

Enforcing Performance Isolation Across Virtual Machines in Xen

Diwaker Gupta1, Ludmila Cherkasova, Rob Gardner, Amin Vahdat1
Enterprise Software and Systems Laboratory
HP Laboratories Palo Alto
HPL-2006-77
May 4, 2006*

virtual machine
monitor, device
drivers, I/O
processing,
performance
isolation,
monitoring
framework,
measurements,
performance
evaluation

Recently, virtual machines (VMs) have emerged as the basis for allocating
resources in enterprise settings and hosting centers. One benefit of VMs in
these environments is the ability to multiplex several operating systems on
hardware based on dynamically changing system characteristics. However,
such multiplexing must often be done while observing per-VM performance
guarantees or service level agreements. Thus, one important requirement in this
environment is effective performance isolation among VMs. In this paper, we
address performance isolation across virtual machines in Xen. For instance,
while Xen can allocate fixed shares of CPU among competing VMs, it does not
currently account for work done on behalf of individual VM's in device drivers.
Thus, the behavior of one VM can negatively impact resources available to
other VMs even if appropriate per-VM resource limits are in place.

In this paper, we present the design and evaluation of a set of primitives
implemented in Xen to address this issue. First, XenMon accurately measures
per-VM resource consumption, including work done on behalf of a particular
VM in Xen's driver domains. Next, our SEDF-DC scheduler accounts for
aggregate VM resource consumption in allocating CPU. Finally, ShareGuard
limits the total amount of resources consumed in privileged and driver domains
based on administrator-specified limits. Our performance evaluation indicates
that our mechanisms effectively enforce performance isolation for a variety of
workloads and configurations.

* Internal Accession Date Only
1 University of California, San Diego, CA 92122, USA
 Approved for External Publication
© Copyright 2006 Hewlett-Packard Development Company, L.P.

Enforcing Performance Isolation Across Virtual
Machines in Xen

Diwaker Gupta1, Ludmila Cherkasova2, Rob Gardner2, and Amin Vahdat1

1 University of California, San Diego, CA 92122, USA
{dgupta, vahdat}@cs.ucsd.edu

2 Hewlett-Packard Laboratories
{lucy.cherkasova,rob.gardner}@hp.com

Abstract. Recently, virtual machines (VMs) have emerged as the basis for allo-
cating resources in enterprise settings and hosting centers. One benefitof VMs
in these environments is the ability to multiplex several operating systems on
hardware based on dynamically changing system characteristics. However, such
multiplexing must often be done while observing per-VM performance guaran-
tees or service level agreements. Thus, one important requirement inthis envi-
ronment is effective performance isolation among VMs. In this paper,we address
performance isolation across virtual machines in Xen [1]. For instance, while Xen
can allocate fixed shares of CPU among competing VMs, it does not currently
account for work done on behalf of individual VM’s in device drivers. Thus, the
behavior of one VM can negatively impact resources available to other VMs even
if appropriate per-VM resource limits are in place.
In this paper, we present the design and evaluation of a set of primitivesim-
plemented in Xen to address this issue. First,XenMonaccurately measures per-
VM resource consumption, including work done on behalf of a particularVM
in Xen’s driver domains. Next, ourSEDF-DCscheduler accounts for aggregate
VM resource consumption in allocating CPU. Finally,ShareGuardlimits the
total amount of resources consumed in privileged and driver domains based on
administrator-specified limits. Our performance evaluation indicates that our mech-
anisms effectively enforce performance isolation for a variety of workloads and
configurations.

1 Introduction

Virtual Machine Monitors (VMMs)3 are gaining popularity for building more agile and
dynamic hardware/software infrastructures. In large enterprises for example, VMMs
enable server and application consolidation in emerging on-demand utility computing
models [2, 3]. Virtualization holds the promise of achieving greater system utilization
while lowering total cost of ownership and responding more effectively to changing
business conditions.

Virtual machines enablefault isolation—“encapsulating” different applications in
self-contained execution environments so that a failure inone virtual machine does not
affect other VMs hosted on the same physical hardware. However,performance isola-
tion is another important goal. Individual VMs are often configured with performance
guarantees and expectations, e.g., based on service level agreements. Thus, the resource
consumption of one virtual machine should not impact the promised guarantees to other
VMs on the same hardware. While performance isolation is required to achieve the

3 We use the termshypervisoranddomaininterchangeably with VMM and VM respectively.

promise of on-demand virtual infrastructures, it is typically not well studied in many
virtual machine environments.

In this paper, we focus on performance isolation mechanismsin Xen [1], a popular
open source VMM. Xen supports per-VM CPU allocation mechanisms. However, it —
like many other VMs — does not accurately account for resource consumption in the
hypervisor on behalf of individual VMs, e.g., for I/O processing. Xen’s I/O model has
evolved considerably. In the initial design [1] shown in Figure 1a, the Xen hypervisor
itself contained device driver code and provided shared device access. To reduce the
risk of device driver failure/misbehavior and to address problems of dependability,
maintainability, and manageability of I/O devices, Xen moved to the architecture shown
in Figure 1b [4]. Here, “isolated driver domains” (IDDs) host unmodified (legacy OS
code) device drivers. Domain-0 is a privileged control domain used to manage other
domains and resource allocation policies.

This new I/O model results in a more complex CPU usage model. For I/O intensive
applications, CPU usage has two components: CPU consumed bythe guest domain,
where the application resides, and CPU consumed by the IDD that incorporates the
device driver and performs I/O processing on behalf of the guest domain. However, the
work done for I/O processing in an IDD is not charged to the initiating domain. Consider
a guest domain limited to 30% CPU consumption. If the work done on its behalf within
an IDD to perform packet processing consumes 20% of the CPU, then that domain may
consume 50% of overall CPU resources. Such unaccounted CPU overhead is significant
for I/O intensive applications, reaching 20%-45% for a web server [5].

The key contribution of this paper is the design of a set of cooperating mechanisms
to effectively control total CPU consumption across virtual machines in Xen. There
are a number of requirements for such a system. First, we mustaccurately measure the
resources consumed within individual guest domains. Next,we must attribute the CPU
consumption within IDDs to the appropriate guest domain. The VMM scheduler must
be modified to incorporate the aggregate resource consumption in the guest domain and
work done on its behalf in IDDs. Finally, we must limit the total amount of work done
on behalf of a particular domain in IDDs based on past consumption history and target
resource limits. For instance, if a particular domain is already consuming nearly its full
resource limits, then the amount of resources available to it in the IDDs must be scaled
appropriately.

