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ABSTRACT 
A spatial-scalability based framework for incorporation of a 
Wyner-Ziv frame coding mode in existing video codecs is 
presented, to enable a mode of operation with low encoding 
complexity. The core Wyner-Ziv frame coder works on the 
Laplacian residual of a lower-resolution frame encoded by a 
regular codec at reduced resolution. The quantized transform 
coefficients of the residual frame are mapped to odd cosets, 
to enable reuse of the same entropy coder that already exists 
in the regular codec with minimal loss in efficiency. The 
decoder iteratively conducts motion-based side-information 
generation and coset decoding, to gradually refine the 
estimate of the frame. In addition, a technique called Trellis 
Coded Sign Modulation (TCSM) using tail-biting trellises 
based on modulating the signs of the coset indices is 
proposed, in order to minimize decoding errors while not 
flattening the entropy of the coset indices transmitted. These 
codes easily extend to sign-modulated Turbo codes, and 
sign-modulated block codes, including LDPC codes. 
Preliminary results are presented for application to the 
H.263+ video codec. 
 

1. INTRODUCTION 
In recent years, a great deal of attention [1]-[9] has been 
devoted to practical distributed coding of various kinds of 
sources, notably video. A good review of the recent 
developments is presented in [9].  

Distributed coding has its roots in the theory of coding of 
correlated sources developed 30 years ago by Slepian and 
Wolf [1] for the lossless case, and Wyner and Ziv [2] for the 
lossy case. Figure 1 depicts the lossless and lossy scenarios 
of the specific type of distributed coding referred to as 

source coding with side information most relevant to this 
work. Let there be two correlated sources X and Y. If Y is 
known to both the encoder and the decoder, then it is well 
known from Shannon that the rate required to transmit X 
losslessly to the decoder would be the conditional entropy of 
X given Y – H(X/Y). The surprising Slepian-Wolf theorem 
[1], depicted in  Figure 1(a), states than even if Y is 
unknown at the encoder, but the joint statistics of X and Y 
are known, and encoder and decoder can still be designed to 
transmit X at a rate no larger than H(X/Y). The 
corresponding lossy theorem is due to Wyner-Ziv [2]. When 
Y is available to both the encoder and the decoder, the 
smallest rate required to transmit X with at most distortion D 
is the rate-distortion function RX/Y(D). The theorem, 
depicted in Figure 1(b), states that for jointly Gaussian 
sources, if the joint statistics are known, an encoder and a 
decoder can still be designed to transmit X with at most D 
distortion, at a rate no larger than RX/Y(D). Both theorems 
provide non-constructive proofs, and invoke asymptotic 
arguments. It is only recently that designing practical 
Wyner-Ziv codecs for real applications have been receiving 
attention. A majority of such work has focused on using 
strong error correction codes. 

One scenario where practical distributed coding is 
promising is in creating reversed complexity video codecs 
for power-constrained (hand-held) devices that capture and 
either transmit data to a more powerful server or store it in 
itself for subsequent decoding on a PC/server [4][5][6]. In 
contrast to regular broadcast-oriented video codecs that have 
high encoding complexity but low decoding complexity, 
reversed complexity codecs have low encoding complexity 
but high decoding complexity. On the other hand, because 
the same device that encodes would likely also need to have 
the capability to decode and playback received content, it 
would be awkward to support two separate codecs one for 
encoding and the other for decoding. With separate codecs, 
it would also be difficult to dynamically switch between the 
codecs depending on available battery power. It would be 
more convenient to have a single encoder that acts in two 
different modes with the additional functionality of being 
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Figure 1. Slepian-Wolf and Wyner-Ziv theorems 



able to step down to a lower complexity encoding mode as 
and when required. Further this enhancement in functionality 
should be incorporated by a relatively modest change to an 
existing regular codec. Additionally, at the decoder end, it 
would be convenient if a lower quality version of the 
received content could still be played back immediately by 
simple decoding, while a higher quality version may be 
recovered only by a more intensive decoding process. In a 
power constrained device needing both encode and decode, 
it will then be sufficient for the encoder to support only low 
complexity encoding as part of reversed complexity 
operation, and the decoder to support regular decoding for a 
received regular bit-stream, and only reduced quality 
decoding for a received reversed complexity bit-stream.  

Another consideration in our design has been the issue of 
robustness. Most existing work in this area has been too 
aggressive in reducing complexity leading to a somewhat 
unacceptable loss in quality. Our approach is moderate in 
that complexity reduction target is less, but the target quality 
is higher. For industrial acceptance, it is our opinion that it is 
essential to have some form of guarantee on quality. 

In terms of the core algorithm, first, the emphasis of our 
work has been on robust and practical side-information 
generation, which in our opinion has so far been neglected, 
in spite of the fact that most of the advancement in the area 
is likely to come from better side-information generation 
rather than better channel coding.  Second, we also attempt 
to design symbol-based Wyner-Ziv codes that are more 
efficient in entropy coding. Blind use of binary error 
correction codes is likely to lead to loss in coding efficiency 
because the source distribution is artificially flattened, and 
also because a good noise model cannot be fully represented 
with independently coded bits. 

 
2. THE FRAMEWORK 

2.1. NRWZ frames 
The cornerstone of our framework is creation of a new type 
of frame coding mode referred to as the Non-reference 
Wyner-Ziv (NRWZ) frame. As the name suggests, we 
propose applying Wyner-Ziv coding to only the non-
reference frames, in order to eliminate the issue of drift due 
to incorrect decoding. The reference frames are coded 
exactly as in the regular codec. Even though the core 

algorithm does not need this constraint, incorporation of this 
constraint allows improving side-information generation at 
the decoder, as well as enables use of larger block-length 
channel codes that can potentially span multiple Wyner-Ziv 
frames. Furthermore, a receiver of the content can 
immediately playback a lower quality version of the video 
with a regular decoder with good enough quality, while 
leaving full decoding of the NRWZ frames to offline 
processing. This framework is similar in many ways to that 
proposed in [7]. 

