

A Robust Reversed-Complexity Wyner-Ziv Video Codec Introducing
Sign-Modulated Codes

Debargha Mukherjee
Media Technologies Laboratory
HP Laboratories Palo Alto
HPL-2006-80
May 8, 2006*

Wyner-Ziv coding,
distributed coding,
Viterbi algorithm,
forward-backward
algorithm, noisy
channel

A framework for incorporation of a Wyner-Ziv frame coding mode in
existing video codecs is presented, to enable a mode of operation with
low encoding complexity. The core Wyner-Ziv frame coder works on the
Laplacian residual of a lower-resolution frame encoded by a regular
codec at reduced resolution. The quantized transform coefficients of the
residual frame are mapped to odd cosets to enable reuse of the same
entropy coder that already exists in a regular codec without loss in
efficiency. The decoder iteratively conducts motion-based side-
information generation and coset decoding, to gradually refine the
estimate of the frame. In addition, a technique called Trellis Coded Sign
Modulation (TCSM) using tail-biting trellises based on modulating the
signs of the coset indices is proposed, in order to reduce errors while
preserving the entropy of the coset indices transmitted. Preliminary
results are presented for application to the H.263+ video codec. These
codes easily extend to sign-modulated Turbo codes, and sign-modulated
block codes, including LDPC codes.

* Internal Accession Date Only Approved for External Publication
© Copyright 2006 Hewlett-Packard Development Company, L.P.

A ROBUST REVERSED-COMPLEXITY WYNER-ZIV VIDEO CODEC
INTRODUCING SIGN-MODULATED CODES

Debargha Mukherjee

HP-Labs Technical Report HPL-2006-80†
Hewlett Packard Laboratories, Palo Alto, California, USA

(Email: debargha@hpl.hp.com)

† An earlier restricted version of this Technical Report is HPL-2005-197, 2005.

ABSTRACT
A spatial-scalability based framework for incorporation of a
Wyner-Ziv frame coding mode in existing video codecs is
presented, to enable a mode of operation with low encoding
complexity. The core Wyner-Ziv frame coder works on the
Laplacian residual of a lower-resolution frame encoded by a
regular codec at reduced resolution. The quantized transform
coefficients of the residual frame are mapped to odd cosets,
to enable reuse of the same entropy coder that already exists
in the regular codec with minimal loss in efficiency. The
decoder iteratively conducts motion-based side-information
generation and coset decoding, to gradually refine the
estimate of the frame. In addition, a technique called Trellis
Coded Sign Modulation (TCSM) using tail-biting trellises
based on modulating the signs of the coset indices is
proposed, in order to minimize decoding errors while not
flattening the entropy of the coset indices transmitted. These
codes easily extend to sign-modulated Turbo codes, and
sign-modulated block codes, including LDPC codes.
Preliminary results are presented for application to the
H.263+ video codec.

1. INTRODUCTION
In recent years, a great deal of attention [1]-[9] has been
devoted to practical distributed coding of various kinds of
sources, notably video. A good review of the recent
developments is presented in [9].

Distributed coding has its roots in the theory of coding of
correlated sources developed 30 years ago by Slepian and
Wolf [1] for the lossless case, and Wyner and Ziv [2] for the
lossy case. Figure 1 depicts the lossless and lossy scenarios
of the specific type of distributed coding referred to as

source coding with side information most relevant to this
work. Let there be two correlated sources X and Y. If Y is
known to both the encoder and the decoder, then it is well
known from Shannon that the rate required to transmit X
losslessly to the decoder would be the conditional entropy of
X given Y – H(X/Y). The surprising Slepian-Wolf theorem
[1], depicted in Figure 1(a), states than even if Y is
unknown at the encoder, but the joint statistics of X and Y
are known, and encoder and decoder can still be designed to
transmit X at a rate no larger than H(X/Y). The
corresponding lossy theorem is due to Wyner-Ziv [2]. When
Y is available to both the encoder and the decoder, the
smallest rate required to transmit X with at most distortion D
is the rate-distortion function RX/Y(D). The theorem,
depicted in Figure 1(b), states that for jointly Gaussian
sources, if the joint statistics are known, an encoder and a
decoder can still be designed to transmit X with at most D
distortion, at a rate no larger than RX/Y(D). Both theorems
provide non-constructive proofs, and invoke asymptotic
arguments. It is only recently that designing practical
Wyner-Ziv codecs for real applications have been receiving
attention. A majority of such work has focused on using
strong error correction codes.

One scenario where practical distributed coding is
promising is in creating reversed complexity video codecs
for power-constrained (hand-held) devices that capture and
either transmit data to a more powerful server or store it in
itself for subsequent decoding on a PC/server [4][5][6]. In
contrast to regular broadcast-oriented video codecs that have
high encoding complexity but low decoding complexity,
reversed complexity codecs have low encoding complexity
but high decoding complexity. On the other hand, because
the same device that encodes would likely also need to have
the capability to decode and playback received content, it
would be awkward to support two separate codecs one for
encoding and the other for decoding. With separate codecs,
it would also be difficult to dynamically switch between the
codecs depending on available battery power. It would be
more convenient to have a single encoder that acts in two
different modes with the additional functionality of being

Encoder Decoder

RX/Y(D) X

Y Y

Encoder Decoder
H(X/Y) X

Y Y Regular

Encoder Decoder
H(X/Y) X

Y (a) Lossless

Encoder Decoder
X

Y

RX/Y(D)

(b) Lossy Slepian-Wolf

Figure 1. Slepian-Wolf and Wyner-Ziv theorems

able to step down to a lower complexity encoding mode as
and when required. Further this enhancement in functionality
should be incorporated by a relatively modest change to an
existing regular codec. Additionally, at the decoder end, it
would be convenient if a lower quality version of the
received content could still be played back immediately by
simple decoding, while a higher quality version may be
recovered only by a more intensive decoding process. In a
power constrained device needing both encode and decode,
it will then be sufficient for the encoder to support only low
complexity encoding as part of reversed complexity
operation, and the decoder to support regular decoding for a
received regular bit-stream, and only reduced quality
decoding for a received reversed complexity bit-stream.

Another consideration in our design has been the issue of
robustness. Most existing work in this area has been too
aggressive in reducing complexity leading to a somewhat
unacceptable loss in quality. Our approach is moderate in
that complexity reduction target is less, but the target quality
is higher. For industrial acceptance, it is our opinion that it is
essential to have some form of guarantee on quality.

In terms of the core algorithm, first, the emphasis of our
work has been on robust and practical side-information
generation, which in our opinion has so far been neglected,
in spite of the fact that most of the advancement in the area
is likely to come from better side-information generation
rather than better channel coding. Second, we also attempt
to design symbol-based Wyner-Ziv codes that are more
efficient in entropy coding. Blind use of binary error
correction codes is likely to lead to loss in coding efficiency
because the source distribution is artificially flattened, and
also because a good noise model cannot be fully represented
with independently coded bits.

2. THE FRAMEWORK

2.1. NRWZ frames
The cornerstone of our framework is creation of a new type
of frame coding mode referred to as the Non-reference
Wyner-Ziv (NRWZ) frame. As the name suggests, we
propose applying Wyner-Ziv coding to only the non-
reference frames, in order to eliminate the issue of drift due
to incorrect decoding. The reference frames are coded
exactly as in the regular codec. Even though the core

algorithm does not need this constraint, incorporation of this
constraint allows improving side-information generation at
the decoder, as well as enables use of larger block-length
channel codes that can potentially span multiple Wyner-Ziv
frames. Furthermore, a receiver of the content can
immediately playback a lower quality version of the video
with a regular decoder with good enough quality, while
leaving full decoding of the NRWZ frames to offline
processing. This framework is similar in many ways to that
proposed in [7].

