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Abstract

In the spirit of results on universal compression, we compare the performance of universal

denoisers on discrete memoryless channels to that of the best performance obtained by a k-th

order omniscient denoiser, namely one that is tuned to the transmitted noiseless sequence. We

show that the additional loss incurred in the worst case by any universal denoiser on a length-n

sequence grows at least like Ω
(

c
k

√

n

)

, where c is a constant depending on the channel parameters

and the loss function. This shows that for fixed k the additional loss incurred by the DUDE [1]

is no larger than a constant multiplicative factor.

Furthermore we compare universal denoisers to denoisers that are aware of the distribution

of the transmitted noiseless sequence. We show that, even for this weaker target loss, for any

universal denoiser there exists some i.i.d. noiseless distribution whose optimum expected loss is

lower than that incurred by the universal denoiser by Ω
(

1
√

n

)

.

1 Introduction

The problem of denoising is one of reproducing a signal based on observations obtained by passing

it through a noisy channel, the quality of the reproduction being measured by a fidelity criterion.

A version of this problem involving discrete memoryless channels was studied recently in [1]. In

this setting, the clean and noisy signal are sequences of symbols belonging to the channel input and

output alphabets respectively. In [1], a universal denoising algorithm, DUDE, was derived and its

performance compared to the best sliding window denoiser for the noiseless-noisy pair of sequences

in a semi-stochastic setting. It was shown that the additional loss incurred by the DUDE in this

setting goes to zero as fast as O(kM2k/
√

n) where M is the size of the alphabet in question and k

the order of the sliding window denoiser.

In this paper we derive lower bounds on the additional loss incurred by a denoiser in the

worst-case when compared to the best kth-order sliding window denoiser for a given noiseless-noisy

sequence pair. We show that for any denoiser and most channels and loss functions, this additional

loss grows at least like Ω(ck/
√

n), where c > 1 is a function of the channel parameters and the

loss function. This shows that for fixed k the additional loss incurred by the Discrete Universal

Denoiser DUDE [1] is no larger than a constant multiplicative factor of the best possible.
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We also prove a stronger result by deriving similar lower bounds for the excess loss incurred

by a denoiser when measured against a benchmark that is a generalization of the one used in the

compound decision problem [2], which can be viewed as a denoising problem over a binary input

channel. In doing so we show that a certain rate of decay of excess loss, namely O(1/n), that can

be achieved on continuous output channels cannot be achieved on discrete channels.

Extensions of these lower bounds to classes of sliding window denoisers based on a given bi-

directional context set and to two-dimensionally indexed data are also derived. We also consider

a stochastic variant of the same problem where for the class of i.i.d. noiseless sequences, we lower

bound the additional average loss incurred by any denoiser when compared to the least loss incurred

by any denoiser that is aware of the distribution.

We present the required notation in Section 2. Section 3 contains the main result of the paper

as well as some of the preliminary results that lead to it. Section 4 states the correponding result

for the benchmark considered in the compound decision problem. The above results and their

implications are discussed in Section 5. Extensions to arbitrary sliding window denoisers based on

arbitrary context sets and to two dimensionally indexed data are handled in Section 6. Finally, we

consider a stochastic variant of the problem in Section 7.

2 Notation

The notation we employ is similar to the one in [1]. We first define the notation we use to refer to

vectors, matrices and sequences. For any matrix A, ai will denote its ith column, and for a vector

u its ith component will be denoted by ui or u[i]. Often, the indices may belong to any discrete

set of appropriate size. For two vectors u and v of the same dimension, u ⊙ v will denote the

vector obtained from componentwise multiplication. For any vector or matrix A, AT will denote

transposition and for an invertible matrix A−T will denote the transpose of its inverse A−1.

For any set A, let A∞ denote the set of one-sided infinite sequences with A-valued components,

i.e., a ∈ A∞ is of the form a = (a1, a2, . . .), ai ∈ A, i ≥ 1. For a ∈ A∞, let an = (a1, a2, . . . ,an)

and aj
i = (ai, ai+1, . . . ,aj). More generally we will permit the indices to be negative as well, for

example, uk
−k = (u−k, . . . ,u0, . . . ,uk). For positive integers k1, k2, and strings si ∈ Aki , let s1s2

denote the string formed by the concatenation of s1 and s2.

We define the parameters associated with the universal denoising problem, namely, the channel

transition probabilities, the loss function and relevant classes of denoisers. Let the sequences Xn,

Zn ∈ An respectively denote the noiseless input to and the noisy output from a discrete memoryless

channel whose input and output alphabet are both A. Let the matrix Π = {Π(i, j)}i,j∈A, whose

components are indexed by members of A, denote the transition probability matrix of the channel

where Π(i, j) is the probability that the output symbol is j when the input symbol is i. Also, for

i ∈ A, πi denotes the ith column of Π. Let M = |A| denote the size of the alphabet and M the

simplex of M -dimensional probability vectors.

The denoiser outputs a reconstruction sequence {X̂t}
n

t=1 ∈ An. The loss function associated

with the denoising problem is denoted by the loss matrix Λ = {Λ(i, j)}i,j∈A, whose components are
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also indexed by elements of A, where Λ(i, j) denotes the loss incurred by a denoiser that outputs

j when the channel input was i. For i ∈ A, let λi denote the ith column of Λ.

An n-block denoiser is a mapping X̂n : An → An. For any zn ∈ An, let X̂n(zn)[i] denote the ith

term of the sequence X̂n(zn). For a noiseless input sequence xn and the observed output sequence

zn, the normalized cumulative loss LX̂n(xn, zn) of the denoiser X̂n is

LX̂n(xn, zn) =
1

n

n
∑

i=1

Λ
(

xi, X̂
n(zn)[i]

)

.

Let Dn denote the class of all n-block denoisers. A k-th order sliding window denoiser X̂n is a

denoiser with the property that for all zn ∈ An, if zi+k
i−k = zj+k

j−k then

X̂n(zn)[i] = X̂n(zn)[j].

Thus the denoiser defines a mapping,

f : A2k+1 → A

so that for all zn ∈ An

X̂n(zn)[i] = f
(

zi+k
i−k

)

, i = k + 1, . . . ,n − k.

Let Sk denote the class of kth-order sliding window denoisers. In the sequel we define the best

loss obtainable for a given pair of noiseless and noisy sequences with a k-th order sliding window

denoiser.

For an individual noiseless sequence xn ∈ An and a noisy sequence zn ∈ An, k ≥ 0 and n > 2k,

Dk(x
n, zn), the k-th order minimum loss of (xn, zn) is defined to be

Dk(x
n, zn) = min

X̂n∈Sk

LX̂n

(

xn−k
k+1 , zn

)

= min
f :A2k+1→A

1

n − 2k

n−k
∑

i=k+1

Λ
(

xi, f
(

zi+k
i−k

))

,

the least loss incurred by any k-th order denoiser on the pair (xn, zn). Note that we have slightly

modified the definition of normalized cumulative loss to accomodate noiseless and noisy sequences

of differing lengths. For a given channel Π and a noiseless sequence xn define

D̂k(x
n)

def
= E[Dk(x

n, Zn)] (1)

the expected k-th order minimum loss incurred when each random noisy sequence Zn produced

when xn is input to the channel is denoised by the best k-th order denoiser for the pair (xn, Zn).

This quantity will be one of the benchmarks against which we will compare the loss incurred by

other denoisers.

The compound decision problem [3], as pointed out in [1], can be viewed as a denoising problem

over a binary input channel. In work related to the compound decision problem “denoisers” are
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measured against the best 0-th order denoiser that is aware of the noiseless sequence xn but not

tuned to the output sequence. This benchmark has been generalized [4] to

D̄k(x
n)

def
= min

X̂n∈Sk

E
[

LX̂n

(

xn−k
k+1 , Zn

)]

= min
f :A2k+1→A

1

n − 2k

n−k
∑

i=k+1

E
[

Λ
(

xi, f
(

Zi+k
i−k

))]

, (2)

the minimum expected loss incurred by any k-th order sliding window denoiser when the noiseless

sequence is xn. Clearly for all xn ∈ An,

D̂k(x
n) = E

[

min
X̂n∈Sk

LX̂n

(

xn−k
k+1 , Zn

)

]

≤ min
X̂n∈Sk

E
[

LX̂n

(

xn−k
k+1 , Zn

)]

= D̄k(x
n). (3)

For any n-block denoiser X̂n we can define two different regret functions,

R̂k

(

X̂n
)

def
= max

xn∈An
E
[

LX̂n

(

xn−k
k+1 , Zn

)]

− D̂k(x
n),

and

R̄k

(

X̂n
)

def
= max

xn∈An
E
[

LX̂n

(

xn−k
k+1 , Zn

)]

− D̄k(x
n),

to be the additional loss incurred in the worst-case, over the benchmarks defined in (1) and (2)

respectively. From (3) for all n-block denoisers X̂n

R̂k

(

X̂n
)

≥ R̄k

(

X̂n
)

.

The Discrete Universal Denoiser (DUDE) was proposed in [1] and it was shown that the regret of

a sequence {X̂n,k
univ}1 of such denoisers converges to zero with n. More precisely

R̂k

(

X̂n,k
univ

)

= O
(
√

kM2k

n

)

.

In this paper we investigate if this is the best possible rate of convergence. To do so we derive lower

bounds on R̂k

(

X̂n
)

and R̄k

(

X̂n
)

for any n-block denoiser X̂n.

The above definitions measure the performance of a denoiser against the best sliding window

denoisers in a semi-stochastic setting where xn is a fixed individual noiseless sequence and Zn is a

random noisy sequence obtained when xn is transmitted over the channel. One could also judge the

universality of denoisers by considering the setting where the noiseless sequence Xn is a random

process generated according to an unknown distribution P from some known class P. Then the

performance of denoisers could be measured against that obtained by a denoiser that knows P.

Formally, let P denote the distribution of the noiseless sequence Xn, and let

D(P)
def
= min

X̂n∈Dn

EP

[

LX̂n(Xn, Zn)
]

,

1
X̂

n,k
univ refers to the DUDE with parameter k
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denote the minimum expected loss incurred by any n-block denoiser where the expectation is over

all Xn distributed according to P and all Zn that are outputs of the channel when Xn is the input.

In this stochastic setting, the regret of an n-block denoiser X̂n for a class of distributions P is

defined to be

RP
(

X̂n
)

def
= max

P∈P
EP

[

LX̂n(Xn, Zn)
]

− D(P).

It was shown in [1] that for the collection of all stationary processes the regret of the DUDE

asymptotically tended to zero. In this paper we consider the subclass In of i.i.d. distributions over

An and derive lower bounds on RIn

(

X̂n
)

for any X̂n ∈ Dn.

3 Main Result

The main result of the paper is that for most discrete memoryless channels and all X̂n ∈ Dn,

R̂k

(

X̂n
)

≥ ck

√
n

where c > 1 is a constant that depends on the channel transition probability matrix Π and the

loss function Λ. As we show later this applies to all non-trivial (Π,Λ) pairs. We also derive

similar results for R̄k

(

X̂n
)

and RIn

(

X̂n
)

. We consider the special case of 0th order denoisers in

subsection 3.2, move on to the general case of kth order denoisers in subsection 3.3. The case of

R̄k

(

X̂n
)

and RIn

(

X̂n
)

are handled in subsequent sections. To derive these results we first require

a few preliminary Lemmas on denoisers that minimize expected loss when the noiseless sequence

xn is drawn according to a known i.i.d. distribution. These are presented in subsection 3.1

3.1 Bayes Response for i.i.d. Distributions

Given a loss matrix Λ, the Bayes response (cf., e.g., [5]) x̂(P) of any P ∈ M is

x̂(P) = arg min
x̂∈A

λT
x̂ P,

and the corresponding Bayes envelope is

U(P) = min
x̂∈A

λT
x̂ P.