The analog of accounting resources consumed on behalf of a guest domain have
come up in scheduling operating system resources across individual tasks [6–12], e.g.,
in accounting for resources consumed in the kernel on behalfof individual processes.
Our work builds upon these earlier efforts, exploring the key challenges associated with

(a) I/O Model in Xen 1.0 (b) I/O Model in Xen 3.0
Fig. 1: Evolution of Xen’s I/O Architecture

constructing appropriate abstractions and mechanisms in the context of modern VM
architectures. One of the interesting problems in this space is developing minimally
intrusive mechanisms that can: i) account for significant asynchrony in the hypervisor
and OS and ii) generalize to a variety of individual operating systems and device drivers
(performance isolation will quickly become ineffective ifeven a relatively small number
of devices or operations are unaccounted for). To this end, we have completed a full im-
plementation and detailed performance evaluation of the necessary system components
to enable effective VM performance isolation:

– XenMon: a performance monitoring and profiling tool that reports (among other
things) CPU usage of different VMs at programmable time scales. XenMon in-
cludes mechanisms to measure CPU for network processing in net-IDDs (IDDs
responsible for network devices) on behalf of guest domains.

– SEDF-DC: a new VM scheduler with feedback that effectively allocates CPU among
competing domains while accounting for consumption both within the domain and
in net-IDDs.

– ShareGuard: a control mechanism that enforces a specified limit on CPU time
consumed by a net-IDD on behalf of a particular guest domain.

All three components play important, complementary tasks towards our goal of en-
forcing performance isolation. Both SEDF-DC and ShareGuard depend on XenMon for
detailed CPU utilization information. While ShareGuard is only relevant for workloads
involving network I/O, SEDF-DC is agnostic to the choice of workloads — it only
depends on accurate feedback on CPU utilization from XenMon.

However, SEDF-DC can only enforce guarantees on the aggregate CPU consump-
tion of a guest and its IDD — it does not consider fair allocation of the driver domain’s
finite CPU resources. ShareGuard can be used to enforce such limits for networking
workloads. Further, ShareGuard works irrespective of the choice of CPU scheduler.
An artefact of the implementation of CPU schedulers in Xen isthat SEDF-DC cur-
rently only works for single processor systems. ShareGuard, however, supports multi-
processor systems as well.

Finally, ShareGuard is more intrusive in its operation in the sense that it actively
blocks a VM’s traffic. In comparison, SEDF-DC is more passiveand transparent. Also,
as we will see in Section 5, CPU allocation in ShareGuard is more bursty than in SEDF-
DC (compare Figures 8c and 10c). All this underscores the fact that while on its own
no single mechanism is perfect, working together they form acomplete system.

The rest of this paper is organized as follows: Section 2 briefly describes XenMon.
Section 3 introduces our approach for attributing CPU consumption in an IDD across
different guest domains. Our modifications to the CPU scheduler and its evaluation are
detailed in Section 4, followed by the design and evaluationof ShareGuard in 5. Section
6 discusses related work, before concluding in Section 7.

2 XenMon

To support resource allocation and management, we implemented an accurate moni-
toring and performance profiling infrastructure, called XenMon.4 There are three main
components in XenMon (Figure 2):

4 Our implementation of XenMon has been integrated into the official Xen 3.0 code base.

Fig. 2: XenMon Architecture

– xentrace: This is a lightweight event logging facility present in Xen. XenTrace
can log events at arbitrary control points in the hypervisor. Each event can have
some associated attributes (for instance, for a “domain scheduled” event, the as-
sociated attributes might be the ID of the scheduled domain and the event’s time
stamp). Events are logged into “trace buffers”: shared memory that can be read by
user-level Domain-0 tools. Note thatxentrace was already implemented in Xen
— our contribution here was to determine the right set of events to monitor.

– xenbaked: The events generated by XenTrace are not very useful on their own.
xenbaked is a user-space process that polls the trace buffers for new events and
processes them into meaningful information. For instance,we collate domain sleep
and wake events to determine the time for which a domain was blocked in a given
interval.

– xenmon: This is the front-end for displaying and logging the data.

XenMon aggregates a variety of metrics across all VMs periodically (configurable
with a default of 100 ms). For this paper, we only use the CPU utilization and network
accounting facilities (Section 3) of XenMon. Details on allthe metrics available from
XenMon and some examples of using XenMon for analyzing CPU schedulers in Xen
are available separately [13].

3 Network I/O Accounting

Recall that one of the challenges posed by the new I/O model inXen is to classify IDD
CPU consumption across guest domains. This work is focused on network I/O, so we
summarize network I/O processing in Xen. As mentioned earlier, in the IDD model a
designated driver domain is responsible for each hardware device and all guests wishing
to use the device have to share it via the corresponding IDD. The IDD has a “back-end”
driver that multiplexes I/O for multiple “front-end” drivers in guest VMs over the real
device driver. Figure 3 shows this I/O architecture in more detail.

Fig. 3: I/O processing path in Xen.

We briefly describe the sequence of events involved in receiving a packet — the
numbers correspond to those marked in Figure 3.When the hardware receives the packet
(1), it raises an interrupt trapped by Xen (2). Xen then determines the domain responsi-
ble for the device and posts avirtual interrupt to the corresponding driver domain via the
event channel(3). When the driver domain is scheduled next, it sees a pending interrupt
and invokes the appropriate interrupt handler. The interrupt handler in the driver domain
only serves to remove the packet from the real device driver (4) and hand it over to the
“back-end” driver (5),netbackin Figure 3. Note that no TCP/IP protocol processing is
involved in this step (except perhaps the inspection of the IP header).

It is the back-end driver’s job to forward the packet to the correct “front-end” driver
(netfront in Figure 3). The driver domain transfers the ownership of the memory page
containing the packet to the target guest domain, and then notifies it with a “virtual
interrupt” (6). Note that this involves no data movement/copying. When the target
guest is next scheduled, it will field the pending interrupt (7). The netfront driver in the
guest will then pass on the packet to higher layers of the networking stack for further
processing (8). The transmit path of a packet is similar, except that no explicit memory
page exchange is involved (see [1] for details).

Thus, I/O processing in a net-IDD primarily involves two components: the real
device driver and the back-end (virtual) device driver. Onenatural approach for more
accurate accounting is to instrument these components for detailed measurements of
all the delays on the I/O path. However, this approach does not scale in Xen for two
reasons: (1) since Xen uses legacy Linux drivers, this wouldrequire instrumenting
all network device drivers, and (2) network drivers involve significant asynchronous
processing, making it difficult to isolate the time consumedin the driver in the context
of a given operation.