Figure 2 shows two scenarios how such frames can be
used. In Figure 2(a), the B-frames of a regular coder have
been converted to B-like NRWZ frames called the NRWZ-B
frame, while Figure 2(b), shows a low delay case where P-
like NRWZ-P frames are used instead. Ideally the number of
NRWZ frames in between P frames in both the cases shown
can be varied dynamically based on the complexity
reduction target.
2.2. NRWZ Encoder architecture
In general, a frame in a regular video encoder can be
predicted based on multiple reference frames. The general
model for such a frame coder is shown in Figure 3(a). It
takes in the current frame, the reconstructed versions of
frames in the frame-store, as well as their corresponding
original versions, and produces a compressed bit-stream
along with a reconstructed version of the current frame. Note
that the original versions may be used only for computing
more accurate motion vectors, but actual prediction is based
only on the reconstructed frames in the frame-store. Often a
syntax element object list is also be used for coding the
current frame, one for each reference frame in the frame
store. An example of such usage is in Direct-B prediction

I

NRWZ-B NRWZ-B

P P

NRWZ-B NRWZ-B

I

NRWZ-P NRWZ-P

P P

NRWZ-P NRWZ-P

(a) NRWZ-B frames

(b) NRWZ-P frames
Figure 2. Use of NRWZ frames

(b) Corresponding NRWZ frame coder

Regular Frame
Coder

Reconstructed
ref. frame store

Current
frame

Reconstructed
frame (LR)

2n×2n

2n×2n 2n×2n

2n×2n

+
+

–

Current
frame (LR)

LR layer Bit-stream
Wyner-Ziv

Coder

WZ Layer Bit-stream

Original
ref. frame store

Interpolated
reconstructed

frame

Residual
frame

Syntax Elem list
for ref. frames

Low Res Syntax
Elem list

Syntax Elem
Transform

Low Res
reference
frames

(a) Model for a frame coder

Regular Frame
Coder

Original
ref. frame store

Reconstructed
ref. frame store

Current
frame

Reconstructed
frame

Bit-stream

Syntax Elem list
for ref. frames

Syntax Elem for
coded frame

Figure 3. Coding architecture for NRWZ frames

mode for B-frames, which uses motion vector information
from the reference frames. If the frame coded can be used as
a reference frame for future frames, the coding process also
yields a new syntax element object to be used in conjunction
with the reconstructed frame.

The corresponding NRWZ version is created based on a
convenient spatial scalability framework as shown in Figure
3(b): First, decimate all the frames in the original and
reconstructed frame-stores, as well as the current frame by a
factor 2n×2n, where n can be chosen based on a complexity
reduction target. Correspondingly, also transform the syntax
element object list if used for reference frames into a form
that is appropriate for reduced resolution reference frames.
Second, encode the low-resolution (LR) current frame by
running through the same frame coder but operating at
reduced resolution based on low-resolution versions of the
reconstructed and original frames in the frame store, as well
as the corresponding low resolution syntax element object
list. This step creates the first part of the frame’s bit-stream
called the LR layer bit-stream. Third, compute the difference
between the full resolution current frame and the
interpolated reconstruction from the low-resolution frame
coder. Finally, use a Wyner-Ziv coder to code the residual
frame, generating a Wyner-Ziv bit-stream layer. It is
assumed that the encoder and the decoder use the same
filters for decimation and interpolation. The low resolution
coder can discard the syntax element object generated by
low resolution encoding since this frame is not used as a
reference in coding any other frame.

It is straight-forward to see that the change required in the
encoder to support the NRWZ version of the frame coder is
modest. The reference frames are assumed to be coded at

full resolution in exactly the same way as in the regular
coder. The low resolution layer for the NRWZ frames are
obtained pretty much by simple high level modifications
including incorporation of decimation of frames, and
transformation of the syntax element object list. So, ignoring
the WZ layer for NRWZ frames, we have essentially a
mixed resolution coder derived from a regular coder.

At the same time, the complexity of encoding of NRWZ
frames is roughly reduced by a factor 2n×2n with overheads
due to decimation, interpolation, syntax element
transformation, and Wyner-Ziv coding operations. A low
complexity decoder can still playback a received sequence
with decent quality by interpolation of the decoded low
resolution layer. A more complex decoding can be
performed offline to recover a better quality video.
2.3. NRWZ Decoder Architecture
The decoder architecture for NRWZ frames is shown in
Figure 4. Figure 4(a) shows the model for a regular decoder,
while Figure 4(b) shows the high-level decoder model for
the corresponding NRWZ version. First, the low-resolution
image is decoded and then interpolated with the same
interpolator used in the encoder. Second, this interpolated
frame as well as the previously decoded frames, is used in a
motion-based processing module to obtain a higher
resolution estimate of the frame to be decoded. We call this
the multi-frame semi super-resolution problem, because
except for the current frame, the other frames used are
already at higher resolution, albeit corrupted with noise due
to quantization. We note that the performance of any Wyner
Ziv encoder is heavily dependent on the efficiency of this
step. For the particular case of NRWZ-B frames, we found
that just using the previous and next reference frames along
with the interpolated low resolution current frame provides
reasonable results. Third, the interpolated low resolution
frame is subtracted from the higher resolution frame
generated in the previous step to obtain the actual side-
information frame to be used for channel decoding. Fourth,
the channel decoder decodes the WZ bit-stream layer with
the side-information residual frame acting as a noisy version
of the original residual frame transmitted. The decoded
residual frame is finally added to the interpolated low
resolution frame to obtain the final decoded frame.

3. ITERATIVE SIDE-INFORMATION GENRATION

AND CHANNEL DECODING
While the decoder architecture presented in the previous
section provides a high-level overview, in practice, it is
much more efficient to iteratively compute the semi-super-
resolution frame followed by channel decoding in multiple
passes. Let the interpolated low-resolution reconstructed
frame be called F0. If SS(F, FS) denotes the semi-super-
resolution operation to yield a higher resolution version F(HR)
of F based on the frames stored in FS, and CD(R, bWZ)
denotes the channel decoding operation yielding a corrected
version of the residual frame based on noisy version R using

(b) Corresponding NRWZ frame decoder

Regular Frame
Decoder

Reconstructed
ref. frame store

Decoded
frame (LR)

2n×2n

2n×2n

+

+
–

LR layer
Bit-stream

Channel
Decoder

WZ Layer Bit-stream

Motion
based semi

super-
resolution

+

+
+

Decoded
NRWZ frame

Reconstructed
frame store

Interpolated
decoded frame

Noisy
residual

Corrected
residual Syntax Elem list

for ref. frames

Low Res Syntax
Elem list

Syntax Elem
Transform

(a) Model for a frame decoder

Regular Frame
Decoder

Reconstructed
ref. frame store

Decoded
frame Bit-stream

Syntax Elem list
for ref. frames

Syntax Elem for
decoded frame

Figure 4. Decoding architecture for NRWZ frames

the Wyner-Ziv layer bit-stream bWZ, then iterative decoding
comprises the following steps for i = 0, 1, 2,…, N:

00
)(

1

)(

),(

FS),(

FbFFCDF

FSSF

WZ
HR

ii

i
HR

i

+−=

=

+

 (1)

For the specific case of NRWZ-B frames, where the FS
above consists of only the past and future reference frames
coded at full-resolution, the semi-super resolution operation
to obtain Fi

(HR) from Fi is conducted by a block-matching
operation. First, the past and future reference frames are
low-pass filtered. Next, for every 8×8 block in frame Fi, the
best sub-pixel motion vectors in the past and future filtered
frames in a certain neighborhood is computed. If the
corresponding best predictor blocks in the past and future
filtered frames are denoted Bf and Bn respectively, several
candidate predictors of the type αBf + (1–α)Bn, are tested
and the best predictor that minimizes the SAD of the current
block in Fi is found. Typically, α ε {0.0, 0.25, 0.5, 0.75, 1.0}
works well. If the SAD for the best predictor is more than a
certain threshold Ti, then nothing is done to the block.
Otherwise, the block in Fi is replaced by the best predictor
but with the compensation now conducted from unfiltered
past and future frames, optionally with overlapped block
motion compensation. When all blocks in Fi have been
processed, the updated frame is referred to as Fi

(HR) in Eq. 1.
In practice, from iteration to iteration three things are

changed. First, the strength of the low pass filtering applied
to the past and future reconstructed frames is gradually
reduced. This is because, initially Fi is assumed to be mostly
low pass and therefore motion-estimation is more robust
when the past and future frames are also low pass filtered up
to the same level. However, as more and more high
frequency components are recovered by channel decoding in
subsequent passes, the strength of filtering needs to be
reduced so that the prediction becomes more accurate. In
fact, it is sufficient to just apply a single low pass filter to the
first one or two passes. Second, the grid for block matching

is offset from iteration to iteration. This effectively smoothes
out the blockiness and adds spatial coherence to the high
resolution block that goes across its boundaries. For
example, the shifts used in four passes can be (0,0), (4,0), (0,
4) and (4,4). Third, the threshold T is gradually reduced
from pass to pass, so that in subsequent passes, fewer and
fewer blocks are changed.

