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Abstract

Distributed applications play an increasingly crucial role
in business-critical enterprise operations. Understanding
the performance of such applications is challenging yet
essential due to their growing economic value. A par-
ticularly important problem is performance prediction:
How will application-level performance vary in response
to changes in workload? This paper presents a practi-
cal and accurate approach to predicting response times
as a function of workload mix in complex modern dis-
tributed applications. We compare our approach against
several alternatives, evaluating their ability to predict the
performance of two large, real business-critical produc-
tion systems and a testbed application subjected to ex-
tremely variable synthetic workload. Our results show
that our method yields accurate response time predic-
tions under a wide range of conditions, and that our mod-
els generalize well to previously-unseen regions of work-
load/performance space.

1 Introduction

Modern distributed applications continue to grow in scale
and complexity. Distributed enterprise applications are
furthermore assuming a growing role in business-critical
operations. Understanding the performance of such appli-
cations is consequently increasingly difficult yet increas-
ingly important due to their economic value. This paper
considers the problem of performance prediction in dis-
tributed applications: Given forecasts of future applica-
tion workload, we seek to predict application-level per-
formance. A good solution to this problem will enable
operators to explore a wide range of important “what-if”
scenarios, e.g., “How will mean response times at my E-
commerce site change if the the number of shoppers dou-
bles and the buy:browse ratio increases by 50%?” While
this paper does not address the complementary problem
of workload forecasting, we show that if accurate work-
load forecasts are available they can be mapped directly
to accurate performance predictions.�
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Our approach leverages earlier work that focused on
retrospectively explaining performance in terms of the
mix of transactions in workload [13]. We incorporate
queueing-theoretic extensions into the earlier technique to
obtain a method suitable for prospectively predicting fu-
ture performance as a function of transaction mix. One
novel feature of our approach is that whereas perfor-
mance models in prior literature include a scalar mea-
sure of workload intensity, we describe workload using
a transaction-mix vector.

The advantage of our method is that it is both prac-
tical and general: Our performance models can be cal-
ibrated using purely passive measurements that are rou-
tinely collected in today’s real production applications.
Furthermore our approach can be applied to a wide range
of workload conditions and a wide variety of applica-
tion architectures, including locally-distributed multi-tier
E-commerce applications and globally-distributed high-
availability enterprise applications.

We experimentally compare our proposed method with
several alternatives, evaluating their ability to predict re-
sponse times in three very different applications: the Web
shopping site of a major retailer, a business-critical inter-
nal enterprise application, and a testbed application serv-
ing extraordinarily heavy and variable workload. Our em-
pirical results show that our method accurately predicts
response times for the full range of applications consid-
ered. Our method remains accurate under light, moderate,
and heavy workload. Furthermore our performance mod-
els generalize well to regions of workload/performance
space very different from those present in the calibration
data. Finally, we demonstrate that transaction mix models
achieve substantially greater accuracy than similar models
that employ scalar measures of workload intensity.

The remainder of this paper is organized as follows:
Section 2 presents our approach to performance predic-
tion, defines our main accuracy measure, and describes an
accuracy-maximizing model calibration procedure. Sec-
tion 3 characterizes the networked applications used in
our tests and presents our empirical evaluation results.
Section 4 reviews related work, and Section 5 concludes
with a discussion.
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2 Performance Models
This section describes our preferred performance predic-
tion model, which we call the “Composite Model,” and
several variants and alternatives that we shall later com-
pare it against. All models have the same general high-
level form:

P � F�a ���W � (1)

where P is a scalar summary of application performance,
F specifies the functional form of our models, �a is a vec-
tor of calibrated parameters, and

�
W is a vector of workload

characteristics. This section explains the development of
our approach. Section 2.1 justifies our basic assumptions
in terms of the measured properties of enterprise appli-
cations. Section 2.2 presents our performance models.
Section 2.4 defines the accuracy measure that we seek to
optimize, and Section 2.5 explains how we calibrate our
models to maximize accuracy according to this measure.

2.1 Assumptions
Our approach begins with the following observations
about modern distributed enterprise applications:

1. Workload consists of request-reply transactions.
2. Transactions occur in a small number of types (e.g.,

“log in,” “browse,” “add-to-cart,” “checkout” for an
E-commerce site).

3. Transaction types strongly influence system resource
demands (e.g., “checkout” transactions at an E-
commerce site require more CPU than browsing).

4. Resources are adequately provisioned or over-
provisioned in business-critical enterprise applica-
tions.

5. Crucial aspects of workload are statistically nonsta-
tionary, i.e., the frequency distributions of key work-
load characteristics vary dramatically over time.

The first two observations apply to every commercially
important distributed production application that we have
encountered. The third property arises because transac-
tion types often determine the run-time code path through
application logic, which in turn strongly influences re-
source service demands. The fourth property, adequate
resource provisioning, is a fundamental requirement of
capacity planning in business-critical applications. By
design, allocated capacity is generous relative to offered
workload; heavy load and overload represent serious fail-
ures of the capacity planning process. Fortunately they are
rare because capacity planning for intra-enterprise appli-
cations can often exploit good estimates of the total user
population and anticipated usage patterns.

Even in server-consolidation scenarios where elevat-
ing resource utilization is an explicit goal, practitioners
are advised to keep peak utilizations of resources such as

CPU below 70% [8]. In practice, enterprise system oper-
ators are typically even more cautious than this conserva-
tive guideline. Figure 1 shows cumulative distributions of
resource utilizations encountered by arriving transactions
in the two distributed production applications used in our
investigation, “ACME” and “VDR.” Transactions arriving
at these two very different applications operated by two
different firms rarely find utilization at any resource in ex-
cess of 35%; utilization greater than 50% is almost never
encountered. This implies that while queueing times at
resources such as CPUs and disks should not be ignored,
service times will often account for much of overall trans-
action response times.

Together with our first three assumptions, Figure 1
suggests a radically simple performance model that ac-
counts for transaction service times but ignores queueing
entirely. Our previous work reports that such a model
works surprisingly well in practice. Specifically, the sum
of response times across all transactions within a spec-
ified time interval is well explained by transaction mix
alone [13]. However, Figure 1 also suggests that waiting
times are sometimes non-negligible, and our approach in
this paper models waiting times.