We therefore need some alternate heuristics to estimate theper-guest CPU con-
sumption. Intuitively, each guest should be charged in proportion to the amount of I/O
operations it generates. In [5], we used the number of memorypage exchanges as an
estimator. However, we found this method to be a rather coarse approximation that does
not take into account what fraction of these page exchanges correspond to sent versus
received packets, and that does not take into account the size of the packets.

Thus, we propose using thenumber of packetssent/received per guest domain for
distributing the net-IDD CPU consumption among guests. Note thatnetbackis an ideal
observation point: all of the packets (both on the send and receive paths between driver
domain and guest domain)mustpass through it. We instrumented netback to provide de-

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0P a c k e t s i z e (b y t e s)02 04 06 08 01 0 0
CPUUtili zati on(%) V M s e n d i n g p a c k e t sV M r e c e i v i n g p a c k e t s

Fig. 4: CPU overhead in Domain-0 for pro-
cessing packets at a fixed rate under differ-
ent packet sizes.

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0R a t e (p k t s / s) x 1 e 402 04 06 08 01 0 0
CPUUtili zati on(%) V M s e n d i n g p a c k e t sV M r e c e i v i n g p a c k e t s

Fig. 5: CPU overhead in Domain-0 for pro-
cessing packets of a fixed size under vary-
ing rates.

tailed measurements on the number of packets processed by the corresponding net-IDD
in both directions for each guest domain. In particular, we added XenTrace events for
each packet transmission/reception, with the appropriateguest domain as an attribute.
We then extended XenMon to report this information.

Of course, knowing the number of packets sent and received ona per-domain basis
does not by itself enable accurate CPU isolation. We need a mechanism to map these
values to per-domain CPU consumption in the IDD. In particular, we want to know
the dependence of packet size on CPU processing overhead andthe breakdown of send
versus receive packet processing. To answer these questions, we perform the following
two-part sensitivity study.

The impact of packet size on CPU overhead in net-IDD:We performed controlled
experiments involving sending packets of different sizes at a fixedrate to a guest VM.
In particular, we fixed the rate at 10,000 pkts/sec and variedthe packet size from 100
to 1200 bytes. Each run lasted 20 seconds and we averaged the results over 10 runs.
We repeated the experiments to exercise the reverse I/O pathas well – so the VM
wassendingpackets instead of receiving them. To prevent “pollution” of results due to
ACKS going in the opposite direction, we wrote a custom tool for these benchmarks
using UDP instead of TCP. The other end point for these experiments was a separate
machine on our LAN. Recall that in all of our experiments, we use Domain-0 to host
the network device driver.

Our results show that CPU consumption in net-IDD does not depend on packet size
as presented in Figure 4. The explanation is as follows: during driver packet processing
there is no payload processing or copying; the driver largely deals with the packet
header. For the rest of the I/O path within the net-IDD, thereis no data copying (where
CPU processing can depend on packet size) — only the ownership of memory pages
changes to reflect data transfer.

CPU overhead in net-IDD for Send vs. Receive I/O paths:In this experiment, we fixed
the packet size at 256 bytes and varied the rate at which a VM sends or receives pack-
ets. We could thus selectively exercise the send and receiveI/O paths within Xen and
measure the resulting CPU overhead in net-IDD. We denote these asSend Benchmark
andReceive Benchmark, respectively. As before, each run lasted 20 seconds and we
averaged results over 10 runs.

Figure 5 presents our experimental results. An interestingoutcome of this study is
that the ratio of CPU consumption in net-IDD between send andreceive paths is con-
sistently the same for different packet rates. We denote this measured ratio asweight.

To validate the generality of presented results we repeatedall of the experiments
presented above for two different hardware configurations:a single CPU Intel Pentium-
IV machine running at 2.66-GHz with a 1-Gbit Intel NIC (SYSTEM-1) and a dual pro-
cessor Intel Xen 2.8-GHz with a 1-Gbit Broadcom NIC (SYSTEM-2). For both systems
under test, the CPU consumption in net-IDD does not depend onpacket size. Further,
for both system under test, the ratio of CPU consumption in net-IDD between send and
receive paths is consistent for different packet rates:

– SYSTEM-1: weight = 1.1 (standard deviation 0.07);
– SYSTEM-2: weight = 1.16 (standard deviation 0.15).

These results show that the number of packets in conjunctionwith the direction
of traffic can be reasonably used to split CPU consumption among guests. Concretely,

let Send/Recv(Domi) denote packets sent/received by net-IDD to/fromDomi and
Send/Recv(netIDD) denote the total packets sent/received by net-IDD. Then, we
define theweightedpacket count per domain asweight×Send(Domi)+Recv(Domi),
whereweight is the ratio of CPU consumption in net-IDD for send versus receive paths.
Similarly, we compute the weighted packet count for net-IDD: wCount(netIDD).
Then we can use the fractionwCount(Domi)/wCount(netIDD) to charge CPU
usage toDomi.

In the remainder of this paper, we use the weighted packet count described above
to compute the CPU overhead in net-IDD for network processing on behalf of differ-
ent guest domains. This approach is also attractive becauseit comes with a compact,
portable benchmark that derives the weight coefficient between send/receive paths au-
tomatically for different systems and different network device drivers. It has the further
advantage of being general to a variety of device drivers andoperating systems (e.g.,
individual device drivers may be hosted on a variety of operating systems) without re-
quiring error-prone instrumentation. Of course, it has thedisadvantage of not explicitly
measuring CPU consumption but rather deriving it based on benchmarks of a particular
hardware configuration. We feel that this tradeoff is inherent and that instrumenting all
possible device driver/OS configurations is untenable for resource isolation. A variety
of middleware tools face similar challenges, i.e., the inability to modify or directly
instrument lower layers, making our approach attractive for alternate settings as well.

With this estimation of CPU utilization per guest, we now turn our attention to
SEDF-DC and ShareGuard.

4 SEDF-DC: CPU Scheduler with Feedback

4.1 Overview

Xen’s reservation based CPU scheduler — SEDF (Simple Earliest Deadline First) —
takes its roots in the Atropos scheduler [8]. In SEDF, an administrator can specify the
CPU share to be allocated per VM. However, there is no way to restrict the aggregate
CPU consumed by a domain and by driver domains acting on its behalf. We have
extended SEDF to accomplish this goal.

Our modified scheduler, SEDF-DC for SEDF-Debt Collector, periodically receives
feedback from XenMon about the CPU consumed by IDDs for I/O processing on behalf
of guest domains. Using this information, SEDF-DC constrains the CPU allocation to
guest domains to meet the specified combined CPU usage limit.