Let

X̂n
opt

def
= arg min

X̂n∈Dn

E
[

LX̂n(Xn, Zn)
]

denote the Bayes-optimal denoiser, the n-block denoiser that minimizes the expected loss and let

Dopt denote the minimum loss. Let PXi|zn denote the column vector whose α-th component is

Pr(Xi = α|Zn = zn). Then it is easy to see that

X̂n
opt(z

n)[i] = arg min
x̂∈A

λT
x̂ PXi|zn = x̂

(

PXt|zn

)

, (4)
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the Bayes response to PXt|zn and the minimum expected loss is

Dopt =
1

n

n
∑

i=1

E
[

U
(

PXi|Zn

)]

, (5)

the expected value of the corresponding Bayes envelope.

Example 1. Let A = {0, 1}. Let

ΠBSC =

[

1 − δ δ

δ 1 − δ

]

be the transition probability matrix of a binary symmetric channel with crossover probability δ,

and let

ΛHam =

[

0 1

1 0

]

represent the Hamming loss function. This example will be reexamined repeatedly in the paper.

The optimal denoiser for this example is the Maximum Aposteriori Denoiser (MAP) given by

X̂n
opt(z

n)[i] = arg max
x̂∈{0,1}

PXi|zn [x̂],

and the corresponding optimal loss is

Dopt =
1

n

n
∑

i=1

E

[

1 − max
x̂∈{0,1}

PXi|Zn [x̂]

]

. 2

In the following Lemma we restate the well known fact that if Xn is drawn i.i.d. then X̂n
opt is a

0-th order sliding window denoiser, i.e.,

X̂n
opt(z

n)[i] = X̂n
opt(y

n)[j]

if zi = yj. In other words the denoiser defines a function f : A → A. Recall that the columns of Π

are denoted by πα, α ∈ A.

Lemma 1. If Xn is drawn i.i.d. according to P then

X̂n
opt(z

n)[i] = arg min
x̂∈A

λT
x̂ (P⊙ πzi

)

PT πzi

,

and

Dopt =
∑

z∈A
min
x̂∈A

λT
x̂ (P ⊙ πz).

Example 2. Continuing from Example 1 which deals with the BSC and Hamming loss, let the

noiseless sequence Xn be an i.i.d. Bernoulli process with parameter p, namely, P = [1 − p p]T .

Then from Lemma 1 the optimal denoiser is given by

X̂n
opt(z

n)[i] = arg min
x̂∈{0,1}

λT
x̂ (P⊙ πzi

)

PT πzi

= arg max
x̂∈{0,1}

(P ⊙ πzi
)[x̂].
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This can be further reduced to the following: if zi = 0

X̂n
opt(z

n)[i] =











0 p < 1 − δ

1 p > 1 − δ

either p = 1 − δ

and if zi = 1

X̂n
opt(z

n)[i] =











0 p < δ

1 p > δ

either p = δ.

The optimal loss is given by

Dopt =
∑

z∈{0,1}
min
x̂∈A

(P ⊙ πz)[x̂].

If δ ≤ 1/2 then this reduces to

Dopt =











p 0 ≤ p ≤ δ

δ δ < p ≤ 1 − δ

1 − p 1 − δ < p ≤ 1.

If δ > 1/2 the loss can be obtained by replacing δ with 1 − δ in the above expression. 2

In the subsequent subsections we employ Lemma 1 to derive lower bounds on R̂k

(

X̂n
)

and

R̄k

(

X̂n
)

for any X̂n ∈ Dn.

3.2 Zeroth order

The pair (Π,Λ), comprising a M × M channel transition probability matrix Π and a M × M

loss matrix Λ is neutralizable if there exist t, i, j ∈ A such that for some distribution P ∈ M,

P ⊙ (λi − λj) ⊙ πt 6= 0, and

PT (λi ⊙ πt) = PT (λj ⊙ πt) = min
k∈A

PT (λk ⊙ πt). (6)

The distribution P is said to be loss-neutral with respect to (πt, λi, λj).

Consider a denoiser X̂n with the property X̂n(zn)[i] = k if zi = t. If Xn is drawn i.i.d. according

to P, PT (λk ⊙ πt) is the average loss incurred by this denoiser in reconstructing the symbols whose

noisy version Zi = t. If (6) is satisfied, then it implies that there are two Bayes optimal denoisers.

One returns i on observing t and the other returns j. The condition P⊙ (λi − λj)⊙ πt 6= 0 ensures

that the denoisers differ in a non-trivial fashion. Therefore a loss-neutral distribution is an iid

distribution on the clean sequence that results in at least two distinct Bayes-optimal denoisers.

The class of neutralizable (Π,Λ) pairs is rich enough to accomodate commonly encountered

non-trivial channels and loss functions, e.g., the Binary Symmetric Channel and the Hamming loss

function.
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Example 3. The BSC-Hamming loss pair is neutralizable. Indexing columns by elements of

{0, 1}, π1 = [δ 1 − δ]T , λ0 = [0 1]T and λ1 = [1 0]T . Choosing P = [1 − δ δ]T we obtain

PT (λ0 ⊙ π1) = PT (λ1 ⊙ π1) = (1 − δ)δ.

Hence (ΠBSC,ΛHam) is neutralizable and P = [1− δ δ]T is a loss-neutral distribution. Note that if

δ 6= 1/2, the uniform distribution is not loss-neutral. 2

In fact, if (Π,Λ) is not neutralizable then the denoising problem is trivial, i.e., there exists a

symbol-by-symbol denoiser X̂ whose loss incurred is the least possible for all noiseless sequences.

The arguments that justify this claim follow.

Suppose for all t, there exists ℓ(t) such that, for all P ∈ M, and all k ∈ A

PT
(

λℓ(t) ⊙ πt

)

≤ PT (λk ⊙ πt). (7)

Then for all α ∈ A and any k

Λ(α, ℓ(t))Π(α, t) ≤ Λ(α, k)Π(α, t).

Then the denoiser X̂∗(zn)[i] = ℓ(zi) is optimal in a strong sense, namely, for all xn, Zn ∈ An that

have a non-zero probability, and any X̂n ∈ Dn

LX̂∗(x
n, Zn) ≤ LX̂n(xn, Zn).

This implies that no class of denoisers is rich enough to ensure a positive regret.

We will show that if (Π,Λ) is not neutralizable, then (7) is satisfied. Observe that if (λi−λj)⊙
πt = 0, then PT (λi ⊙ πt) = PT (λj ⊙ πt) for all P ∈ M. Therefore, for the subsequent arguments,

it suffices to consider distinct columns λi ⊙ πt.

For i ∈ M, let

Mi
def
=
{

P ∈ M : ∀k ∈ A, PT (λi ⊙ πt) ≤ PT (λk ⊙ πt)
}

.

Observe that Mi is an intersection of halfspaces and is therefore a convex polytope defined by a

subset of the hyperplanes Hi,j, i 6= j, where

Hi,j =
{

x ∈ R
M : xT ((λi − λj) ⊙ πt) = 0

}

.

Note that, since (Π,Λ) is not neutralizable, none of the hyperplanes that define the boundary of

any polytope Mi can intersect the interior of M. Otherwise, (6) will be satisfied for some i, j, and

P in the interior of M. Since P is in the interior, P(α) > 0 for all α, and since λi ⊙ πt and λj ⊙ πt

are distinct, P⊙ (λi − λj) ⊙ πt 6= 0, which contradicts the non-neutralizability of (Π,Λ). Since
⋃

i∈A
Mi = M

and none of the hyperplanes that define the boundaries of Mi intersect the interior of M, there

exists i0 such that M = Mi0 for some i0. By setting ℓ(t) = i0, (7) is satisfied.

Thus, we have shown that the class of non-neutralizable (Π,Λ) pairs poses trivial denoising

problems. We are now in a position to state our theorem
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Theorem 2. For any neutralizable pair (Π,Λ), and any sequence {X̂n ∈ Dn} of denoisers, as n

tends to infinity

R̂0

(

X̂n
)

≥ c√
n

(1 + o(1)),

where c is a positive function of Π,Λ and a loss-neutral distribution P∗. 2

In order to provide an intuition we first consider the example of the BSC and Hamming loss

and provide an outline of the proof for that specific case. The more general proof will be presented

after the example.

Example 4. As shown in Example 3, (ΠBSC,ΛHam) is neutralizable and P∗ = [1 − δ δ]T is a

loss-neutral distribution. Observe that for all X̂n ∈ Dn and any distribution P on Xn

R̂0

(

X̂n
)

≥ EP

[

E
[

LX̂n(Xn
1 , Zn)

]

− D̂0(X
n)
]

.

This is true in particular for P i.i.d. with marginal distribution P∗. Setting p = δ in Example 2

EP∗

[

E
[

LX̂n(Xn
1 , Zn)

]]

≥ Dopt = δ, (8)

and the lower bound is achieved by the 0-th order sliding window denoiser

X̂n
opt(z

n)[t] =

{

0 zt = 0

either zt = 1

where δ is assumed to be less than 1/2.

To upper bound D̂0(x
n) = E[D0(x

n, Zn)] we construct a 0-th order sliding window denoiser.

The normalized Hamming weight dH(xn) of xn is the fraction of 1s in xn, and the normalized

Hamming distance dH(xn, zn) between xn and zn is the fraction of bit positions in which they

differ. Then for each (xn, zn) define X̂n, a 0-th order sliding window denoiser, to be

X̂n(zn)[t] =











0 zt = 0

0 zt = 1, dH(xn, zn) ≥ dH(xn)

1 zt = 1, dH(xn, zn) < dH(xn).

By definition

D0(x
n, zn) ≤ LX̂n(xn, zn) = min {dH(xn, zn), dH(xn)}.

Therefore

EP∗

[

D̂0(X
n)
]

= EP∗ [D0(X
n, Zn)] ≤ EP∗ [min {dH(Xn, Zn), dH(Xn)}].

It is easy to verify that as n tends to infinity both
√

n(dH(Xn, Zn)− δ) and
√

n(dH(Xn)− δ) tend

to independent and identically distributed Gaussian random variables with mean 0 and variance

δ(1 − δ). Hence

EP∗ [min {dH(Xn, Zn), dH(Xn)}] = δ −
√

δ(1 − δ)

n
c(1 + o(1))
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where c is the expected value of the maximum of two independent zero mean Gaussian random

variables with unit variance, and therefore positive. Substituting in (8)

R̂0

(

X̂n
)

≥ EP∗

[

E
[

LX̂n(Xn
1 , Zn)

]

− D̂0(X
n)
]

≥
√

δ(1 − δ)

n
c(1 + o(1)). 2

Now we present a more rigorous version of the argument in the example, that is general enough

to address any neutralizable pair (Π,Λ). To characterize the benchmark in R̂0

(

X̂n
)

, namely

D̂0(x
n), we require some notation for the frequency of occurrence of symbols in xn and zn. We

employ the following notation that was employed in [1]. For xn, zn ∈ An, c ∈ A let q(zn, zn, c)

denote the M -dimensional column vector whose j-th component, j ∈ A, is

q(zn, xn, c)[j] =
1

n
|{i : 1 ≤ i ≤ n, zi = c, xi = j}|

the frequency of the occurrence of c in zn along with j in the corresponding location in xn. If Xn is

drawn i.i.d. according to some P ∈ M and Zn represents the noisy output from the channel then

E[q(Zn,Xn, c)] = P ⊙ πc. (9)

We express the best 0-th order mimimum loss D0(x
n, zn) for the pair (xn, zn) in terms of the vectors

q(zn, xn, c), c ∈ A. Observe that for all xn, zn ∈ An

D0(x
n, zn) = min

f :A→A
1

n

n
∑

i=1

Λ(xi, f(zi)) =
∑

c∈A
min
x̂∈A

∑

j∈A
Λ(j, x̂)q(zn, xn, c)[j]

=
∑

c∈A
min
x̂∈A

λT
x̂ q(zn, xn, c). (10)

To prove Theorem 2 we require the following lemma on the asymptotics of q(Zn,Xn, c).