Figure 2 shows two scenarios how such frames can be 
used. In Figure 2(a), the B-frames of a regular coder have 
been converted to B-like NRWZ frames called the NRWZ-B 
frame, while Figure 2(b), shows a low delay case where P-
like NRWZ-P frames are used instead. Ideally the number of 
NRWZ frames in between P frames in both the cases shown 
can be varied dynamically based on the complexity 
reduction target. 
2.2. NRWZ Encoder architecture 
In general, a frame in a regular video encoder can be 
predicted based on multiple reference frames. The general 
model for such a frame coder is shown in Figure 3(a). It 
takes in the current frame, the reconstructed versions of 
frames in the frame-store, as well as their corresponding 
original versions, and produces a compressed bit-stream 
along with a reconstructed version of the current frame. Note 
that the original versions may be used only for computing 
more accurate motion vectors, but actual prediction is based 
only on the reconstructed frames in the frame-store. Often a 
syntax element object list is also be used for coding the 
current frame, one for each reference frame in the frame 
store. An example of such usage is in Direct-B prediction 
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mode for B-frames, which uses motion vector information 
from the reference frames. If the frame coded can be used as 
a reference frame for future frames, the coding process also 
yields a new syntax element object to be used in conjunction 
with the reconstructed frame.  

The corresponding NRWZ version is created based on a 
convenient spatial scalability framework as shown in Figure 
3(b): First, decimate all the frames in the original and 
reconstructed frame-stores, as well as the current frame by a 
factor 2n×2n, where n can be chosen based on a complexity 
reduction target. Correspondingly, also transform the syntax 
element object list if used for reference frames into a form 
that is appropriate for reduced resolution reference frames. 
Second, encode the low-resolution (LR) current frame by 
running through the same frame coder but operating at 
reduced resolution based on low-resolution versions of the 
reconstructed and original frames in the frame store, as well 
as the corresponding low resolution syntax element object 
list. This step creates the first part of the frame’s bit-stream 
called the LR layer bit-stream. Third, compute the difference 
between the full resolution current frame and the 
interpolated reconstruction from the low-resolution frame 
coder. Finally, use a Wyner-Ziv coder to code the residual 
frame, generating a Wyner-Ziv bit-stream layer. It is 
assumed that the encoder and the decoder use the same 
filters for decimation and interpolation. The low resolution 
coder can discard the syntax element object generated by 
low resolution encoding since this frame is not used as a 
reference in coding any other frame.  

It is straight-forward to see that the change required in the 
encoder to support the NRWZ version of the frame coder is 
modest. The reference frames are assumed to be coded at 

full resolution in exactly the same way as in the regular 
coder. The low resolution layer for the NRWZ frames are 
obtained pretty much by simple high level modifications 
including incorporation of decimation of frames, and 
transformation of the syntax element object list. So, ignoring 
the WZ layer for NRWZ frames, we have essentially a 
mixed resolution coder derived from a regular coder.  

At the same time, the complexity of encoding of NRWZ 
frames is roughly reduced by a factor 2n×2n with overheads 
due to decimation, interpolation, syntax element 
transformation, and Wyner-Ziv coding operations. A low 
complexity decoder can still playback a received sequence 
with decent quality by interpolation of the decoded low 
resolution layer. A more complex decoding can be 
performed offline to recover a better quality video.  
2.3. NRWZ Decoder Architecture 
The decoder architecture for NRWZ frames is shown in 
Figure 4. Figure 4(a) shows the model for a regular decoder, 
while Figure 4(b) shows the high-level decoder model for 
the corresponding NRWZ version. First, the low-resolution 
image is decoded and then interpolated with the same 
interpolator used in the encoder. Second, this interpolated 
frame as well as the previously decoded frames, is used in a 
motion-based processing module to obtain a higher 
resolution estimate of the frame to be decoded. We call this 
the multi-frame semi super-resolution problem, because 
except for the current frame, the other frames used are 
already at higher resolution, albeit corrupted with noise due 
to quantization. We note that the performance of any Wyner 
Ziv encoder is heavily dependent on the efficiency of this 
step.  For the particular case of NRWZ-B frames, we found 
that just using the previous and next reference frames along 
with the interpolated low resolution current frame provides 
reasonable results. Third, the interpolated low resolution 
frame is subtracted from the higher resolution frame 
generated in the previous step to obtain the actual side-
information frame to be used for channel decoding. Fourth, 
the channel decoder decodes the WZ bit-stream layer with 
the side-information residual frame acting as a noisy version 
of the original residual frame transmitted. The decoded 
residual frame is finally added to the interpolated low 
resolution frame to obtain the final decoded frame.  

 
3. ITERATIVE SIDE-INFORMATION GENRATION 

AND CHANNEL DECODING 
While the decoder architecture presented in the previous 
section provides a high-level overview, in practice, it is 
much more efficient to iteratively compute the semi-super-
resolution frame followed by channel decoding in multiple 
passes. Let the interpolated low-resolution reconstructed 
frame be called F0. If SS(F, FS) denotes the semi-super-
resolution operation to yield a higher resolution version F(HR) 
of F based on the frames stored in FS, and CD(R, bWZ) 
denotes the channel decoding operation yielding a corrected 
version of the residual frame based on noisy version R using 
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the Wyner-Ziv layer bit-stream bWZ, then iterative decoding 
comprises the following steps for i = 0, 1, 2,…, N: 
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For the specific case of NRWZ-B frames, where the FS 
above consists of only the past and future reference frames 
coded at full-resolution, the semi-super resolution operation 
to obtain Fi

(HR) from Fi is conducted by a block-matching 
operation. First, the past and future reference frames are 
low-pass filtered. Next, for every 8×8 block in frame Fi, the 
best sub-pixel motion vectors in the past and future filtered 
frames in a certain neighborhood is computed. If the 
corresponding best predictor blocks in the past and future 
filtered frames are denoted Bf and Bn respectively, several 
candidate predictors of the type αBf + (1–α)Bn, are tested 
and the best predictor that minimizes the SAD of the current 
block in Fi is found. Typically, α ε {0.0, 0.25, 0.5, 0.75, 1.0} 
works well. If the SAD for the best predictor is more than a 
certain threshold Ti, then nothing is done to the block. 
Otherwise, the block in Fi is replaced by the best predictor 
but with the compensation now conducted from unfiltered 
past and future frames, optionally with overlapped block 
motion compensation. When all blocks in Fi have been 
processed, the updated frame is referred to as Fi