For each domainDomi, SEDF takes as input a tuple(si, pi), where theslice si

and theperiod pi together represent the CPU share ofDomi: Domi will receive at
leastsi units of time in each period of lengthpi. Such specifications are particularly
convenient for dynamically adjusting CPU allocations: we can directly charge the CPU
time consumed by IDDs forDomi by decreasingsi appropriately. In CPU schedulers
based on weights, one would need to continuously re-calculate weights of domains to
achieve the same result.

We now describe SEDF-DC’s operation, but limit our description only to places
where SEDF-DC differs from SEDF. SEDF-DC maintains 3 queues:

– Qr: the queue of runnable domains;
– Qw: the queue of domains that have exhausted their slice and areawaiting the next

period;

– Qb: the queue of blocked domains.

A key concept in SEDF isdeadlines. Intuitively, a deadline denotes the absolute
time that a domainshould havereceived its specified share of the CPU. BothQr and
Qw are sorted by deadlines, making the selection of the next domain to schedule a
constant time operation.

Each domainDi’s deadline is initialized toNOW + pi, whereNOW denotes
the current, real time. Lett denote thefeedback interval(set to500 ms in our cur-
rent implementation). Let net-IDD be a driver domain with a networking device that
is shared byDom1, . . . ,Domn. We will simplify the algorithm description (without
loss of generality) by considering a single net-IDD. Using XenMon, we compute the
CPU consumptionusedIDD

i of net-IDD for network I/O processing on behalf ofDomi

during the latestt-ms interval and provide this information (for all domains)to SEDF-
DC.

For each domainDomi, the scheduler tracks three values(di, ri, debtIDD
i):

– di: domain’s currentdeadlinefor CPU allocation, the time when the current period
ends for domainDomi.

– ri: domain’s currentremaining timefor CPU allocation, the CPU time remaining
to domainDomi within its current period.

– debtIDD
i : CPU time consumed byDomi via the net-IDD’s networking processing

performed on behalf ofDomi. We call this theCPU debtfor Domi. At each
feedback interval, this value is incremented byusedIDD

i for the latestt-ms.

Note that the original SEDF scheduler only tracks(di, ri). The introduction of
debtIDD

i in the algorithm allows us to observe and enforce aggregate limits onDomi’s
CPU utilization.

Let a andb be integer numbers and let us introduce the following function a−̂b as
follows:

a −̂ b =

{

0 if a ≤ b
a − b otherwise

We now describe the modified procedure for updating the queues (Qr, Qw, andQb)
on each invocation of SEDF-DC.

1. The timegotteni for which the currentDomi has been running is deducted from
ri: ri = ri − gotteni.
If debtIDD

i > 0 then we attempt to chargeDomi for its CPU debt by decreasing
the remaining time of its CPU slice:

– if debtIDD
i ≤ ri thenri = ri − debtIDD

i anddebtIDD
i = 0;

– if debtIDD
i > ri thendebtIDD

i = debtIDD
i − ri andri = 0.

2. If ri = 0, thenDomi is moved fromQr to Qw, sinceDomi has received its
required CPU time in the current period.

3. For each domainDomk in Qw, if NOW ≥ dk then we perform the following
updates:

– rk is reset tosk −̂ debtIDD
k ;

– debtIDD
k is decreased bymin(sk, debtk);

– the new deadline is set todk + pk;
– If rk > 0 thenDomk is moved fromQw to Qr.

4. The next timer interrupt is scheduled formin(dh
w + ph

w, dh
r), where(dh

w, ph
w) and

(dh
r , ph

r) denote the deadline and period of the domains that are respective heads of
theQr andQw queues.

5. On an interrupt, the scheduler runs the head ofQr. If Qr is empty, it selects the
head ofQw.

6. When domainDomk in Qb is unblocked, we make the following updates:
– if NOW < dk then

• if debtIDD
k ≤ rk thenrk = rk − debtIDD

k , anddebtIDD
k = 0, andDomk

is moved fromQb to Qr;
• if debtIDD

k > rk thendebtIDD
k = debtIDD

k − rk andrk = 0.
– if NOW ≥ dk then we compute for how many periodsDomk was blocked.

SinceDomk was not runnable, this unused CPU time can be charged against
its CPU debt:

bl periods = int

{

(NOW − dk)

pk

}

debtIDD
k = debtIDD

k − rk − (bl periods × sk)

– rk is reset tosk −̂ debtIDD
k . If rk > 0, thenDomk is moved fromQb to Qr

and can be scheduled to receive the remainingrk;
– debtIDD

k is adjusted bysk: debtIDD
k = debtIDD

k −̂ sk;
– the new deadline is set todk + pk

The SEDF-DC implementation described above might have bursty CPU allocation
for domains hosting network-intensive applications, especially when a coarser granular-
ity time intervalt is used for the scheduler feedback, e.g.t = 2 s. It might happen that
domainDomi will get zero allocation of CPU shares for several consecutive periods
until the CPU debt timedebtIDD

i is “repaid”. To avoid this, we implemented an opti-
mization to SEDF-DC that attempts to spread the CPU debt across multiple execution
periods.

We compute the number of times periodpi fits within a feedback interval — the
intent is to spread the CPU debt ofDomi across periods that happen during the feed-
back interval. We call this theCPU period frequencyof domainDomi and denote it as
period freqi:

period freqi = int

(

t

pi

)

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0R e q u e s t s / s e c02 04 06 08 01 0 0
CPUUtili zati on(%) D o m a i n 1D o m a i n 0 f o r D o m a i n 1D o m a i n 1 : C o m b i n e d u s a g e

(a) With original SEDF.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0R e q u e s t s / s e c02 04 06 08 01 0 0
CPUUtili zati on(%) D o m a i n 1D o m a i n 0 f o r D o m a i n 1D o m a i n 1 : C o m b i n e d u s a g e

(b) With SEDF-DC.

Fig. 6: Simple SEDF Benchmark

If period freqi > 1, then we can spreaddebtIDD
i acrossperiod freqi number of

periods, where at each period the domain is charged for a fraction of its overall CPU
debt:

spread debti = int

(

debtIDD
i

period freqi

)

This optimized SEDF-DC algorithm supports more consistentand smoother CPU
allocation to domains with network-intensive applications.

4.2 Evaluation

In this section we evaluate SEDF-DC beginning with a simple setup to demonstrate
the correctness of the scheduler and continue with a more complex scenario to illus-
trate SEDF-DC’s feasibility for realistic workloads. All tests were conducted on single
processor Pentium-IV machines running at 2.8-GHz with hyper-threading disabled.