Lemma 3. If Xn is generated i.i.d. according to some P in M, then for any column vector

α ∈ R
M , and any c ∈ A,

lim
n→∞

EP

[√
n
(∣

∣αT q(Zn,Xn, c) − αT (P⊙ πc)
∣

∣

)]

=

√

2V

π

where V = (α ⊙ α)T (P⊙ πc) −
(

αT (P⊙ πc)
)2

.

Proof We first show that when Xn is generated i.i.d. according to some P ∈ M, for any column

vector α ∈ R
M , and any c ∈ A, as n tends to infinity, αTq(Zn,Xn, c) suitably normalized converges

in distribution to a Gaussian random variable, namely,

√
n
(

αT q(Zn,Xn, c) − αT (P⊙ πc)
) L−→ N (0, V ) (11)

where V = (α ⊙ α)T (P⊙ πc) −
(

αT (P⊙ πc)
)2

.

For a given α ∈ R
M and c ∈ A we define the sequence Y n of random variables as

Yi
def
=
∑

j∈A
α(j)1(Xi = j, Zi = c)

10



where 1(·) is the indicator function. Then

1

n

n
∑

i=1

Yi = αTq(Zn,Xn, c)

and if the sequence Xn is drawn i.i.d. according to P, then the sequence Y n is also i.i.d. and has

finite moments. Hence the central limit theorem applies to it. Therefore

√
n
(

αTq(Zn,Xn, c) − EP[Yi]
) L−→ N (0, var[Yi])

where var[Yi] denotes the variance of Yi. Equation (11) follows as

EP[Yi] =
∑

j∈A
α(j)Pr(Xi = j, Zi = c) = αT (P ⊙ πc)

and

EP

[

Y 2
i

]

=
∑

j∈A
α(j)2Pr(Xi = j, Zi = c) = (α ⊙ α)T (P ⊙ πc).

A straightforward extension yields

√
n
(∣

∣αT q(Zn,Xn, c) − αT (P⊙ πc)
∣

∣

) L−→ |G|

where G ∼ N (0, V ).

To prove the lemma from this point onwards we use the fact (cf. e.g., Theorem 25.12 [6]) that

if a sequence of random variables An are uniformly integrable, i.e.,

lim
β→∞

sup
n

∫

[|An|≥β]
|An|dP = 0

and if An
L−→ A then limn→∞ E[An] = E[A], where in our case

An =
√

n
(∣

∣αT q(Zn,Xn, c) − αT (P⊙ πc)
∣

∣

)

.

Observe that
∫

[|An|≥β]
|An|dP ≤

∫ |An|
β

|An|dP =
E
[

|An|2
]

β
.

Since

E
[

|An|2
]

= n
var[Yi]

n
= V,

we obtain

lim
β→∞

sup
n

∫

[|An|≥β]
|An|dP ≤ lim

β→∞
sup

n

V

β
= 0.

Hence An is uniformly integrable. Therefore

lim
n→∞

EP

[√
n
(∣

∣αT q(Zn,Xn, c) − αT (P ⊙ πc)
∣

∣

)]

= EP[|G|] =

√

2V

π
. 2

11



We are now in a position to prove Theorem 2. As in Example 4, we lower bound R̂0

(

X̂n
)

, the

extra loss incurred in the worst-case, by the expected extra loss when the noiseless sequence Xn is

drawn according an i.i.d. distribution. This proof technique is similar to the one employed for the

problem of binary prediction in [7]. However choosing a uniform distribution, like in [7], for Xn

does not yield the required results - the distribution chosen has to be loss-neutral.

Proof of Theorem 2 Let t, i, j ∈ A and let the distribution P∗ ∈ M be loss-neutral with

respect to (πt, λi, λj), so that P∗ ⊙ (λi − λj) ⊙ πt 6= 0 and

(P∗)T (λi ⊙ πt) = (P∗)T (λj ⊙ πt) = min
k∈A

(P∗)T (λk ⊙ πt). (12)

By definition

R̂0

(

X̂n
)

= max
xn∈An

E
[

LX̂n(xn
1 , Zn)

]

− D̂0(x
n),

hence for any i.i.d. distribution P ∈ M on Xn and for all X̂n ∈ Dn

R̂0

(

X̂n
)

≥ EP

[

E
[

LX̂n(Xn
1 , Zn)

]

− D̂0(X
n)
]

. (13)

In particular this is true for P∗. Since Xn is generated i.i.d. accroding to P∗ it follows from

Lemma 1 that for all X̂n ∈ Dn

EP∗

[

E
[

LX̂n(Xn
1 , Zn)

]]

≥ Dopt =
∑

z∈A
min
x̂∈A

λT
x̂ (P∗ ⊙ πz). (14)

Now we upper bound EP∗

[

D̂0(X
n)
]

. From (10)

EP∗

[

D̂0(X
n)
]

= EP∗ [D0(X
n, Zn)]

= EP∗

[

∑

c∈A
min
x̂∈A

λT
x̂ q(Zn,Xn, c)

]

= EP∗

[

min
x̂∈A

λT
x̂ q(Zn,Xn, t)

]

+
∑

c∈A,c 6=t

EP∗

[

min
x̂∈A

λT
x̂ q(Zn,Xn, c)

]

≤ EP∗

[

min
x̂∈A

λT
x̂ q(Zn,Xn, t)

]

+
∑

c∈A,c 6=t

min
x̂∈A

EP∗

[

λT
x̂ q(Zn,Xn, c)

]

= EP∗

[

min
x̂∈A

λT
x̂ q(Zn,Xn, t)

]

+
∑

c∈A,c 6=t

min
x̂∈A

λT
x̂ (P∗ ⊙ πc). (15)

In the sequence of inequalities and equalities above, the inequality holds since for any set of real

random variables {Xa : a ∈ A}
E

[

min
a∈A

Xa

]

≤ min
a∈A

E[Xa],

and the last equality follows from (9).

Substituting (15) and (14) in (13) we obtain for all X̂n ∈ Dn

R̂0

(

X̂n
)

≥ min
x̂∈A

λT
x̂ (P∗ ⊙ πt) − EP∗

[

min
x̂∈A

λT
x̂ q(Zn,Xn, t)

]

.

12



Noting that for any M -dimensional vector P and any a, t ∈ A, PT (λa ⊙ πt) = λT
a (P ⊙ πt) and

considering (12)

R̂0

(

X̂n
)

≥ λT
i (P∗ ⊙ πt) − EP∗

[

min
{

λT
i q(Zn,Xn, t), λT

j q(Zn,Xn, t)
}]

.

Since for any x, y ∈ R, 2min {x, y} = (x + y − |x − y|), and since λT
i (P∗ ⊙ πt) = λT

j (P∗ ⊙ πt),

EP∗

[

min
{

λT
i q(Zn,Xn, t), λT

j q(Zn,Xn, t)
}]

= λT
i (P∗ ⊙ πt) −

1

2

(

EP∗

[∣

∣

∣(λi − λj)
T
q(Zn,Xn, t)

∣

∣

∣

])

.

Therefore

R̂0

(

X̂n
)

≥ 1

2

(

EP∗

[∣

∣

∣
(λi − λj)

T
q(Zn,Xn, t)

∣

∣

∣

])

.

Applying Lemma 3 with P = P∗, c = t, and α = λi − λj and observing from (12) that

αT (P⊙ πc) = (λi − λj)
T (P∗ ⊙ πt) = 0,

we obtain

lim
n→∞

√
nEP∗

[∣

∣

∣
(λi − λj)

T
q(Zn,Xn, t)

∣

∣

∣

]

=

√

2V

π

where

V = ((λi − λj) ⊙ (λi − λj))
T (P∗ ⊙ πt).

Note that since P∗ is a loss-neutral distribution (λi − λj)⊙P∗ ⊙ πt 6= 0 and therefore V > 0. This

proves the theorem. 2

3.3 Higher order

Theorem 2 can be extended to R̂k

(

X̂n
)

. There we compare the loss incurred by a denoiser to

D̂k(x
n), a smaller quantity, and consequently the lower bound that we obtain on R̂k

(

X̂n
)

is larger.

In fact, the lower bound increases exponentially with k. The proof is very much along the lines of

that for Theorem 2 and therefore we refer to it frequently here. As in Theorem 2 we require a few

preliminaries.

Following [1], we extend the definition of q(·) to count the frequency of sequences of length

2k + 1. For xn, zn ∈ An, ck
−k ∈ A2k+1 let q

(

zn, xn, ck
−k

)

denote the M -dimensional column vector

whose j-th component, j ∈ A, is

q
(

zn, xn, ck
−k

)

[j] =
1

n − 2k

∣

∣

∣

{

i : k + 1 ≤ i ≤ n − k, zi+k
i−k = ck

−k, xi = j
}∣

∣

∣

the frequency of occurrence of the sequence ck
−k in zn along with j in xn at the location correspond-

ing to c0 in zn. Also note that if Xn is drawn i.i.d. according to some P ∈ M and Zn represents

the noisy output from the channel then Zn is also an i.i.d. sequence and

E
[

q
(

Zn,Xn, ck
−k

)]

= (P⊙ πc0)
k
∏

i=−k,i6=0

PT πci
. (16)

13



We express the best k-th order mimimum loss Dk(x
n, zn) for the pair (xn, zn) in terms of the

vectors q
(

zn, xn, ck
−k

)

, ck
−k ∈ A2k+1. Observe that for all xn, zn ∈ An

Dk(x
n, zn) =

∑

ck
−k

∈A2k+1

min
x̂∈A

∑

j∈A
Λ(j, x̂)q

(

zn, xn, ck
−k

)

[j] =
∑

ck
−k

∈A2k+1

min
x̂∈A

λT
x̂ q
(

zn, xn, ck
−k

)

. (17)

To prove Theorem 2, we required a lemma on the asymptotics of q(Zn,Xn, c0), which can be

written as a sum of i.i.d. random variables. Note, however, that for k ≥ 1, q
(

Zn,Xn, ck
−k

)

can no

longer be written as a sum of i.i.d. random variables and, therefore, the standard Central Limit

Theorem, which was used in Lemma 3, does not apply. To address this problem, we require a

Central Limit Theorem for dependent random variables such as the one proved by Hoeffding et

al [8]. We state the theorem below. A sequence Xn of random variables is m-dependent if for all

s > r + m (X1,X2, . . . ,Xr) and (Xs,Xs+1, . . . ,Xn) are independent.

Theorem 4. [8] For a stationary and m-dependent sequence Xn of random variables such that

E[X1] = 0, and E
[

|X1|3
]

< ∞, as n tends to infinity

n−1/2
n
∑

i=1

Xi
L−→ N (0, V )

where

V = E
[

X2
1

]

+ 2

m+1
∑

i=2

E[X1Xi]. 2

Applying this theorem to q
(

Zn,Xn, ck
−k

)

results in the following lemma.

Lemma 5. If Xn is generated i.i.d. according to some P ∈ M, then for any column vector

α ∈ R
M , and any ck

−k ∈ A2k+1, such that αT (P ⊙ πc0) = 0

lim
n→∞

EP

[√
n
∣

∣

∣
αT q

(

Zn,Xn, ck
−k

)∣

∣

∣

]

=

√

2V

π

where V = (α ⊙ α)T (P⊙ πc0)
∏k

i=−k,i6=0 PT πci
.

Proof We first show that when Xn is generated i.i.d. according to some P ∈ M, for any col-

umn vector α ∈ R
M , and any ck

−k ∈ A2k+1 satisfying αT (P ⊙ πc0) = 0, as n tends to infinity,

αT q
(

Zn,Xn, ck
−k

)

suitably normalized converges in distribution to a Gaussian random variable,

namely, √
n
(

αTq
(

Zn,Xn, ck
−k

))

L−→ N (0, V ) (18)

where V = (α ⊙ α)T (P⊙ πc0)
∏k

i=−k,i6=0 PT πci
.