Nonstationarity, our final observation, is an impor-
tant difference between real-world workloads and con-
ventional synthetic benchmark workloads. Whereas most
benchmarks hold the ratios of different transaction types
constant over time, we observe that the relative prevalence
of different transaction types varies considerably in the
wild. For example, Figure 2 shows the fraction of trans-
actions in the ACME application that are of type “add-
to-cart” in non-overlapping 5-minute time windows. This
fraction ranges over two orders of magnitude, from 0.1%
to over 10%, and shows considerable fluctuation on short
time scales.

Nonstationarity has important implications for the de-
sign, calibration, and validation of performance models.
Obviously, models must not require or implicitly assume
statistically stationary workload. Furthermore, the full
spectrum of workloads for which we must predict perfor-
mance will not be available during calibration. Models
must therefore generalize well to workloads that are very
different from those used for calibration. Finally, a con-
vincing validation requires nonstationary workloads; con-
ventional stationary benchmarks are not adequate.

In summary, we observe that transaction mix alone is
a powerful performance predictor; it will be the

�
W of

Equation 1. We have also seen that queueing can be
non-negligible, and our models will explicitly account for
waiting times in addition to service times. Our perfor-
mance measure P will be aggregate transaction response
time within short time windows (e.g., 5-minute intervals);
this can easily be converted to average response time be-
cause we know the number of transactions within each
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Figure 1: CDFs of resource utiliza-
tions encountered by arriving trans-
actions in two real applications.

Figure 2: Nonstationarities in
ACME workload: “add-to-cart”
fraction versus time.

Figure 3: Basic queueing model:
single station, infinite servers.

window. After specifying the form of our models F and
defining our measures of model accuracy, we describe
how to obtain accuracy-maximizing parameters �a.

2.2 Models
This section develops a series of three performance mod-
els of increasing sophistication and breadth of applicabil-
ity. The Basic model of Section 2.2.1 takes into account
transaction mix alone; it is taken from previous work [13].
Section 2.2.2 extends the Basic model to explicitly incor-
porate queueing delays. The Extended model does not
conform to the template of Equation 1, however, because
it requires resource utilizations as well as transaction mix.
While the Extended model may offer improved accuracy
when used to retrospectively explain performance, it can-
not be used to predict performance given workload alone.
The Composite model of Section 2.2.3 corrects this defi-
ciency by modeling resource utilizations in terms of trans-
action mix and incorporating the utilizations thus obtained
into the Extended model. Finally, our empirical evalu-
ations will include variants of the Basic, Extended, and
Composite models that use only a scalar measure of work-
load intensity rather than a vector describing transaction
mix.

2.2.1 Basic Model

We divide time into short non-overlapping intervals, e.g.,
5 minutes. For interval i let Ni j denote the number of
transactions of type j that began during the interval and
let Ti j denote the sum of their response times. Our Basic
model has the form

yi � ∑
j

Ti j � ∑
j

α jNi j (2)

where yi is the sum of all transaction response times dur-
ing interval i. Note that no intercept term is present in
Equation 2, i.e., we constrain the model to pass through
the origin: Aggregate response time must be zero for in-
tervals with no transactions. Values of model parameters
α j are obtained through model calibration; let a j denote

these calibrated values. Intuitively, calibrated parameters
a j represent typical service times for the various transac-
tion types.

For given model parameters a j and observed transac-
tion mix Ni j at time i, let

ŷi � F�a ���Ni �	� ∑
j

a jNi j (3)

denote the fitted value of the model at time i. If the Ni j rep-
resent past workload, ŷi can be interpreted as the model’s
guess of what aggregate response time should have been
during interval i. If instead the given transaction mix is a
forecast of future workload, the fitted value represents the
model’s performance prediction. Note that since the to-
tal number of transactions within an interval is known—it
is simply ∑ j Ni j—one can convert a fitted value ŷi repre-
senting aggregate response time into an average response
time.

Figure 3 depicts our Basic model graphically as an open
queueing network containing a single service station with
an infinite number of servers. Waiting cannot occur in
such a system, and Equation 2 does not explicitly model
waiting times.

2.2.2 Extended Model

We extend the Basic model of Equation 2 by adding terms
representing waiting times, as follows:

yi � ∑
j

Ti j � ∑
j

α jNi j 
 �
∑

j
Ni j ��
 ∑

r
αr

Uir�
1 � Uir ���

(4)
The rightmost terms represent waiting times in an M/M/1
queue, with one queue per resource; Uir denotes the uti-
lization of resource r during interval i. The naı̈ve approach
of adding utilizations as simple linear terms has no basis
in queueing theory, but we shall compare our approach
with this alternative (see the discussion of Table 4 in Sec-
tion 3.2.1).

Figure 4 depicts our Extended model as an open queue-
ing network consisting of a single-server station for each
resource class (e.g., CPU, disk, network) at each tier (e.g.,
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Figure 4: Extended queueing model: one station per re-
source at each tier.

application server, database server). Although the figure
shows only two tiers with three resources each, the model
can accommodate additional tiers (e.g., for a Web server)
and additional resources. The Extended model captures
the distributed aspect of an application by explicitly in-
cluding network queueing effects.

2.2.3 Composite Model

Because it relies on resource utilizations, the Extended
model of Equation 4 cannot be used to predict perfor-
mance based on transaction mix Ni j alone. Our Compos-
ite model overcomes this difficulty by estimating utiliza-
tions as weighted sums of transaction counts:

Uir � β0r 
 ∑
j

β jrNi j (5)

where β jr represents the service demand of transaction
type j on resource r. The total service demand placed on
the resource is the sum of service demands of all transac-
tion types. As with the Basic response time model of Sec-
tion 2.2.1, we obtain for each resource r parameters b jr
corresponding to the β jr during model calibration. Unlike
the model of Equation 2, however, we include an intercept
term β0r in our utilization models, because real system re-
sources are not entirely idle even in the complete absence
of application workload.