The semi-super-resolution operation is illustrated in
Figure 5.

4. CORE WYNER-ZIV CODEC
We propose a Wyner-Ziv coder operating on the residual
error frame in the transform domain. The same block by
block transform as used in a regular codec for INTER
macroblocks can be used. In a codec where multiple
transforms are used, for example, AVC Fidelity Range
Extensions or WMV1, any one of them can be used.
4.1. The probabilistic model

The underlying model in our codec is described below. It
is assumed that the transform coefficients, denoted x, are
Laplacian distributed with standard deviation σx. Let us
denote the pdf as fX(x) Further, if y denotes the
corresponding (unquantized) noisy coefficient obtained from
the side-information, then:

y = x + z (2)
where the noise z is modeled as a mixture of two Gaussians.
If N(µ, σ2) denotes the Gaussian distribution with mean µ
and variance σ2, then the distribution of z is:

),0()1(),0(.)(222
zzzzzZ KNpNpzf σσ −+= (3)

where pz is about 0.95, and Kz is about 8. The underlying
assumption of the model is that for a small fraction of the
coefficients (say 5%), the semi super-resolution operation
will fail and will be unable to yield a coefficient close to the
original. Assuming a large variance of the less probable
Gaussian in the mixture model ensures that the tail of the
distribution is fattened and consequently a few widely
divergent coefficients in the failure areas will not derail the
overall decoding of the rest of the coefficients, especially so
when trellis codes as in Section 5 are used.
4.2. Encoding

For the purpose of encoding, after computing the
transform, the coefficients are quantized, and then cosets are
computed. While use of cosets is standard, we use cosets of
odd modulus, with coset indices centered at 0. That is, if x is
a coefficient with quantized value q = ф(x, Q) based on
quantization step-size Q possibly with a dead zone, then the
transmitted coset index c = ψ(q, M) of order M is computed
as follows:

2/mod ,
 2/mod ,

])mod).[((
)]mod).[((

),(
MMq
MMq

MMqqsign
Mqqsign

Mq
>
<

−
=ψ (4)

with M odd.
Assuming the distribution of x is Laplacian (or any

generalized Gaussian), the probability mass function of q is
geometric-like. Specifically, if xl(q) and xh(q) denote the low
and high-limits of the quantization bin q, where Ω∈q = {–

Filtered frames are used for motion estimation, but if the confidence is high (prediction error
in filtered domain is low) unfiltered frames optionally with OBMC, are used for replacement.

Iteration 0 Iteration 1 Iteration 2 Iteration 3

LP Filtered
Future frame

LP Filtered
Past frame

Filter strength reduces, Threshold T reduces

Filter strength reduces, Threshold T reduces

Figure 5. Semi-super-resolution for NRWZ-B frames

qmax, –qmax+1, …, –1,0,1,… qmax–1, qmax}, then the
probability of the qth bin:

∫=
)(

)(
)()(

qx

qx XQ
h

l
dxxfqp (5)

Note that the entropy coder that exists in the regular coder is
optimized for this distribution, and is designed to be
particularly efficient for coding of zero, the most probable
symbol. The probability mass function for the coset indices
ψ(q, M), as shown in Figure 6 is considerably flatter, but it is
still symmetric, has zero as its mode and decays with
increasing magnitude. Specifically,

∑ ∫
=Ω∈

=
cMqq

qx

qx XC
h

l
dxxfcp

),(:

)(

)(
)()(

ψ
 (6)

As a result, the regular entropy coder for q can still be used
for c, and turns out to be quite efficient. While a different
entropy coder designed specifically for coset indices can
also be used and can definitely have some advantage, the
difference is not likely to be too much.

In practice, not all non-zero coset indices of a transform
block are transmitted. Only a few of the low to mid
frequency coefficients are sent for each block, while the rest
are left to be recovered entirely from the side-information
generation operation. The number of coefficients transmitted
in zigzag scan order is denoted n. Additionally, the
quantization step size Q used in computing q, as well as the
value of M in computation of the coset index ψ(q, M), is
varied for every coefficient in a block. They are referred to
as Qij and Mij respectively, where i, j = 0, 1, 2,…, B–1, with
B being the block size. Specifically, the higher frequencies
are quantized more heavily than the quantization parameter
corresponding to the quality desired and encoded with
smaller values of the coset modulus Mij. For the dc
coefficient, only the true value is transmitted without coset
computation. The coefficients for the chrominance
components are also coded similarly, but usually fewer
coefficients than the luminance component are transmitted.

Furthermore, since not all macroblocks are likely to have
the same amount of errors, it is useful to classify blocks into
one of several types s = {0, 1, 2,…, S–1} based on an
estimate of how close the side-information block is likely to

be to the original. Various cues from the low resolution layer
can be used for this purpose. In this work, we simply use a
combination of an edge activity measure in the
corresponding location in the low-resolution layer, and the
number of bits spent to code the corresponding block in the
low resolution layer to classify a block into one of S=5
classes. This part can admittedly be improved in future
work.

Each classification index s therefore yields a different set
of quantization step sizes {Qij(s)}, a different set of coset
moduli {Mij(s)}, and a different number of coefficients n(s)
transmitted per block. Ideally, these parameters need to be
determined based on the corresponding values of {σx, σz, pz,
Kz} for each frequency and classification index s. While in
this work, the values have been chosen in a sort of ad-hoc
intuitive manner, improving this step by a more rigorous
analysis, for example by using [10], is an area of future
improvement.

As an example, for the specific case of 8×8 DCT used in
a NRWZ-B frame added to H.263+, the quantization
parameter used for the ijth transform coefficient xij is chosen
as: QPij = QP + Aij, where

=

66655544
66555443
65554433
55544332
55443322
54433221
44332211
43322110

A

and QP is the quantization parameter corresponding to the
target quality. The corresponding coset modulus values are
given by: Mij = max(Bij–2.m(s), 3), where

∞

=

33333355
33333557
33335577
33355779
33557799
355779911
5577991111
577991111

B

x

0 1 -1 2 -2 3 4 -4 -3 126 127-127 -126 q

0 1 -1 2 -2 -2 -1 1 2 1 2 -2 -1 Ψ(q,5)

5 6

0 1 -1 0

-6 -5

fX(x)

pQ(q)

0 1 -1 2 3 4 -4 -3 -2

pC(c)

0 1 -1 2 -2

Probability mass
function of q

Probability mass
function of
c=Ψ(q,5)

Figure 6. Probability mass function of coset indices

m(s) is a parameter determined by the classification index s.
The classification index also yields n(s), the number of
coefficients actually transmitted in zigzag scan order, while
the rest of the coefficients are transmitted as zero. Figure 7
shows the steps.
4.3. Decoding

For the purpose of decoding, a Bayesian classifier is used
to decode the quantization bin q of a coefficient which is
received as y and whose coset index is transmitted as c. Note
that y is unquantized and has higher precision than quantized
coefficients. Each coefficient is associated with a context
that includes the class index s and the frequency (ij),
yielding the quantization step-size Qij(s) and coset modulus
Mij(s) used during encoding. Further, the class index s and
the frequency (ij) of a coefficient map to a {σx, σz, pz, Kz}
that is directly used for the decoding process. In particular,
the decoded bin q̂ is obtained as:

