O}

invent

Enforcing Performance Isolation Across Virtual Machines in Xen

Diwaker Gupta®, Ludmila Cherkasova, Rob Gardner, Amin Vahdat!
Enterprise Software and Systems Laboratory
HP Laboratories Palo Alto

HPL-2006-77
May 4, 2006*

virtual machine
monitor, device
drivers, 1/0
processing,
performance
isolation,
monitoring
framework,
measurements,
performance
evaluation

Recently, virtual machines (VMs) have emerged as the basis for allocating
resources in enterprise settings and hosting centers. One benefit of VMs in
these environments is the ability to multiplex several operating systems on
hardware based on dynamically changing system characteristics. However,
such multiplexing must often be done while observing per-VM performance
guarantees or service level agreements. Thus, one important requirement in this
environment is effective performance isolation among VMs. In this paper, we
address performance isolation across virtual machines in Xen. For instance,
while Xen can allocate fixed shares of CPU among competing VMs, it does not
currently account for work done on behalf of individual VM's in device drivers.
Thus, the behavior of one VM can negatively impact resources available to
other VMs even if appropriate per-VM resource limits are in place.

In this paper, we present the design and evaluation of a set of primitives
implemented in Xen to address this issue. First, XenMon accurately measures
per-VM resource consumption, including work done on behalf of a particular
VM in Xen's driver domains. Next, our SEDF-DC scheduler accounts for
aggregate VM resource consumption in allocating CPU. Finally, ShareGuard
limits the total amount of resources consumed in privileged and driver domains
based on administrator-specified limits. Our performance evaluation indicates
that our mechanisms effectively enforce performance isolation for a variety of
workloads and configurations.

* Internal Accession Date Only
! University of California, San Diego, CA 92122, USA

Approved for External Publication

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Enforcing Performance Isolation Across Virtual
Machines in Xen

Diwaker Guptd, Ludmila Cherkasova Rob Gardnér, and Amin Vahdalt

! University of California, San Diego, CA 92122, USA
{dgupt a, vahdat }@s. ucsd. edu
2 Hewlett-Packard Laboratories
{l'ucy. cher kasova, r ob. gar dner }@p. com

Abstract. Recently, virtual machines (VMs) have emerged as the basis for allo-
cating resources in enterprise settings and hosting centers. One &\t

in these environments is the ability to multiplex several operating systems on
hardware based on dynamically changing system characteristics velowach
multiplexing must often be done while observing per-VM performancegu
tees or service level agreements. Thus, one important requiremgs ienvi-
ronment is effective performance isolation among VMs. In this papeaddress
performance isolation across virtual machines in Xen [1]. For instavitiée Xen
can allocate fixed shares of CPU among competing VMs, it does nartlyrr
account for work done on behalf of individual VM’s in device drisefhus, the
behavior of one VM can negatively impact resources available to ot &ven

if appropriate per-VM resource limits are in place.

In this paper, we present the design and evaluation of a set of primitives
plemented in Xen to address this issue. FiX&nMonaccurately measures per-
VM resource consumption, including work done on behalf of a particdMr

in Xen’s driver domains. Next, o BEDF-DCscheduler accounts for aggregate
VM resource consumption in allocating CPU. Final§hareGuardliimits the
total amount of resources consumed in privileged and driver dantsised on
administrator-specified limits. Our performance evaluation indicates tinatech-
anisms effectively enforce performance isolation for a variety ofkieads and
configurations.

1 Introduction

Virtual Machine Monitors (VMMS)are gaining popularity for building more agile and
dynamic hardware/software infrastructures. In large rpniges for example, VMMs
enable server and application consolidation in emergirdamand utility computing
models [2, 3]. Virtualization holds the promise of achieyigreater system utilization
while lowering total cost of ownership and responding mdfectively to changing
business conditions.

Virtual machines enabl&ult isolation—"encapsulating” different applications in
self-contained execution environments so that a failuenia virtual machine does not
affect other VMs hosted on the same physical hardware. Hervyegrformance isola-
tion is another important goal. Individual VMs are often confegiwith performance
guarantees and expectations, e.g., based on servicegggehaents. Thus, the resource
consumption of one virtual machine should not impact thesed guarantees to other
VMs on the same hardware. While performance isolation isiredquto achieve the

3 We use the termsypervisoranddomaininterchangeably with VMM and VM respectively.

promise of on-demand virtual infrastructures, it is tyflicaot well studied in many
virtual machine environments.

In this paper, we focus on performance isolation mechanisrXen [1], a popular
open source VMM. Xen supports per-VM CPU allocation mechaisi However, it —
like many other VMs — does not accurately account for resmgansumption in the
hypervisor on behalf of individual VMs, e.g., for I/O prosesy. Xen’s /0O model has
evolved considerably. In the initial design [1] shown in (rig 1a, the Xen hypervisor
itself contained device driver code and provided sharedcdeaccess. To reduce the
risk of device driver failure/misbehavior and to addressbfgms of dependability,
maintainability, and manageability of I/O devices, Xen mdvo the architecture shown
in Figure 1b [4]. Here, “isolated driver domains” (IDDs) hasmmodified (legacy OS
code) device drivers. Domain-0 is a privileged control domssed to manage other
domains and resource allocation policies.

This new I/O model results in a more complex CPU usage model/® intensive
applications, CPU usage has two components: CPU consumételyuest domain,
where the application resides, and CPU consumed by the I@Ditlcorporates the
device driver and performs 1/O processing on behalf of thesgdomain. However, the
work done for I/O processing in an IDD is not charged to thdting domain. Consider
a guest domain limited to 30% CPU consumption. If the workedon its behalf within
an IDD to perform packet processing consumes 20% of the G#ld,that domain may
consume 50% of overall CPU resources. Such unaccounted @blead is significant
for I/O intensive applications, reaching 20%-45% for a wekver [5].

The key contribution of this paper is the design of a set opeoating mechanisms
to effectively control total CPU consumption across vittmeachines in Xen. There
are a number of requirements for such a system. First, we acastately measure the
resources consumed within individual guest domains. Nextmust attribute the CPU
consumption within IDDs to the appropriate guest domaire VMM scheduler must
be modified to incorporate the aggregate resource consomiptthe guest domain and
work done on its behalf in IDDs. Finally, we must limit theabamount of work done
on behalf of a particular domain in IDDs based on past consiompistory and target
resource limits. For instance, if a particular domain igadty consuming nearly its full
resource limits, then the amount of resources availableinae IDDs must be scaled
appropriately.

The analog of accounting resources consumed on behalf oést gomain have
come up in scheduling operating system resources acrosglimal tasks [6-12], e.g.,
in accounting for resources consumed in the kernel on belfaldividual processes.
Our work builds upon these earlier efforts, exploring the &eallenges associated with

DomO Dom0

Disk
Driver

Lxe” (W Drivér) (DiskDriver)]

'S

Xen}

NIC (Nic) (pisk)
(a) /0 Model in Xen 1.0 (b) /O Model in Xen 3.0

Fig. 1: Evolution of Xen's I/O Architecture

constructing appropriate abstractions and mechanismseirtantext of modern VM
architectures. One of the interesting problems in this spaaeveloping minimally
intrusive mechanisms that can: i) account for significaghelrony in the hypervisor
and OS and ii) generalize to a variety of individual opemasgstems and device drivers
(performance isolation will quickly become ineffectiveifen a relatively small number
of devices or operations are unaccounted for). To this erdhave completed a full im-
plementation and detailed performance evaluation of tkegsary system components
to enable effective VM performance isolation:

— XenMon: a performance monitoring and profiling tool thatagp (among other
things) CPU usage of different VMs at programmable time exaKenMon in-
cludes mechanisms to measure CPU for network processingtiDIDs (IDDs
responsible for network devices) on behalf of guest domains

— SEDF-DC: a new VM scheduler with feedback that effectivéliyaates CPU among
competing domains while accounting for consumption bothiwithe domain and
in net-1DDs.