(HR) in Eq. 1. 
In practice, from iteration to iteration three things are 

changed. First, the strength of the low pass filtering applied 
to the past and future reconstructed frames is gradually 
reduced. This is because, initially Fi is assumed to be mostly 
low pass and therefore motion-estimation is more robust 
when the past and future frames are also low pass filtered up 
to the same level. However, as more and more high 
frequency components are recovered by channel decoding in 
subsequent passes, the strength of filtering needs to be 
reduced so that the prediction becomes more accurate. In 
fact, it is sufficient to just apply a single low pass filter to the 
first one or two passes. Second, the grid for block matching 

is offset from iteration to iteration. This effectively smoothes 
out the blockiness and adds spatial coherence to the high 
resolution block that goes across its boundaries. For 
example, the shifts used in four passes can be (0,0), (4,0), (0, 
4) and (4,4). Third, the threshold T is gradually reduced 
from pass to pass, so that in subsequent passes, fewer and 
fewer blocks are changed. 

The semi-super-resolution operation is illustrated in 
Figure 5. 

4. CORE WYNER-ZIV CODEC 
We propose a Wyner-Ziv coder operating on the residual 
error frame in the transform domain. The same block by 
block transform as used in a regular codec for INTER 
macroblocks can be used. In a codec where multiple 
transforms are used, for example, AVC Fidelity Range 
Extensions or WMV1, any one of them can be used. 
4.1. The probabilistic model 

The underlying model in our codec is described below. It 
is assumed that the transform coefficients, denoted x, are 
Laplacian distributed with standard deviation σx. Let us 
denote the pdf as fX(x) Further, if y denotes the 
corresponding (unquantized) noisy coefficient obtained from 
the side-information, then: 

y = x + z                                       (2) 
where the noise z is modeled as a mixture of two Gaussians. 
If N(µ, σ2) denotes the Gaussian distribution with mean µ 
and variance σ2, then the distribution of z is: 

),0()1(),0(.)( 222
zzzzzZ KNpNpzf σσ −+=            (3) 

where pz is about 0.95, and Kz is about 8. The underlying 
assumption of the model is that for a small fraction of the 
coefficients (say 5%), the semi super-resolution operation 
will fail and will be unable to yield a coefficient close to the 
original. Assuming a large variance of the less probable 
Gaussian in the mixture model ensures that the tail of the 
distribution is fattened and consequently a few widely 
divergent coefficients in the failure areas will not derail the 
overall decoding of the rest of the coefficients, especially so 
when trellis codes as in Section 5 are used. 
4.2. Encoding 

For the purpose of encoding, after computing the 
transform, the coefficients are quantized, and then cosets are 
computed. While use of cosets is standard, we use cosets of 
odd modulus, with coset indices centered at 0. That is, if x is 
a coefficient with quantized value q = ф(x, Q) based on 
quantization step-size Q possibly with a dead zone, then the 
transmitted coset index c = ψ(q, M) of order M is computed 
as follows: 
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with M odd.  
Assuming the distribution of x is Laplacian (or any 

generalized Gaussian), the probability mass function of q is 
geometric-like. Specifically, if xl(q) and xh(q) denote the low 
and high-limits of the quantization bin q, where Ω∈q  = {–
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Figure 5. Semi-super-resolution for NRWZ-B frames 



qmax, –qmax+1, …, –1,0,1,… qmax–1, qmax}, then the 
probability of the qth bin: 
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Note that the entropy coder that exists in the regular coder is 
optimized for this distribution, and is designed to be 
particularly efficient for coding of zero, the most probable 
symbol. The probability mass function for the coset indices 
ψ(q, M), as shown in Figure 6 is considerably flatter, but it is 
still symmetric, has zero as its mode and decays with 
increasing magnitude. Specifically, 
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As a result, the regular entropy coder for q can still be used 
for c, and turns out to be quite efficient. While a different 
entropy coder designed specifically for coset indices can 
also be used and can definitely have some advantage, the 
difference is not likely to be too much. 

In practice, not all non-zero coset indices of a transform 
block are transmitted. Only a few of the low to mid 
frequency coefficients are sent for each block, while the rest 
are left to be recovered entirely from the side-information 
generation operation. The number of coefficients transmitted 
in zigzag scan order is denoted n. Additionally, the 
quantization step size Q used in computing q, as well as the 
value of M in computation of the coset index ψ(q, M), is 
varied for every coefficient in a block. They are referred to 
as Qij and Mij respectively, where i, j = 0, 1, 2,…, B–1, with 
B being the block size. Specifically, the higher frequencies 
are quantized more heavily than the quantization parameter 
corresponding to the quality desired and encoded with 
smaller values of the coset modulus Mij. For the dc 
coefficient, only the true value is transmitted without coset 
computation. The coefficients for the chrominance 
components are also coded similarly, but usually fewer 
coefficients than the luminance component are transmitted. 

Furthermore, since not all macroblocks are likely to have 
the same amount of errors, it is useful to classify blocks into 
one of several types s = {0, 1, 2,…, S–1} based on an 
estimate of how close the side-information block is likely to 

be to the original. Various cues from the low resolution layer 
can be used for this purpose. In this work, we simply use a 
combination of an edge activity measure in the 
corresponding location in the low-resolution layer, and the 
number of bits spent to code the corresponding block in the 
low resolution layer to classify a block into one of S=5 
classes. This part can admittedly be improved in future 
work.  