),(maxargˆ
),(:

yqpq
cMqq =Ω∈

=
ψ

 (7)

where p(q, y) is the joint probability of the quantization bin
q and the received value y. Applying the approximation
below:

)])(())(([
)()(

)(

)(.
)()(

)(

)(.
)()(

)(

)()(),(

)(

)(

)(

)(

)(

)(

)(

)(

yqxFyqxF
qxqx

qp

dxxyf
qxqx

qp

dxxyf
qxqx

dxxf

dxxyfxfyqp

lZhZ
lh

Q

qx

qx
Z

lh

Q

qx

qx
Z

lh

qx

qx
X

qx

qx
ZX

h

l

h

l

h

l

h

l

−−−
−

=

−
−

=

−
−

≈

−=

∫

∫
∫

∫

 (8)

The cumulative distribution function Fz(.) can be
conveniently computed by scaling and interpolation of a pre-
computed table for the erf() function for Gaussian variables,
assuming the model in Eq. 3. Likewise, the a priori
probability of the qth bin pQ(q) can be computed based on
interpolation of a pre-computed table for the cumulative
distribution function of a Laplacian distribution.

Once an estimate q̂ for the input quantization bin has
been obtained, the optimal reconstruction is conducted:

∫=

∈=
==

)ˆ(

)ˆ(
/),(

)]ˆ(),ˆ([,/(
)ˆ),(,/(ˆ

qx

qx
YX

hl

h

l

dxyxxf

qxqxxyxE
qQxyxEx φ

 (9)

Note that the exact computation of the above is complicated
since fX/Y(x, y) cannot be directly written in terms of fZ(z).
However, even a gross approximation works better than just
using the mid-point of the quantization bin q̂ as x̂ . In
particular, we assume fX/Y(x, y) to be a Gaussian with
variance equal to the geometric mean of σx and σz, centered
on y, and then compute x̂ based on interpolation of values
from a pre-computed table of the first central moments of a
Gaussian. Figure 8 shows a decoding example for a case
where the coset index transmitted was 2. Given the y as
shown, the Bayesian classifier decodes q̂ as –3. Thereafter,
the optimal reconstruction function obtains the final
reconstruction x̂ within this bin. It turns out that the ability
to use this optimal reconstruction function using the side-
information y enables us to use a quantization step-size that
is larger than the target quality, thereby allowing bit-rate
savings in the Wyner-Ziv layer.

Besides the coefficients transmitted using cosets, there
are other coefficients that are not transmitted at all
(transmitted as zero). These coefficients are reconstructed
exactly as they appear in the side-information.

5. TRELLIS CODED SIGN MODULATION
In the uncoded version of the Wyner-Ziv codec presented in
the previous section, the distance between quantization bins
with the same index is the same as the coset modulus M. In
this Section we present a method whereby the effective
distance can be increased without much additional rate
penalty, by use of soft decoding techniques. The general
method can be applied to any non-uniform but symmetric
source.
5.1. Encoder

The standard way to increase the effective distance is by
incorporating dependencies among coding of multiple
symbols, for example by trellis coded modulation. The
encoding of one symbol then not only depends on the
current symbol, but on several other symbols possibly prior

0
0

0 0 0 0 0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0
0 0

0
0
0 0

0

Block Transform coefficients Quantized Block Transform coefficients

Quantize
all

coefficients
Make zero

Coset
mapping

Transmitted symbols

Copy dc

To entropy
coder

Quantization step size and coset modulus depends on block class as well as the frequency for each coefficient. The
maximum number of coefficients transmitted depends on block class

Figure 7. Block transform coding steps

to the current. In the Wyner-Ziv coding case however,
besides increasing distances between codes, we need to
ensure an additional constraint that the entropy of the
transmitted symbols are not artificially flattened. This is a
consideration that usually does not exist in traditional
channel coding. For example, it would be better to ensure
that the probability mass function of the transmitted coset
indices are not flatter than the one shown in Figure 6 for the
uncoded case, even though the effective distance is
increased.

Consider a function, called the symbol function ζ(k)(q, M),
that yields a k-ary symbol from the quantization bin q, given
coset modulus M, defined as follows:

<−−−−
>−−
=

=

=

+−=

0 ,)1/()1(1
0 ,)1/()1(
0 ,0

),(

)mod(

1).1(

)(

)(

)(

)(

)()(

)(

qMqk
qMq

q
Mq

Mqq
kMM

k

k

k

k

kk

k

ζ

 (10)

Also, define a base coset function ψ(k)(q,M) as follows:

 −
+−−

 −
+−

=

=

=

−=+−=

even is 1},1mod)1).{((

 odd is 1 },1mod)1).{((

0 ,0

),(

)mod(
2/)1(,1).1(

)(
)(

)(
)(

)(

)(

)()(

)(

m
qmqqsign

m
qmqqsign

q

Mq

Mqq
MmkMM

k
k

k
k

k

k

kk

k

ψ

 (11)

Examples of these functions are shown in Figure 9 for the
typical case of k=2. The distribution of the coset indices is
similar to that in Figure 6, although not exactly the same.
Observe that quantization bins with the same symbol
function and base coset function values are separated by (M–
1).k +1 bins. The zeroes of the coset function have also been
placed such that they are separated by the same amount. The
objective is to derive a coding and decoding scheme where
the symbol function can be recovered by soft decoding
based on unquantized y, without explicitly transmitting it.

Consider the class of coset functions),(Mqψ ′
constructed from the base coset function by flipping the
output signs corresponding to one or more values of q, while
ensuring the constraint that),(Mqψ ′ =),(Mq−′−ψ . It is
obvious from the symmetry of the source that each function
from the entire class of such functions has exactly the same
probability mass function as the base coset function. Figure 9
shows an example of –ψ(k)(q, M) where all output signs from
ψ(k)(q, M)are flipped, but the probability mass function still
remains the same. Therefore, even if the coset function used
to obtain the transmitted coefficient is changed from
coefficient to coefficient, as long as they remain within this
class, the same entropy coder can be used without any loss
in coding efficiency. This is exactly what is exploited in our
coding scheme. Further note that for this entire class of
functions, the zeroes always remain at the same locations.
Because the coding of the zero coset index is already
efficient, and the zeroes are already separated by (M–1).k +1

x
0 1 -1 2 -2 3 4 -4 -3 126 127 -127 -126 q

0 1 -1 2 -2 -2 -1 1 2 1 2 -2 -1 Ψ(q,5)

5 6

0 1 -1 0

-6 -5

fX(x)

y

c=2

3ˆ −=q

x̂

fX/Y(x/Y=y)

Figure 8. Decoding example

Ψ(2)(q,5)

x

0 1 -1 2 -2 3 4 -4 -3 q 5 6 -6 -5

fX(x)
pQ(q)

0 1 -1 2 3 4 -4 -3 -2

pC(c)

0 1 -1 2 -2

Probability mass
function of q

Probability mass
function of
c=Ψ(2)(q,5)

-7 -9 -8 7 8 9

0 1 –1 2 –2 –1 –2 2 1 1 2 –2 –1 1 0 2 –1 –2 0

0 0 1 0 1 0 0 1 1 ζ(2)(q,5) 1 1 0 0 0 0 0 1 1 0

-10

–1

1

10

1

0

–Ψ(2)(q,5) 0 –1 1 –2 2 1 2 –2 –1 –1 –2 2 1 –1 0 –2 1 2 0 1 –1

Figure 9. Symbol function and coset function example

quantization bins, we can safely consider only the non-zero
base coset indices for coding. Removing the zero-coset
indices for the purpose of coding also ensures that the
symbol function yields symbols that are equiprobable for the
case k = 2, and therefore enable robust channel decoding.
This situation is shown in Figure 9 where the zero coset
indices are grayed.