— ShareGuard: a control mechanism that enforces a specifiretddn CPU time
consumed by a net-IDD on behalf of a particular guest domain.

All three components play important, complementary task&tds our goal of en-
forcing performance isolation. Both SEDF-DC and Share@dapend on XenMon for
detailed CPU utilization information. While ShareGuardmdyaelevant for workloads
involving network 1/0, SEDF-DC is agnostic to the choice obridoads — it only
depends on accurate feedback on CPU utilization from XenMon

However, SEDF-DC can only enforce guarantees on the aggr&RlJ consump-
tion of a guest and its IDD — it does not consider fair allocatof the driver domain’s
finite CPU resources. ShareGuard can be used to enforce imithfor networking
workloads. Further, ShareGuard works irrespective of thgice of CPU scheduler.
An artefact of the implementation of CPU schedulers in Xeth& SEDF-DC cur-
rently only works for single processor systems. ShareGuandever, supports multi-
processor systems as well.

Finally, ShareGuard is more intrusive in its operation ia ense that it actively
blocks a VM's traffic. In comparison, SEDF-DC is more passind transparent. Also,
as we will see in Section 5, CPU allocation in ShareGuard igerbarsty than in SEDF-
DC (compare Figures 8c and 10c). All this underscores theetifiat while on its own
no single mechanism is perfect, working together they focoraplete system.

The rest of this paper is organized as follows: Section Zlgrikescribes XenMon.
Section 3 introduces our approach for attributing CPU comgion in an IDD across
different guest domains. Our modifications to the CPU scleedund its evaluation are
detailed in Section 4, followed by the design and evaluatidehareGuard in 5. Section
6 discusses related work, before concluding in Section 7.

2 XenMon

To support resource allocation and management, we impl&tiem accurate moni-
toring and performance profiling infrastructure, callechk®n? There are three main
components in XenMon (Figure 2):

4 Our implementation of XenMon has been integrated into the official Xen&l@ base.

VM |(Dom-0
(" xenmon) ("Other front-ends)
(" xenbaked: process events)
;" Events logged in trace buffers ™
Xen xentrace: Generate Events J

Fig. 2: XenMon Architecture

— xent race: This is a lightweight event logging facility present in XetenTrace
can log events at arbitrary control points in the hypervig&ach event can have
some associated attributes (for instance, for a “domaiedided” event, the as-
sociated attributes might be the ID of the scheduled domaihthe event's time
stamp). Events are logged into “trace buffers”: shared mrgniat can be read by
user-level Domain-0 tools. Note thaent r ace was already implemented in Xen
— our contribution here was to determine the right set of es/ftmmonitor.

— xenbaked: The events generated by XenTrace are not very useful ondhei.
xenbaked is a user-space process that polls the trace buffers for neateand
processes them into meaningful information. For instawesgollate domain sleep
and wake events to determine the time for which a domain waketl in a given
interval.

— xennon: This is the front-end for displaying and logging the data.

XenMon aggregates a variety of metrics across all VMs péaly (configurable
with a default of 100 ms). For this paper, we only use the CRIization and network
accounting facilities (Section 3) of XenMon. Details onthié metrics available from
XenMon and some examples of using XenMon for analyzing CRigdglers in Xen
are available separately [13].

3 Network I/O Accounting

Recall that one of the challenges posed by the new I/0O modé&timis to classify IDD
CPU consumption across guest domains. This work is focusetetwork 1/0, so we
summarize network I/O processing in Xen. As mentioned eaiilh the IDD model a
designated driver domain is responsible for each hardweuieeland all guests wishing
to use the device have to share it via the corresponding IDB.IDD has a “back-end”
driver that multiplexes 1/O for multiple “front-end” drive in guest VMs over the real
device driver. Figure 3 shows this 1/0 architecture in maztad.

e

2970 &))

.

(4)(Device @
(event) Driver

[
event
[channels ©) channels |(6) Xenj
@
@®

Fig. 3: /0 processing path in Xen.

We briefly describe the sequence of events involved in réwpia packet — the
numbers correspond to those marked in Figure 3.When the heedeceives the packet
(1), it raises an interrupt trapped by Xen (2). Xen then deilees the domain responsi-
ble for the device and postyatual interrupt to the corresponding driver domain via the
event channg3). When the driver domain is scheduled next, it sees a pgriarrupt
and invokes the appropriate interrupt handler. The ingtnandler in the driver domain
only serves to remove the packet from the real device dri}eaifd hand it over to the
“back-end” driver (5)netbackin Figure 3. Note that no TCP/IP protocol processing is
involved in this step (except perhaps the inspection of Fhiedader).

It is the back-end driver’s job to forward the packet to theect “front-end” driver
(netfrontin Figure 3). The driver domain transfers the ownership eftiemory page
containing the packet to the target guest domain, and théfiesoit with a “virtual
interrupt” (6). Note that this involves no data movementidng. When the target
guest is next scheduled, it will field the pending interruf)t The netfront driver in the
guest will then pass on the packet to higher layers of the aving stack for further
processing (8). The transmit path of a packet is similarepkthat no explicit memory
page exchange is involved (see [1] for details).

Thus, 1/0O processing in a net-IDD primarily involves two qooments: the real
device driver and the back-end (virtual) device driver. @ag&ural approach for more
accurate accounting is to instrument these componentsefailed measurements of
all the delays on the 1/0O path. However, this approach doéscade in Xen for two
reasons: (1) since Xen uses legacy Linux drivers, this woetplire instrumenting
all network device drivers, and (2) network drivers involvensigant asynchronous
processing, making it difficult to isolate the time consunrethe driver in the context
of a given operation.

We therefore need some alternate heuristics to estimatpahguest CPU con-
sumption. Intuitively, each guest should be charged in qrtign to the amount of I/O
operations it generates. In [5], we used the number of mempagg exchanges as an
estimator. However, we found this method to be a rather eagsproximation that does
not take into account what fraction of these page exchangesspond to sent versus
received packets, and that does not take into account th@kthe packets.

Thus, we propose using theimber of packetsent/received per guest domain for
distributing the net-IDD CPU consumption among guestseNoatnetbackis an ideal
observation point: all of the packets (both on the send aceive paths between driver
domain and guest domaimjustpass through it. We instrumented netback to provide de-

10 100,

a4 VM receiving packets xaa VM receiving packets
_ 80 __ 80
5 60 8 60
:E_;) 40 ‘:E? 40
o} o
5 g
e — o o o o 00— o a---
S EETTTS e - B S G I o5
% 200 400 600 800 1000 1200 8.0 05 10 15 2.0
Packet size (bytes) Rate (pkts/s) xled
Fig. 4: CPU overhead in Domain-0 for pro- Fig. 5: CPU overhead in Domain-0 for pro-
cessing packets at a fixed rate under differ- cessing packets of a fixed size under vary-

ent packet sizes. ing rates.

tailed measurements on the number of packets processed bygrtiesponding net-IDD

in both directions for each guest domain. In particular, Wdeal XenTrace events for
each packet transmission/reception, with the appropgaést domain as an attribute.
We then extended XenMon to report this information.