For a given α ∈ R
M and ck

−k ∈ A2k+1 we define the sequence Y n−k
k+1 of random variables as

Yi
def
=
∑

ℓ∈A
α(ℓ)1

(

Xi = ℓ, Zi+k
i−k = ck

−k

)

, k + 1 ≤ i ≤ n − k.

Then

1

n − 2k

n−k
∑

i=k+1

Yi = αT q
(

Zn,Xn, ck
−k

)

.

14



If the sequence Xn is drawn i.i.d. according to P, Y n−k
k+1 is stationary and since each Yi is a function

of 2k + 1 consecutive Xi’s, it is easy to verify that Y n−k
k+1 is a 2k-dependent sequence. Furthermore

EP[Yi] =
∑

ℓ∈A
α(ℓ)Pr

(

Xi = ℓ, Zi+k
i−k = c

)

= αT (P⊙ πc0)

k
∏

i=−k,i6=0

PT πci
= 0

where the last equality follows from the choice of α and c0. Furthermore the higher moments of Yi

exist, hence Theorem 4 applies and therefore

√
n
(

αTq
(

Zn,Xn, ck
−k

))

L−→ N
(

0, E
[

Y 2
k+1

]

+ 2
2k
∑

i=1

E[Yk+1Yk+1+i]

)

. (19)

Observe that

E
[

Y 2
k+1

]

=
∑

ℓ∈A
α(ℓ)2Pr

(

Xk+1 = ℓ, Z2k+1
1 = ck

−k

)

= V = (α ⊙ α)T (P ⊙ πc0)

k
∏

i=−k,i6=0

PT πci

and we will show that for all i ≥ 1

E[Yk+1Yk+1+i] = 0.

Substituting these in (19) establishes (18). Define the collection of indicator functions Sr : A2k+1 →
{0,1}, 1 ≤ r ≤ 2k, as

Sr

(

ck
−k

)

= 1(ci = ci+r for all − k ≤ i ≤ k − r)

that indicate whether the sequence ck
−k partially matches a shifted version of itself. For example,

S1

(

ck
−k

)

= 1 iff ck
−k = 00 . . . 0 or 11 . . . 1, and S2(10101) = 1 , S2(10110) = 0 etc. In general Sr

indicates if the sequence is periodic with period r. Also define the transformation Ar : A2k+1 →
A2k+1+r as

Ar

(

ck
−k

)

= ck
−kc

k
k−r+1,

namely, the concatenation of ck
−k and the last r symbols of ck

−k. Then for any 1 ≤ i ≤ 2k and

ck
−k ∈ A2k+1, letting a2k+1+i

1 = Ai

(

ck
−k

)

we obtain

Yk+1Yk+1+i = Si

(

ck
−k

)

∑

ℓ∈A

∑

m∈A
α(ℓ)α(m)1

(

Xk+1 = ℓ,Xk+1+i = m,Z2k+i+1
1 = a2k+1+i

1

)

.

Since Xn is drawn i.i.d. according to P, for i ≥ 1

E[Yk+1Yk+1+i] = Si

(

ck
−k

)

(

∑

ℓ∈A
α(ℓ)Pr(Xk+1 = ℓ, Zk+1 = c0)

)2 2k+i+1
∏

j=1,j 6=k+1,k+1+i

Pr(Zj = aj)

= Si

(

ck
−k

)

(

αT (P ⊙ πc0)
)2

2k+i+1
∏

j=1,j 6=k+1,k+1+i

PT πaj

= 0

where the last equality follows from the fact that αT (P⊙ πc0) = 0, by assumption.
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A straightforward extension of (18) yields

√
n
(∣

∣

∣
αTq

(

Zn,Xn, ck
−k

)∣

∣

∣

)

L−→ |G|

where G ∼ N (0, V ). Arguments similar to the ones used in Lemma 3 can be used to show that√
n(|αT q(Zn,Xn, ck

−k)|) is uniformly integrable and therefore

lim
n→∞

EP

[√
n
(∣

∣

∣αTq
(

Zn,Xn, ck
−k

)∣

∣

∣

)]

= EP[|G|] =

√

2V

π
. 2

Using Lemma 5 and arguments similar to those in the proof of Theorem 2 we prove the following.

Theorem 6. For any neutralizable pair (Π,Λ), and any sequence {X̂n ∈ Dn} of denoisers, as n

tends to infinity

R̂k

(

X̂n
)

≥ c√
n

(

∑

a∈A

√

(P∗)T πa

)2k

(1 + o(1))

where P∗ is any loss-neutral distribution and c is a positive function of (Π,Λ) and P∗.

Proof Let t, i, j ∈ A and let the distribution P∗ ∈ M be loss-neutral with respect to (πt, λi, λj),

so that P∗ ⊙ (λi − λj) ⊙ πt 6= 0 and

(P∗)T (λi ⊙ πt) = (P∗)T (λj ⊙ πt) = min
k∈A

(P∗)T (λk ⊙ πt). (20)

As argued in the proof of Theorem 2

R̂k

(

X̂n
)

≥ EP∗

[

E
[

LX̂n(Xn
1 , Zn)

]

− D̂k(X
n)
]

, (21)

and since Xn is generated i.i.d. according to P∗ it follows from Lemma 1 that for all X̂n ∈ Dn

EP∗

[

E
[

LX̂n(Xn
1 , Zn)

]]

≥ Dopt =
∑

z∈A
min
x̂∈A

λT
x̂ (P∗ ⊙ πz). (22)

We upper bound the second term in (21), namely, EP∗

[

D̂k(X
n)
]

. Applying (17), the fact that

the expectation of the minimum of a collection of random variables is lesser than the minimum of

the expectations, and (16)

EP∗

[

D̂k(X
n)
]

=EP∗ [Dk(X
n, Zn)]

=EP∗







∑

ck
−k

∈A2k+1

min
x̂∈A

λT
x̂ q
(

Zn,Xn, ck
−k

)







=
∑

ck
−k

∈A2k+1,c0=t

EP∗

[

min
x̂∈A

λT
x̂ q
(

Zn,Xn, ck
−k

)

]

+
∑

ck
−k

∈A2k+1,c0 6=t

EP∗

[

min
x̂∈A

λT
x̂ q
(

Zn,Xn, ck
−k

)

]
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≤
∑

ck
−k

∈A2k+1,c0=t

EP∗

[

min
x̂∈A

λT
x̂ q
(

Zn,Xn, ck
−k

)

]

+
∑

ck
−k

∈A2k+1,c0 6=t

min
x̂∈A

EP∗

[

λT
x̂ q
(

Zn,Xn, ck
−k

)]

=
∑

ck
−k

∈A2k+1,c0=t

EP∗

[

min
x̂∈A

λT
x̂ q
(

Zn,Xn, ck
−k

)

]

+
∑

ck
−k

∈A2k+1,c0 6=t

min
x̂∈A

λT
x̂ (P∗ ⊙ πc0)

k
∏

i=−k,i6=0

(P∗)T πci

=
∑

ck
−k

∈A2k+1,c0=t

EP∗

[

min
x̂∈A

λT
x̂ q
(

Zn,Xn, ck
−k

)

]

+
∑

c0 6=t

min
x̂∈A

λT
x̂ (P∗ ⊙ πc0). (23)

The last equality holds as
∑

c−1
−k

∈Ak,ck
1∈Ak

k
∏

i=−k,i6=0

(P∗)T πci
= 1.

Substituting (23) and (22) in (21), combining with (20), and observing that the minimum over

all x̂ ∈ A is less than the minimum over the set {i, j} ⊆ A, we obtain for all X̂n ∈ Dn

R̂k

(

X̂n
)

≥ λT
i (P∗ ⊙ πt)−

∑

ck
−k

∈A2k+1,c0=t

EP∗

[

min
{

λT
i q
(

Zn,Xn, ck
−k

)

, λT
j q
(

Zn,Xn, ck
−k

)}]

. (24)

As in the proof of Theorem 2 we write 2min {x, y} = (x + y − |x − y|), and note that the expecta-

tions of λT
i q(Zn,Xn, ck

−k) and λT
j q(Zn,Xn, ck

−k) are equal to obtain
∑

ck
−k

∈A2k+1,c0=t

EP∗

[

min
{

λT
i q
(

Zn,Xn, ck
−k

)

, λT
j q
(

Zn,Xn, ck
−k

)}]

= λT
i (P∗ ⊙ πt) −

1

2

∑

ck
−k

∈A2k+1,c0=t

EP∗

[∣

∣

∣
(λi − λj)

T
q
(

Zn,Xn, ck
−k

)∣

∣

∣

]

.

Substituting this in (24)

R̂k

(

X̂n
)

≥ 1

2

∑

ck
−k

∈A2k+1,c0=t

EP∗

[∣

∣

∣(λi − λj)
T
q
(

Zn,Xn, ck
−k

)∣

∣

∣

]

.

From (20), (λi − λj)
T (P∗ ⊙ πt) = 0 and therefore applying Lemma 5 for each ck

−k ∈ A2k+1 with

c0 = t, and choosing P = P∗ and α = λi − λj we obtain

lim
n→∞

∑

ck
−k

∈A2k+1,c0=t

√
nEP∗

[∣

∣

∣
(λi − λj)

T
q
(

Zn,Xn, ck
−k

)∣

∣

∣

]

=
∑

ck
−k

∈A2k+1,c0=t

√

2Vck
−k

π

where Vck
−k

= ((λi − λj) ⊙ (λi − λj))
T (P∗ ⊙ πt)

∏k
i=−k,i6=0 (P∗)T πci

. Observe that

∑

ck
−k

∈A2k+1,c0=t

√

2Vck
−k

π
=

√

2

π

√

((λi − λj) ⊙ (λi − λj))
T (P∗ ⊙ πt)

∑

a2k
1 ∈A2k

(

2k
∏

i=1

(P∗)T πai

)

1
2

.
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Note that since P∗ is a loss-neutral distribution (λi − λj) ⊙ P∗ ⊙ πt 6= 0, and therefore

((λi − λj) ⊙ (λi − λj))
T (P ⊙ πt) > 0.

Also observe that

∑

a2k
1 ∈A2k

(

2k
∏

i=1

(P∗)T πai

)

1
2

=

(

∑

a∈A

√

(P∗)T πa

)2k

. 2

A vector of dimension greater than 1 is degenerate if at most one of its components is non-zero.

Note that
∑

a∈A

√

(P∗)T πa ≥
∑

a∈A
(P∗)T πa = 1

with equality iff (P∗)T Π is degenerate. Thus, if (P∗)T Π is non-degenerate, the lower bound in the

statement of the theorem grows exponentially in k. For many (Π,Λ), e.g., BSC and Hamming loss,

the lower bound grows exponentially in k.

4 Compound Decision

The compound decision problem was first proposed by Robbins [2]. In this problem a sequence

of n hypothesis tests each involving M possible hypothesis are to be solved simultaneously. As

pointed out in [1], this is precisely the problem of denoising a length-n sequence over an alphabet

of size M that has been transmitted over a memoryless channel Π. The M distributions in the

hypothesis testing problem correspond to the M rows of Π. Robbins measures the performance of

any scheme against a “symbol-by-symbol” decision rule that is aware of the true hypotheses. In

the denoiser setting this corresponds to the best 0-th order denoiser for a given individual noiseless

sequence. The loss of such a denoiser for a given sequence xn is precisely D̄0(x
n). Therefore the

corresponding regret of any other denoiser X̂n is R̄0

(

X̂n
)

.

Hannan and Van Ryzin [3] derived a scheme for the compond decision problem whose regret

decreases like O(1/
√

n). Furthermore, for certain types of hypothesis tests which, in the denoising

setting, correspond to channels with continuous output, they showed that the regret decreases even

faster - O(1/n). The need for a more stringent benchmark for these schemes was recognized by

Johns [4] who considered sliding window denoisers and the corresponding benchmark D̄k(x
n). In

the denoising setting the regret R̂k

(

X̂n,k
univ

)

of the DUDE [1] was upper bounded by ck/
√

n where

c > 1 is a constant. It follows from (3) that this upper bound applies to R̄k

(

X̂n,k
univ

)

as well.