Each classification index s therefore yields a different set 
of quantization step sizes {Qij(s)}, a different set of coset 
moduli {Mij(s)}, and a different number of coefficients n(s) 
transmitted per block. Ideally, these parameters need to be 
determined based on the corresponding values of {σx, σz, pz, 
Kz} for each frequency and classification index s. While in 
this work, the values have been chosen in a sort of ad-hoc 
intuitive manner, improving this step by a more rigorous 
analysis, for example by using [10], is an area of future 
improvement. 

As an example, for the specific case of 8×8 DCT used in 
a NRWZ-B frame added to H.263+, the quantization 
parameter used for the ijth transform coefficient xij is chosen 
as: QPij  = QP + Aij, where 
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and QP is the quantization parameter corresponding to the 
target quality. The corresponding coset modulus values are 
given by: Mij = max(Bij–2.m(s), 3), where 
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Figure 6. Probability mass function of coset indices 



m(s) is a parameter determined by the classification index s. 
The classification index also yields n(s), the number of 
coefficients actually transmitted in zigzag scan order, while 
the rest of the coefficients are transmitted as zero. Figure 7 
shows the steps. 
4.3. Decoding 

For the purpose of decoding, a Bayesian classifier is used 
to decode the quantization bin q of a coefficient which is 
received as y and whose coset index is transmitted as c. Note 
that y is unquantized and has higher precision than quantized 
coefficients. Each coefficient is associated with a context 
that includes the class index s and the frequency (ij), 
yielding the quantization step-size Qij(s) and coset modulus 
Mij(s) used during encoding. Further, the class index s and 
the frequency (ij) of a coefficient map to a {σx, σz, pz, Kz} 
that is directly used for the decoding process. In particular, 
the decoded bin q̂  is obtained as: 
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where p(q, y) is the joint probability of the quantization bin 
q and the received value y. Applying the approximation 
below: 
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The cumulative distribution function Fz(.) can be 
conveniently computed by scaling and interpolation of a pre-
computed table for the erf() function for Gaussian variables, 
assuming the model in Eq. 3. Likewise, the a priori 
probability of the qth bin pQ(q) can be computed based on 
interpolation of a pre-computed table for the cumulative 
distribution function of a Laplacian distribution.  

Once an estimate q̂  for the input quantization bin has 
been obtained, the optimal reconstruction is conducted: 
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Note that the exact computation of the above is complicated 
since fX/Y(x, y) cannot be directly written in terms of fZ(z). 
However, even a gross approximation works better than just 
using the mid-point of the quantization bin q̂  as x̂ . In 
particular, we assume fX/Y(x, y) to be a Gaussian with 
variance equal to the geometric mean of σx and σz, centered 
on y, and then compute x̂  based on interpolation of values 
from a pre-computed table of the first central moments of a 
Gaussian. Figure 8 shows a decoding example for a case 
where the coset index transmitted was 2. Given the y as 
shown, the Bayesian classifier decodes q̂  as –3. Thereafter, 
the optimal reconstruction function obtains the final 
reconstruction x̂  within this bin. It turns out that the ability 
to use this optimal reconstruction function using the side-
information y enables us to use a quantization step-size that 
is larger than the target quality, thereby allowing bit-rate 
savings in the Wyner-Ziv layer. 

Besides the coefficients transmitted using cosets, there 
are other coefficients that are not transmitted at all 
(transmitted as zero). These coefficients are reconstructed 
exactly as they appear in the side-information.  
 

5. TRELLIS CODED SIGN MODULATION 
In the uncoded version of the Wyner-Ziv codec presented in 
the previous section, the distance between quantization bins 
with the same index is the same as the coset modulus M. In 
this Section we present a method whereby the effective 
distance can be increased without much additional rate 
penalty, by use of soft decoding techniques. The general 
method can be applied to any non-uniform but symmetric 
source. 
5.1. Encoder 

The standard way to increase the effective distance is by 
incorporating dependencies among coding of multiple 
symbols, for example by trellis coded modulation. The 
encoding of one symbol then not only depends on the 
current symbol, but on several other symbols possibly prior 
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to the current. In the Wyner-Ziv coding case however, 
besides increasing distances between codes, we need to 
ensure an additional constraint that the entropy of the 
transmitted symbols are not artificially flattened. This is a 
consideration that usually does not exist in traditional 
channel coding. For example, it would be better to ensure 
that the probability mass function of the transmitted coset 
indices are not flatter than the one shown in Figure 6 for the 
uncoded case, even though the effective distance is 
increased. 

Consider a function, called the symbol function ζ(k)(q, M), 
that yields a k-ary symbol from the quantization bin q, given 
coset modulus M, defined as follows: 
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Also, define a base coset function ψ(k)(q,M) as follows: 
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Examples of these functions are shown in Figure 9 for the 
typical case of k=2. The distribution of the coset indices is 
similar to that in Figure 6, although not exactly the same. 
Observe that quantization bins with the same symbol 
function and base coset function values are separated by (M–
1).k +1 bins. The zeroes of the coset function have also been 
placed such that they are separated by the same amount. The 
objective is to derive a coding and decoding scheme where 
the symbol function can be recovered by soft decoding 
based on unquantized y, without explicitly transmitting it.  

Consider the class of coset functions ),( Mqψ ′  
constructed from the base coset function by flipping the 
output signs corresponding to one or more values of q, while 
ensuring the constraint that  ),( Mqψ ′ = ),( Mq−′−ψ . It is 
obvious from the symmetry of the source that each function 
from the entire class of such functions has exactly the same 
probability mass function as the base coset function. Figure 9 
shows an example of –ψ(k)(q, M) where all output signs from 
ψ(k)(q, M)are flipped, but the probability mass function still 
remains the same. Therefore, even if the coset function used 
to obtain the transmitted coefficient is changed from 
coefficient to coefficient, as long as they remain within this 
class, the same entropy coder can be used without any loss 
in coding efficiency. This is exactly what is exploited in our 
coding scheme. Further note that for this entire class of 
functions, the zeroes always remain at the same locations. 
Because the coding of the zero coset index is already 
efficient, and the zeroes are already separated by (M–1).k +1 
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quantization bins, we can safely consider only the non-zero 
base coset indices for coding. Removing the zero-coset 
indices for the purpose of coding also ensures that the 
symbol function yields symbols that are equiprobable for the 
case k = 2, and therefore enable robust channel decoding. 
This situation is shown in Figure 9 where the zero coset 
indices are grayed. 