Once we have obtained utilization estimates Ûir from
a calibrated utilization model (Equation 5), we substitute
these into a calibrated Extended model to obtain a Com-
posite model of aggregate response time as a function of
transaction mix Ni j . In rare cases where Ûir � 0 or Ûir � 1,
we correct the utilization estimate to zero or 1 � ε, respec-
tively.

2.2.4 Scalar Models

Recent queueing models of distributed application perfor-
mance rely on a scalar measure of workload intensity that
ignores transaction types [16,18]. What additional predic-
tive power do we obtain by using a transaction-mix vec-
tor? To address this question, our empirical evaluations
will compare our models with Scalar variants that use only

the total number of transactions in each time interval. For
example, the Scalar variant of the Basic model is

yi � ∑
j

Ti j � αNi (6)

where Ni � ∑ j Ni j is the total number of transactions that
occurred during time interval i.

2.3 Discussion
In its present form, our approach contains a number of
simplifications that deserve mention. We account for
waiting times at each resource type using an expression
for a single-server queue, whereas many real production
applications run on systems with multiple CPUs and disks
at each tier. Like others who have made similar simpli-
fying assumptions [16], we find that in practice this ap-
proach works well. Our model assumes an open network
in which requests exit after service. A closed network
model would require us to model client “think times,” as
in some previous models of distributed applications [18].

Our queueing networks implicitly assume that transac-
tions do not recirculate among resources; our models ag-
gregate all service times from all of a transaction’s visits
to a resource, rather than explicitly modeling visits sepa-
rately. More sophisticated queueing models take into ac-
count recirculation among service stations [12], but such
models require detailed information about how transac-
tions move among resources, which is often not available
in practice. Tools to gather this information exist as re-
search prototypes, e.g., Magpie [3], but few real produc-
tion systems are currently instrumented to measure fine-
grained transaction resource visits. We have designed our
models to require for calibration only data that is routinely
collected on today’s real production applications.

We have implicitly assumed that an application’s set
of transaction types is fixed and the relationship between
transaction type and resource demands is stable. This is
not a restrictive assumption in practice because the time
required to re-calibrate new performance models is short
compared to the time scales on which application logic
and transaction structure changes. In our experience with
real production applications in the enterprise, changes to
application structure and configuration are normally rare;
stakeholders in business-critical applications do not un-
dertake such modifications lightly or frequently. Even if
transaction types or their resource demands change com-
pletely, it takes only a day or two to gather sufficient data
to calibrate completely new performance models. Less
drastic changes are easier to handle: Model calibration
itself takes less than a second, and therefore continuous
re-calibration (e.g., at the conclusion of every 5-minute
measurement interval) can be used to track gradual drift
in the workload/performance relationship.
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A final simplification is that our models ignore inter-
action effects across transaction types and implicitly as-
sume that queueing is the only manifestation of conges-
tion. However queueing does not describe certain kinds of
resource contention, e.g., cache interference. “Checkout”
transactions, for instance, may require more CPU service
time during heavy browsing if the latter reduces processor
cache hit rates for the former. Our models do not account
for such effects. The question of whether our simplifying
assumptions are oversimplifications is ultimately an em-
pirical one, which we address in Section 3.

2.4 Accuracy Measures
If yi is the aggregate response time during interval i and ŷi
is the fitted value obtained from a calibrated performance
model, let ei � yi � ŷi denote the residual (model error) at
time i. We measure model accuracy in terms of intuitive
functions of the residuals. We cannot use the conven-
tional coefficient of multiple determination R2 to assess
the model accuracy; it is not meaningful because Equa-
tion 2 and Equation 4 lack intercept terms [14, p. 163].

Our main figure of merit, normalized aggregate error,
generalizes the familiar, intuitive concept of absolute per-
cent error:

normalized aggregate error � ∑i � ei �
∑i yi

(7)

Consider, for example, a single (y � ŷ) pair: if y � 100 and
ŷ � 105, then normalized aggregate error is 0.05, indicat-
ing that the model’s prediction is off by 5%. We say that
model parameters for Equation 2 or Equation 4 are opti-
mal if they minimize error as defined by Equation 7.

In addition to our main figure of merit we shall also re-
port the distribution of normalized residuals � ei � � yi, scat-
terplots of

�
y � ŷ � pairs, and order statistics on the normal-

ized residuals. Each of these measures offers different in-
sight into model accuracy.

2.5 Calibration
The input to calibration is a data set consisting of ag-
gregate response times yi and transaction mixes

�
Ni ��

Ni1 � Ni2 ��������� . For our Extended and Composite models
we furthermore require resource utilizations Uir. These
inputs correspond to readily available and purely passive
measurements of applications and their underlying system
resources. The predictive accuracy of our models benefits
from variations in transaction volume, transaction mix,
and resource utilization in the calibration data. In our ex-
perience a few hundred time intervals i are required for
good results. If measurements are taken at 5-minute in-
tervals, it takes a day or two to collect sufficient data for
calibration.

The output of calibration is a set of parameters a j for
the Basic model. We additionally obtain ar for an Ex-
tended model and, for a Composite model, b jr for the uti-
lization model of Equation 5.

The goal of calibration is to compute parameters that
maximize model accuracy. The denominator in Equa-
tion 7 is a constant, so to achieve optimal accuracy a
calibrated model must minimize the numerator, i.e., the
sum of absolute residuals. This is a special case of linear
programming, for which specialized variants of the sim-
plex algorithm have been developed; we use the algorithm
of Barrodale & Roberts [4]. The algorithm yields model
parameters that optimize retrospective explanatory accu-
racy with respect to the data used for calibration. This
exercise is sometimes known as least absolute residuals
(LAR) regression. Ordinary least squares (OLS) regres-
sion minimizes the sum of squared residuals, and it can
be shown that a model with OLS parameters can have ar-
bitrarily worse accuracy than an optimal model accord-
ing to the measure of Equation 7. In practice, we find
that LAR-calibrated models are substantially more accu-
rate than their OLS-calibrated counterparts.