In the first experiment, we have a single VM (Domain-1) configured to receive a
maximum of 60% of the CPU; Domain-0 is entitled to the remaining 40%. Domain-1
hosts a Web server, loaded usinghttperf [14] from another machine. We gradually
increase the load and measure the resulting CPU utilizations.

Figure 6a shows the results with the unmodified SEDF scheduler. We see that as the
load increases, Domain-1 consumes almost all of its share ofthe CPU. Additionally,
Domain-0 incurs an overhead of almost 35% at peak loads to serve Domain-1’s traffic.
Hence, while Domain-1 was entitled to receive 60% of the CPU,it had received a
combinedCPU share of 90% via additional I/O processing in Domain-0. We repeated
the same experiment with SEDF-DC, with the results shown in Figure 6b. We can see
that SEDF-DC is able to enforce the desired behavior, keeping the combined CPU usage
of Domain-1 bounded to 60%.

In practice, system configurations are likely to be more complicated: multiple VMs,
each running a different service with different requirements; some VMs may be I/O in-
tensive, others might be CPU intensive and so on. Our next experiment tries to evaluate
SEDF and SEDF-DC under a more realistic setup.

For this experiment, we have two VMs (Domain-1 and Domain-2), each hosting a
web-server. We configure both VMs and Domain-0 to receive a maximum of 22% of
the CPU. Any slack time in the system is consumed by CPU intensive tasks running in a

Metric SEDF SEDF-DC
Dom-1 web-server Throughput348.06 req/s225.20 req/s
Dom-2 web-server Throughput93.12 req/s 69.53 req/s
Dom-1 CPU 19.6% 13.7%
Dom-0 for Dom-1 9.6% 7.7%
Dom-1 Combined 29.2% 21.4%
Dom-2 CPU 14.5% 10.9%
Dom-0 for Dom-2 13.2% 10.6%
Dom-2 Combined 27.7% 21.5%

Table 1: SEDF-DC in action: metric values averaged over the duration of the run

third VM. Domain-1’s web-server is served with requests forfiles of size 10 KB at 400
requests/second, while Domain-2’s web-server is served with requests for files of size
100 KB at 200 requests/second. We chose these rates because they completely saturate
Domain-0 and demonstrate how CPU usage in Domain-0 may be divided between guest
domains with different workload requirements. As before, we usehttperf to generate
client requests. Each run lasts 60 seconds.

We first conduct the experiment with unmodified SEDF to establish the baseline.
Figure 7a shows the throughput of the two web-servers as a function of time. We
also measure the CPU utilizations of all the VMs, shown in 7b.Note that Domain-1
consumes all of its 22% available CPU cycles, while Domain-2consumes only about
15% of the CPU. Even more interesting is the split of Domain-0CPU utilization across
Domain-1 and Domain-2 as shown in Figure 7c. The first column of Table 1 summarizes
the average values for the metrics over the entire run. Domain-1 uses an additional

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0T i m e (s)01 0 02 0 03 0 04 0 05 0 0
W eb serverTh rough put(req/ s) D o m " 1D o m " 2

(a) Web-server Throughput

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0T i m e0 51 01 52 02 53 03 54 0
CPU utili zati on(%) D o m ? 0D o m ? 1D o m ? 2

(b) CPU Utilization

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0T i m e0 51 01 52 02 53 03 54 0
CPU utili zati on(%)i nD om \0

D o m a 1D o m a 1 T o t a lD o m a 2D o m a 2 T o t a l
(c) CPU Utilization in Dom-0

Fig. 7: With original SEDF.

9.6% of CPU for I/O processing in Domain-0 (42% of overall Domain-0 usage) while
Domain-2 uses an additional 13.6% of CPU via Domain-0 (58% ofoverall Domain-
0 usage). Thus, the combined CPU utilization of Domains 1 and2 (the sum of their
individual CPU utilization and CPU overhead in Domain-0 on their behalf) is 29.2%
and 27.7% respectively.

We then investigate whether we can limit the system-wide CPUusage of Domain-
1 and Domain-2 to their 22% CPU share using SEDF-DC. Figure 8 shows the results
of this experiment. Recall the operation of SEDF-DC: it computes thedebtof a VM
(work done by the IDD – in this case Domain-0 – on its behalf), and incrementally
charges it back to the appropriate VM. This is clearly visible in Figure 8c: thecombined
utilizations of both Domain-1 and Domain-2 hover around 22%for the duration of the
experiment. The oscillations result from discretization in the way we charge back debt.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0T i m e (s)05 01 0 01 5 02 0 02 5 03 0 03 5 04 0 0
W eb serverTh rough put(req/ s) D o m " 1D o m " 2

(a) Web-server Throughput

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0T i m e0 51 01 52 02 53 03 54 0
CPU utili zati on(%) D o m ? 0D o m ? 1D o m ? 2

(b) CPU Utilization

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0T i m e0 51 01 52 02 53 03 54 0
CPU utili zati on(%)i nD om \0 D o m a 1D o m a 1 T o t a lD o m a 2D o m a 2 T o t a l

(c) CPU Utilization in Dom-0

Fig. 8: With SEDF-DC.

Controlling combined CPU utilization for Domain-1 and 2 does impact the web
servers’ achievable throughput. Since the combined CPU usage of Domain-1 and 2 is
limited to 22% under SEDF-DC—versus the uncontrolled valuesof 29.2% and 27.7%
under the original SEDF scheduler—there is a drop in throughput as shown in Figure 8a.
The second column of Table 1 gives the average throughput values over the run for a
more concise comparison.

While SEDF-DC is capable of limiting the combined CPU usage across guest do-
mains, it does not explicitly control CPU usage in a driver domain. Note that the split of
the CPU utilization in Domain-0 for Domain-1 and Domain-2 isstill unequal. Domain-1
is using 7.7% of CPU via Domain-0 (42% of overall Domain-0 usage) while Domain-
2 is using 10.6% of CPU via Domain-0 (58% of overall Domain-0 usage). We turn
our attention to controlling per-domain IDD utilization using ShareGuard in the next
section.

5 ShareGuard

5.1 Overview

In the current Xen implementation, a driver domain does not control the amount of
CPU it consumes for I/O processing on behalf of different guest domains. This lack of
control may significantly impact the performance of networkservices. Such control is
also required to enable SEDF-DC to enforce aggregate CPU usage limits. ShareGuard
is a control mechanism to enforce a specified limit on CPU timeconsumed by an IDD
for I/O processing on behalf of a particular guest domain. ShareGuard periodically polls
XenMon for CPU time consumed by IDDs, and if a guest domain’s CPU usage is above
the specified limit, then ShareGuard stops network traffic to/from the corresponding
guest domain.