In particular, the symbol function is applied to each
quantized coefficients qt with non-zero base coset function,
to yield a k-ary symbol ht. The sequence of symbols {ht}
generated from {qt} drives a state-machine with Ns states.
For every quantized coefficient qt coded, the current state of
the state machine }1,...,2,1,0{ −∈ St NS determines a
particular coset function),()(

tt
k

S Mq
t

ψ used to obtain the
transmitted symbol ct from qt. Each),()(

tt
k

S Mq
t

ψ is derived
from the base coset function by sign modulation. In other
words:

1,...,1,0),,(),,(

),(),,(

1
)(

)(

−===

==

+ TthSSMqh

MqcQxq

ttttt
k

t

tt
k

Stttt t

ηζ

ψφ (12)

where T is the total number of coefficients to be coded. Note
that Qt and Mt refer to the quantization step-size and the
coset modulus corresponding to the t-th coefficient xt.

),(tt hSη is the next state function of the state machine. The
general technique as described above is referred to as Trellis
Coded Sign Modulation (TCSM). Figure 10 illustrates the
technique and a trellis generated by TCSM.

One particular case is where the only two coset functions
ψ(k)(q, M) and –ψ(k)(q, M) are used. Half of the states from
the state machine use ψ(k)(q, M) as the coset function, while

the remaining half use –ψ(k)(q, M). In other words, the sign
of the index from the base coset function is either flipped or
not flipped depending on the state of the state machine. The
state machine can be derived from the shift register in a
convolution code. However note that unlike the output
function of a convolution code, the coding of the current
coefficient qt does not depend on the current symbol
function ht. This is needed to ensure that in each epoch the
symbols are maximally separated. As an example, for the
most useful case k=2, a practical means for generating such
codes is from a rate ½ systematic convolutional code. The
next state function for the TCSM encoder can be exactly the
same as that of the convolutional code. However, if the
output function for the parity bit for such a convolutional
code is denoted g(S, h), where S is the current state and h is
the current input bit, then the bit g(S, 0) can be used during
TCSM encoding to determine whether the sign for the base
coset function is to be flipped or not.

Putting it all together, the steps for encoding as shown in
Figure 11 are as follows. After computing the block
transform for an entire frame, the coefficients are quantized,
and then the base coset function and the symbol functions
are computed. If the base coset-function is zero or if the
coefficient is beyond the number of coefficients that are to
be transmitted for its block class in zigzag scan order, the
coset index transmitted is zero. Coefficients with non-zero
base coset function for the entire frame are separated and
interleaved. The sequence of interleaved coefficients is next
encoded using the steps in Eq. 12. The coset indices
obtained by doing so are de-interleaved, and put back in the
corresponding locations in the original blocks they came

t = 0 t = 1 t = 2 t = T–1

S1 S0 S2 S3 ST ST–1

)),,((tttS MQx
t
φψ

St St+1

t

xt/

))),,((,()(
1 ttt

k
tt MQxSS φζη=+

Tail-biting
constraint: S0=ST

(b) A TCSM Trellis

(a) TCSM Encoder

Base coset
function

State-based
Sign-modulation

Delay symbol
function

Next state
function

state
N symbols

N transmitted symbols

Coset function for given state
(Usually decomposed into base coset
function followed by sign-modulation

depending on state)

Figure 10. Illustrating TCSM

from. The blocks are next entropy coded as in the regular
codec. Note that it is necessary to code all the coefficients
from a single frame together in order to ensure that the block
size is sufficiently large. Use of NRWZ frames also enable
use of codes that span across multiple frames.

Usually trellis codes are initiated in a fixed state S0, and
terminated by a few dummy symbols. Termination is
necessary to ensure equal protection for the symbols that
come at the end. In the case of TCSM, however, there are
two ways to ensure proper termination. First, a few bits can
be used at the end of every frame to specify explicitly the
end state. However, if changing the bit-stream syntax is
undesirable, use of tail-biting trellises [15]0 seem to work
well. In a tail-biting trellis, the starting state and the ending
state are constrained to be exactly the same. Use of such
trellises ensures that the number of transmitted symbols is
exactly the same as the number of coefficients. The common
start and end state can be obtained easily from a non-
recursive state machine, by running the last Nmem symbols
through it, where Nmem is the constraint length or the size of
the memory of the machine.
5.2. Decoding

The purpose of the decoder is to obtain the best estimate
of the quantization bins qt given the transmitted coset index
ct, the noisy unquantized coefficients yt, and their contexts.
Note that because each sample in the sequence could
potentially use a different quantizer a different coset
modulus, and a different class index with different noise
variances, in the equations following, we use subscript t
wherever appropriate. We consider two options, the Viterbi
decoder [13] and the MAP decoder [14]0. Both decoders
depend on computation of the branch metric γt(i, j) defined
as:

)/,,Pr(),(1 iSycjSji ttttt === +γ (13)
It can be shown that:

]),([),(

),(
)),(,(

:

)(

)(

∑

=
=

Ω∈

=

tt
k

i

t
k

t

cMq
jMqi

q
ttt yqpji

ψ
ζη

γ (14)

where tΩ is the set of all quantization bins for the t-th
sample, and pt(q, yt) given below is basically the same as

Eq. 8 with subscript t added appropriately:

)])(())(([
)()(

)(

)(.
)()(

)(

)(.
)()(

)(

)()(),(

,,,,
,,

,

)(

)(
,

,,

,

)(

)(
,

,,

)(

)(
,

)(

)(
,,

,

,

,

,

,

,

,

,

ttltZtthtZ
tlth

tQ

qx

qx
ttZ

tlth

tQ

qx

qx
ttZ

tlth

qx

qx
tX

qx

qx
ttZtXtt

yqxFyqxF
qxqx

qp

dxxyf
qxqx

qp

dxxyf
qxqx

dxxf

dxxyfxfyqp

th

tl

th

tl

th

tl

th

tl

−−−
−

=

−
−

=

−
−

≈

−=

∫

∫
∫

∫

(15)

In practice Eq. 14 can be simplified by only considering a
few quantization bins of each side of y, instead of all of Ωq.
This definition of the branch metric is used in both the
decoders below.
5.2.1. Viterbi Decoder

The Viterbi algorithm decodes the most likely state
sequence. The steps adapted for TCSM are as follow. First
initialize:

1,...,1,0 ,0)(,)(00 −=== Si Niii λπδ (16)
where πi is the probability that the initial state S0 is i. If the
initial state is known to be k, then πk=1, and πi=0 for i≠k.
Then recursively compute:

1,...,1,0)],,().([maxarg)(

)],().([max)(

1,...,1,0
1

1,...,1,01

−==

=

−=
+

−=+

Ttjiij

jiij

tt
Ni

t

ttNit

S

S

γδλ

γδδ
 (17)

T being the total number of symbols in the sequence.
Terminate the trellis:

)]([maxarg
1,...,1,0

* iS T
Ni

T
S

δ
−=

= (18)

and backtrack for t=T–1, T–2, …., 0:
)(*

11
*

++= ttt SS λ (19)
For tail-biting trellises, the Viterbi algorithm has been

modified in various ways by many researchers [15][17][18].
We present a simple method from [15] as follows. First,
assume the initial state to be an arbitrary state k and initialize
accordingly. Make one decoding pass through the sequence
and find the final state of the best path. Check if the start
state is the same as the best end state. If yes, stop decoding.

Interleaver

De-interleaver

Delay symbol
function

Base coset
function

Next state
function

state

TCSM core encoder

State-based
sign-modulation

Extract transmitted
coefficients with non-

zero base coset function

Figure 11. TCSM frame encoding

If not, check if the previous best ending state has been used
before as the initial state. If so, pick another arbitrary initial
state not used before and redo the decoding pass. If not, use
the previous best ending state as the initial state and redo
decoding. Continue the process until the initial and final
states match, or if all initial states have been tried, the
algorithm simply outputs the best path so far. Typically, the
initial and final states match in two passes.