Another advantage of LAR is that it is robust, i.e., it
resists the influence of extreme values in the calibration
data set. By contrast, OLS is far more sensitive to dis-
tortion by outliers. A wide variety of robust regression
procedures are available; several are variants of OLS and
LAR [15, 19]. We prefer plain-vanilla LAR because it
guarantees optimal retrospective accuracy, and because it
is conceptually simple and easy to explain. The only dis-
advantage of LAR is that numerical solvers are not as
widely available. However, as reported previously, the
substantial accuracy gain over OLS outweighs the incon-
venience of LAR [13].

3 Empirical Evaluation
Our evaluation methodology is to divide each data set into
a prefix consisting of the first 50% of all time intervals in
the data set and a suffix consisting of the remainder. We
calibrate our models and evaluate their retrospective ex-
planatory accuracy on the prefix. We then apply the cali-
brated models to the transaction mix in each time interval i
of the suffix to obtain fitted values ŷi. Finally, we compare
these ŷi with observed yi to evaluate prospective predic-
tion accuracy. This section first describes the three very
different data sets used in our experiments, then presents
our results.

3.1 Data Sets

Table 1 summarizes our three data sets. The first two are
distributed production applications serving real customers

5



Data Production Transactions: Trans’ns/min Resp time (sec) Type of
Set Dates Duration Number Types Mean Median Mean Median Application

ACME July 2000 4.6 days 1,180,430 93 182.2 183.0 0.929 0.437 Web Retail
Shopping

VDR Jan 2005 7.8 days 666,293 37 59.4 56.4 1.289 1.236 Business-critical
Enterprise

Testbed April 2004 38 hours 4,920,642 10 2147.8 3163.8 0.096 0.040 PetStore

Table 1: Summary of data sets.

and real enterprise users, respectively. The third was col-
lected in an instrumented testbed running a sample appli-
cation serving carefully crafted synthetic workload.

Several other data sets of comparable scale and quality
were available to us. We chose the three described in this
section because together they severely challenge the abil-
ity of our method to generalize along several dimensions.
The data sets of Table 1 differ in terms of the nature of the
application, the time of data collection, the extent of ge-
ographic distribution, and workload. The workloads that
gave rise to these data sets furthermore exhibit the non-
stationarities described in Section 2.1, making them far
more difficult to model than data derived from conven-
tional synthetic benchmark workloads.

3.1.1 ACME: DotCom-Era Web Shopping

The “ACME” data set is taken from the busiest of
seven servers comprising a major national retailer’s Web
shopping site. This server accounts for roughly 38%
of all ACME transactions during the measurement pe-
riod. ACME was typical of large E-commerce sites
circa 2000. Load balancers apportioned incoming client
sessions across Web servers, which served static page re-
quests directly and passed more complex transactions to
application servers and database servers below them. For
confidentiality reasons, the researchers who studied the
ACME site were not permitted to disclose the details of
its hardware and software infrastructure. However, an ex-
tensive workload characterization is available [2].

The ACME data set includes measurements of transac-
tion response times and system resource utilizations col-
lected at the application server tier; it does not include
requests for static Web pages. Each transaction is further-
more tagged as a cache hit or a miss, and we treat hits
and misses of the same transaction type as two different
transaction types.

3.1.2 VDR: Modern Enterprise Application

Figure 5 depicts the architecture of the globally-
distributed VDR application. VDR is a high-availability
business-critical internal HP application serving both ex-
ternal customers and HP users on six continents. Its sys-
tem architecture therefore incorporates redundancy and
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Figure 5: VDR application architecture.

failover features both locally and globally, as shown in
the figure. Regional hubs in Atlanta, Swinden, and Sin-
gapore respectively serve the Americas, Europe/Middle
East/North Africa, and Asia/Pacific regions. All hosts at
the application server tier are HP 9000/800 servers run-
ning HP-UX B.11.11. The Americas region has two ap-
plication server hosts with 16 CPUs and 64 GB RAM
each. The EMEA region has three app server hosts with
16 CPUs and 32 GB RAM each, and the Asia/Pacific re-
gion has two app server hosts with 12 CPUs and 20 GB
RAM each. All of the app servers ran BEA WebLogic.
We have less detailed information about hosts at the
database tier, but we know that they are similar in num-
ber and specifications to those at the app server tier and
that they ran Oracle 9i.

An interesting feature of VDR is that different organi-
zations are responsible for the application itself and for
the managed app server infrastructure upon which it runs
(the latter is indicated with a dashed rectangle in Fig-
ure 5). VDR operators and system architects have told
us that VDR transactions are relatively “heavyweight” in
the sense that they place substantial demands on system
resources.

The VDR data set includes both transaction records
and system resource utilization measurements collected at
both application server and database server tiers. Open-
View Performance Agent (OVPA) collected system uti-
lization metrics; transaction response times are taken from
application-level logs.

Pronounced seasonal workload variations are present
in both the ACME and VDR data sets. Figure 6 shows
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Figure 6: Seasonality in VDR workload.

httperf

httperf

httperf

httperf
H

P 
N

et
Se

rv
er

  L
Pr

(P
II

 5
00

M
H

z,
 5

12
M

B
 R

A
M

)

O
ra

cl
e 

9i
R

2
W

in
do

w
s 

20
00

 S
er

ve
r

H
P 

N
et

Se
rv

er
  L

Pr
(P

II
 5

00
M

H
z,

 5
12

M
B

 R
A

M
)

B
E

A
 W

eb
L

og
ic

 7
.0

W
in

do
w

s 
20

00
 S

er
ve

r

H
P 

N
et

Se
rv

er
  L

Pr
(P

II
 5

00
M

H
z,

 5
12

M
B

 R
A

M
)

A
pa

ch
e 

2.
0.

48
R

ed
H

at
 L

in
ux

 7
.2

Clients Web Server App Server DB Server

Figure 7: Testbed hardware and software architecture.

hourly transaction counts for the first four days of the
VDR data set. Workload ranges from under 100 to
roughly 7,300 transactions per hour. The ACME data set
shows a similar daily cycle with comparably wide vari-
ation in workload levels. Other seasonal variations and
nonstationarities are present in both ACME and VDR data
sets.