Of course, knowing the number of packets sent and receivedpan-domain basis
does not by itself enable accurate CPU isolation. We needchanésm to map these
values to per-domain CPU consumption in the IDD. In particulve want to know
the dependence of packet size on CPU processing overhedlkeaneakdown of send
versus receive packet processing. To answer these questierperform the following
two-part sensitivity study.

The impact of packet size on CPU overhead in net-IDlVe performed controlled
experiments involving sending packets of different sizesfaxedrate to a guest VM.
In particular, we fixed the rate at 10,000 pkts/sec and vahiedpacket size from 100
to 1200 bytes. Each run lasted 20 seconds and we averageestiliesrover 10 runs.
We repeated the experiments to exercise the reverse |/Ogsatiell — so the VM
wassendingpackets instead of receiving them. To prevent “pollutiohfesults due to
ACKS going in the opposite direction, we wrote a custom taolthese benchmarks
using UDP instead of TCP. The other end point for these expgris was a separate
machine on our LAN. Recall that in all of our experiments, vge Domain-0 to host
the network device driver.

Our results show that CPU consumption in net-IDD does noedén packet size
as presented in Figure 4. The explanation is as followsndudfiver packet processing
there is no payload processing or copying; the driver |grgidlals with the packet
header. For the rest of the I/O path within the net-IDD, themo data copying (where
CPU processing can depend on packet size) — only the owpeo$tmemory pages
changes to reflect data transfer.

CPU overhead in net-IDD for Send vs. Receive I/O pathshis experiment, we fixed

the packet size at 256 bytes and varied the rate at which a Welsser receives pack-
ets. We could thus selectively exercise the send and ret/@vgaths within Xen and
measure the resulting CPU overhead in net-IDD. We denotetasSend Benchmark
and Receive Benchmarkespectively. As before, each run lasted 20 seconds and we
averaged results over 10 runs.

Figure 5 presents our experimental results. An interesiitgome of this study is
that the ratio of CPU consumption in net-IDD between sendrandive paths is con-
sistently the same for different packet rates. We denotentigasured ratio aseight.

To validate the generality of presented results we repegiteaf the experiments
presented above for two different hardware configuratiarssngle CPU Intel Pentium-
IV machine running at 2.66-GHz with a 1-Gbit Intel NIGYsTEM-1) and a dual pro-
cessor Intel Xen 2.8-GHz with a 1-Gbit Broadcom NKY6TEM-2). For both systems
under test, the CPU consumption in net-IDD does not depemuhoket size. Further,
for both system under test, the ratio of CPU consumption ifiDB between send and
receive paths is consistent for different packet rates:

— SYSTEM-1: weight = 1.1 (standard deviation 0.07);
— SYSTEM-2: weight = 1.16 (standard deviation 0.15).

These results show that the number of packets in conjungtitinthe direction
of traffic can be reasonably used to split CPU consumptionngnguiests. Concretely,

let Send/Recv(Dom;) denote packets sent/received by net-IDD to/frérom,; and
Send/Recv(netI DD) denote the total packets sent/received by net-IDD. Then, we
define thaveightedoacket count per domain ag:ight x Send(Dom;)+Recv(Dom;),
whereweight is the ratio of CPU consumption in net-1DD for send versugnrecpaths.
Similarly, we compute the weighted packet count for net-IDEount(netI D D).
Then we can use the fractionCount(Dom;)/wCount(netI DD) to charge CPU
usage taDom,.

In the remainder of this paper, we use the weighted packettarscribed above
to compute the CPU overhead in net-IDD for network procegsim behalf of differ-
ent guest domains. This approach is also attractive bedtaosmes with a compact,
portable benchmark that derives the weight coefficient betwsend/receive paths au-
tomatically for different systems and different networkige drivers. It has the further
advantage of being general to a variety of device driversgregtating systems (e.g.,
individual device drivers may be hosted on a variety of ofiegesystems) without re-
quiring error-prone instrumentation. Of course, it hasdisadvantage of not explicitly
measuring CPU consumption but rather deriving it based antmaarks of a particular
hardware configuration. We feel that this tradeoff is inheend that instrumenting all
possible device driver/OS configurations is untenabledepurce isolation. A variety
of middleware tools face similar challenges, i.e., the ilitgbto modify or directly
instrument lower layers, making our approach attractivafternate settings as well.

With this estimation of CPU utilization per guest, we nowntwur attention to
SEDF-DC and ShareGuard.

4 SEDF-DC: CPU Scheduler with Feedback

4.1 Overview

Xen’s reservation based CPU scheduler — SEDF (Simple Eailieadline First) —
takes its roots in the Atropos scheduler [8]. In SEDF, an adstrator can specify the
CPU share to be allocated per VM. However, there is no waydwice the aggregate
CPU consumed by a domain and by driver domains acting on halbéNe have
extended SEDF to accomplish this goal.

Our modified scheduler, SEDF-DC for SEM¥ebt Collector periodically receives
feedback from XenMon about the CPU consumed by IDDs for /& essing on behalf
of guest domains. Using this information, SEDF-DC conagdhe CPU allocation to
guest domains to meet the specified combined CPU usage limit.

For each domaiom,;, SEDF takes as input a tuple;, p;), where theslice s;
and theperiod p; together represent the CPU sharelddm,;: Dom; will receive at
leasts; units of time in each period of lengfhy. Such specifications are particularly
convenient for dynamically adjusting CPU allocations: e directly charge the CPU
time consumed by IDDs fobDom; by decreasing; appropriately. In CPU schedulers
based on weights, one would need to continuously re-catewaights of domains to
achieve the same result.

We now describe SEDF-DC'’s operation, but limit our des@iptonly to places
where SEDF-DC differs from SEDF. SEDF-DC maintains 3 queues

— @, the queue of runnable domains;
— @ the gueue of domains that have exhausted their slice arahaiging the next
period;

— Qy: the queue of blocked domains.

A key concept in SEDF isleadlines Intuitively, a deadline denotes the absolute
time that a domairshould havereceived its specified share of the CPU. Bathand
Q. are sorted by deadlines, making the selection of the nextadomo schedule a
constant time operation.

Each domainD;’s deadline is initialized tavVOW + p;, where NOW denotes
the current, real time. Let denote thefeedback interva(set to500 ms in our cur-
rent implementation). Let net-IDD be a driver domain withetworking device that
is shared byDomy, ..., Dom,,. We will simplify the algorithm description (without
loss of generality) by considering a single net-IDD. Usingnklon, we compute the
CPU consumptiomsed! PP of net-IDD for network I/O processing on behalf Bom;
during the latest-ms interval and provide this information (for all domaits)SEDF-
DC.

For each domaiom;, the scheduler tracks three valués, r;, debt!PP):

— d;: domain’s currenteadlinefor CPU allocation, the time when the current period
ends for domaiDom;.