We derive lowerbounds on R̄k

(

X̂n
)

, for all denoisers and all discrete channels, that scale like

ck√
n
. This shows that the upper bounds derived in [3] for 0-th order regret and, for fixed k, those

implied by [1] for the k-th order regret are tight up to a constant factor. This also shows that

the rate of convergence result in [3] for continuous output channels does not extend to discrete

memoryless channels. The proof for our lowerbound is along the lines of that for Theorems 2

and 6. However, unlike these proofs, to lower bound R̄k

(

X̂n
)

, we restrict the comparison of X̂n to

the class of one-sided k-th order sliding window denoisers. The following preliminaries are required.
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A k-th order one-sided sliding window denoiser X̂n is a denoiser with the property that for all

zn ∈ An, if zi
i−k = zj

j−k then

X̂n(zn)[i] = X̂n(zn)[j].

Thus the denoiser defines a mapping, f : Ak+1 → A so that for all zn ∈ An

X̂n(zn)[i] = f
(

zi
i−k

)

, i = k + 1, . . . ,n.

Let S1
k denote the class of k-th order one-sided sliding window denoisers. For an individual noiseless

sequence xn ∈ An, let

D̄1
k(x

n)
def
= min

X̂n∈S1
k

E
[

LX̂n

(

xn−k
k+1 , Zn

)]

denote the minimum expected loss incurred by any k-th order sliding window denoiser when the

noiseless sequence is xn. Clearly S1
k ⊂ Sk and therefore for all xn,

D̄k(x
n) ≤ D̄1

k(x
n). (25)

For xn ∈ An, and c0
−k ∈ Ak+1, let q̄1

(

xn, c0
−k

)

denote the M -dimensional column vector whose

j-th component, j ∈ A, is

q̄1
(

xn, c0
−k

)

[j] =
1

n − 2k
EP(Zn|xn)

[∣

∣

{

i : k + 1 ≤ i ≤ n − k,Zi
i−k = c0

−k, xi = j
}∣

∣

]

=
1

n − 2k

n−k
∑

i=k+1

1(xi = j)

0
∏

j=−k

Π(Xi+j, cj)

the expected frequency of occurrence of the sequence c0
−k in Zn along with j in xn at the location

corresponding to c0 in Zn, when xn is transmitted over a discrete memoryless channel Π. Also

note that if Xn is drawn i.i.d. according to some P ∈ M, then Zn is also an i.i.d. sequence and

E
[

q̄1
(

Xn, c0
−k

)]

= (P⊙ πc0)

−1
∏

i=−k,

PT πci
. (26)

We express the minimum expected loss D̄1
k(x

n) incurred by any k-th order one-sided sliding window

denoiser when the noiseless sequence is xn, in terms of the vectors q̄1
(

xn, c0
−k

)

, c0
−k ∈ Ak+1. Observe

that for all xn ∈ An

D̄1
k(x

n) =
∑

c0
−k

∈Ak+1

min
x̂∈A

∑

j∈A
Λ(j, x̂)q̄1

(

xn, c0
−k

)

[j] =
∑

c0
−k

∈Ak+1

min
x̂∈A

λT
x̂ q̄1

(

xn, c0
−k

)

. (27)

To derive a lowerbound on R̄k

(

X̂n
)

we require the following lemma on the asymptotics of

q̄1
(

Xn, c0
−k

)

. As in the analogous result for q
(

Zn,Xn, ck
−k

)

we invoke Theorem 4.

Lemma 7. If Xn is generated i.i.d. according to some P ∈ M, then for any column vector

α ∈ R
M , and any c0

−k ∈ Ak+1, such that αT (P ⊙ πc0) = 0

lim
n→∞

EP

[√
n
∣

∣αT q̄1
(

Xn, c0
−k

)∣

∣

]

=

√

2V

π
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where V = (α ⊙ α)T (P⊙ πc0 ⊙ πc0)
∏−1

i=−k PT (πci
⊙ πci

).

Proof We first show that when Xn is generated i.i.d. according to some P ∈ M, for any column

vector α ∈ R
M , and any c0

−k ∈ Ak+1 satisfying αT (P⊙ πc0) = 0, as n converges to infinity,

αT q̄1
(

Xn, c0
−k

)

suitably normalized tends in distribution to a Gaussian random variable, namely,

√
n
(

αT q̄1
(

Xn, c0
−k

)) L−→ N (0, V ) (28)

where V = (α ⊙ α)T (P⊙ πc0 ⊙ πc0)
∏−1

i=−k PT (πci
⊙ πci

).

For a given α ∈ R
M and c0

−k ∈ Ak+1 we define the sequence Y n−k
k+1 of random variables as

Yi
def
=
∑

ℓ∈A
α(ℓ)1(Xi = ℓ)Pr

(

Zi
i−k = c0

−k|Xi
i−k

)

=
∑

ℓ∈A
α(ℓ)1(Xi = ℓ)

0
∏

j=−k

Π(Xi+j, cj), k + 1 ≤ i ≤ n − k.

Then

1

n − 2k

n−k
∑

i=k+1

Yi = αT q̄1
(

Xn, c0
−k

)

.

If the sequence Xn is drawn i.i.d. according to P, Y n−k
k+1 is stationary and since each Yi is a function

of k + 1 consecutive Xi’s, it is easy to verify that Y n−k
k+1 is a k-dependent sequence. Furthermore

EP[Yi] =
∑

ℓ∈A
α(ℓ)Pr

(

Xi = ℓ, Zi
i−k = c0

−k

)

= αT (P⊙ πc0)

−1
∏

i=−k

PT πci
= 0,

where the last equality follows from the choice of α and c0. Hence Theorem 4 applies and therefore

√
n
(

αT q̄1
(

Xn, c0
−k

)) L−→ N
(

0, E
[

Y 2
k+1

]

+ 2
k
∑

i=1

E[Yk+1Yk+1+i]

)

. (29)

Observe that

E
[

Y 2
k+1

]

=
∑

ℓ∈A
α(ℓ)2E[1(Xk+1 = ℓ)]Π(ℓ, c0)

2
−1
∏

i=−k

E[Π(Xi+j , cj)]
2

= (α ⊙ α)T (P⊙ πc0 ⊙ πc0)

−1
∏

i=−k

PT (πci
⊙ πci

)

and we will show that for all i ≥ 1

E[Yk+1Yk+1+i] = 0.

Substituting these in (29) establishes (28). Observe that

Yk+1Yk+1+i =
∑

ℓ∈A
α(ℓ)1(Xk+1 = ℓ)Π(ℓ, c0)Π(ℓ, c−i)

∑

m∈A
α(m)1(Xk+1+i = m)Π(m, c0)

−k+i−1
∏

j=−k

Π(Xk+1+j , cj)

−1
∏

j=−k+i

Π(Xk+1+j , cj)Π(Xk+1+j, cj−i)

i−1
∏

j=1

Π(Xk+1+j, cj−i).
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Since Xn is drawn i.i.d. according to P, for i ≥ 1

E[Yk+1Yk+1+i] =
(

αT
(

P ⊙ πc0 ⊙ πc−i

))(

αT (P ⊙ πc0)
)

−k+i−1
∏

j=−k

E[Π(Xk+1+j , cj)]

−1
∏

j=−k+i

E[Π(Xk+1+j, cj)Π(Xk+1+j , cj−i)]

i−1
∏

j=1

E[Π(Xk+1+j, cj−i)].

= 0

where the last equality follows from the fact that αT (P⊙ πc0) = 0.

A straightforward extension of (28) yields

√
n
(∣

∣αT q̄1
(

Xn, c0
−k

)∣

∣

) L−→ |G|

where G ∼ N (0, V ). Following arguments similar to the ones in Lemmas 3 and 5 we obtain

lim
n→∞

EP

[√
n
(∣

∣αT q̄1
(

Xn, c0
−k

)∣

∣

)]

= EP[|G|] =

√

2V

π
. 2

Using Lemma 7 and arguments similar to those in the proof of Theorem 6 we prove the following

theorem.

Theorem 8. For any neutralizable pair (Π,Λ), and any sequence {X̂n ∈ Dn} of denoisers, as n

tends to infinity

R̄k

(

X̂n
)

≥ c√
n

(

∑

a∈A

√

(P∗)T (πa ⊙ πa)

)k

(1 + o(1))

where P∗ is any loss-neutral distribution and c is a positive function of (Π,Λ) and P∗.

Proof Let t, i, j ∈ A and let the distribution P∗ ∈ M be loss-neutral with respect to (πt, λi, λj),

so that P∗ ⊙ (λi − λj) ⊙ πt 6= 0 and

(P∗)T (λi ⊙ πt) = (P∗)T (λj ⊙ πt) = min
k∈A

(P∗)T (λk ⊙ πt). (30)

As argued in the proofs of Theorems 2 and 6

R̄k

(

X̂n
)

≥ EP∗

[

E
[

LX̂n(Xn
1 , Zn)

]

− D̄k(X
n)
]

,

≥ EP∗

[

E
[

LX̂n(Xn
1 , Zn)

]

− D̄1
k(X

n)
]

(31)

where we have used (25).

Following the proof of Theorem 6, with R̂k replaced by R̄k and q(·) replaced by q̄1(·) we obtain

R̄k

(

X̂n
)

≥ 1

2

∑

c0
−k

∈Ak+1,c0=t

EP∗

[∣

∣

∣(λi − λj)
T
q̄1
(

Xn, c0
−k

)

∣

∣

∣

]

.

From (30), (λi − λj)
T (P∗ ⊙ πt) = 0 and therefore applying Lemma 7 for each c0

−k ∈ Ak+1 with

c0 = t, and choosing P = P∗ and α = λi − λj we obtain

lim
n→∞

∑

c0
−k

∈Ak+1,c0=t

√
nEP∗

[∣

∣

∣(λi − λj)
T
q̄1
(

Xn, c0
−k

)

∣

∣

∣

]

=
∑

c0
−k

∈Ak+1,c0=t

√

2Vc0
−k

π
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where Vc0
−k

= ((λi − λj) ⊙ (λi − λj))
T (P∗ ⊙ πc0 ⊙ πc0)

∏−1
i=−k(P

∗)T (πci
⊙ πci

).

Note that since P∗ is a loss-neutral distribution P∗ ⊙ (λi − λj) ⊙ πt 6= 0 and therefore

((λi − λj) ⊙ (λi − λj))
T (P∗ ⊙ πt ⊙ πt) > 0.

Now, observe that

∑

c0
−k

∈Ak+1,
c0=t

√

2Vc0
−k

π
=

√

2

π

√

((λi − λj) ⊙ (λi − λj))
T (P∗ ⊙ πt ⊙ πt)

∑

ak
1∈Ak

(

k
∏

i=1

(P∗)T (πai
⊙ πai

)

)

1
2

.

It can be easily verified that

∑

ak
1∈Ak

(

k
∏

i=1

(P∗)T (πai
⊙ πai

)

)

1
2

=

(

∑

a∈A

√

(P∗)T (πa ⊙ πa)

)k

. 2

By Jensen’s inequality

∑

a∈A

√

(P∗)T (πa ⊙ πa) ≥
∑

a∈A
(P∗)T πa = 1

with equality only if for all a ∈ A, all the non-zero entries of P∗ ⊙ πa are equal. Note that if they

are unequal for some a, the lower bound in the statement of the theorem grows exponentially in

k, and this is indeed the case for many (Π,Λ), e.g., BSC and Hamming loss. However, using D̄1
k

instead of D̄k in the proof cost us a factor of two in the exponent.