3.1.3 Testbed: Heavy & Nonstationary Workload

The testbed data set is in many ways the most interesting
of the three used in our evaluations. The hardware and
software components of the testbed are depicted in Fig-
ure 7; the testbed has a switched 100 Mbps full-duplex
network. The sample application run in the testbed is a
Middleware Company version of the Java PetStore. In
its default configuration, the application could not support
more than 24 user sessions; at higher concurrency levels,
a large fraction of transactions aborted with errors. The
application configuration had to be manually tuned, af-
ter which the PetStore could support over 100 concurrent
users [9]. This allowed us to bombard the testbed with
very heavy workload from a large number of concurrent
client sessions while still receiving meaningful transac-
tion replies.

The workload submitted to the experimental testbed is
what makes this data set interesting, and also more chal-
lenging for evaluating the accuracy of our performance
models than either of our real production application data
sets. The workload consists of a steadily increasing num-
ber of client sessions whose think times are such that the
overall transaction rate reaching the application is a sine
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Figure 11: Nonstationarities in testbed workload:
throughput and add-to-cart fraction.

wave overlaid on a ramp. The server is deliberately over-
loaded during workload peaks in the second half of the
data set, i.e., every peak in the second half represents a
“flash crowd” or transient overload event. Because we
calibrate our models on the first half of the data set, when
load is light, the testbed data set allows us to evaluate how
well our models generalize to overload conditions that dif-
fer fundamentally from the workload/performance condi-
tions represented in the calibration data.

Figure 8 shows CDFs of CPU utilizations at the app
server and database tiers encountered by arriving trans-
actions. Over 25% of transactions arrive when database
CPU utilization exceeds 35% and app server CPU utiliza-
tion exceeds 85%. Comparing Figure 8 with Figure 1,
we see that the testbed is far more heavily loaded than
our two real production systems. This is important for
comparing our Extended and Composite models with the
Basic model; the former attempt to account for queueing
while the latter ignores it entirely.

Another distinctive feature of the testbed workload is
that it is highly nonstationary in the sense that transac-
tion mix varies dramatically over time. We achieve this
effect by sinusoidally varying two key workload param-
eters: the probability that a “browse” is followed by an
“add-to-cart,” and the probability that an “add-to-cart” is
followed by a “checkout.” The period and amplitude of
these two sine waves differ from one another and from
the sine wave governing the total number of transactions
submitted by clients.

Figure 11 illustrates one of the resulting nonstationar-
ities in our testbed workload (for clarity, only the first
20 hours of the 38-hour data set are shown). The upper
time series in the figure shows total transaction through-
put and the lower series shows the fraction of transactions
that are of type “add-to-cart.” Note that the two series
are, by design, not aligned. Approximately 7.5 hours into
the test run (indicated by vertical line “A” in the figure),
workload is low but the fraction of add-to-cart transac-
tions is high. Ten hours later (line “B”), the peaks in the
two series are roughly aligned. A time series of “check-
out” transactions would be aligned with neither of the two
shown in Figure 11. Figure 9 illustrates the nonstation-
arities in our testbed workload from a different perspec-
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Figure 9: Nonstationarities in
testbed workload: throughput vs.
buy:browse ratio.

Figure 10: Detecting a performance
anomaly in the “FT” application.

tive. The figure shows a scatterplot of throughput versus
the buy:browse ratio. For all levels of workload intensity,
from under 500 transactions per minute to 4,000 transac-
tions per minute, the buy:browse ratio varies widely.

We calibrate models on a prefix of each data set and
evaluate their predictive accuracy on a suffix. Nonstation-
arities therefore imply that predictive evaluations will in-
volve workloads very different than those used in calibra-
tion. We believe that nonstationarities are essential for a
challenging and credible evaluation of the extent to which
models generalize beyond the calibration data.

3.2 Results

Except where noted otherwise, we calibrate our models on
the first half of each data set, and also measure their ret-
rospective explanatory accuracy on the first half. We then
evaluate the predictive accuracy of the calibrated models
using the transaction mixes in the second half of each data
set.

3.2.1 Retrospective Explanation

Table 2 summarizes the explanatory accuracy of eight
models on three data sets according to our main figure
of merit, normalized aggregate error (Equation 7). The ta-
ble includes both the standard versions of our Basic and
Extended models, which model performance as a function
of transaction mix, as well as Scalar variants that ignore
transaction types and use only the total number of transac-
tions. Both OLS and LAR regression are used to calibrate
each model variant. Several results are consistent across
all three data sets.

First, we note that our Extended model achieves re-
markably high accuracy when calibrated with LAR re-
gression. Normalized aggregate error ranges from un-
der 10% for VDR to roughly 17% for the highly vari-
able and heavily-loaded Testbed application. Our Basic
model achieves nearly the same accuracy for the two pro-
duction applications, but it is noticeably less accurate for
the Testbed data set. This is what we expect because the

Basic model ignores queueing, which is non-negligible in
the heavily-loaded Testbed application.

Second, normalized aggregate error is substantially
lower when LAR regression is used. The difference is
particularly striking in the case of the Testbed application:
Error increases from 17% to 25% if we employ OLS re-
gression instead of LAR in the Extended model.

Third, our transaction mix performance models achieve
substantially better accuracy than their Scalar counter-
parts. For the VDR application, for example, our error
measure is over 55% higher for an ExtendedScalar model
as compared to the Extended model (14.54% vs. 9.35%)
when both are calibrated with LAR.

We also evaluated model variants that include an inter-
cept term in Equations 2 and 4. Such models are “wrong”
from a queueing-theoretic perspective because they imply
nonzero aggregate response times even when no transac-
tions occur. However an intercept can improve retrospec-
tive accuracy but not reduce it, so we might be tempted
to include one if we are willing to trade “correctness” for
accuracy. We found that the benefits of including an inter-
cept are very limited, and that the “correct” models with
no intercept are usually almost as accurate.

Our previous work explains how accurate retrospec-
tive explanatory performance models can be useful [13].
The most obvious application is performance anomaly
detection, i.e., identifying when performance is surpris-
ing, given workload. Knowing whether workload explains
performance can guide our choice of diagnostic tools: Or-
dinary overload might recommend bottleneck analysis,
whereas degraded performance not explained by work-
load might suggest a fault in application logic or configu-
ration.

