameter, for the smallest variant of the Felica cards). In addition to limited chip storage, most of the 
applications currently available for these NFC microchip devices have very restricted data types, such as an 
integer counter for a transport pass, and a bank card that only contains user identifier, card number and 
expiration date. We are not aware of other application frameworks that provide the data management 
capabilities as comprehensive as our framework. 

The common objective of flash-memory based file systems [26, 6, 15] is to increase the I/O throughput 
of data reading/writing to the storage device. Such a file system is an integrated part of the operating 
system and needs to be always available, independent of the status of application execution. Instead, 
memory spot applications mostly perform data processing on the cached data at the host computer. Data 
synchronization between the application and the storage device are only required at the beginning and the 
end of the application.  In such a disconnected computing environment, one primary objective for our 
application framework is to minimize the complete data update from the host computer to the spot when the 
application is terminated (not the other way around, as reading from the spots is very fast). This objective, 
along with the unique operational environment (e.g., the RF link to the host computer, very primitive 
read/write memory cell operations and very limited processing power on the spot, and the powerful
processing unit at the host), requires the data synchronization module being developed with a completely 
different device architecture and internal data structures. In contrast, on-board SRAM storage buffers are 
required in [26] and [6], and multiple memory chips to form multiple banks, rather than just one single 
chip, are assumed in [26] and [15].

10. Conclusions 
We have developed an application framework to enable rapid application development for a microchip 

device called memory spot, a member of the NFC storage device family. The application framework has 
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been implemented, with the first release of a .NET SDK 1.0 made available in February 2006. All the 
techniques described in Sections 4-6 regarding data management, application management and data 
security, have been implemented, except for the chunk-based efficient data updating described in Section 4
and the data access control scheme described in Section 6, which are still pending.

To measure data access related performance, we chose a memory spot chip with 32KB storage capacity, 
and a host machine which is a HP Tablet PC Tx1100 (Pentium M Processor with 1.1GHz, and 768MB 
RAM). The baseline measurement was performed on the reader/writer APIs. We found that reading a file 
of 27KB (with randomized content) takes 99 ms, and writing a file of 27KB (with randomized content) 
takes 3.5 seconds. With our application framework, we found that writing a file of 27KB (with randomized 
content) to the HLFS and subsequently updating it to the memory spot, totally takes 3.6 seconds. 

There is a lot of room for future framework improvement, which includes:
• Using a transactional file system [10] in either the NFFS under the reader/writer APIs (with 

possible hardware support), or the HLFS above the reader/writer APIs (no hardware support
required), or having the NFFS and HLFS work together, to prevent data loss in data 
synchronization. 

• Having multiple spots to be chained together to form a software-enabled jumbo spot that offers 
scalable storage to meet the application needs.  

• Designing a software/hardware platform to secure the entire application framework to counter
malicious attack, beyond the code security mechanism provided by the current Microsoft .NET 
framework. 

We have demonstrated the warranty spot application to various people within HP, in particular to the HP 
Warranty Fraud Investigation team, to seek the opportunity of a field trial on adding memory spot to HP 
computer products to demonstrate its effectiveness in reducing warranty fraud. Recently, to continue to 
explore the applications and service opportunities for memory spot, we have started to work on a device-
centric service platform. This platform will incorporate both the memory spot application framework and 
the memory spot reader/writer hardware, by viewing the reader/writer as a particular accessory device.
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