Let the CPU requirement of net-IDD be specified by a pair(sIDD, pIDD), mean-
ing that net-IDD will receive a CPU allocation of at leastsIDD-ms in each period
of lengthpIDD-ms. In other words, this specification is bounding CPU consumption
of net-IDD over time toCPUshareIDD = sIDD

pIDD . Let limitIDD
i specify a fraction

of CPU time in net-IDD available for network processing on behalf of Domi such
that limitIDD

i < CPUshareIDD. If such a limit is not set thenDomi is entitled to
unlimited I/O processing in net-IDD. Lett define the time period ShareGuard uses to
evaluates current CPU usage in net-IDD and performs decision making. In the current
implementation of ShareGuard, we uset = 500 ms.

Using XenMon, ShareGuard collects information on CPU usageby net-IDD at ev-
ery feedback interval, and computes the fraction of overallCPU time used by net-IDD
for networking processing on behalf ofDomi (1 ≤ i ≤ n) during the latestt interval.
Let us denote this fraction asusedIDD

i . In each time intervalt, ShareGuard determines
the validity of the condition:used

IDD

i ≤ limit
IDD

i . If this condition is violated, then
Domi has exhausted its CPU share for network traffic processing innet-IDD. At this
point, ShareGuard applies appropriate defensive actions for the next time intervaltdef ,
where

tdef = t × int

(

usedIDD
i + 1

limitIDD
i

)

ShareGuard performs the following defensive actions:

– Stop accepting incoming traffic to a domain:Since our net-IDDs run Linux,
we use Linux’s routing and traffic control mechanisms [15] todrop/reject traffic
destined for a particular domain. In particular, we useiptables [16] — they
are easily scriptable and configurable from user space. Similar techniques can be
applied in other operating systems that may serve as wrappers for other legacy
device drivers.

– Stop processing outgoing traffic from a domain:As in the previous case, we
can useiptables to drop packets being transmittedfrom a domain. However,
this will still incur substantial overhead in the IDD becauseiptables will only
process the packet once it has traversed the network stack ofthe IDD. Ideally we
want to drop the packet before it even enters the IDD to limit processing overhead.
One approach would be to enforceiptables filtering within the guest domain.
However, ShareGuard does not assume any cooperation from guests so we reject
this option. However, we still have an attractive control point within the net-IDD
where packets can be dropped before entering the net-IDDs network stack: thenet-
backdriver (see Figure 3). ShareGuard sends a notification to netback identifying
the target domain and the required action (drop or forward).This is akin to setting
iptables rules, except that these rules will be applied within netback.
Whenever netback receives an outbound packet from a domain, it will determine if
there are any rules applicable to this domain. If so, it will take the specified action.
This is both lightweight (in terms of overhead incurred by IDD) and flexible (in
terms of control exercised by IDD).

After time intervaltdef , ShareGuard restores normal functionality in net-IDD with
respect to network traffic to/from domainDomi.

5.2 Evaluation

To evaluate the effectiveness of ShareGuard in isolating total domain CPU consump-
tion, we ran the following experimental configuration. Three virtual machines run on the
same physical hardware. Domain-1 and Domain-2 host web servers that support busi-
ness critical services. These services have well-defined expectations for their throughput
and response time. The CPU shares for these domains are set tomeet these expecta-
tions. Domain-3 hosts a batch application that does some computation and performs
occasional bulk data transfers. This VM supports a less important application that is not
time sensitive, but needs to complete its job eventually.

In our first experiment, we observe overall performance of these three services to
quantify the degree of performance isolation ShareGuard can deliver. We configure a
dual-processor machine (with hyper-threading disabled) as follows: Domain-0 runs on
a separate processor and set to consume at most 60% of the CPU.The second CPU hosts
three VMs: Domain-1 and Domain-2 run web-servers (serving 10 KB and 100 KB files
respectively), and Domain-3 occasionally does a bulk file transfer. All these VMs have
equal share of the second CPU, 33% each. In this initial experiment, we do not enable
ShareGuard to demonstrate baseline performance characteristics. The experiments were
conducted over a gigabit network, so our experiments are notnetwork limited. In this
experiment, we start a benchmark that loads web-servers in Domain-1 and Domain-2
from two separate machines usinghttperf for two minutes. Forty seconds into the
benchmark, Domain-3 initiates a bulk-file transfer that lasts for 40 seconds.

Figure 9 shows the results as a function of time. We can clearly see the adverse im-
pact of Domain-3’s workload on both web servers’ throughput(Figure 9a). Considering

the split of CPU utilization in Domain-0 for the corresponding interval (Figure 9c), we
find that Domain-3 uses between 20% to 30% of CPU for I/O processing in Domain-
0 leaving insufficient CPU resources for I/O processing on behalf of Domain-1 and
Domain-2.

The first column in Table 2 provides a summary of average metric values for the
baseline case where Domain-1 and Domain-2 meet their performance expectations and
deliver expected web server throughput. These metrics reflect Domain-1 and Domain-2
performance when there is no competing I/O traffic issued by Domain-3 in the ex-
periment. Note that in this case the combined CPU utilization in Domain-0 for I/O
processing by Domain-1 and Domain-2 is about 50%. Since Domain-0 is entitled to
60% of the CPU, this means that there is about 10% CPU available for additional I/O
processing in Domain-0.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0T i m e (s)01 0 02 0 03 0 04 0 05 0 0
W eb serverTh rough put(req/ s) D o m " 1D o m " 2

(a) Webserver Throughput

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0T i m e02 04 06 08 01 0 0
CPU utili zati on(%) D o m = 0D o m = 1D o m = 2D o m = 3

(b) CPU Utilization

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0T i m e02 04 06 08 01 0 0
CPUUtili zati oni nD om U0(%) D o m \ 1D o m \ 2D o m \ 3

(c) CPU Utilization in Dom-0

Fig. 9: Without ShareGuard

Metric BaselineWithout ShareGuard With ShareGuard
Dom-1 Webserver329.85 236.8 321.13
Dom-2 Webserver231.49 166.67 211.88
Dom-0 for Dom-1 11.55 7.26 11.9
Dom-0 for Dom-2 37.41 23.9 34.1
Dom-0 for Dom-3 N/A 23.92 4.42

Table 2: ShareGuard at work: metric values averaged over the middle 40 second segment of the
runs.

The average metric values for this experiment (without ShareGuard) over the middle
40 second segment (where Domain-1, Domain-2, and Domain-3 all compete for CPU
processing in Domain-0) are summarized in the second columnof Table 2. Domain-
3 gets 23.92% of CPU for I/O processing in Domain-0, squeezing in the CPU share
available for Domain-1’s and Domain-2’s I/O processing. Asa result, there is a sig-
nificant decrease in achievable web server throughput: bothweb-servers are delivering
only 72% of their expected baseline capacity.