Furthermore, we have shown that a real performance
bug episode in a real distributed production application
appears as a prominent performance anomaly. Figure 10
shows a scatterplot of

�
yi � ŷi � pairs generated by a Ba-

sic model of the “FT” application during a period when
application operators reported episodes of a performance
bug. One episode corresponds to the prominent cluster
of points in the lower right corner of the figure. FT is a
globally-distributed enterprise application that resembles
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Data Basic BasicScalar Extended ExtendedScalar
Set LAR OLS LAR OLS LAR OLS LAR OLS

VDR 0.0940 0.1002 0.1462 0.1485 0.0935 0.0997 0.1454 0.1478
ACME 0.1281 0.1308 0.1609 0.1617 0.1210 0.1239 0.1598 0.1612
Testbed 0.3230 0.3605 0.3646 0.4403 0.1710 0.2493 0.1978 0.2320

Table 2: Retrospective explanatory accuracy: Normalized aggregate error ∑i � ei � � ∑i yi.

VDR in several respects. See [13] for details on the FT
application and on this case.

Model calibration takes under one second for large data
sets, so our method can be used to detect anomalies in real
time by simply recomputing a new model at the conclu-
sion of each time interval (e.g., every 5 minutes) using
a large moving window of historical data (e.g., from the
previous week or month). The data point corresponding to
the most recent interval may then be deemed anomalous
if the overall accuracy of the model is good but the most
recent performance observation yi disagrees substantially
with the model’s fitted value ŷi.

3.2.2 Prospective Prediction

Table 3 summarizes predictive accuracy results for our
Basic and Composite models calibrated using LAR re-
gression; the table also includes Scalar variants of both
models. We do not present results for OLS calibration be-
cause they do not alter the qualitative conclusions we drew
from Table 2: OLS typically yields substantially less ac-
curacy than LAR.

In addition to normalized aggregate error, Table 3
shows an alternative accuracy measure: the median of
the distribution of normalized absolute residuals � ei � � yi.
The two measures differ in how they penalize inaccuracy.
Normalized aggregate error severely punishes even a sin-
gle large residual but may “forgive” many small residuals,
even those where � yi � ŷi � is large in relation to yi. Our
other accuracy measure, median � ei � � yi, has the opposite
tendency: It forgives a large residual if the corresponding
yi is also large, but it penalizes even a small residual if yi
is also small.

Table 3 shows that our approach yields high accuracy
by both measures. Even the Basic model achieves nor-
malized aggregate error under 15% for both real produc-
tion data sets, and its individual performance predictions
ŷi are within 14% of the true value yi half of the time.
The Basic model performs poorly for the heavily-loaded,
highly nonstationary Testbed data, as we would expect,
but it leaves little room for improvement when applied to
real enterprise applications.

Our Composite model offers far better accuracy than
the Basic model for the Testbed, as we would expect. The
Composite model offers relatively modest accuracy im-
provements over the Basic model for the lightly-loaded
VDR application. This too is not surprising. Resources

are generously provisioned for business-critical enterprise
applications like VDR, and resource utilizations are con-
sequently low most of the time (Figure 1). Queueing de-
lays are therefore likely to be small in relation to service
times, so we gain little accuracy with a Composite model
that accounts for queueing delays that the Basic model
ignores. Aggregate response time is easier to predict in
lightly-loaded applications than in heavily-loaded ones.

Another intuitive aspect of Table 3 is that both Basic
and Composite models have better predictive accuracy on
the real production applications than on the testbed data.
It is easier to predict aggregate response time in a system
with relatively moderate variations in transaction volume
and mix than in the wildly variable testbed workload.

As with retrospective explanatory accuracy (Table 2),
prospective prediction accuracy is substantially better in
the models that exploit knowledge of transaction types
than in their Scalar variants. Transaction mix is a remark-
ably powerful performance predictor.

The only puzzling feature of Table 3 is that the Com-
posite model yields worse normalized aggregate error
than the Basic model for the ACME application. We
suspect that this is due to limitations in the ACME data
set. Whereas we have utilization measurements at both
app server and database server tiers for VDR and for
our testbed, we have only app server measurements for
ACME. Furthermore it is suspected that the bottleneck re-
source in the ACME system during the measurement pe-
riod was the Java thread pool in the application server [1].
This case illustrates a limitation of our method: If we do
not have utilization measurements of performance-critical
resources—e.g., database server hardware resources or
“soft” resources like the app server thread pool—then cal-
ibration will likely overfit models to the inadequate input
data. Calibration on such deficient data yields models that
are accurate in retrospect only accidentally, and that are
led astray by irrelevancies when used for prediction.

Figures 12, 13, 14, and 15 illustrate both retrospec-
tive and predictive accuracy for a Composite model of the
VDR application calibrated with LAR regression. In all
cases, retrospective fitted values or residuals are shown in
blue and prospective fitted values are shown in red. Fig-
ure 12 presents a time series of observed aggregate re-
sponse times yi overlaid on fitted values ŷi. Overall, the
latter track the former quite closely. Figure 13 shows the
difference between the two time series of Figure 12, i.e.,
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Basic BasicScalar Composite CompositeScalar
Data median median median median
Set ∑i � ei �

∑i yi � ei � � yi
∑i � ei �
∑i yi � ei � � yi

∑i � ei �
∑i yi � ei � � yi

∑i � ei �
∑i yi � ei � � yi

VDR 0.1226 0.0963 0.1621 0.1418 0.1221 0.0933 0.1606 0.1420
ACME 0.1470 0.1378 0.1523 0.1424 0.1566 0.1472 0.1525 0.1431
Testbed 0.6257 0.5056 0.6528 0.5247 0.3269 0.1283 0.3702 0.1708

Table 3: Prospective prediction accuracy: Normalized aggregate error ∑i � ei � � ∑i yi and median � ei � � yi.
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Figure 14: Scatterplot of
�
yi � ŷi � pairs. Figure 15: CDF of � ei � � yi.

the time series of residuals. Residuals are not markedly
larger for prospective performance prediction than for ret-
rospective performance explanation. For the VDR data
set, our model generalizes well from historical data used
for calibration to future workload data used for prediction.