Once the decoded state sequence is known, there is still
an additional step necessary to obtain the best quantization
bin, since multiple quantization bins can lead to the same
state transitions. Note that given that a state transition i to j
occurred in epoch t and side information yt and coset index ct
are received, the posteriori probability of quantization bin q
is given by:

otherwise ,0

 ,
),(
),(),,(

),()(
)),()(,(

=

=
=

=

tctMqk
i

jtMqki

ji
yqpjiq

t

tt
t

ψ

ζη

γ
µ (20)

Where),(jitγ and),(tt yqp are given by Eq. 14 and Eq.
15 respectively. Given the decoded state sequence, the
decoding rule is then to choose the q that maximizes

),,(** jiqtµ for decoded state transition i* to j* in epoch t,
which is equivalent to:

)],([maxargˆ

),(
)),(,(

:

)(
*

)(

tt

cMq
jMqi

q
t yqpq

tt
k

i

t
k

t

=
=

Ω∈
=

ψ
ζη

 (21)

Once the decoded quantization bins have been obtained,
optimal reconstruction for x̂ as in Eq. 9 is used.
5.2.2. MAP Decoder

The MAP decoder, also known as the BCJR algorithm
[14], decodes using the most likely state transitions at every
epoch. While the decoded sequence may not be consistent
with the trellis constraints, this decoder minimizes the
probability of errors.

The steps of the algorithm adapted for the TCSM trellis
are as follows. First conduct the forward pass:

1,...,1,0 ,)(/)()(

1,...,1,0),,(.)()(

1,2,..,1,0For :
1,...,1,0 ,)(:

1

0
111

1

0
1

0

−=′′=

−==′

−−=
−==

∑

∑
−

=
+++

−

=
+

S

N

j
ttt

St

N

j
tt

Si

Nijii

Niijji

TTtInduction
NiitionInitializa

S

S

ααα

γαα

πα

 (22)

where πi is the probability distribution of the initial state.
Next conduct the backward pass:

1,...,1,0 ,)(/)()(

1,...,1,0),,(.)()(

0,1,...2,1For :
1,...,1,0 ,)(:

1

0

1

0
1

−=′′=

−==′

−−=

−==

∑

∑
−

=

−

=
+

S

N

j
ttt

St

N

j
tt

SiT

Nijii

Nijiji

TTtInduction
NiitionInitializa

S

S

βββ

γββ

θβ

 (23)

where θi is the probability distribution of the final state. If
the initial and/or final states are known, the πi and the θi are
chosen to be 1 for these states and 0 otherwise. If they are

unknown, the corresponding distributions are assumed to be
uniform.

For the case of tail-biting trellises, the method in 0 is
adopted. First assume the πi and the θi to be uniform
distributions. The forward and backward inductions are then
continued in a circular fashion until the distributions of αt(i)
and βt(i) converge. Specifically for the forward induction,
once the final distribution αT(i) is obtained, we assign it to
the initial distribution and continue the induction again. The
process is continued until the initial and final distributions
converge. In fact, we need not wait until the end of a pass to
decide if the distributions match. As long as the distribution
αt(i) at an intermediate epoch t is found to be sufficiently
close to the distribution in the previous pass, based on a
suitable threshold, we can assume that convergence has been
achieved. The most recent distributions at each t are then
taken as final. A similar method is used for the backward
pass. Usually, the distributions converge in less than two full
passes.

Once the forward and backward distributions have been
obtained, the a posteriori probabilities σt(i, j) of state
transition i to j in epoch t are computed as:

∑ ∑
−

=

−

=
+

+

=

=

1

0

1

0
1

1

)().,().(

)().,().(.1),(

S SN

i

N

j
ttt

tttt

jjiik

jjii
k

ji

βγα

βγασ
 (24)

For every t, the (i, j) pair that maximizes the above
probabilities is regarded as the most likely state transition.
However, the posteriori probability of the quantization bin q
is obtained by averaging over all possible state transitions:

∑ ∑
−

=

−

=

=
1

0

1

0
),,(),()(

A AN

i

N

j
ttt jiqjiq µση (25)

where),,(jiqtµ and),(jitσ are given by Eq. 20 and Eq.
24 respectively. The decoding rule is simply to choose the q
than maximizes)(qtη :

)]([maxargˆ qq t
q

t
t

η
Ω∈

= (26)

Once the decoded quantization bins have been obtained,
optimal reconstruction for x̂ as in Eq. 9 is used.
5.3. Sign-modulated turbo codes

The TCSM methodology can be readily extended to
parallel concatenation. In this case, there are two parallel
TCSM encoders as shown in Figure 12, with the second
being applied after a permutation of the original samples.
Such codes are termed sign-modulated turbo codes, because
of their obvious connection with Turbo codes.

The decoding operation strongly parallels the iterative
decoding procedure used for regular binary Turbo codes.
The soft quantization bin posteriori output probabilities
obtained from Eq. 25 after decoding one code, are used as
priors after permutation through)(, qp tQ of Eq. 15 while
decoding the second code. The decoding process iterates
over the two constituent codes for multiple iterations, each
time updating the quantization bin probabilities, until

convergence, or until a given maximum number of iterations
is exceeded.

A more complete study of such codes will constitute
future work.
5.4. General sign-modulated block codes

The principles behind trellis-coded sign-modulation can
be readily applied to code an arbitrary block of samples
based on a binary systematic linear block code as shown in
Figure 13. Consider a block of N samples to be coded
together. Apply a k-ary symbol function as in Eq. 10 with
k=2b, to each sample to obtain bN symbol bits. These bN bits
are input to a rate b/(b+1) (bN+N, bN) systematic block
code to obtain N parity bits, each of which is then
considered to correspond to one data sample, after an
arbitrary permutation. Then, compute the base coset function
as in Eq. 11 for each of the N original samples, and transmit
either that or the negative of that depending on the value of
the corresponding parity bit. The most useful case is one
with k=2 (b=1), where the underlying block code must be
rate 1/2.

Let }12,...,1,0{ −∈ b
th be the b-bit symbol function value

),()(
tt

k Mqζ= for the t-th sample and }1,0{∈tr be the
permuted parity bit used to sign-modulate the base coset
function value of the sample. If h = {h0, h1, …, hN–1} and r =
{r0, r1, …, rN–1}, then Crh ∈],[must be a valid codeword
for the given block code C. Denote by]),([rhCχ the
characteristic function of the code, whose value is 1 for a
valid codeword [h, r] and 0 if not.

Assume further that the sign of the base coset function is
flipped when the permuted parity bit rt = 1, and left
unchanged when rt = 0. That is, the transmitted coset symbol
ct for the t-th sample is:

),().21()(
t

k
tt Mqrc ψ−= (27)

In order to decode the block code, the decoder must
maximize Pr([h, r]/y, c) over all valid codewords Crh ∈],[,
where y = {y0, y1, …, yN–1} are the observed side information
samples, and c = {c0, c1, …, cN–1} are the transmitted coset
symbols. This is equivalent to maximizing Pr(y, c, [h, r])
over Crh ∈],[.