Instead of characterizing D̄1
k(X̂

n) we could have directly tried to characterize D̄k(X̂
n). In that

case q̄1(·) would have to be replaced by q̄(·) where for xn ∈ An, and ck
−k ∈ A2k+1

q̄
(

xn, ck
−k

)

[j] =
1

n − 2k
EP(Zn|xn)

[∣

∣

∣

{

i : k + 1 ≤ i ≤ n − k,Zi+k
i−k = ck

−k, xi = j
}∣

∣

∣

]

.

This can be written as a sum of Yi’s where

Yi
def
=
∑

ℓ∈A
α(ℓ)1(Xi = ℓ)Πk

j=−kΠ(Xi+j , cj), k + 1 ≤ i ≤ n − k.

This sequence is 2k-dependent and therefore Theorem 4 applies. However, unlike in Lemmas 5

and 7, the Yi’s are not uncorrelated and therefore the expression for the asymptotic variance of√
n(αT q̄

(

Xn, ck
−k

)

) turns out to be cumbersome to handle in general. For (ΠBSC,ΛHam), however,

it can be shown that

R̄k

(

X̂n
)

≥ c√
n

(

∑

a∈A

√

(P∗)T (πa ⊙ πa)

)2k

(1 + o(1))

where c is different from Theorem 8. We conjecture that this is true for all neutralizable (Π,Λ).
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5 Discussion

We derived lower bounds for R̂k(X̂
n) and R̄k(X̂

n). These results imply that for all X̂n ∈ Dn there

exists at least one individual noiseless sequence xn for which the excess loss when compared to

the best k-th order sliding window denoiser can be lower bounded by Ω(ck/
√

n). But, from the

proofs, it is clear that this result can be strengthened slightly to apply to not just the worst-case

sequence but also when averaging over noiseless sequences Xn when they are drawn according to a

loss-neutral distribution.

Theorem 6 applied to the case where k was fixed and n tended to infinity. This result can be

strengthened by deriving lower bounds for R̂k(X̂
n) when both k and n tend to infinity. For this

purpose we require a result analogous to Lemma 5 that applies when k grows with n. To that end

we prove the following lemma in the Appendix.

Lemma 9. If Xn is generated i.i.d. according to some P ∈ M, then for any column vector

α ∈ R
M , and any sequence of integers {kn} and contexts {ckn

−kn
} ∈ A2kn+1, such that n > 2kn and

αT (P ⊙ πc0) = 0, as n tends to infinity, if kn = o(ln n)

EP

[√
n
∣

∣

∣αT q
(

Zn,Xn, ckn

−kn

)∣

∣

∣

]

=

√

2Vn

π
(1 + o(1))

where Vn = (α ⊙ α)T (P ⊙ πc0)
∏kn

i=−kn,i6=0 PT πci
. 2

Following the steps in the proof of Theorem 6 with Lemma 5 replaced by the above lemma we

obtain the following.

Theorem 10. For any neutralizable pair (Π,Λ), any sequence {X̂n ∈ Dn} of denoisers, and any

sequence {kn}, as n tends to infinity, if kn = o(ln n)

R̂kn

(

X̂n
)

≥ c√
n

(

∑

a∈A

√

(P∗)T πa

)2kn

(1 + o(1))

where P∗ is any loss-neutral distribution and c is a positive function of (Π,Λ) and P∗. 2

It was shown in [1] that

R̂kn

(

X̂n,k
univ

)

= O
(
√

knM2kn

n

)

.

We pointed out in the introduction that this, in conjunction with Theorem 6, implies that asymp-

totically, for fixed k the regret of the DUDE is within a constant factor of the best possible. In light

of the above theorem, a more general statement can be made for some (Π,Λ) pairs. If a loss-neutral

distribution P∗ induces a uniform distribution at the output of Π, i.e., the distribution (P∗)T Π is

uniform, then the above theorem reduces to

R̂kn

(

X̂n
)

≥ c√
n

Mkn(1 + o(1)).
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In this case asymptotically, when kn = o(ln n), the regret of the DUDE is within a factor of
√

kn

of the best possible. (We believe that the upper bound on the DUDE can be further strengthened

to drop the
√

kn term, by employing results for k-dependent processes.) It is possible to construct

(Π,Λ) pairs for which (P∗)TΠ is uniform. For example, consider a Z-channel with

Π =

[

1 0
1
3

2
3

]

and Hamming loss, i.e., Λ = ΛHam. Then it can be easily verified that P∗ = [14
3
4 ]T is a loss-neutral

distribution and (P∗)TΠ = [12
1
2 ].

Further strengthening Theorems 6 and 8 to obtain a Rissanen-style [9, 10] lower bound that

applies to “most” individual sequences is not possible. This situation is similar to the one en-

countered in prediction problems [7]. To observe this, consider a binary symmetric channel with

crossover probability δ and the Hamming loss function. If the Hamming weight of xn, the noiseless

sequence, is between δ and 1 − δ, then with high probability the best 0-th order sliding window

denoiser for the pair (xn, Zn) where Zn is the noisy output of the channel when xn is the input, is

the “say-what-you-see” denoiser. For this denoiser X̂n and a non-zero fraction of types of noiseless

sequences, E
[

LX̂n(xn, Zn)
]

− D̂k(x
n) decays exponentially in n and E

[

LX̂n(xn, Zn)
]

− D̄k(x
n) is

zero. Hence the lower bound we derived cannot apply to most individual sequences.

6 Extensions

In this section we extend the results to more general classes of sliding window denoisers as well as

to multi-dimensionally indexed data. The results obtained here are of a similar nature.

6.1 Sliding window denoisers with arbitrary context

In Sections 3 and 4 we compared a given denoiser to the best loss obtainable with the class of

k-th order sliding window denoisers. This comparison class can be generalized to sliding window

denoisers where each symbol zi is denoised based on its context where the context, unlike in the

sliding window denoiser case, does not have to be all the k symbols to the left and right of zi. In

this section we derive lower bounds on the excess loss incurred by any denoiser when compared

to the best sliding window denoiser that is based on a given context set. We begin with some

preliminary definitions.

Bi-directional contexts have been defined and considered before in [11]. We present the defi-

nitions here for completeness. For a given alphabet A, let A∗ denote the set of all finite length

strings over A. For any string x ∈ A∗ let |x| denote the length of x and for any positive integer ℓ,

let xℓ denote the ℓ-symbol prefix of x. Consider a finite collection C ⊆ A∗ × A∗ of ordered pairs.

Let k be the maximum length of any string in any of the ordered pairs in C. The prefix set P(s) of

any s = (s1, s2) ∈ C is given by

P(s) =
{

(x, y) ∈ Ak ×Ak : x|s1| = s1, y
|s2| = s2

}

,
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the set of all ordered pairs of length-k strings whose prefixes are s1 and s2. The set C is exhaustive

if
⋃

s∈C
P(s) = Ak ×Ak

and is disjoint if for all s 6= s′ ∈ C
P(s) ∩ P(s′) = Φ.

A collection C ⊆ A∗ ×A∗ is a context set iff it is exhaustive and disjoint.

Based on the given bidirectional context set one can define a class of context-based sliding

window denoisers. Formally let C ⊆ A∗ × A∗ be a bidirectional context set and k the maximum

length of any string in any of the ordered pairs in C. Given a sequence zn, the left context zℓ
i

of the symbol zi is the sequence (zi−1, zi−2, . . .) and the right context zr
i of zi is the sequence

(zi+1, zi+2, . . .). Then zi is associated with a context pair (s1, s2) ∈ C if

(zℓ
i )

|s1| = s1 and (zr
i )

|s2| = s2.

The definition of C guarantees that for k + 1 ≤ i ≤ n − k every zi is associated with exactly one

context pair. A C-based sliding window denoiser X̂n is a denoiser with the property that for all

zn ∈ An, if both zi and zj are associated with (s1, s2) ∈ C then

X̂n(zn)[i] = X̂n(zn)[j].

Thus the denoiser defines a mapping,

f : C → A

so that for all zn ∈ An

X̂n(zn)[i] = f(s), i = k + 1, . . . ,n − k.

where s ∈ C is the unique context associated with zi. Let SC denote the class of C-based sliding

window denoisers. As in the case of k-th order sliding window denoisers we can define the best loss

obtainable for a given pair of noiseless and noisy sequences with a C-based sliding window denoiser.

For an individual noiseless sequence xn ∈ An and a noisy sequence zn ∈ An, k ≥ 0 and n > 2k,

DC(xn, zn), the C-based minimum loss of (xn, zn) is defined to be

DC(x
n, zn) = min

X̂n∈SC

LX̂n

(

xn−k
k+1 , zn

)

and for a given channel Π and a noiseless sequence xn define the expected C-based minimum loss

to be

D̂C(x
n)

def
= E[DC(x

n, Zn)].

As in the case of k-th order sliding window denoisers, the regret of any denoiser X̂n ∈ Dn is defined

to be

R̂C
(

X̂n
)

def
= max

xn∈An
E
[

LX̂n

(

xn−k
k+1 , Zn

)]

− D̂C(x
n).
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Since the maximum length of any string in any ordered pair in C is k, SC ⊆ Sk and therefore for

all xn ∈ An

D̂C(x
n) ≥ D̂k(x

n)

and hence for all X̂n ∈ Dn

R̂C
(

X̂n
)

≤ R̂k

(

X̂n
)

.

In the following theorem we state a lower bound on R̂C
(

X̂n
)

. We omit the proof since it is

identical to that of Theorem 6.

Theorem 11. For any neutralizable pair (Π,Λ), and any sequence {X̂n ∈ Dn} of denoisers, as

n tends to infinity

R̂k

(

X̂n
)

≥ c√
n

∑

(α,β)∈C









|α|
∏

i=1

(P∗)T παi









|β|
∏

i=1

(P∗)T πβi









1
2

(1 + o(1))

where P∗ is any loss-neutral distribution and c is a positive function of (Π,Λ) and P∗. 2

This is a generalization of Theorem 6 in that the latter can be recovered from this result by

setting C = Ak ×Ak.

6.2 Two-dimensionally indexed data

So far, we considered denoising one-dimensionally indexed data. In this section, we extend some

of the results to multi-dimensionally indexed data. Im many common applications, e.g., image de-

noising, the data is multi-dimensional. For such data, we define a class of sliding window denoisers,

and derive lower bounds on the regret with respect to this class. For ease of exposition we present

the results for two-dimensionally indexed data and a specific class of sliding window denoisers. But

the results can be easily generalized to other classes as well.

Let Am×n denote the set of all two-dimensional arrays with m rows and n columns whose

elements take values in A. For any array am×n in Am×n we denote the entry in the ith row and

jth column by ai,j or sometimes by a[i, j]. Further, for i1 ≤ i2 and j1 ≤ j2, let a
(i2,j2)
(i1,j1)

denote the

rectangular array comprising of the elements {ai,j : i1 ≤ i ≤ i2, j1 ≤ j ≤ j2}. Let xm×n ∈ Am×n

denote the two-dimensional noiseless array that is input to a memoryless channel Π and zm×n ∈
Am×n the noisy output. Further let xi,j and zi,j respectively denote the symbol in the ith row and

the j th column of the noiseless and noisy arrays.

An (m,n)-block denoiser is a mapping X̂m×n : Am×n → Am×n. For a given loss function Λ,

a noiseless input array xm×n and the observed output sequence zm×n, the normalized cumulative

loss LX̂m×n(xm×n, zm×n) of the denoiser X̂m×n is

LX̂m×n(xm×n, zm×n) =
1

mn

m
∑

i=1

n
∑

j=1

Λ
(

xi,j, X̂
m×n(zm×n)[i, j]

)

.
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Let Dm×n denote the class of all (m,n)-block denoisers. A k-th order sliding window denoiser

X̂m×n is a denoiser with the property that for all zm×n ∈ Am×n, if

z
(i1+k,j1+k)
(i1−k,j1−k) = z

(i2+k,j2+k)
(i2−k,j2−k)

then

X̂m×n(zm×n)[i1, j1] = X̂m×n(zm×n)[i2, j2].