In particular, the symbol function is applied to each 
quantized coefficients qt with non-zero base coset function, 
to yield a k-ary symbol ht. The sequence of symbols {ht} 
generated from {qt} drives a state-machine with Ns states. 
For every quantized coefficient qt coded, the current state of 
the state machine }1,...,2,1,0{ −∈ St NS  determines a 
particular coset function ),()(

tt
k

S Mq
t

ψ  used to obtain the 
transmitted symbol ct from qt. Each ),()(

tt
k

S Mq
t

ψ is derived 
from the base coset function by sign modulation. In other 
words: 
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where T is the total number of coefficients to be coded. Note 
that Qt and Mt refer to the quantization step-size and the 
coset modulus corresponding to the t-th coefficient xt. 

),( tt hSη  is the next state function of the state machine. The 
general technique as described above is referred to as Trellis 
Coded Sign Modulation (TCSM). Figure 10 illustrates the 
technique and a trellis generated by TCSM. 

One particular case is where the only two coset functions 
ψ(k)(q, M) and –ψ(k)(q, M) are used. Half of the states from 
the state machine use ψ(k)(q, M) as the coset function, while 

the remaining half use –ψ(k)(q, M). In other words, the sign 
of the index from the base coset function is either flipped or 
not flipped depending on the state of the state machine. The 
state machine can be derived from the shift register in a 
convolution code. However note that unlike the output 
function of a convolution code, the coding of the current 
coefficient qt does not depend on the current symbol 
function ht. This is needed to ensure that in each epoch the 
symbols are maximally separated. As an example, for the 
most useful case k=2, a practical means for generating such 
codes is from a rate ½ systematic convolutional code. The 
next state function for the TCSM encoder can be exactly the 
same as that of the convolutional code. However, if the 
output function for the parity bit for such a convolutional 
code is denoted g(S, h), where S is the current state and h is 
the current input bit, then the bit g(S, 0) can be used during 
TCSM encoding to determine whether the sign for the base 
coset function is to be flipped or not.    

Putting it all together, the steps for encoding as shown in 
Figure 11 are as follows. After computing the block 
transform for an entire frame, the coefficients are quantized, 
and then the base coset function and the symbol functions 
are computed. If the base coset-function is zero or if the 
coefficient is beyond the number of coefficients that are to 
be transmitted for its block class in zigzag scan order, the 
coset index transmitted is zero. Coefficients with non-zero 
base coset function for the entire frame are separated and 
interleaved. The sequence of interleaved coefficients is next 
encoded using the steps in Eq. 12. The coset indices 
obtained by doing so are de-interleaved, and put back in the 
corresponding locations in the original blocks they came 
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from. The blocks are next entropy coded as in the regular 
codec. Note that it is necessary to code all the coefficients 
from a single frame together in order to ensure that the block 
size is sufficiently large. Use of NRWZ frames also enable 
use of codes that span across multiple frames.  

Usually trellis codes are initiated in a fixed state S0, and 
terminated by a few dummy symbols. Termination is 
necessary to ensure equal protection for the symbols that 
come at the end. In the case of TCSM, however, there are 
two ways to ensure proper termination. First, a few bits can 
be used at the end of every frame to specify explicitly the 
end state. However, if changing the bit-stream syntax is 
undesirable, use of tail-biting trellises [15]0 seem to work 
well. In a tail-biting trellis, the starting state and the ending 
state are constrained to be exactly the same. Use of such 
trellises ensures that the number of transmitted symbols is 
exactly the same as the number of coefficients. The common 
start and end state can be obtained easily from a non-
recursive state machine, by running the last Nmem symbols 
through it, where Nmem is the constraint length or the size of 
the memory of the machine.  
5.2. Decoding 

The purpose of the decoder is to obtain the best estimate 
of the quantization bins qt given the transmitted coset index 
ct, the noisy unquantized coefficients yt, and their contexts. 
Note that because each sample in the sequence could 
potentially use a different quantizer a different coset 
modulus, and a different class index with different noise 
variances, in the equations following, we use subscript t 
wherever appropriate. We consider two options, the Viterbi 
decoder [13] and the MAP decoder [14]0. Both decoders 
depend on computation of the branch metric γt(i, j) defined 
as: 

)/,,Pr(),( 1 iSycjSji ttttt === +γ                     (13) 
It can be shown that: 
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where tΩ  is the set of all quantization bins for the t-th 
sample, and pt(q, yt) given below is basically the same as  

Eq. 8 with subscript t added appropriately: 
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In practice Eq. 14 can be simplified by only considering a 
few quantization bins of each side of y, instead of all of Ωq. 
This definition of the branch metric is used in both the 
decoders below. 
5.2.1. Viterbi Decoder 

The Viterbi algorithm decodes the most likely state 
sequence. The steps adapted for TCSM are as follow. First 
initialize: 

1,...,1,0  ,0)(  ,)( 00 −=== Si Niii λπδ                  (16) 
where πi is the probability that the initial state S0 is i. If the 
initial state is known to be k, then πk=1, and πi=0 for i≠k. 
Then recursively compute: 
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T being the total number of symbols in the sequence. 
Terminate the trellis: 
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and backtrack for t=T–1, T–2, …., 0: 
)( *

11
*

++= ttt SS λ                                  (19) 
For tail-biting trellises, the Viterbi algorithm has been 

modified in various ways by many researchers [15][17][18]. 
We present a simple method from [15] as follows. First, 
assume the initial state to be an arbitrary state k and initialize 
accordingly. Make one decoding pass through the sequence 
and find the final state of the best path. Check if the start 
state is the same as the best end state. If yes, stop decoding. 