This example clearly indicates the impact of not controlling IDD CPU consumption
by different guest domains. The question is whether ShareGuard can alleviate this prob-
lem. We repeat the experiment with ShareGuard enabled, and configure ShareGuard to
limit the CPU consumption for Domain-3 in Domain-0 to 5%. Figure 10 shows the
results.

Recall ShareGuard’s operation: every 500 ms it evaluates CPU usage in the IDD;
if a VM is violating its CPU share, it turns off all traffic processing for that VM for
some time. We compute this duration such that over that interval, the average CPU
utilization of the VM within the IDD will comply with the specification. This mode
of operation is clearly visible in Figure 10c. We had directed ShareGuard to restrict
Domain-3’s consumption in Domain-0 to 5%. Att = 40s, ShareGuard detected that
Domain-3 had consumed almost 30% CPU in Domain-0. Accordingly, it disables traffic
processing for Domain-3 for the next 2.5 seconds, such that the average utilization over
this 3 second window drops to 5%. This pattern subsequently repeats ensuring that the
isolation guarantee is maintained through the entire run.

Comparing Figure 9c and 10c, we see that with ShareGuard, Domain-1 and Domain-
2 obtain more uniform service in Domain-0 even in the presence of Domain-3’s work-
load. This is also visible in the CPU utilizations (see Figure 10b). Finally, observe that
the web-server throughput for Domain-1 and Domain-2 improve significantly under
ShareGuard: both web-servers deliver the expected throughput.

The third column in Table 2 provides a summary of average metric values over the
middle 40 second segment with ShareGuard enabled. As we can see, CPU consumption
by Domain-1 and Domain-2, as well as web server throughput are similar to the baseline
case. Web server performance does not degrade in presence ofthe bulk data transfer in
Domain-3 because CPU processing in the IDD on behalf of Domain-3 is controlled by
ShareGuard.

6 Related Work

The problem of resource isolation is as old as time sharing systems. Most of the previous
work in this area has focused on resource isolation between processes in an operating
system or users on a single machine. In these systems, scheduling and resource man-
agement primitives do not extend to the execution of significant parts of kernel code.

An application has no control over the consumption of many system resources that the
kernel consumes on behalf of the application.

Consider network-intensive applications: most of the processing is typically done
in the kernel and the kernel generally does not control or properly account for resources
consumed during the processing of network traffic. The techniques used in ShareGuard
have been inspired by earlier work addressing this problem w.r.t receive livelocks in
interrupt based networking subsystems. Mogul et al. [17] restrict the amount of I/O
processing that the kernel does on behalf of user processes.In Lazy Receiver Process-
ing [9] (LRP), the system uses better accounting information (such as hardware support
for identifying which process an incoming packet is destined to) to improve resource
isolation, e.g., such that packet processing on behalf of one process does not adversely
affect the resource available to other processes.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0T i m e (s)01 0 02 0 03 0 04 0 05 0 0
W eb serverTh rough put(req/ s) D o m " 1D o m " 2

(a) Webserver Throughput

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0T i m e02 04 06 08 01 0 0
CPU utili zati on(%) D o m = 0D o m = 1D o m = 2D o m = 3

(b) CPU Utilization

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0T i m e02 04 06 08 01 0 0
CPUUtili zati oni nD om U0(%) D o m \ 1D o m \ 2D o m \ 3

(c) CPU Utilization in Dom-0

Fig. 10: With ShareGuard

Some of the ideas motivating LRP were extended to Resource Containers [12]. A
resource container is an operating system abstraction to account for all system resources
consumed by anactivity, where an activity might span multiple processes. Resource
Containers separate the notion of resource principal from threads or processes and pro-
vide support for fine-grained resource management in operating systems. This distinc-
tion between aprotection domainand aresource principalis also visible in Xen’s new
I/O model: a VM (the protection domain) may request service from several different
IDDs, therefore the tracking of its resource usage needs to span across executions of all
these domains.

One limitation of Resource Containers is that they only workfor single processor
systems. There does not seem to be any straightforward way ofextending the notion
of an activity to span multiple processors. This is further complicated bythe fact that
in most operating systems, each CPU is scheduled independently. SEDF-DC scheduler
suffers from the same limitation. However, ShareGuard is both scheduler agnostic and
it fully supports multi-processor systems.

The problem of performance isolation has been actively addressed by multimedia
systems. The Nemesis operating system [8] was designed to provide guaranteed quality
of service (QoS) to applications. Nemesis aims to preventQoS crosstalkthat can occur
when the operating system kernel (or a shared server) performs a significant amount of
work on behalf of a number of applications. One key way in which Nemesis supports
this isolation is by having applications execute as many of their own tasks as possible.
Since a large proportion of the code executed on behalf of an application in a traditional
operating system requires no additional privileges and does not, therefore, need to exe-
cute in a separate protection domain, the Nemesis operatingsystem moves the majority
of operating system services into the application itself, leading to a vertically structured
operating system. QoS crosstalk can also occur when there iscontention for physical
resources, and applications do not have guaranteed access to the resources. Nemesis
provides explicit low-level resource guarantees or reservations to applications. This is
not limited simply to CPU: all resources including disks [18], network interfaces [19],
and physical memory [20] – are treated in the same way.

The networking architecture of Nemesis still has some problems related to the
charging of CPU time to applications. When the device driver transmits packets for
an application, used CPU time is not charged to the application but to the device driver.
Also, the handling of incoming packets before de-multiplexing it to the receiving ap-
plication is charged to the device driver. We observe the same problem in the context
of Xen VMM and the network driver domains, and suggest possible solution to this
problem.

Exokernel [21] and Denali [22] provide resource managementsystems similar to
vertically structured operating systems. The design goal for Exokernel was to separate
protection from management. In this architecture, a minimal kernel — called Exok-
ernel — securely multiplexes available hardware resources. It differs from the VMM
approach in that itexportshardware resources rather than emulates them. VMMs have
served as the foundation of several “security kernels” [23–26]. Denali differs from these
efforts in that it aims to provide scalability as well as isolation for untrusted code, but it
does not provide any specialized for performance isolation.