Next we show that maximizing Pr(y, c, [h, r]) is
equivalent to maximizing the product of the sample-wise
joint probabilities of yt, ct, ht and rt:

()

()

()]),([
)(

),(,)21(),(,Pr

]),([,)21(),(,Pr

]),([)Pr(/)21(),(,Pr

]),([)Pr(),/,Pr(

]),Pr([]).,/[,Pr(]),[,,Pr(

1

0
,,,

)()(

1

0

)(

1

0

1

0

)(

1

0

rh
rcyp

hMqcrMqy

rhhcrMqy

rhhhcrMqy

rhhrhcy

rhrhcyrhcy

C

N

t
tthttt

tt
k

ttt
k

t

C

N

t
tttt

k
t

C

N

t
t

N

t
tttt

k
t

Ct

N

t
ttt

χζψ

χψ

χψ

χ

=−==

−==

−==

=

=

∏

∏

∏∏

∏

−

=

−

=

−

=

−

=

−

=

444444444 3444444444 21

(28)

where)(,,, tthttt rcyp is the sample-wise joint probability of
the observed sample yt and corresponding transmitted
symbol ct, with ht and rt components of the full codeword [h,
r] that correspond to the t-th sample. Note also that:

]),([),,,(

).21(),(
),(

:

)(

)(

∑

−=
=

Ω∈
=

ttt
k

tt
k

t

crMq
hMq

q
ttttttt yqprhcyp

ψ
ζ

 (29)

The decoding rule for the transmitted codeword is then:

=

=

∏

∏
−

==

−

=

),,,(maxarg

]),([),,,(maxarg],ˆ[

1

01]),([:],[

1

0],[

ttt

N

t
tt

rhrh

Cttt

N

t
tt

rh

rhcyp

rhrhcyprh

Cχ

χ)

 (30)

If the block length is not too large, then even decoding by
full enumeration search is not too impractical. Otherwise,
since all linear codes have a trellis representation, trellis
decoding adapted for (b+1)-bit symbols (ht, rt) in the overall
codeword [h, r] can be used. Once tĥ and tr

) has been
decoded, the decoded quantization bin for the t-th sample is
obtained as:

)],([maxargˆ

).21(),(
ˆ),(

:

)(

)(

tt

crMq
hMq

q
t yqpq

ttt
k

tt
k

t

)−=
=

Ω∈
=

ψ
ζ

 (31)

5.4.1. Sign-modulated LDPC codes
The principle above can be readily applied to create sign-

modulated LDPC codes [19] based on a sparse pseudo-
random parity check matrices. The advantage of such codes
is that N can be variable, and the parity check matrix H can
be designed randomly on-the-fly for a variable number of
symbols to be coded for each frame. An adaptation of
iterative message passing algorithms typically used for
LDPC codes can then be used to decode such codes.

Specifically, horizontal and vertical update equations for
decoding LDPC codes [19] are modified so as to work with
independent (b+1)-bit symbols wt = (ht, rt) corresponding to
the t-th sample which is observed as yt. Note that unlike
binary LDPC codes observations for individual bits are not
independent in sign-modulated codes, however the
observations yt corresponding to (b+1)-bit symbols (ht, rt)
can be assumed to be independent for each t. The codeword
therefore is assumed to be comprised by N (b+1)-bit
symbols, each taking values 0 through 2(b+1)–1, assuming a
binarization convention where the LSB corresponds to rt and
the b MSBs correspond to b-bit ht. Assume also the N ×

 N samples
TCSM

encoder 1

Permute

TCSM
encoder 2

N transmitted
symbols

N transmitted
symbols

Figure 12. Sign-modulated Turbo codes

N(b+1) parity check matrix H to be reorganized such that in
each row groups of (b+1) bits corresponding to the same t-th
sample are grouped together to form a (b+1)-bit parity
symbol. H thus can be viewed as an N×N matrix of (b+1) bit
symbols that take values 0 through 2(b+1)–1. The (m, t)-th
symbol of H is denoted Hmt. The binarization is assumed to
be consistent with that for wt, and indicates which of the bits
actually take part in the mth parity-check equation. Define
also a binary function of two n-bit binary numbers

011... uuuu n−= and 011... vvvv n−= as follows:

∑
−

=

⋅=
1

0
),(

n

i
iin vuvuτ (32)

where the ‘.’ refers to binary AND, and the summation is
binary ‘+’. Now the iterative decoder equations can be
written as shown below:

First obtain the input channel probabilities as follows:

),,,(.
),/,Pr()),((

:12,...,1,0 ,1,...,1,0 1

rrhhcyp
cyrrhhrhwp

wNtFor

ttttt

ttttt

b

===
====

−=−= +

α

 (33)

where pt is given by Eq. 29, and α is a normalization factor
such that pt(w) sums to 1 over all w. Next, initialize:

),()(wpwq tmt = for all (m, t) where Hmt is non-zero. Note
qmt(w) is meant to denote),},',0/{Pr(cymmzww mt ≠== ′ ,
i.e. the probability of the t-th symbol being w, given all
checks mz ′ other than the mth check are satisfied, and the
side information y and the transmitted symbols c.

Conduct the horizontal step:

12,...,1,0

1),(,2/)1(
0),(,2/)1(

)(

)()(
0 with),(each For

1

1

1

}\{

1),(:0),(: 11

−=

=−
=+

=

=

−=

≠

+

+

+

∈′
′

==

∏

∑∑
++

b

mtbmt

mtbmt
mt

tNt
tmmt

Hww
mt

Hww
mtmt

mt

w

Hwr
Hwr

wr

qr

wqwqq
Htm

m

mtbmtb

τδ
τδ

δδ

δ
ττ (34)

where Nm is the set of indices with non-zero parity check
element in the mth row of H, and Nm\t refers to the set minus
the element {t}. Note that rmt(w) is meant to denote Pr(zm=0
/ wt=w, c, y), i.e. the probability of the mth parity check zm
being satisfied given the t-th symbol is w and the side
information y and the transmitted symbols c.

Conduct the vertical step:

∑

∏

=

−=

=

≠

+

∈′
′

w
mtmt

b

mMm
tmtmtmt

mt

wq
w

wrwpwq
Htm

t

1)(such that chosen is
 12,...,1,0

)()()(
0 with),(each For

1

}\{

α

α
 (35)

where Mt is the set of indices with non-zero parity check
element in the t-th column of H, and Mt\m refers to the set
minus the element {m}.

Then compute the pseudo-posterior probabilities:

∑

∏

=

−=

=

−=

+

∈′
′

w
tt

b

Mm
tmttt

wq
w

wrwpwq
,...,N,t

t

1)(such that chosen is
 12,...,1,0

)()()(
110each For

1

}{

α

α
 (36)

and make tentative decisions:
1,...,1,0)},({maxarg)ˆ,ˆ(ˆ −=== Ntwqrhw t

w
ttt (37)

Check if the overall parity check constraints are satisfied,
and if so, stop. Else go back to the horizontal step as long as
a maximum number of iterations parameter has not been
exceeded. If exceeded flag decoding failure and exit.

Once the decoding has succeeded, we would have
obtained the symbol function value of the transmitted
quantization bin tt

k hMq ˆ),()(=ζ as well as the base coset
function value ttt

k crMq).21(),()()−=ψ . Combining this
information, the quantized bin is readily obtained by
Bayesian decoding among the quantization bins that satisfy
these constraints.

Our initial investigations on sign-modulated codes reveal
that it is advisable for the permutation operation in such
codes to be designed in a way that (as much a possible) each
parity bit sign-modulates a sample whose symbol function
bits are not used in any of the parity check equations
involving the same parity bit.

A more complete study of such codes, including
decoding feasibility and usefulness, will comprise future
work.

6. RESULTS ON H.263+

A reversed complexity video coder has been
implemented based on the H.263+ video codec. In this

symbol
function
(2b-ary)

Nb bits

N samples
Base coset
function

(Nb+N, Nb)
systematic
block code Nb

 systematic
bits

N
parity
bits

Sign-
modulation

N transmitted symbols N coset indices

Transmits coset index or
negative of that depending on
parity bit corresponding to
the sample

Permute

Figure 13. General Sign-modulated block codes

codec, the B-frames in a regular codec are replaced by
NRWZ-B frames. The base layer of the NRWZ-B frames are
coded at quarter resolution. Note that in order to handle the
Direct prediction mode in B-frames, the forward motion
vectors from the P-frame in the full resolution layer, which
constitutes the syntax element object in Figure 3 and Figure 4,
need to be transformed (re-engineered) for use as low-
resolution motion vectors. In this codec, the motion vectors
for 16×16 macroblocks codec in INTER mode in the full-
resolution layer are simply used as 8×8 motion vectors in
INTER4V (INTER with four 8×8 motion vectors) mode in
the lower resolution layer. Further, if a full-resolution
macroblock already uses four 8×8 motion vectors in
INTER4V mode, the average of the four motion vectors are
used to obtain the corresponding 8×8 motion vector in the
low-resolution layer with INTER4V mode.