— r;: domain’s currentemaining timefor CPU allocation, the CPU time remaining
to domainDom; within its current period.

— debt!PP: CPU time consumed bom; via the net-IDD’s networking processing
performed on behalf oDom;. We call this theCPU debtfor Dom;. At each
feedback interval, this value is incrementedusyd! PP for the latest-ms.

Note that the original SEDF scheduler only tradl, r;). The introduction of
debt!PP in the algorithm allows us to observe and enforce aggregattsion Dom;’s
CPU utilization.

Let « andb be integer numbers and let us introduce the following fumcti—b as
follows:

"y — 0 ifa<b
@ = 9= a — b otherwise
We now describe the modified procedure for updating the cgiERe Q.,, andQ;)
on each invocation of SEDF-DC.

1. The timegotten; for which the currentDom; has been running is deducted from
17Ty = 1r; — gotten,.
If debt’DD > 0 then we attempt to charg@om; for its CPU debt by decreasing
the remammg time of its CPU slice:
— if debt!PP < r; thenr; = r; — debt!PP anddebt! PP = 0;
— if debt!PP > r; thendebt! PP = debt!PP — r; andr; = 0.
2. If r; = 0, thenDom; is moved fromQ, to Q.,, since Dom; has received its
required CPU time in the current period.
3. For each domaiomy, in Q, if NOW > d; then we perform the following
updates:
— 1y, is reset tosy, — debtIPP;
— debtlPPis decreased byvin (s, debty);
— the new deadline is set t, + py;
— If . > 0thenDom, is moved fromQ,, to Q...

4. The next timer interrupt is scheduled fain(d” + p’, d"), where(d®, p!) and
(d", pI") denote the deadline and period of the domains that are rispbeads of
the@, and@,, queues.

5. On an interrupt, the scheduler runs the hea@ofIf @, is empty, it selects the
head ofQ,,.

6. When domaimom,, in @, is unblocked, we make the following updates:

—if NOW < df)then
o if debtéD < r, thenr, =7, — debtéDD, anddebtéDD = 0, andDom;,
is moved from@, to Q,;
o if debt!PP > r\ thendebt[PP = debt[PP — r) andry, = 0.
— if NOW > dj then we compute for how many period®m,; was blocked.
Since Dom;, was not runnable, this unused CPU time can be charged against
its CPU debt:

bl_periods = int {(NOW — i) }

Pk
debt!PP = debttPP —). — (bl_periods x sy)

— 1y, is reset tosy — debt!PP If v, > 0, then Domy, is moved from@Q), to Q.
and can be scheduled to receive the remainjng

— debtl PP is adjusted by debt!PP = debtIPP — s;

— the new deadline is set th), + py.

The SEDF-DC implementation described above might havetyo@BU allocation
for domains hosting network-intensive applications, ey when a coarser granular-
ity time interval¢ is used for the scheduler feedback, €.g- 2 s. It might happen that
domain Dom; will get zero allocation of CPU shares for several consgeuperiods
until the CPU debt timelebt! PP is “repaid”. To avoid this, we implemented an opti-
mization to SEDF-DC that attempts to spread the CPU debsagrultiple execution
periods.

We compute the number of times peripdfits within a feedback interval — the
intent is to spread the CPU debt blom,; across periods that happen during the feed-
back interval. We call this th€PU period frequencgf domainDom,; and denote it as
period_freq;:

t
period_freq; = int (>

i

e-e-e Domain 1
¢ Domain 0 for Domain 1
a a4 Domain 1: Combined usage

" &
80 80

EY
=)
ey
=)

&
S
&
=)

CPU Utilization (%)
CPU Utilization (%)

DO e R SRR

nN
=)
N
=)

e-e-e Domain 1
@99 Domain 0 for Domain 1
4 a4 Domain 1: Combined usage

o

200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
Requests/sec Requests/sec

(a) With original SEDF. (b) With SEDF-DC.
Fig. 6: Simple SEDF Benchmark

If period_fregq; > 1, then we can spreatkbt! PP acrosperiod_freq; number of
periods, where at each period the domain is charged for &draof its overall CPU
debt:

debt! PP
spread_debt; = int (!)

period_freg;

This optimized SEDF-DC algorithm supports more consissert smoother CPU
allocation to domains with network-intensive applicaton

4.2 Evaluation

In this section we evaluate SEDF-DC beginning with a simgelis to demonstrate
the correctness of the scheduler and continue with a morglesnscenario to illus-
trate SEDF-DC's feasibility for realistic workloads. A#ists were conducted on single
processor Pentium-IV machines running at 2.8-GHz with hypeeading disabled.

In the first experiment, we have a single VM (Domain-1) conféglito receive a
maximum of 60% of the CPU; Domain-0 is entitled to the remaird0%. Domain-1
hosts a Web server, loaded usimgt per f [14] from another machine. We gradually
increase the load and measure the resulting CPU utilization

Figure 6a shows the results with the unmodified SEDF schedMesee that as the
load increases, Domain-1 consumes almost all of its shateeo€PU. Additionally,
Domain-0 incurs an overhead of almost 35% at peak loads e §&wmain-1's traffic.
Hence, while Domain-1 was entitled to receive 60% of the CRPWUad received a
combinedCPU share of 90% via additional 1/0O processing in Domain-@.rdpeated
the same experiment with SEDF-DC, with the results showrigaré 6b. We can see
that SEDF-DC is able to enforce the desired behavior, kgghmcombined CPU usage
of Domain-1 bounded to 60%.

In practice, system configurations are likely to be more darafed: multiple VMs,
each running a different service with different requiretsggome VMs may be 1/O in-
tensive, others might be CPU intensive and so on. Our nexdrarpnt tries to evaluate
SEDF and SEDF-DC under a more realistic setup.

For this experiment, we have two VMs (Domain-1 and Domaine2ch hosting a

web-server. We configure both VMs and Domain-0 to receive girmam of 22% of
the CPU. Any slack time in the system is consumed by CPU iitemasks running in a

Metric SEDF [SEDF-DC
Dom-1 web-server Throughp848.06 req/225.20 req/s
Dom-2 web-server Throughgu®3.12 req/s 69.53 req/s
Dom-1 CPU 19.6% 13.7%
Dom-0 for Dom-1 9.6% 7.7%
Dom-1 Combined 29.2% 21.4%
Dom-2 CPU 14.5% 10.9%
Dom-0 for Dom-2 13.2% 10.6%
Dom-2 Combined 27.7% 21.5%

Table 1: SEDF-DC in action: metric values averaged over the duratiore ofith

third VM. Domain-1's web-server is served with requestsfiless of size 10 KB at 400

requests/second, while Domain-2's web-server is servétu ieguests for files of size
100 KB at 200 requests/second. We chose these rates bebhaysompletely saturate
Domain-0 and demonstrate how CPU usage in Domain-0 may medibetween guest
domains with different workload requirements. As beforeusent t per f to generate

client requests. Each run lasts 60 seconds.