 

Interleaver 

De-interleaver 

Delay symbol 
function 

Base coset
function 

Next state 
function 

state 

TCSM core encoder 

State-based  
sign-modulation

Extract transmitted 
coefficients with non-

zero base coset function 

 
Figure 11. TCSM frame encoding 



If not, check if the previous best ending state has been used 
before as the initial state. If so, pick another arbitrary initial 
state not used before and redo the decoding pass. If not, use 
the previous best ending state as the initial state and redo 
decoding. Continue the process until the initial and final 
states match, or if all initial states have been tried, the 
algorithm simply outputs the best path so far. Typically, the 
initial and final states match in two passes. 

Once the decoded state sequence is known, there is still 
an additional step necessary to obtain the best quantization 
bin, since multiple quantization bins can lead to the same 
state transitions. Note that given that a state transition i to j 
occurred in epoch t and side information yt and coset index ct 
are received, the posteriori probability of quantization bin q 
is given by: 
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Where ),( jitγ  and ),( tt yqp  are given by Eq. 14 and Eq. 
15 respectively. Given the decoded state sequence, the 
decoding rule is then to choose the q that maximizes 

),,( ** jiqtµ  for decoded state transition i* to j* in epoch t, 
which is equivalent to: 
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Once the decoded quantization bins have been obtained, 
optimal reconstruction for x̂  as in Eq. 9 is used. 
5.2.2. MAP Decoder 

The MAP decoder, also known as the BCJR algorithm 
[14], decodes using the most likely state transitions at every 
epoch. While the decoded sequence may not be consistent 
with the trellis constraints, this decoder minimizes the 
probability of errors.  

The steps of the algorithm adapted for the TCSM trellis 
are as follows. First conduct the forward pass: 
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where πi is the probability distribution of the initial state. 
Next conduct the backward pass: 
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where θi is the probability distribution of the final state. If 
the initial and/or final states are known, the πi and the θi are 
chosen to be 1 for these states and 0 otherwise. If they are 

unknown, the corresponding distributions are assumed to be 
uniform.  

For the case of tail-biting trellises, the method in 0 is 
adopted. First assume the πi and the θi to be uniform 
distributions. The forward and backward inductions are then 
continued in a circular fashion until the distributions of αt(i) 
and βt(i) converge. Specifically for the forward induction, 
once the final distribution αT(i) is obtained, we assign it to 
the initial distribution and continue the induction again. The 
process is continued until the initial and final distributions 
converge. In fact, we need not wait until the end of a pass to 
decide if the distributions match. As long as the distribution 
αt(i) at an intermediate epoch t is found to be sufficiently 
close to the distribution in the previous pass, based on a 
suitable threshold, we can assume that convergence has been 
achieved. The most recent distributions at each t are then 
taken as final. A similar method is used for the backward 
pass. Usually, the distributions converge in less than two full 
passes. 

Once the forward and backward distributions have been 
obtained, the a posteriori probabilities σt(i, j) of state 
transition i to j in epoch t are computed as: 
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For every t, the (i, j) pair that maximizes the above 
probabilities is regarded as the most likely state transition. 
However, the posteriori probability of the quantization bin q 
is obtained by averaging over all possible state transitions: 
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where ),,( jiqtµ  and ),( jitσ  are given by Eq. 20 and Eq. 
24 respectively. The decoding rule is simply to choose the q 
than maximizes )(qtη : 
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Once the decoded quantization bins have been obtained, 
optimal reconstruction for x̂  as in Eq. 9 is used. 
5.3. Sign-modulated turbo codes 

The TCSM methodology can be readily extended to 
parallel concatenation. In this case, there are two parallel 
TCSM encoders as shown in Figure 12, with the second 
being applied after a permutation of the original samples. 
Such codes are termed sign-modulated turbo codes, because 
of their obvious connection with Turbo codes.  

The decoding operation strongly parallels the iterative 
decoding procedure used for regular binary Turbo codes. 
The soft quantization bin posteriori output probabilities 
obtained from Eq. 25 after decoding one code, are used as 
priors after permutation through )(, qp tQ  of Eq. 15 while 
decoding the second code. The decoding process iterates 
over the two constituent codes for multiple iterations, each 
time updating the quantization bin probabilities, until 



convergence, or until a given maximum number of iterations 
is exceeded.  

A more complete study of such codes will constitute 
future work.  
5.4. General sign-modulated block codes 

The principles behind trellis-coded sign-modulation can 
be readily applied to code an arbitrary block of samples 
based on a binary systematic linear block code as shown in 
Figure 13. Consider a block of N samples to be coded 
together. Apply a k-ary symbol function as in Eq. 10 with 
k=2b, to each sample to obtain bN symbol bits. These bN bits 
are input to a rate b/(b+1) (bN+N, bN) systematic block 
code to obtain N parity bits, each of which is then 
considered to correspond to one data sample, after an 
arbitrary permutation. Then, compute the base coset function 
as in Eq. 11 for each of the N original samples, and transmit 
either that or the negative of that depending on the value of 
the corresponding parity bit. The most useful case is one 
with k=2 (b=1), where the underlying block code must be 
rate 1/2.  

Let }12,...,1,0{ −∈ b
th  be the b-bit symbol function value 

),()(
tt

k Mqζ=  for the t-th sample and }1,0{∈tr  be the 
permuted parity bit used to sign-modulate the base coset 
function value of the sample. If h = {h0, h1, …, hN–1} and r = 
{r0, r1, …, rN–1}, then Crh ∈],[  must be a valid codeword 
for the given block code C. Denote by ]),([ rhCχ  the 
characteristic function of the code, whose value is 1 for a 
valid codeword [h, r] and 0 if not.   

Assume further that the sign of the base coset function is 
flipped when the permuted parity bit rt = 1, and left 
unchanged when rt = 0. That is, the transmitted coset symbol 
ct for the t-th sample is: 
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In order to decode the block code, the decoder must 
maximize Pr([h, r]/y, c) over all valid codewords Crh ∈],[ , 
where y = {y0, y1, …, yN–1} are the observed side information 
samples, and c = {c0, c1, …, cN–1} are the transmitted coset 
symbols. This is equivalent to maximizing Pr(y, c, [h, r]) 
over Crh ∈],[ .  