Most of the earlier work on VMMs focused on pursuing OS support for isolating
untrusted code as a primary goal. While there is significant work on resource man-
agement in traditional operating systems, relatively lesswork has been performed in
the context of virtual machines. Waldspurger [27] considers the problem of allocating

memory across virtual machines; other systems such as Denali [22], HP SoftUDC [2]
and Planetlab vServers [28] have also touched on some of these issues. Our work takes
another step towards a general framework for strict resource isolation in virtual ma-
chines by considering the auxiliary work done on behalf of a guest in privileged or
driver domains.

7 Conclusion and Future Work

Virtualization is fast becoming a commercially viable alternative for increasing sys-
tem utilization. But from a customer perspective, virtualization cannot succeed without
providing appropriate resource and performance isolationguarantees. In this work, we
have proposed two mechanisms – SEDF-DC and ShareGuard – thatimprove CPU and
network resource isolation in Xen. We demonstrated how these mechanisms enable
new policies to ensure performance isolation under a variety of configurations and
workloads.

For future work, we plan to extend these mechanisms to support other resources
such as disk I/O and memory. Work is also underway on a hierarchical CPU scheduler
for Xen: currently Xen ships with two CPU schedulers, but thechoice of scheduler
has to be fixed at boot time. We expect that in the future, many more CPU schedulers
will become available (SEDF-DC being among the first), and that having a hierarchical
scheduler that allows the use of different schedulers for different domains depending
on the kinds of applications and workloads that need to be supported will enable more
efficient resource utilization.

We believe that performance isolation requires appropriate resource allocation poli-
cies. Thus, another area for future investigation is policies for efficient capacity planning
and workload management.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the art of virtualization. In: Proc. of the 19th ACM Symposium on
Operating Systems Principles, New York, NY (2003)

2. Kallahalla, M., Uysal, M., Swaminathan, R., Lowell, D.E., Wray, M.,Christian, T., Edwards,
N., Dalton, C.I., Gittler, F.: SoftUDC: A software based data center forutility computing.
IEEE Computer (2004)

3. The Oceano Project. http://www.research.ibm.com/oceanoproject/
index.html: Last accessed 1/17/2006.

4. Fraser, K., Hand, S., Neugebauer, R., Pratt, I., Warfield, A.,Williamson, M.: Reconstructing
I/O. Technical Report UCAM-CL-TR-596, University of Cambridge (2005)

5. Cherkasova, L., Gardner, R.: Measuring CPU Overhead for I/OProcessing in the Xen Virtual
Machine Monitor. In: Proc. of USENIX 2005 Annual Technical Conference. (2005)

6. Chase, J.S., Levy, H.M., Feeley, M.J., Lazowska, E.D.: Sharing and protection in a single-
address-space operating system. ACM Trans. Comput. Syst.12(4) (1994) 271–307

7. Jones, M.B., Leach, P.J., Draves, R.P., J. S., .I.B.: Modular real-time resource management
in the Rialto operating system. In: Proc. of the 5th Workshop on Hot Topicsin Operating
Systems, Washington, DC, USA, IEEE Computer Society (1995) 12

8. Leslie, I.M., McAuley, D., Black, R., Roscoe, T., Barham, P.T., Evers, D., Fairbairns, R.,
Hyden, E.: The design and implementation of an operating system to support distributed
multimedia applications. IEEE Journal of Selected Areas in Communications14(7) (1996)

9. Druschel, P., Banga, G.: Lazy receiver processing (LRP): a network subsystem architecture
for server systems. In: Proc. of the second USENIX Symposium on Operating Systems
Design and Implementation. (1996) 261–275

10. Bruno, J., Gabber, E., Ozden, B., Silberschatz, A.: The Eclipse Operating System: Providing
Quality of Service via Reservation Domains. USENIX Annual Technical Conference (1998)

11. Verghese, B., Gupta, A., Rosenblum, M.: Performance isolation: sharing and isolation in
shared-memory multiprocessors. In: ASPLOS-VIII: Proc. of the 8th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems, New
York, NY, USA, ACM Press (1998) 181–192

12. Banga, G., Druschel, P., Mogul, J.C.: Resource Containers: aNew Facility for Resource
Management in Server Systems. In: Proc. of the third Symposium on Operating Systems
Design and Implementation, New Orleans, Louisiana (1999)

13. Gupta, D., Gardner, R., Cherkasova, L.: XenMon: QoS Monitoring and Performance Profil-
ing Tool. Technical report, HPL-2005-187 (2005)

14. Httperf.http://www.hpl.hp.com/research/linux/httperf/: Last accessed
1/17/2006.

15. http://www.lartc.org/howto/: Last accessed 04/02/2006.
16. http://www.netfilter.org: Last accessed 04/02/2006.
17. Mogul, J.C., Ramakrishnan, K.K.: Eliminating receive livelock in an interrupt-driven kernel.

ACM Trans. Comput. Syst.15(3) (1997)
18. Barham, P.: A Fresh Approach to File System Quality of Service. In Proc. of NOSSDAV

(1998)
19. Black, R., Barham, P., Donnelly, A., Stratford, N.: Protocol Implementation in a Vertically

Structured Operating System. In: Proc. of IEEE Conference on Computer Networks. (1997)
20. Hand, S.M.: Self-paging in the Nemesis operating system. In: Proc. of the third Symposium

on Operating Systems Design and Implementation, Berkeley, CA, USA, USENIX Associa-
tion (1999) 73–86

21. Engler, D.R., Kaashoek, M.F., J. O’Toole, J.: Exokernel: anoperating system architecture for
application-level resource management. In: Proc. of the 15th ACM Symposium on Operating
Systems Principles, New York, NY, USA, ACM Press (1995) 251–266

22. Whitaker, A., Shaw, M., Gribble, S.D.: Scale and performance inthe Denali isolation kernel.
In: Proc. of the 5th Symposium on Operating Systems Design and Implementation, Boston,
MA (2002)

23. Karger, P.A.: A retrospective of the VAX VMM security kernel. IEEE Trans, on Software
Engineering (1991)

24. Meushaw, R., Simard, D.: NetTop: Commercial Technology in highassurance applications.
(2005)

25. Bugnion, E., Devine, S., Rosenblum, M.: Disco: running commodity operating systems on
scalable multiprocessors. In: Proc. of the 16th ACM Symposium on Operating Systems
Principles, New York, NY, USA, ACM Press (1997) 143–156

26. Creasy, R.J.: The origin of the VM/370 time-sharing system. IBM Journal of Research and
Development (1982)

27. Waldspurger, C.A.: Memory resource management in VMware ESX server. In: Proc. of the
5th Symposium on Operating Systems Design and Implementation. (2002)

28. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.:
PlanetLab: an overlay testbed for broad-coverage services. SIGCOMM Comput. Commun.
Rev.33(3) (2003) 3–12