Thus the denoiser defines a mapping,

f : A(2k+1)2 → A

so that for all zm×n ∈ Am×n

X̂m×n(zm×n)[i, j] = f
(

zi+k,j+k
i−k,j−k

)

, i, j = k + 1, . . . ,n − k.

Let Sk×k denote the class of sliding window denoisers. In the sequel we define the best loss

obtainable for a given pair of noiseless and noisy sequences with a k-th order sliding window

denoiser.

For an individual noiseless array xm×n ∈ Am×n and a noisy array zm×n ∈ Am×n, k ≥ 0 and

m,n > 2k, Dk(x
m×n, zm×n), the k-th order minimum loss of (xm×n, zm×n) is defined to be

Dk

(

xm×n, zm×n
)

= min
X̂m×n∈Sk×k

LX̂m×n

(

x
(n−k,n−k)
(k+1,k+1) , zm×n

)

= min
f :A(2k+1)2→A

1

mn − 2k(m + n − 2k)

n−k
∑

i=k+1

n−k
∑

j=k+1

Λ
(

xi,j, f
(

z
(i+k,j+k)
(i−k,j−k)

))

,

the least loss incurred by any k-th order denoiser on the pair (xm×n, zm×n). Note that we have

slightly modified the definition of normalized cumulative loss to accomodate noiseless and noisy

arrays of differing dimensions. For a given channel Π and a noiseless array xm×n define

D̂k(x
m×n)

def
= E[Dk(x

m×n, Zm×n)]

the expected k-th order minimum loss incurred when each random noisy array Zm×n produced when

xm×n is input to the channel is denoised by the best k-th order denoiser for the pair (xm×n, Zm×n).

As for the one-dimensional case, for any (m,n)-block denoiser X̂m×n we define the regret function

R̂k

(

X̂m×n
)

def
= max

xm×n∈Am×n
E
[

LX̂m×n

(

x
(n−k,n−k)
(k+1,k+1) , Zm×n

)]

− D̂k(x
m×n).

Then we have the following lower bound on the regret.

Theorem 12. For any neutralizable pair (Π,Λ), and any sequence {X̂m×n ∈ Dm×n} of denoisers,

as n tends to infinity

R̂k

(

X̂m×n
)

≥ c√
mn

(

∑

a∈A

√

(P∗)T πa

)(2k+1)2−1

(1 + o(1))

where P∗ is any loss-neutral distribution and c is a positive function of (Π,Λ) and P∗. 2

The proof of the theorem is identical to that of Theorem 6 except for the fact that we use a

Central Limit Theorem for two-dimensionally indexed k-dependent random variables (e.g., [12])

that lets us derive a lemma analogous to Lemma 5.
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7 Stochastic Setting

So far, we dealt with the performance of universal denoisers in semi-stochastic settings, namely,

compared their performance to denoisers tuned to the noiseless sequence that is input to the channel.

In this section we try to derive similar lower bounds for universal denoisers in the stochastic setting.

Recall that D(P) denotes the minimum expected loss incurred by any n-block denoiser where the

expectation is over all Xn distributed according to P and all channel relaizations and that the

regret of an n-block denoiser X̂n for a class of distributions P is defined to be

RP
(

X̂n
)

= max
P∈P

E
[

LX̂n(Xn, Zn)
]

− D(P).

It was shown in [1] that for the collection of all stationary processes, the regret of the DUDE

asymptotically tends to zero. We consider the subclass In of i.i.d. distributions over An and derive

lower bounds on RIn

(

X̂n
)

for any X̂n ∈ Dn, in Theorem 15. To do so we require a few preliminary

results.

Lemma 13. Let P∗ ∈ M and let the sequences of distributions {Pn ∈ M} and {Qn ∈ M}
be such that for all a ∈ A, both |Pn[a] − P∗[a]| ≤ c√

n
, and |Qn[a] − P∗[a]| ≤ c√

n
where c > 0.

Also if the subset of A where P∗[a] > 0 is identical to that of both Pn[a] and Qn[a], then for all

S1,S2 ⊆ An such that S1
⋃S2 = An, as n tends to infinity

∑

an∈S1

n
∏

i=1

Pn[ai] +
∑

an∈S2

n
∏

i=1

Qn[ai] = Ω(1).

Proof See Appendix II 2

Next we require a result on the nature of loss-neutral distributions.

Lemma 14. For any neutralizable (Π,Λ), there exists some distribution P∗, and some t ∈ A,

and i 6= j ∈ A, such that P∗ is loss-neutral with respect to (t, i, j) and the following is true for

some v ∈ R
M . For all a ∈ A, P∗[a] = 0 implies that v[a] = 0 and for all sufficiently small ǫ > 0,

P∗ + ǫv,P∗ − ǫv ∈ M. For all sufficiently small ǫ > 0 and all k ∈ A

(P∗ + ǫv)T (λk ⊙ πt) ≥ (P∗ + ǫv)T (λi ⊙ πt) (32)

with equality iff P∗ ⊙ (λi − λk) ⊙ πt = 0, and for all k ∈ A

(P∗ − ǫv)T (λk ⊙ πt) ≥ (P∗ − ǫv)T (λj ⊙ πt) (33)

with equality iff P∗ ⊙ (λj − λk) ⊙ πt = 0. 2

The optimal denoiser when the noiseless sequence Xn is drawn according to an i.i.d. distribution

is a zeroth order sliding window denoiser. Here we derive the optimal denoiser when Xn is drawn

according to a mixture of i.i.d. distributions. Let P1,P2 ∈ In and P be the mixture distribution
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obtained by selecting one of P1,P2 uniformly. Formally let Γ be drawn uniformly from {1, 2} and

Xn be drawn i.i.d. according to PΓ. Then

Pr(Xn = xn) =
1

2

n
∏

i=1

P1[xi] +
1

2

n
∏

i=1

P2[xi].

We are interested in

X̂n
opt

def
= arg min

X̂n∈Dn

E
[

LX̂n(Xn, Zn)
]

,

the n-block denoiser that minimizes the expected loss, and Dopt, the minimum loss. Conditioned

on Γ, X1,X2, . . . ,Xn are drawn i.i.d. and since the channel is memoryless, for all xn, zn ∈ An,

γ ∈ {1, 2}, and all 1 ≤ t ≤ n

Pr(Xt = xt|Zn = zn,Γ = γ) = Pr(Xt = xt|Zt = zt,Γ = γ). (34)

Recall that PXt|zn denotes the column vector whose α-th component is Pr(Xt = α|Zn = zn). Then

from (34)

PXt|zn =
1
2

∑

γ Pγ ⊙ πzt

∏n
i=1,i6=t P

T
γ πzi

1
2

∑

γ

∏n
i=1 PT

γ πzi

.

From (4)

X̂n
opt(z

n)[t] = x̂
(

PXt|zn

)

= arg min
x̂∈A

λT
x̂ PXt|zn = arg min

x̂∈A

∑

γ λT
x̂ (Pγ ⊙ πzt)

∏n
i=1,i6=t P

T
γ πzi

∑

γ

∏n
i=1 PT

γ πzi

.

Observe that

Pr(Zn = zn) =
1

2

∑

γ

n
∏

i=1

PT
γ πzi

,

and therefore the optimal expected loss incurred in denoising Xt is

E
[

U
(

PXt|Zn

)]

= E

[

min
x̂∈A

∑

γ λT
x̂ (Pγ ⊙ πZt)

∏n
i=1,i6=t P

T
γ πZi

∑

γ

∏n
i=1 PT

γ πZi

]

=
1

2

∑

zn∈An

min
x̂∈A

∑

γ

λT
x̂ (Pγ ⊙ πzt)

n
∏

i=1,i6=t

PT
γ πzi

=
1

2

∑

zn−1∈An−1

∑

z∈A
min
x̂∈A

∑

γ=1,2

λT
x̂ (Pγ ⊙ πz)

n−1
∏

i=1

PT
γ πzi

which does not depend on the index t. Therefore by (5)

Dopt =
1

n

n
∑

t=1

E
[

U
(

PXt|Zn

)]

= E
[

U
(

PXt|Zn

)]

=
1

2

∑

zn−1∈An−1

∑

z∈A
min
x̂∈A

∑

γ

λT
x̂ (Pγ ⊙ πz)

n−1
∏

i=1

PT
γ πzi

.

(35)

In the following theorem, we derive a lower bound on RIn(X̂n) for any X̂n ∈ Dn using these

preliminary results.
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Theorem 15. For any neutralizable pair (Π,Λ), and any sequence {X̂n ∈ Dn} of denoisers, as

n tends to infinity

RIn

(

X̂n
)

= Ω
(

n− 1
2

)

.

Proof Let t, i, j ∈ A, P∗ ∈ M, v ∈ R
M and ǫ > 0 be as in the statement of Lemma 14.

For any two i.i.d. distributions P1, P2

RIn

(

X̂n
)

≥ max
γ∈{1,2}

EPγ

[

LX̂n(Xn
1 , Zn)

]

− D(Pγ)

≥ 1

2

∑

γ=1,2

(

EPγ

[

LX̂n(Xn
1 , Zn)

]

− D(Pγ)
)

. (36)

Observe that if a random variable Γ is selected according to a uniform distribution over {1, 2} and

Xn is generated i.i.d. according to PΓ, then the expected loss incurred by X̂n is

EΓ

[

EPΓ

[

LX̂n(Xn, Zn)
]]

=
1

2

∑

γ=1,2

EPγ

[

LX̂n(Xn
1 , Zn)

]

.

From (35) this can be lower bounded as follows

1

2

∑

γ=1,2

EPγ

[

LX̂n(Xn
1 , Zn)

]

≥ Dopt =
1

2

∑

zn−1∈An−1

∑

z∈A
min
x̂∈A

∑

γ=1,2

λT
x̂ (Pγ ⊙ πz)

n−1
∏

i=1

PT
γ πzi

. (37)

From Lemma 1

D(Pγ) =
∑

z∈A
min
x̂∈A

λT
x̂ (Pγ ⊙ πz) =

∑

z∈A
min
x̂∈A

λT
x̂ (Pγ ⊙ πz)

∑

zn−1∈An−1

n−1
∏

i=1

PT
γ πzi

(38)

where the last equality holds as the extra term is merely the probability of all length-n−1 sequences

over A and therefore 1. Substituting (38) and (37) in (36) we get for all i.i.d. distributions P1 and

P2

RIn

(

X̂n
)

≥ 1

2

∑

zn−1∈An−1

g(zn−1) (39)

where

g(zn−1) =
∑

z∈A



min
x̂∈A

∑

γ=1,2

λT
x̂ (Pγ ⊙ πz)

n−1
∏

i=1

PT
γ πzi

−
∑

γ=1,2

min
x̂∈A

λT
x̂ (Pγ ⊙ πz)

n−1
∏

i=1

PT
γ πzi





≥ min
x̂∈A

∑

γ=1,2

λT
x̂ (Pγ ⊙ πt)

n−1
∏

i=1

PT
γ πzi

−
∑

γ=1,2

min
x̂∈A

λT
x̂ (Pγ ⊙ πt)

n−1
∏

i=1

PT
γ πzi

(40)

where we justify the inequality as follows. The minimum of a sum of functions is greater then the

sum of the minimum values, hence each of the terms in the summation over z is non-negative and

therefore dropping all the terms except the one correponding to z = t gives a valid lower bound.