We first conduct the experiment with unmodified SEDF to eblithe baseline.
Figure 7a shows the throughput of the two web-servers as cifumof time. We
also measure the CPU utilizations of all the VMs, shown inNbte that Domain-1
consumes all of its 22% available CPU cycles, while Domage@sumes only about
15% of the CPU. Even more interesting is the split of Domai@F)J utilization across
Domain-1 and Domain-2 as shown in Figure 7c. The first coluhiable 1 summarizes
the average values for the metrics over the entire run. Derhaises an additional

50 &
» - = = 4 Dom-1
I = n ¢ -4 Dom-2
@ S T Ay L R N
S 400 T WY e L T
2 H wa b . yrooT
= n \
3 pga ' ! L]
S P S \
5 3005 AR \
g e '
3 \
= N
*
; 200 .“'..
B
a ° * R
2 5 e s .
D 10050 % 7% oo eve e b oty Ty 00 P00 00 0 0% L qpet Lot 0 T B
g R SIS AL IR SRC N Anad S a2t 0 AR Sl A I
R N
e %
o .
0 10 20 30 40 50 60 70

Time (s)

(a) Web-server Throughput

e—e—e Dom-0
39 = = a Dom-1
¢ -¢ Dom-2

M T L --.A'----lrl.

NG
" "
e ¥

CPU utilization (%)
N
S

Poee N

15 Saad 2. . », . 2490, ®
AT S AR VY L R AR DR DR T e ovl \
\
1 RN
'
5 i
L]
0 Twa
0 10 20 30 40 50 60 70
Time
(b) CPU Utilization
40,
a
33 e . L v, v
X bAAV“ Ay ’__v‘vvv 'x I A Y v.v,_;v vy, _,v"'v,.vv,, .
30p4%, Y »vE S v RSN v v
viak vy oG Y X A @
v Aa Ak "A a4 A A N N Ay 4 a " ,A‘:
25 Ay’ R x i
a RS

ok

*

CPU utilization (%) in Dom-0
]
=)

o .
1540 % e ;
*s 00 s .. ee® Bd 00 o 0. o seg’ B
o0 omae®® e em ENIR R & DOy - ;
" I _,...;u-...\..:ﬁ_:-,1_:_,1_-1,,:":::.“,.‘-,..--‘1 3
= (O A 1 ® -84 Dom-1 v
v.¥:¥ Dom-1 Total "
5 .- Dom-2 ‘e
A-h-A Dom-2 Total k.'_':“l
% 10 70 30 a0 0) 70
Time

(c) CPU Utilization in Dom-0
Fig. 7: With original SEDF.

9.6% of CPU for 1/O processing in Domain-0 (42% of overall CaamO usage) while
Domain-2 uses an additional 13.6% of CPU via Domain-0 (58%wefrall Domain-
0 usage). Thus, the combined CPU utilization of Domains 1 2i(the sum of their
individual CPU utilization and CPU overhead in Domain-0 it behalf) is 29.2%
and 27.7% respectively.

We then investigate whether we can limit the system-wide @Babe of Domain-
1 and Domain-2 to their 22% CPU share using SEDF-DC. Figutteo&/s the results
of this experiment. Recall the operation of SEDF-DC.: it comes thedebtof a VM
(work done by the IDD - in this case Domain-0 — on its behalfig ancrementally
charges it back to the appropriate VM. This is clearly visiiol Figure 8c: theombined
utilizations of both Domain-1 and Domain-2 hover around ZB¥the duration of the
experiment. The oscillations result from discretizationtie way we charge back debt.

a
S
=}

-~

K = -8 Dom-1
& 350 . [] . ',I ' ¢ -4 Dom-2
£ ’ LI n ! =
g " AN g » =
£ TN VAR R
5 N A W TR A B ", 0 f ., Lon
22500 NOR R Fa voa oy '“'n.l] Ao u
» w " Pt TR
g fmiwingn L A ST EHTAY "
R R AR (A AN !
=)/ " v ‘mm Y 8! Y
g 150 : y ' LR 1]
§100 L] I': ‘.: Y ,'
2 . ° 3 o Lo Yoe oY s "
9 oe ", K} RS SV IR JUEPYRPOISN 2 S oo o 4o 0oy oo, oLt &
S ool See 07, 88T T e Te? ¥ e M f By Tt Ty e
. » 'l",:
% 10 20 30 40 50 60 70
Time (s)
(a) Web-server Throughput
40
o—eo—e Dom-0
350 = =& Dom-1
¢ -9 Dom-2
30|

CPU utilization (%)
N
S

Y 04|
EAg 8 REEEEE L ._,“,‘H IR L]
s SR P e, o \0 g & me LR
pmS R ROEK IS PR B Pt AP GND R DR °0
10p ¢ PR Y v e ve? ofoe (R a4 \.!’ A s TV
. \
5| Le
00 10 20 30 40 50 60 70
Time
(b) CPU Utilization
40,
= -8 4@ Dom-1
35) vwv Dom-1 Total
4 -6 Dom-2
A-AA Dom-2 Total

CPU utilization (%) in Dom-0

15 v v i, H
S F SRR S
P o e AR R P S S ;e
£ o RS R WK L ISP * B s Co-s
10K's T AR LN P ey u 3 R vda, =
LR MG L R o A L TL LS N " v iy
5 " N ¥ s W v
-
% 10 70 30 a0 0 80 70

Time
(c) CPU Utilization in Dom-0
Fig. 8: With SEDF-DC.

Controlling combined CPU utilization for Domain-1 and 2 ddepact the web
servers’ achievable throughput. Since the combined CPgeushDomain-1 and 2 is
limited to 22% under SEDF-DC—versus the uncontrolled vahfe29.2% and 27.7%
under the original SEDF scheduler—there is a drop in througagshown in Figure 8a.
The second column of Table 1 gives the average throughpuésalver the run for a
more concise comparison.

While SEDF-DC is capable of limiting the combined CPU usagessguest do-
mains, it does not explicitly control CPU usage in a drivemain. Note that the split of
the CPU utilization in Domain-0 for Domain-1 and Domain-2tidl unequal. Domain-1
is using 7.7% of CPU via Domain-0 (42% of overall Domain-Ogejawhile Domain-
2 is using 10.6% of CPU via Domain-0 (58% of overall Domaingage). We turn
our attention to controlling per-domain IDD utilizationing ShareGuard in the next
section.

5 ShareGuard

5.1 Overview

In the current Xen implementation, a driver domain does moitrol the amount of
CPU it consumes for I/O processing on behalf of differentsjag®mains. This lack of
control may significantly impact the performance of netwsekvices. Such control is
also required to enable SEDF-DC to enforce aggregate CPykuisaits. ShareGuard
is a control mechanism to enforce a specified limit on CPU toresumed by an IDD
for I/O processing on behalf of a particular guest domaimr86uard periodically polls
XenMon for CPU time consumed by IDDs, and if a guest domaiP&JCisage is above
the specified limit, then ShareGuard stops network trafffirdm the corresponding
guest domain.

Let the CPU requirement of net-IDD be specified by a gai*’?, p!PP), mean-
ing that net-IDD will receive a CPU allocation of at leagt””-ms in each period
of lengthp’ PP-ms. In other words, this specification is bounding CPU carstion

SIDD

of net-IDD over time toC PUshare! PP = 5. Let limit! PP specify a fraction

of CPU time in net-IDD available for network processing orh#lé of Dom; such
thatlimit! PP < CPUshare!PP. If such a limit is not set the®om; is entitled to
unlimited I/O processing in net-IDD. Létdefine the time period ShareGuard uses to
evaluates current CPU usage in net-IDD and performs decmiking. In the current
implementation of ShareGuard, we use 500 ms.