Next we show that maximizing Pr(y, c, [h, r]) is 
equivalent to maximizing the product of the sample-wise 
joint probabilities of yt, ct, ht and rt: 

( )

( )

( ) ]),([
)(

),(,)21(),(,Pr

]),([,)21(),(,Pr

]),([)Pr(/)21(),(,Pr

]),([)Pr(),/,Pr(

]),Pr([]).,/[,Pr(]),[,,Pr(

1

0
,,,

)()(

1

0

)(

1

0

1

0

)(

1

0

rh
rcyp

hMqcrMqy

rhhcrMqy

rhhhcrMqy

rhhrhcy

rhrhcyrhcy

C

N

t
tthttt

tt
k

ttt
k

t

C

N

t
tttt

k
t

C

N

t
t

N

t
tttt

k
t

Ct

N

t
ttt

χζψ

χψ

χψ

χ

















=−==









−==

















−==









=

=

∏

∏

∏∏

∏

−

=

−

=

−

=

−

=

−

=

444444444 3444444444 21

(28) 

where )( ,,, tthttt rcyp  is the sample-wise joint probability of 
the observed sample yt and corresponding transmitted 
symbol ct, with ht and rt components of the full codeword [h, 
r] that correspond to the t-th sample. Note also that: 

]),([),,,(

).21(),(
),(

:

)(

)(

∑

−=
=

Ω∈
=

ttt
k

tt
k

t

crMq
hMq

q
ttttttt yqprhcyp

ψ
ζ

              (29) 

The decoding rule for the transmitted codeword is then: 
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If the block length is not too large, then even decoding by 
full enumeration search is not too impractical. Otherwise, 
since all linear codes have a trellis representation, trellis 
decoding adapted for (b+1)-bit symbols (ht, rt) in the overall 
codeword [h, r] can be used. Once tĥ  and tr

)  has been 
decoded, the decoded quantization bin for the t-th sample is 
obtained as: 
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5.4.1. Sign-modulated LDPC codes 
The principle above can be readily applied to create sign-

modulated LDPC codes [19] based on a sparse pseudo-
random parity check matrices. The advantage of such codes 
is that N can be variable, and the parity check matrix H can 
be designed randomly on-the-fly for a variable number of 
symbols to be coded for each frame. An adaptation of 
iterative message passing algorithms typically used for 
LDPC codes can then be used to decode such codes.  

Specifically, horizontal and vertical update equations for 
decoding LDPC codes [19] are modified so as to work with 
independent (b+1)-bit symbols wt = (ht, rt) corresponding to 
the t-th sample which is observed as yt. Note that unlike 
binary LDPC codes observations for individual bits are not 
independent in sign-modulated codes, however the 
observations yt corresponding to (b+1)-bit symbols (ht, rt) 
can be assumed to be independent for each t. The codeword 
therefore is assumed to be comprised by N (b+1)-bit 
symbols, each taking values 0 through 2(b+1)–1, assuming a 
binarization convention where the LSB corresponds to rt and 
the b MSBs correspond to b-bit ht. Assume also the N × 
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Figure 12. Sign-modulated Turbo codes 



N(b+1) parity check matrix H to be reorganized such that in 
each row groups of (b+1) bits corresponding to the same t-th 
sample are grouped together to form a (b+1)-bit parity 
symbol. H thus can be viewed as an N×N matrix of (b+1) bit 
symbols that take values 0 through 2(b+1)–1. The (m, t)-th 
symbol of H is denoted Hmt. The binarization is assumed to 
be consistent with that for wt, and indicates which of the bits 
actually take part in the mth parity-check equation. Define 
also a binary function of two n-bit binary numbers 

011... uuuu n−=  and 011... vvvv n−=  as follows: 

∑
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0
),(

n

i
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where the ‘.’ refers to binary AND, and the summation is 
binary ‘+’. Now the iterative decoder equations can be 
written as shown below: 

First obtain the input channel probabilities as follows: 
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where pt is given by Eq. 29, and α is a normalization factor 
such that pt(w) sums to 1 over all w. Next, initialize: 

),()( wpwq tmt =  for all (m, t) where Hmt is non-zero. Note 
qmt(w) is meant to denote ),},',0/{Pr( cymmzww mt ≠== ′ , 
i.e. the probability of the t-th symbol being w, given all 
checks mz ′  other than the mth check are satisfied, and the 
side information y and the transmitted symbols c. 

Conduct the horizontal step: 

12,...,1,0                  

  
1),(   ,2/)1(
0),(   ,2/)1(

)(    

    

)()(    
0 with ),(each For 

1

1

1

}\{

1),(:0),(: 11

−=




=−
=+

=

=

−=

≠

+

+

+

∈′
′

==

∏

∑∑
++

b

mtbmt

mtbmt
mt

tNt
tmmt

Hww
mt

Hww
mtmt

mt

w

Hwr
Hwr

wr

qr

wqwqq
Htm

m

mtbmtb

τδ
τδ

δδ

δ
ττ              (34) 

where Nm is the set of indices with non-zero parity check 
element in the mth row of H, and Nm\t refers to the set minus 
the element {t}. Note that rmt(w) is meant to denote Pr(zm=0 
/ wt=w, c, y), i.e. the probability of the mth parity check zm 
being satisfied given the t-th symbol is w and the side 
information y and the transmitted symbols c.  

Conduct the vertical step: 
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where Mt is the set of indices with non-zero parity check 
element in the t-th column of H, and Mt\m refers to the set 
minus the element {m}. 

Then compute the pseudo-posterior probabilities: 
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and make tentative decisions: 
1,...,1,0  )},({maxarg)ˆ,ˆ(ˆ −=== Ntwqrhw t

w
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Check if the overall parity check constraints are satisfied, 
and if so, stop. Else go back to the horizontal step as long as 
a maximum number of iterations parameter has not been 
exceeded. If exceeded flag decoding failure and exit. 