Figure 14 shows a scatterplot of
�
yi � ŷi � pairs. The three

straight diagonal lines in the figure are the y � x diago-

nal, indicating perfect prediction, flanked by y � 2x and
y � x � 2. Although observed values yi range over three or-
ders of magnitude, fitted values ŷi almost always agree to
within a factor of two, and are usually within 15% of the
true yi value. Finally, Figure 15 shows the full distribu-
tions of � ei � � yi for both explanatory and predictive mod-
els. Our Composite model is highly accurate for retro-
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Figure 16: CDFs of app server CPU utilization in both
halves of re-ordered VDR data set.

spectively explaining performance, and the figure shows
that residuals remain remarkably small when the model is
used to predict performance based on transaction mix.

3.2.3 Generalizing to New Conditions

We performed an additional experiment to evaluate the
ability of our Composite model to predict performance in
a real application under workload conditions very differ-
ent from those of the calibration data. We sorted the VDR
data set in ascending order on application server CPU uti-
lization. The first half of the resulting re-ordered data set
contains time intervals during which CPU utilization on
the app server was very low. The second half contains
time intervals during which utilization was much higher.
Figure 16 shows the distributions of CPU utilizations in
both halves of the re-ordered VDR data set.

We calibrated a Composite model on the first half of
the re-ordered VDR data, when load was very light (CPU
utilization between 4% and 18%). We then evaluated the
model’s predictive accuracy on the second half, when load
was much heavier (utilization between 18% and 45%).
The model’s predictive accuracy was remarkably high
under this challenging test: normalized aggregate error
∑i � ei � � ∑i yi was under 9.7%; most predictions ŷi were
within 8% of the true value yi. Furthermore, the model’s
predictive accuracy did not vary with load: Figure 17
shows a scatterplot of error per time interval � ei � � yi ver-
sus CPU utilization on the app server. The figure shows
that accuracy is not noticeably worse under high utiliza-
tion (i.e., there is no upward trend to the right).
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Figure 17: Prediction error � ei � � yi versus app server CPU
utilization in re-ordered VDR data set.

Data set Basic naı̈ve Ur Composite
VDR 0.1226 0.1221 0.1221
ACME 0.1470 0.2193 0.1566
Testbed 0.6257 0.5794 0.3269

Table 4: Incorporating utilization naı̈vely vs. correctly:
Normalized aggregate error.

3.2.4 Modeling Utilization

A nonspecialist in queueing theory might wonder why we
do not simply incorporate resource utilizations into our
performance model by adding linear Ur terms rather than
the mysterious Ur � � 1 � Ur � terms of Equation 4. Table 4
compares the predictive accuracy of our Basic and Com-
posite models with a model that incorporates utilization
in the naı̈ve way. We see that the naı̈ve approach some-
times improves upon our Basic model. However the “cor-
rect” approach of our Composite model yields still better
accuracy. Several similar cases not reported here tend to-
ward the same conclusion: Embellishing the Basic model
in haphazard ways sometimes offers modest advantages,
but amendments with sound theoretical justifications (as
in our Extended and Composite models) yield better re-
sults overall.

4 Related Work

This section reviews literature on two topics central to
our work: queueing models of modern distributed ap-
plications and LAR regression. We also briefly discuss
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an alternative modeling approach not based on queueing
theory. Our previous work reviews at length literature
on an important application of our method, performance
anomaly detection [13]. A broader and more detailed re-
view of statistical performance modeling for performance
debugging is available in Cohen et al. [10].

4.1 Queueing Models

Queueing networks are the subject of a large literature;
see, e.g., Bolch et al. for a lengthy survey [6]. Jain de-
scribes applications of queueing theory to computer sys-
tem performance analysis [12]. The approaches that Jain
presents differ from ours in several key respects: Jain em-
phasizes the design of controlled experiments for perfor-
mance analysis, and an underlying assumption through-
out much of the book is that systematic benchmarking is
possible. Furthermore most of Jain’s queueing network
models assume far more detailed information about trans-
action behavior than is available in many practical situ-
ations. For instance, it is frequently assumed that the
number of times a transaction visits various resources is
known, and that the distribution of service times at each
station is known. If systems and applications are in-
strumented very thoroughly, e.g., if a tool such as Mag-
pie [3] can be used, such information might be collected.
However our work proceeds from the assumption that
lightweight passive measurements of transaction response
times and resource utilizations are all that is available.

In the remainder of this section we discuss in depth two
recent papers that present queueing models of distributed
applications, highlighting similarities and contrasts with
respect to our work. We refer the reader to their excellent
literature reviews for recent, broad, and thorough surveys
of related work in this field [16, 18].

Urgaonkar et al. model multi-tier Internet services as
product-form queueing networks and employ mean value
analysis to compute average response times [18]. The
model assumptions in this work differ from ours in several
details. For instance, Urgaonkar et al. explicitly model
concurrency limits whereas we do not. We assume an
open queueing network whereas Urgaonkar et al. assume
a closed network. We explicitly model distinct physi-
cal resources such as CPUs and disks whereas Urgaonkar
et al. associate a single queue with each tier. The models
differ in their assumptions about how requests recirculate
among tiers; compare our Figure 4 with their Figure 3 [18,
p. 294]. An important difference is that their method re-
quires more diverse model parameter estimates than ours,
including request visit ratios at each tier, service times
at each tier, user think times, and certain other parame-
ters related to congestion effects. Urgaonkar et al. report
that their approach yields accurate average response time
estimates for two sample applications (Rubis and Rub-

bos) subjected to synthetic workloads in a testbed envi-
ronment; they do not report validation results on real pro-
duction applications.

Stewart & Shen present a performance model of dis-
tributed Internet applications based on “profiles” that
summarize how application software components and
their workloads place demands on underlying system
resources [16]. Their model also accounts for inter-
component communications and component placement.
This work shares some features in common with our ap-
proach. For instance, Stewart & Shen account for waiting
times at servers using an M/G/1 model; we employ a sim-
ilar simplified model in Equation 4. They estimate the
resource demands of components by fitting linear models
to benchmark data. However, they describe workload by a
constant scalar arrival rate, whereas we use a time-varying
vector of per-type transaction counts.