Using XenMon, ShareGuard collects information on CPU udngeet-IDD at ev-
ery feedback interval, and computes the fraction of ové&BIU time used by net-IDD
for networking processing on behalf &forn; (1 < i < n) during the latest interval.
Let us denote this fraction ased! P . In each time interval, ShareGuard determines
the validity of the conditionused!P? < limit!PP. If this condition is violated, then
Dom,; has exhausted its CPU share for network traffic processimgtdDD. At this
point, ShareGuard applies appropriate defensive actmrtbé next time intervalde/,
where

IDD
tdef — ¢ s int (usail—’_l>

limit!PD

ShareGuard performs the following defensive actions:

— Stop accepting incoming traffic to a domain:Since our net-IDDs run Linux,
we use Linux’s routing and traffic control mechanisms [15Htop/reject traffic
destined for a particular domain. In particular, we ug# abl es [16] — they
are easily scriptable and configurable from user space l&iteichniques can be
applied in other operating systems that may serve as wragpeother legacy
device drivers.

— Stop processing outgoing traffic from a domain:As in the previous case, we
can use pt abl es to drop packets being transmittém a domain. However,
this will still incur substantial overhead in the IDD becauipt abl es will only
process the packet once it has traversed the network stable ¢DD. Ideally we
want to drop the packet before it even enters the IDD to limitpssing overhead.
One approach would be to enforcet abl es filtering within the guest domain.
However, ShareGuard does not assume any cooperation fresisgso we reject
this option. However, we still have an attractive controinpavithin the net-IDD
where packets can be dropped before entering the net-IDfd®riestack: thenet-
backdriver (see Figure 3). ShareGuard sends a notification tzacktidentifying
the target domain and the required action (drop or forwdrhis is akin to setting
i pt abl es rules, except that these rules will be applied within nétbac
Whenever netback receives an outbound packet from a dorhwiiti,determine if
there are any rules applicable to this domain. If so, it veike the specified action.
This is both lightweight (in terms of overhead incurred byDiDand flexible (in
terms of control exercised by IDD).

After time intervalt?e/, ShareGuard restores normal functionality in net-IDD with
respect to network traffic to/from domainom,;.

5.2 Evaluation

To evaluate the effectiveness of ShareGuard in isolatiteg tomain CPU consump-
tion, we ran the following experimental configuration. Téxértual machines run on the
same physical hardware. Domain-1 and Domain-2 host weleisetivat support busi-
ness critical services. These services have well-defingglatations for their throughput
and response time. The CPU shares for these domains arerseetdhese expecta-
tions. Domain-3 hosts a batch application that does somepetation and performs
occasional bulk data transfers. This VM supports a less itapbapplication that is not
time sensitive, but needs to complete its job eventually.

In our first experiment, we observe overall performance eséhthree services to
quantify the degree of performance isolation ShareGuanddetiver. We configure a
dual-processor machine (with hyper-threading disabledplows: Domain-0 runs on
a separate processor and set to consume at most 60% of thd@@&kcond CPU hosts
three VMs: Domain-1 and Domain-2 run web-servers (servihgB and 100 KB files
respectively), and Domain-3 occasionally does a bulk fdedfer. All these VMs have
equal share of the second CPU, 33% each. In this initial éxygert, we do not enable
ShareGuard to demonstrate baseline performance chasticgeiThe experiments were
conducted over a gigabit network, so our experiments araeiwtork limited. In this
experiment, we start a benchmark that loads web-server®imah-1 and Domain-2
from two separate machines usihgt per f for two minutes. Forty seconds into the
benchmark, Domain-3 initiates a bulk-file transfer thatddsr 40 seconds.

Figure 9 shows the results as a function of time. We can glsag the adverse im-
pact of Domain-3's workload on both web servers’ throughpigure 9a). Considering

the split of CPU utilization in Domain-0 for the correspomglinterval (Figure 9c), we
find that Domain-3 uses between 20% to 30% of CPU for I/O pingsn Domain-
0 leaving insufficient CPU resources for 1/O processing ohalfeof Domain-1 and
Domain-2.

The first column in Table 2 provides a summary of average mesiues for the
baseline case where Domain-1 and Domain-2 meet their peafice expectations and
deliver expected web server throughput. These metrictéflemain-1 and Domain-2
performance when there is no competing I/O traffic issued byn&in-3 in the ex-
periment. Note that in this case the combined CPU utiliratio Domain-0 for I/O
processing by Domain-1 and Domain-2 is about 50%. Since Defé entitled to
60% of the CPU, this means that there is about 10% CPU avaifabladditional I/O
processing in Domain-0.

50!
= == Dom-1
. ¢ -4 Dom-2
@
< [] Ty L]
g 400 a ﬂn"""'l"-""'ﬂ-':" \-w-
= ll 1
2 i 'I“‘.' !
|
< 300 o ": Y !
3 Ml) !
£ A I L ﬁ '
= 200" @t % H e R P0s% S0e®
L™ ¢ . : ' ' 9 % e Peee™ 00 ol
3 ,".i ;"‘”‘%’-,‘ o ML LT 7 e, SN
@] O Xl L) (-
2 o s 0T Ty
g 100y, L u FH
o W 8
ki ; =
ol
0 20 20 60 100 120 140
Time (s)
(a) Webserver Throughput
10
e—e— Dom-0
==& Dom-1
¢ - Dom-2
80) v.v.v Dom-3
g
8 60
g
3 40
=)
S 200000 PRI SRR © 6%00afianatyeaogs
- & Rad vt * . ¥
b ™ P M oy ..'-'1..“,",5“:",',":':“’, Y M %
o LA ‘:vl. o [y
" Bm v . 2009
% 20 40 60 80 100 120 140
Time
(b) CPU Utilization
10
=== Dom-1
¢ ¢-o Dom-2
- v.v.v Dom-3
< 80|
<
£
s
2 60
<
c
S
E 40 o @ 0 049,00, 90090 000® ¥
a 000,99 1069%00,006%%%00°
E] $62,70%0P00 & d . Iv J e P00a%0o4% 000, “’w‘m‘og
> : o % oey gt Y . . o o .
S 2% A AR AR aSapagEu S ey 2% %,
! B g, ey ¢ - gn ESupmn! Y
,‘H‘ l_"---...-.-_ - S z L] |
ol N PR agn e o8
0 20 40 60 80 100 120 140

Time
(c) CPU Utilization in Dom-0
Fig. 9: Without ShareGuard

Metric BaselingWithout ShareGuard |With ShareGuard
Dom-1 Webserver329.85 236.8 321.13
Dom-2 Webserver231.49 166.67 211.88
Dom-0 for Dom-1 11.55 7.26 11.9
Dom-0 for Dom-2 37.41 23.9 34.1
Dom-0 for Dom-3 N/A 23.92 4.42

Table 2: ShareGuard at work: metric values averaged over the mifidieebnd segment of the
runs.

The average metric values for this experiment (without 8Gaiard) over the middle
40 second segment (where Domain-1, Domain-2, and DomalheBrapete for CPU
processing in Domain-0) are summarized in the second cobfmiable 2. Domain-
3 gets 23.92% of CPU for I/O processing in Domain-0, squegikirthe CPU share
available for Domain-1's and Domain-2’s I/O processing. &gesult, there is a sig-
nificant decrease in achievable web server throughput: Wwethiservers are delivering
only 72% of their expected baseline capacity.