Once the decoding has succeeded, we would have 
obtained the symbol function value of the transmitted 
quantization bin tt

k hMq ˆ),()( =ζ  as well as the base coset 
function value ttt

k crMq ).21(),()( )−=ψ . Combining this 
information, the quantized bin is readily obtained by 
Bayesian decoding among the quantization bins that satisfy 
these constraints.  

Our initial investigations on sign-modulated codes reveal 
that it is advisable for the permutation operation in such 
codes to be designed in a way that (as much a possible) each 
parity bit sign-modulates a sample whose symbol function 
bits are not used in any of the parity check equations 
involving the same parity bit.  

A more complete study of such codes, including 
decoding feasibility and usefulness, will comprise future 
work. 

 
6. RESULTS ON H.263+ 

A reversed complexity video coder has been 
implemented based on the H.263+ video codec. In this 

 

symbol  
function 
(2b-ary) 

Nb bits 

N samples 
Base coset 
function 

(Nb+N, Nb) 
systematic  
block code  Nb 

 systematic 
bits 

N 
parity  
bits 

Sign- 
modulation 

N transmitted symbols N coset indices

Transmits coset index or 
negative of that depending on 
parity bit corresponding to 
the sample 

Permute 

 
Figure 13. General Sign-modulated block codes 



codec, the B-frames in a regular codec are replaced by 
NRWZ-B frames. The base layer of the NRWZ-B frames are 
coded at quarter resolution. Note that in order to handle the 
Direct prediction mode in B-frames, the forward motion 
vectors from the P-frame in the full resolution layer, which 
constitutes the syntax element object in Figure 3 and Figure 4, 
need to be transformed (re-engineered) for use as low-
resolution motion vectors. In this codec, the motion vectors 
for 16×16 macroblocks codec in INTER mode in the  full-
resolution layer are simply used as 8×8 motion vectors in 
INTER4V (INTER with four 8×8 motion vectors) mode in 
the lower resolution layer. Further, if a full-resolution 
macroblock already uses four 8×8 motion vectors in 
INTER4V mode, the average of the four motion vectors are 
used to obtain the corresponding 8×8 motion vector in the 
low-resolution layer with INTER4V mode. 

TCSM with tail-biting trellises based on a 64-state 
machine derived from a rate-1/2 systematic convolutional 
code is used. The decoder uses a tail-biting MAP decoder.  

The coding performance of a reversed complexity codec 
operating in IZPZPZPZPZ…. mode with ‘Z’ frames 
indicating NRWZ-B frames, is compared against a H.263+ 
coder, operating in IBPBPBPBPB… mode. Assuming that a 
B-frame is roughly twice as complex to encode as a P-frame, 
encoding complexity per-frame due to motion estimation for 
the IBPBPBP… coder is roughly 1.5 times that of a regular 
P-frame, ignoring the initial I-frame.  We call this factor the 
encoding motion estimation complexity (EMEC) index. 
Next, if we assume the encoding complexity due to motion 
estimation of a low-resolution frame to be roughly ¼ the 
complexity of a full-resolution frame, then ignoring the 
additional complexity due to Wyner-Ziv coding of the 
residual layer, the  EMEC index for the IZPZPZPZPZ… 
coder can be shown to be 0.75, which is half that of the 
IBPBPBP… coder. Even considering the overheads due to 
Wyner-Ziv coding, the IZPZPZP… coder is less complex 
than the IBPBPBP… coder. 

Figure 14 compares the rate distortion performance for a 

portion of the Foreman CIF sequence. As seen, the 
performance is very similar except at lower rates. At lower 
rates, the semi-super-resolution side-information operation 
becomes less efficient, and as a result the overall efficiency 
also suffers. Interestingly, in some cases, the Wyner-Ziv 
coder actually performs better than the regular codec. This is 
simply because the side-information generation operation is 
in some ways equivalent to some kinds of post-processing, 
which may in fact lead to a better quality than the regular 
codec without post-processing. However, the exact 
component in the side-information generation operation that 
leads to post-processing improvement is indistinguishable.  

Figure 15 shows the corresponding results for a portion of 
the low-motion Akiyo sequence. Here again we observe that 
at higher rates, the WZ coder actually performs better than 
the regular coder because of the post-processing component 
mingled with side-information generation. On the other 
hand, the WZ coder degrades considerably at lower rates.  

Figure 16 presents a similar result for the Silent sequence.  
Finally, to provide a balanced view of the proposed 

coder, results for a part of the Mobile sequence are presented 
in Figure 17. Here the WZ coder actually performs 
substantially worse than the regular codec. This is an 
example of a sequence where the current side-information 
generation operation is unable to produce a frame that is 
substantially closer to the original than the interpolated low 
resolution frame. 
 

7. CONCLUSION 
In this work, the design principles and preliminary results 

for a reversed complexity coding mode applied to H.263+ is 
presented. It is to be stressed that there is room for a great 
deal of improvement in several areas.  

The single most important area where most of the gains 
are likely to come from is the side-information generation 
operation. This component is also critical to robustness of 
the coder. In no circumstances should the side-information 
generated be worse than the one obtained by interpolating 

 
Figure 14. R-D results for part of Foreman sequence 

 
Figure 15. R-D results for part of Akiyo sequence 



the low-resolution version of the frame. Besides, the more 
accurate the generated side-information is, the less noise 
there would be in the channel, and as such, the lower the rate 
required for whatever channel coding is used. Use of least-
squares based super-resolution methods for side-information 
generation may be a direction to explore.   

Second, better block classification to control the coset 
mapping and other parameters for coding the coefficients 
from the block, should lead to some improvements.  

Third, some gains can be eked out of moving away from 
using the same entropy coder as the regular codec. An 
entropy coder designed specifically for the coset indices or 
an adaptive entropy coder would probably work better.  

Finally, it must also be mentioned that while it is unlikely 
that a different channel coding technique would lead to any 
big gains, there could be improvements that come from 
novel channel codes designed specifically for non-uniformly 
distributed sources, in conjunction with appropriate 
decoding algorithms.  
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