An important difference with respect to our work is
that the method of Stewart & Shen requires very exten-
sive calibration: The resource consumption profile of each
component must be estimated via controlled benchmark
experiments, and inter-component communication over-
heads must also be estimated. The authors place each
profiled component on a dedicated machine during cali-
bration and require at least one benchmark run per com-
ponent. For their full model, O

�
N2 � benchmark runs are

required to estimate pairwise inter-component communi-
cation costs [16, p. 75]. Another difference is that we
do not require knowledge of internal application compo-
nent structure; we use only transaction type information
that is visible outside the application. Stewart & Shen re-
port that their most sophisticated model variant predicts
average response times to within 14%. Their validation
uses testbed applications (Rubis and StockOnline) and
benchmark-like synthetic workloads.

We emphasize two important differences between our
evaluation experiments and those presented in Urgaonkar
et al. and in Stewart & Shen. First, as noted above, we
have employed two real production traces for our eval-
uations in addition to a testbed application serving syn-
thetic workload; they have used only the latter. More im-
portantly, our testbed experiments use a workload that is
explicitly designed to be nonstationary in several key pa-
rameters, including both workload intensity and transac-
tion mix. By contrast, Stewart & Shen and Urgaonkar
et al. employ synthetic workloads reminiscent of classic
steady-state benchmarks both for model calibration and
for evaluation. The transaction mixes in their synthetic
workload (e.g., the buy:browse ratio in their synthetic e-
commerce workloads) remain constant during both cali-
bration and evaluation. We believe that our nonstationary
workload yields a far more challenging and more realistic
test of a performance model’s generalizability and predic-
tive accuracy.
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Our empirical evaluations could not include compar-
isons with the methods of Stewart & Shen and of Ur-
gaonkar et al. for two reasons: First, the input-output
behavior of the three models is sufficiently different to
preclude a true apples-to-apples comparison. More im-
portantly, the other two approaches require far more ex-
tensive calibration data than is available in our data sets.
However we do compare our preferred approach with al-
ternatives that, like the models of Stewart & Shen and
of Urgaonkar et al., employ a scalar measure of work-
load intensity (Section 2.2.4). We found that transaction
mix models offer substantially higher accuracy than their
Scalar counterparts (Section 3.2).

4.2 LAR Regression
Least absolute residuals regression (often known by other
names, including “L1” and “least (sum of) absolute de-
viations” regression) has a long and interesting history,
dating back to at least the 1750s [17] and possibly the
1630s [15]. Reasonably convenient algorithms for uni-
dimensional LAR regression were available by the nine-
teenth century. However the general multivariate case of
LAR regression is far more computationally difficult than
either univariate LAR or multivariate least-squares regres-
sion. The relative ease of computing least-squares param-
eter estimates accounts for much of the popularity of OLS
over LAR until recent decades, because multivariate LAR
is infeasible without high-speed computers and efficient
linear programming algorithms [5].

Statistical considerations sometimes recommend one
regression procedure or another. For instance, LAR and
least squares provide maximum likelihood parameter es-
timates under different assumptions about the distribution
of random errors in the input data. However, OLS is more
popular simply because alternatives are not readily avail-
able or widely known. This is unfortunate because in
many situations LAR regression optimizes the most natu-
ral measure of accuracy. Furthermore LAR is more robust
than OLS, i.e., less sensitive to extreme data points. Fi-
nally, computational complexity no longer precludes the
use of LAR: Efficient specialized linear programming al-
gorithms for LAR appeared in the 1970s [4], and LAR
parameter estimation remains an active research area [7].
In our experience LAR is a valuable tool and we recom-
mend it for situations where it is appropriate.

4.3 Automated Model Induction
Although we calibrate the parameters of our performance
models using measurement data, their functional form—
the F of Equation 1—is “hard wired.” An alternative
approach that has recently attracted considerable atten-
tion is to automatically “learn” the very structure of mod-

els from data by searching a large space of functional
forms [9–11]. “Automated model induction” seeks to
eliminate the need for expert knowledge (e.g., of queue-
ing theory in the present case) and thereby reduce the cost
of producing models.

The approach we have taken in this paper is closer
in spirit to that of conventional queueing models of dis-
tributed applications [16, 18]. We begin with a small
amount of “expert knowledge”: the knowledge that re-
sponse times consist of service times plus queueing times,
the waiting-time terms of Equation 4, and the observations
enumerated in Section 2.1. We then embed this knowl-
edge in the functional form of our models.

In our experience the cost of developing flexible, gen-
eral, accurate, and useful models grounded in elemen-
tary queueing theory is not prohibitive. Fixed-form mod-
els based on a handful of general observations about dis-
tributed application architecture are easy to define, cali-
brate, validate, explain, and justify from first principles.
They furthermore predict performance with remarkable
accuracy in a wide variety of real distributed production
applications.

5 Conclusions

The global geographic distribution, organizational decen-
tralization, opaque component structures, and unprece-
dented scale of modern application architectures con-
found performance modeling in challenging new ways.
Performance prediction in business-critical enterprise ap-
plications, however, remains an important problem due to
the growing economic importance of these applications.
This paper has presented a practical, versatile, and accu-
rate approach to predicting performance in complex mod-
ern distributed applications. Our method relies solely on
measurement data that is routinely collected in today’s
production environments, it can be adapted to a wide
range of applications, and calibrated models generalize
well to new regions of workload/performance space.

Our empirical results show that our method predicts
response times in real production applications to within
16% by two very different accuracy measures. A model
of a real production application calibrated under light load
predicts performance under heavy load to within 10%.
Even in a testbed application bombarded with extraordi-
narily heavy and non-stationary synthetic workload, we
obtain errors of 13%–33%. Our results show that if accu-
rate workload forecasts are available, they can be mapped
directly to accurate performance predictions. Our ap-
proach is novel in its use of transaction mix to predict
performance, and we have shown that transaction mix is
a far more powerful predictor of application performance
than scalar workload volume.
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