This example clearly indicates the impact of not contrglibD CPU consumption
by different guest domains. The question is whether Shaaeftan alleviate this prob-
lem. We repeat the experiment with ShareGuard enabled,@rfijare ShareGuard to
limit the CPU consumption for Domain-3 in Domain-0 to 5%. trig 10 shows the
results.

Recall ShareGuard’s operation: every 500 ms it evaluatd$ @Rge in the IDD;
if a VM is violating its CPU share, it turns off all traffic pressing for that VM for
some time. We compute this duration such that over thatvakethe average CPU
utilization of the VM within the IDD will comply with the spefication. This mode
of operation is clearly visible in Figure 10c. We had direc&hareGuard to restrict
Domain-3's consumption in Domain-0 to 5%. At= 40s, ShareGuard detected that
Domain-3 had consumed almost 30% CPU in Domain-0. Accotyiitglisables traffic
processing for Domain-3 for the next 2.5 seconds, suchleaderage utilization over
this 3 second window drops to 5%. This pattern subsequesplgats ensuring that the
isolation guarantee is maintained through the entire run.

Comparing Figure 9c and 10c, we see that with ShareGuardaidetrand Domain-
2 obtain more uniform service in Domain-0 even in the preseidomain-3's work-
load. This is also visible in the CPU utilizations (see Fegubb). Finally, observe that
the web-server throughput for Domain-1 and Domain-2 imgrsignificantly under
ShareGuard: both web-servers deliver the expected thputigh

The third column in Table 2 provides a summary of averageimesitues over the
middle 40 second segment with ShareGuard enabled. As weea@BU consumption
by Domain-1 and Domain-2, as well as web server throughpgiamilar to the baseline
case. Web server performance does not degrade in presetieelnflk data transfer in
Domain-3 because CPU processing in the IDD on behalf of Do+Bas controlled by
ShareGuard.

6 Related Work

The problem of resource isolation is as old as time shariatggys. Most of the previous
work in this area has focused on resource isolation betwesrepses in an operating
system or users on a single machine. In these systems, dicigednd resource man-
agement primitives do not extend to the execution of sigamifigarts of kernel code.

An application has no control over the consumption of marsteay resources that the
kernel consumes on behalf of the application.

Consider network-intensive applications: most of the pssing is typically done
in the kernel and the kernel generally does not control opgry account for resources
consumed during the processing of network traffic. The tieghes used in ShareGuard
have been inspired by earlier work addressing this problemh rgceive livelocks in
interrupt based networking subsystems. Mogul et al. [1g{riet the amount of I/O
processing that the kernel does on behalf of user procdssieszy Receiver Process-
ing [9] (LRP), the system uses better accounting infornmafsuch as hardware support
for identifying which process an incoming packet is destit® to improve resource
isolation, e.g., such that packet processing on behalf efppvacess does not adversely
affect the resource available to other processes.

! :
. ~'e_Dom-
q] L] . nt? Ty
gaoo Ty i an o
EH by ' Narm e AT s
- Ty ALY I P TR
g T IR \ ol B |
-§3oo L] =y W H:""f"".'""' . '..‘:'.‘ W !
2 ' i u, o e)
~ ' o‘ R X LY
E 2001‘“‘ *"“M “‘ ” “‘" ' "“&; 0""““’ 0 o”‘o'“;?
[¢ Coasy v
2 Ky f LERTS? H
@ = ne
k] ¢ L3
g 100 e
n":
0
% 20 20 60 80 100 120 140
Time (s)

(a) Webserver Throughput

e—e—e Dom-0
= -=- & Dom-1
¢ - Dom-2
vov.v Dom-3

@
=3

o
=]

Iy
=3

CPU utilization (%)

®o0, e ° g,
hw“m.ﬁ”,...ﬁ m;‘;:};'e actea gty L Apuepgr . 1o

20, W e, oy
vv,u:,vv' 3"
0 m i g e Sl |
0 20 20 60 80 100 120 140
Time
(b) CPU Utilization
10 = =& Dom-1
: e B
& 8o o
2
£
13
2 60
s
g A
3 40y S T VN KA W“ .A”,"p"..o £ “““"\" wﬂw ~,,
3 3 ¢ i o7 abg ‘
g 20 h H .
il "Nmuﬂmn-.ﬁqh T e "*w*mmm‘“\'c
i
% 20 20 =5 80 100 120 140

Time

(c) CPU Utilization in Dom-0
Fig. 10: With ShareGuard

Some of the ideas motivating LRP were extended to Resourogaiders [12]. A
resource container is an operating system abstractiorctaatfor all system resources
consumed by amctivity, where an activity might span multiple processes. Resource
Containers separate the notion of resource principal floweds or processes and pro-
vide support for fine-grained resource management in dpgraystems. This distinc-
tion between grotection domairand aresource principals also visible in Xen’'s new
I/0 model: a VM (the protection domain) may request servicenf several different
IDDs, therefore the tracking of its resource usage needsaio across executions of all
these domains.

One limitation of Resource Containers is that they only whorksingle processor
systems. There does not seem to be any straightforward wextefding the notion
of anactivity to span multiple processors. This is further complicatedhayfact that
in most operating systems, each CPU is scheduled indepiynd&BaDF-DC scheduler
suffers from the same limitation. However, ShareGuard th Boheduler agnostic and
it fully supports multi-processor systems.

The problem of performance isolation has been activelyesidd by multimedia
systems. The Nemesis operating system [8] was designedvmprguaranteed quality
of service (QoS) to applications. Nemesis aims to pre@af crosstalkhat can occur
when the operating system kernel (or a shared server) pesfarsignificant amount of
work on behalf of a number of applications. One key way in WwHiemesis supports
this isolation is by having applications execute as manyeirtown tasks as possible.
Since a large proportion of the code executed on behalf opplication in a traditional
operating system requires no additional privileges and do¢, therefore, need to exe-
cute in a separate protection domain, the Nemesis opesatgigm moves the majority
of operating system services into the application itsedding to a vertically structured
operating system. QoS crosstalk can also occur when the@ntention for physical
resources, and applications do not have guaranteed accHss tesources. Nemesis
provides explicit low-level resource guarantees or re@ms to applications. This is
not limited simply to CPU: all resources including disks] Ii8&twork interfaces [19],
and physical memory [20] — are treated in the same way.

The networking architecture of Nemesis still has some okl related to the
charging of CPU time to applications. When the device drivengmits packets for
an application, used CPU time is not charged to the appbicdtiit to the device driver.
Also, the handling of incoming packets before de-multipigxt to the receiving ap-
plication is charged to the device driver. We observe theesprablem in the context
of Xen VMM and the network driver domains, and suggest pdssblution to this
problem.