TCSM with tail-biting trellises based on a 64-state
machine derived from a rate-1/2 systematic convolutional
code is used. The decoder uses a tail-biting MAP decoder.

The coding performance of a reversed complexity codec
operating in IZPZPZPZPZ…. mode with ‘Z’ frames
indicating NRWZ-B frames, is compared against a H.263+
coder, operating in IBPBPBPBPB… mode. Assuming that a
B-frame is roughly twice as complex to encode as a P-frame,
encoding complexity per-frame due to motion estimation for
the IBPBPBP… coder is roughly 1.5 times that of a regular
P-frame, ignoring the initial I-frame. We call this factor the
encoding motion estimation complexity (EMEC) index.
Next, if we assume the encoding complexity due to motion
estimation of a low-resolution frame to be roughly ¼ the
complexity of a full-resolution frame, then ignoring the
additional complexity due to Wyner-Ziv coding of the
residual layer, the EMEC index for the IZPZPZPZPZ…
coder can be shown to be 0.75, which is half that of the
IBPBPBP… coder. Even considering the overheads due to
Wyner-Ziv coding, the IZPZPZP… coder is less complex
than the IBPBPBP… coder.

Figure 14 compares the rate distortion performance for a

portion of the Foreman CIF sequence. As seen, the
performance is very similar except at lower rates. At lower
rates, the semi-super-resolution side-information operation
becomes less efficient, and as a result the overall efficiency
also suffers. Interestingly, in some cases, the Wyner-Ziv
coder actually performs better than the regular codec. This is
simply because the side-information generation operation is
in some ways equivalent to some kinds of post-processing,
which may in fact lead to a better quality than the regular
codec without post-processing. However, the exact
component in the side-information generation operation that
leads to post-processing improvement is indistinguishable.

Figure 15 shows the corresponding results for a portion of
the low-motion Akiyo sequence. Here again we observe that
at higher rates, the WZ coder actually performs better than
the regular coder because of the post-processing component
mingled with side-information generation. On the other
hand, the WZ coder degrades considerably at lower rates.

Figure 16 presents a similar result for the Silent sequence.
Finally, to provide a balanced view of the proposed

coder, results for a part of the Mobile sequence are presented
in Figure 17. Here the WZ coder actually performs
substantially worse than the regular codec. This is an
example of a sequence where the current side-information
generation operation is unable to produce a frame that is
substantially closer to the original than the interpolated low
resolution frame.

7. CONCLUSION
In this work, the design principles and preliminary results

for a reversed complexity coding mode applied to H.263+ is
presented. It is to be stressed that there is room for a great
deal of improvement in several areas.

The single most important area where most of the gains
are likely to come from is the side-information generation
operation. This component is also critical to robustness of
the coder. In no circumstances should the side-information
generated be worse than the one obtained by interpolating

Figure 14. R-D results for part of Foreman sequence

Figure 15. R-D results for part of Akiyo sequence

the low-resolution version of the frame. Besides, the more
accurate the generated side-information is, the less noise
there would be in the channel, and as such, the lower the rate
required for whatever channel coding is used. Use of least-
squares based super-resolution methods for side-information
generation may be a direction to explore.

Second, better block classification to control the coset
mapping and other parameters for coding the coefficients
from the block, should lead to some improvements.

Third, some gains can be eked out of moving away from
using the same entropy coder as the regular codec. An
entropy coder designed specifically for the coset indices or
an adaptive entropy coder would probably work better.

Finally, it must also be mentioned that while it is unlikely
that a different channel coding technique would lead to any
big gains, there could be improvements that come from
novel channel codes designed specifically for non-uniformly
distributed sources, in conjunction with appropriate
decoding algorithms.

8. REFERENCES
[1] J. D. Slepian and J. K. Wolf, “Noiseless coding of correlated

information sources,” IEEE Trans. Inf. Theory, vol. IT-19, pp.
471–480, July 1973.

[2] A. D. Wyner and J. Ziv, “The rate-distortion function for
source coding with side information at the decoder,” IEEE
Trans. Inf. Theory, vol. IT-22, no. 1, pp. 1–10, Jan. 1976.

[3] S. S. Pradhan and K. Ramchandran, “Distributed source
coding using syndromes (DISCUS): design and construction,”
in Proc. IEEE Data Compression Conf., 1999, pp. 158–167.

[4] A. Aaron and B. Girod, "Wyner-Ziv video coding with low-
encoder complexity," Proc. Picture Coding Symposium, PCS
2004, San Francisco, CA, December 2004.

[5] R. Puri and K. Ramchandran, “PRISM: a new robust video
coding architecture based on distributed compression
principles,” Proc. Allerton Conf. Communication, Control, and
Computing, Allerton, IL, 2002.

[6] R. Puri and K. Ramchandran, “PRISM: A ‘reversed’
multimedia coding paradigm,” Proc. IEEE Int. Conf. Image
Processing, Barcelona, Spain, 2003.

[7] M. Tagliasacchi, A. Majumdar, K. Ramachandran, “A
distributed-source-coding based robust spatio-temporal
scalable video codec,” Proc. Picture Coding Symposium, San
Francisco, 2004.

[8] X. Wang and M. Orchard, “Design of trellis codes for source
coding with side information at the decoder,” in Proc. IEEE
Data Compression Conf., 2001, pp. 361–370.

[9] B. Girod, A. Aaron, S. Rane and D. Rebollo-Monedero,
"Distributed video coding," Proceedings of the IEEE, Special
Issue on Video Coding and Delivery, vol. 93, no. 1, pp. 71-
83, January 2005.

[10] D. Robello-Mondero, R. Zhang, B. Girod, “Design of optimal
quantizers for distributed source coding,” Proc. Data
Compression Conference, Snowbird, Utah, 2003.

[11] G. Cote, B. Erol, M. Gallant, F. Kossentini, “H.263+: Video
coding at low bit-rates,” IEEE Trans. Circuits Syst. Video
Technology, vol. 8, no. 7, pp. 849–866, Nov. 1998.

[12] T. Wiegand, G. Sullivan, G. Bjøntegaard, and A. Luthra,
“Overview of the H.264/AVCvideo coding standard,” IEEE
Trans. Circuits Syst. Video Technology, vol. 13, no. 7, pp.
560–576, Jul. 2003.

[13] A. J. Viterbi, “Error bounds for convolutional codes and an
asymmetrically optimum decoding algorithm,’ IEEE Trans.
Inf. Theory, vol. IT-13, pp. 260-69, Apr. 1967.

[14] L. R. Bahl, J. Cocke, F. Jelinek, J. Rajiv, “Optimal decoding
of linear codes for minimizing symbol error-rate,” IEEE
Trans. Inf. Theory, vol. IT-20, pp. 284-87, March 1974.

[15] H. H. Ma, J. K. Wolf, “On tail-biting convolutional codes,”
IEEE Trans. Communication, vol. COM-34, pp. 104-11, Feb
1986.

[16] J. B. Anderson, S. M. Hladik, “Tail-biting MAP decoders,”
IEEE Journal on Selected Areas in Communications, vol. 16,
no. 2, Feb 1998.

[17] J. B. Anderson, S. M. Hladik, “An optimum circular Viterbi
decoder for the bounded distance criterion,” IEEE Trans.
Communications, vol. 50, no. 11, pp. 1736-42, Nov 2002.

[18] A. R. Calderbank, G. D. Forney, Jr., A. Vardy, “Minimal tail-
biting trellises: The Golay code and more,” IEEE Trans. Inf.
Theory, vol. 45, no. 5, pp. 1435-55, July 1999.

[19] D. J. C. McKay, “Good error correcting codes based on very
sparse matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp.
399-431, March 1999.

Figure 16. R-D results for part of Silent sequence

Figure 17. R-D results for part of Mobile sequence