Exokernel [21] and Denali [22] provide resource managemsgatems similar to
vertically structured operating systems. The design gmaEkokernel was to separate
protection from management. In this architecture, a mihikeanel — called Exok-
ernel — securely multiplexes available hardware resouitasffers from the VMM
approach in that iexportshardware resources rather than emulates them. VMMs have
served as the foundation of several “security kernels” P&}-Denali differs from these
efforts in that it aims to provide scalability as well as &wn for untrusted code, but it
does not provide any specialized for performance isolation

Most of the earlier work on VMMs focused on pursuing OS supgarisolating
untrusted code as a primary goal. While there is significankvem resource man-
agement in traditional operating systems, relatively lessk has been performed in
the context of virtual machines. Waldspurger [27] consdae problem of allocating

memory across virtual machines; other systems such asiQ2Rh/HP SoftUDC [2]
and Planetlab vServers [28] have also touched on some & ismges. Our work takes
another step towards a general framework for strict regoigwlation in virtual ma-
chines by considering the auxiliary work done on behalf ofuagj in privileged or
driver domains.

7 Conclusion and Future Work

Virtualization is fast becoming a commercially viable aftative for increasing sys-
tem utilization. But from a customer perspective, virtaation cannot succeed without
providing appropriate resource and performance isolaigrantees. In this work, we
have proposed two mechanisms — SEDF-DC and ShareGuardimprave CPU and
network resource isolation in Xen. We demonstrated howethreechanisms enable
new policies to ensure performance isolation under a wanétconfigurations and
workloads.

For future work, we plan to extend these mechanisms to stpploer resources
such as disk I/O and memory. Work is also underway on a hieieacCPU scheduler
for Xen: currently Xen ships with two CPU schedulers, but theice of scheduler
has to be fixed at boot time. We expect that in the future, maoger@PU schedulers
will become available (SEDF-DC being among the first), arad tlaving a hierarchical
scheduler that allows the use of different schedulers fifergint domains depending
on the kinds of applications and workloads that need to bpated will enable more
efficient resource utilization.

We believe that performance isolation requires appropriesource allocation poli-
cies. Thus, another area for future investigation is pediéor efficient capacity planning
and workload management.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, 0., Al, Neugebauer, R., Pratt, |.,
Warfield, A.: Xen and the art of virtualization. In: Proc. of the 19th ACyh&osium on
Operating Systems Principles, New York, NY (2003)

2. Kallahalla, M., Uysal, M., Swaminathan, R., Lowell, D.E., Wray, Bhristian, T., Edwards,
N., Dalton, C.1., Gittler, F.: SoftUDC: A software based data centeufdity computing.
IEEE Computer (2004)

3. The Oceano Project. http://ww.research.i bm conl oceanoproject/

i ndex. ht m : Last accessed 1/17/2006.

4. Fraser, K., Hand, S., Neugebauer, R., Pratt, |., WarfieldMiliamson, M.: Reconstructing
1/0. Technical Report UCAM-CL-TR-596, University of Cambridg05)

5. Cherkasova, L., Gardner, R.: Measuring CPU Overhead fdPi@essing in the Xen Virtual
Machine Monitor. In: Proc. of USENIX 2005 Annual Technical Caefece. (2005)

6. Chase, J.S., Levy, H.M., Feeley, M.J., Lazowska, E.D.:ri8gand protection in a single-
address-space operating system. ACM Trans. Comput. B3(g).(1994) 271-307

7. Jones, M.B., Leach, P.J., Draves, R.P,, J. S., .I.B.: NModeal-time resource management
in the Rialto operating system. In: Proc. of the 5th Workshop on Hot Tapi@perating
Systems, Washington, DC, USA, IEEE Computer Society (1995) 12

8. Leslie, I.M., McAuley, D., Black, R., Roscoe, T., Barham, PHvers, D., Fairbairns, R.,
Hyden, E.: The design and implementation of an operating system to ugigibuted
multimedia applications. IEEE Journal of Selected Areas in Communicatifi¥ (1996)

9.

10.

11.

12.

13.
14.
15.
17. http://ww. netfilter. org: Lastaccessed 04/02/2006.
18.
19.

20.

21.

22.

23.
24,

25.

26.
27.

28.

Druschel, P., Banga, G.: Lazy receiver processing (LRPgtaark subsystem architecture
for server systems. In: Proc. of the second USENIX Symposium perd&ding Systems

Design and Implementation. (1996) 261-275

Bruno, J., Gabber, E., Ozden, B., Silberschatz, A.: The Eclijyerating System: Providing
Quality of Service via Reservation Domains. USENIX Annual Technicaif€rence (1998)

Verghese, B., Gupta, A., Rosenblum, M.: Performance isolatioaring and isolation in

shared-memory multiprocessors. In: ASPLOS-VIII: Proc. of tttel8ternational Confer-

ence on Architectural Support for Programming Languages andafpg Systems, New

York, NY, USA, ACM Press (1998) 181-192

Banga, G., Druschel, P., Mogul, J.C.: Resource ContainedgvaFacility for Resource

Management in Server Systems. In: Proc. of the third Symposium enafipg Systems

Design and Implementation, New Orleans, Louisiana (1999)

Gupta, D., Gardner, R., Cherkasova, L.: XenMon: QoS Manigaeind Performance Profil-
ing Tool. Technical report, HPL-2005-187 (2005)

Httperf.ht t p: / / ww. hpl . hp. coml research/ | i nux/ httperf/: Lastaccessed

1/17/2006.

http://ww. | artc. org/ howt o/ : Last accessed 04/02/2006.

Mogul, J.C., Ramakrishnan, K.K.: Eliminating receive livelocknrirgterrupt-driven kernel.
ACM Trans. Comput. Sysii5(3) (1997)

Barham, P.: A Fresh Approach to File System Quality of Service.rdo.Rf NOSSDAV
(1998)

Black, R., Barham, P., Donnelly, A., Stratford, N.: Protocoplementation in a Vertically
Structured Operating System. In: Proc. of IEEE Conference on @empletworks. (1997)
Hand, S.M.: Self-paging in the Nemesis operating system. In: Bftlte third Symposium
on Operating Systems Design and Implementation, Berkeley, CA, USENDSAssocia-
tion (1999) 73-86

Engler, D.R., Kaashoek, M.F., J. O'Toole, J.: Exokernebparating system architecture for
application-level resource management. In: Proc. of the 15th ACMpBgium on Operating
Systems Principles, New York, NY, USA, ACM Press (1995) 251-266

Whitaker, A., Shaw, M., Gribble, S.D.: Scale and performantiedribenali isolation kernel.
In: Proc. of the 5th Symposium on Operating Systems Design and Imptatize, Boston,
MA (2002)

Karger, P.A.: A retrospective of the VAX VMM security kernel.BE Trans, on Software
Engineering (1991)

Meushaw, R., Simard, D.: NetTop: Commercial Technology in higgurance applications.
(2005)

Bugnion, E., Devine, S., Rosenblum, M.: Disco: running comitgaiperating systems on
scalable multiprocessors. In: Proc. of the 16th ACM Symposium on dipgr Systems
Principles, New York, NY, USA, ACM Press (1997) 143-156

Creasy, R.J.: The origin of the VM/370 time-sharing system. IBMmial of Research and
Development (1982)

Waldspurger, C.A.: Memory resource management in VMw&% &erver. In: Proc. of the
5th Symposium on Operating Systems Design and Implementation. (2002)

Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L.w¥¥aniak, M., Bowman, M.:
PlanetLab: an overlay testbed for broad-coverage services. SUBCOomput. Commun.
Rev.33(3) (2003) 3-12