Let A∗ be a subset of A that contains i and j and has the property that if a1 6= a2 ∈ A∗, then

P∗⊙ (λa1 −λa2)⊙πt 6= 0. Furthermore let A∗ be maximal, i.e., for all b ∈ A/A∗, there exists some
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a ∈ A∗ such that P∗ ⊙ (λa − λb)⊙ πt = 0. Note that in that case the minimizations in (40) can be

restricted to A∗ instead of A. If we choose P1 = P∗ + ǫv and P2 = P∗ − ǫv, with ǫ satisfying (32)

and (33), we obtain that

min
x̂∈A∗

λT
x̂ (P1 ⊙ πt) = λT

i (P1 ⊙ πt), and min
x̂∈A∗

λT
x̂ (P2 ⊙ πt) = λT

j (P2 ⊙ πt). (41)

For α ∈ A∗, let

Sα
def
=







zn−1 : arg min
x̂∈A

∑

γ=1,2

λT
x̂ (Pγ ⊙ πt)

n−1
∏

r=1

PT
γ πzr = α







where the ties in the minimization are broken according to some fixed rule. The Sα’s partition the

space An−1. Using this fact and (40), (41), we can reduce (39) to

RIn

(

X̂n
)

≥1

2

∑

α∈A∗,
α6=i

(λα − λi)
T (P1 ⊙ πt)

∑

zn−1∈Sα

n−1
∏

r=1

PT
1 πzr

+
1

2

∑

α∈A∗,
α6=j

(λα − λj)
T (P2 ⊙ πt)

∑

zn−1∈Sα

n−1
∏

r=1

PT
2 πzr .

The choice of P1 and P2 ensures that each term in both the summations over α ∈ A∗ are positive

and therefore letting S̄a denote the set An−1/Sα, we obtain

RIn

(

X̂n
)

≥1

2
min

{

min
a∈A∗,a6=i

{

(λa − λi)
T (P1 ⊙ πt)

}

, min
a∈A∗,a6=j

{

(λa − λj)
T (P2 ⊙ πt)

}

}





∑

zn−1∈S̄i

n−1
∏

r=1

PT
1 πzr +

∑

zn−1∈S̄j

n−1
∏

r=1

PT
2 πzr



. (42)

Let ǫ = n− 1
2 for some sufficiently large n. For all α ∈ A∗, α 6= i, from (32)

(λα − λi)
T (P1 ⊙ πt) = (λα − λi)

T (P∗ ⊙ πt) + n− 1
2 (λα − λi)

T (v ⊙ πt) > 0.

Observe that (λα − λi)
T (P∗ ⊙ πt) is non-negative for all α. If it is positive, then, as n tends to

infinity, the quantity on the right hand side of the above equation is Ω(1) and if it is 0, then

(λα − λi)
T (P1 ⊙ πt) = Ω

(

n− 1
2

)

.

The same is true for (λα − λj)
T (P2 ⊙ πt). Therefore

min

{

min
a6=i

{

(λa − λi)
T (P1 ⊙ πt)

}

,min
a6=j

{

(λa − λj)
T (P2 ⊙ πt)

}

}

= Ω
(

n− 1
2

)

. (43)

Let QT
1 = PT

1 Π and QT = PT
2 Π be the distributions induced by P1 and P2 respectively at the

output of the channel. Since ǫ = n− 1
2 , for all a ∈ A,

|Q1[a] − Q2[a]| ≤ c√
n
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for some constant c. Also note that S̄i
⋃ S̄j = An−1. Then, letting n tend to infinity, and applying

Lemma 13 to the distributions P∗Π, Q1 and Q2 we obtain





∑

zn−1∈S̄i

n−1
∏

r=1

PT
2 πzr +

∑

zn−1∈S̄j

n−1
∏

r=1

PT
1 πzr



 = Ω(1).

Substituting this and (43) in (42) gives us the result. 2
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Appendix I: Stronger version of Lemma 5

To strengthen Lemma 5 in a way that it applies not just to fixed k, but also to a sequence {kn}
that increases with n, we require a version of the Berry-Esseen inequality for m-dependent random

variables.

Let X1,X2, . . . ,Xn be a sequence of m-dependent random variables with zero means and finite

variances. If the sequence is stationary then

V
def
= E





(

n
∑

i=1

Xi

)2


 = nE
[

X2
1

]

+ 2

m
∑

j=1

(n − j)E[X1X1+j ].

Suppose

Sn
def
=

1√
V

n
∑

i=1

Xi

and Φ(x) is the normal cdf, namely,

Φ(x) = (2π)−
1
2

∫ x

−∞
e−

u2

2 du.

Then it follows from the more general result by Shergin [13] that, under the finiteness of the sth

absolute moment of X1, 2 < s < 3,

sup
x

|Pr(Sn < x) − Φ(x)| ≤ c(m + 1)s−1nE[|X1|s]V − s
2 (44)

where c is a constant.

Using this inequality the following lemma may be obtained.
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Lemma 16. If Xn is generated i.i.d. according to some P ∈ M, then for any column vector

α ∈ R
M , and any sequence of integers {kn} and contexts {ckn

−kn
} ∈ A2kn+1, such that n > 2kn and

αT (P ⊙ πc0) = 0, as n tends to infinity, if kn = o(ln n)

EP

[√
n
∣

∣

∣
αT q

(

Zn,Xn, ckn

−kn

)∣

∣

∣

]

=

√

2Vn

π
(1 + o(1))

where Vn = (α ⊙ α)T (P ⊙ πc0)
∏kn

i=−kn,i6=0 PT πci
.

Proof As in the proof of Lemma 5, for a given α ∈ R
M and ckn

−kn
∈ A2kn+1 we define the sequence

Y n−kn

kn+1 of random variables as

Yi
def
=
∑

ℓ∈A
α(ℓ)1

(

Xi = ℓ, Zi+kn

i−kn
= ckn

−kn

)

, kn + 1 ≤ i ≤ n − kn.

Then

1

n − 2kn

n−kn
∑

i=kn+1

Yi = αT q
(

Zn,Xn, ckn

−kn

)

. (45)

If the sequence Xn is drawn i.i.d. according to P, Y n−kn

kn+1 is stationary and since each Yi is a function

of 2kn + 1 consecutive Xi’s, it is easy to verify that Y n−kn

kn+1 is a 2kn-dependent sequence. It may be

recalled from the proof of Lemma 5 that

E
[

Y 2
kn+1

]

=
∑

ℓ∈A
α(ℓ)2Pr

(

Xkn+1 = ℓ, Z2kn+1
1 = ckn

−kn

)

= Vn = (α ⊙ α)T (P⊙ πc0)

kn
∏

i=−kn,i6=0

PT πci

and that for all i ≥ 1

E[Ykn+1Ykn+1+i] = 0.

So the Lemma is trivially true if Vn = 0 and therefore we consider Vn > 0. Also note that

E[|Ykn+1|s] =
∑

ℓ∈A
|α(ℓ)|sPr

(

Xkn+1 = ℓ, Z2kn+1
1 = ckn

−kn

)

= αT
s (P ⊙ πc0)

kn
∏

i=−kn,i6=0

PT πci

where αs(ℓ) = |α(ℓ)|s for all ℓ ∈ A. Therefore from (44)

sup
x

∣

∣

∣

∣

∣

Pr

(

√

n − 2kn

Vn
αT q

(

Zn,Xn, ckn

−kn

)

< x

)

− Φ(x)

∣

∣

∣

∣

∣

≤ c(2kn + 1)s−1V
− s

2
n (n − 2kn)−( s

2
−1) (46)

where c is a constant that depends on α, P and Π. For all positive random variables X whose

expectation is finite

E[X] =

∫ ∞

0
Pr(X ≥ x)dx.

Applying this to Sn
def
=
√

(n − 2kn)V −1
n |αT q

(

Zn,Xn, ckn

−kn

)

| and comparing the expectation with

the expected absolute value of a unit normal random variable, we obtain for any τn > 0
∣

∣

∣

∣

EP[Sn] − 2

∫ ∞

0
(1 − Φ(x))dx

∣

∣

∣

∣

≤
∫ τn

0
|Pr(Sn > x) − 2(1 − Φ(x))| dx

+

∫ ∞

τn

Pr(Sn > x)dx +

∫ ∞

τn

2(1 − Φ(x))dx (47)
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From (46)

∫ τn

0
|Pr(Sn > x) − 2(1 − Φ(x))| dx ≤ 2τnc(2kn + 1)s−1V

− s
2

n (n − 2kn)−( s
2
−1). (48)

Observe from (45) that

Pr(Sn > x) = Pr





∣

∣

∣

∣

∣

∣

n−kn
∑

i=kn+1

Yi

∣

∣

∣

∣

∣

∣

> x
√

(n − 2kn)Vn





= Pr









∣

∣

∣

∣

∣

∣

∣

∣

2kn
∑

l=0

n−kn
∑

i=kn+1,
i mod 2kn+1=ℓ

Yi

∣

∣

∣

∣

∣

∣

∣

∣

> x
√

(n − 2kn)Vn









≤
2kn
∑

l=0

Pr









∣

∣

∣

∣

∣

∣

∣

∣

n−kn
∑

i=kn+1,
i mod 2kn+1=ℓ

Yi

∣

∣

∣

∣

∣

∣

∣

∣

>
x
√

(n − 2kn)Vn

2kn + 1









.

Since for each 0 ≤ ℓ ≤ 2kn, {Yi : i mod 2kn + 1 = ℓ} is a collection of iid random variables with

zero mean, we can apply Hoeffding’s inequality [14] to obtain

Pr(Sn > x) ≤ 2(2kn + 1)e
−2x2(n−2kn)Vn(2kn+1)−2

�l
n−2kn
2kn+1

m�−1

≤ 2(2kn + 1)e
−2Vnx2

�
n−2kn

(n+1)(2kn+1)

�
.

Therefore

∫ ∞

τn

Pr(Sn > x)dx ≤ 2(2kn +1)

∫ ∞

τn

e
−2Vnx2

�
n−2kn

(n+1)(2kn+1)

�
dx ≤ (2kn + 1)e

−2Vnτ2
n

�
n−2kn

(n+1)(2kn+1)

�
2Vnτn

(

n−2kn

(n+1)(2kn+1)

) (49)

where we have used the fact that
∫ ∞

x
e−

αt2

2 dt ≤ e−
αx2

2

αx
.

Also

∫ ∞

τn

2(1 − Φ(x))dx =

∫ ∞

τn

2

∫ ∞

x

1√
2π

e−
t2

2 dt ≤
∫ ∞

τn

√

2

π

e−
x2

2

x
dx ≤

√

2

π

e−
τ2
n
2

τ2
n

. (50)

Since Vn > 0 observe that

Vn = (α ⊙ α)T (P ⊙ πc0)

kn
∏

i=−kn,i6=0

PT πci
≥ βγ2kn

where β = (α ⊙ α)T (P⊙ πc0) and

γ = min
a∈A:PT πa>0

PT πa.
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Substituting the above inequality and (48), (49), and (50) into (47) and setting τn to be knγ−kn lnn

and we obtain
∣

∣

∣

∣

EP[Sn] − 2

∫ ∞

0
(1 − Φ(x))dx

∣

∣

∣

∣

≤2cβ− s
2 (2kn + 1)s−1knγ−kn(s+1)(n − 2kn)−( s

2
−1) ln n

+
(2kn + 1)e

−2β(kn lnn)2
�

n−2kn
(n+1)(2kn+1)

�
2βγknkn ln n

(

n−2kn

(n+1)(2kn+1)

) +

√

2

π

e−
(kn ln nγ−kn )2

2

(kn ln nγ−kn)2
.

It is easy to verify that when n tends to infinity and kn = o(ln n), the terms on the right hand side

tend to zero. The proof is complete on observing that

2

∫ ∞

0
(1 − Φ(x))dx =

√

2

π
. 2

Appendix II: Proof of Lemma 13

Lemma. Let P∗ ∈ M and let the sequences of distributions {Pn ∈ M} and {Qn ∈ M} be such

that for all a ∈ A, both |Pn[a] − P∗[a]| ≤ c√
n
, and |Qn[a] − P∗[a]| ≤ c√

n
where c > 0. Also if the

subset of A where P∗[a] > 0 is identical to that of both Pn[a] and Qn[a], then for all S1,S2 ⊆ An

such that S1
⋃S2 = An, as n tends to infinity

∑

an∈S1

n
∏

i=1

Pn[ai] +
∑

an∈S2

n
∏

i=1

Qn[ai] = Ω(1).

Proof Since the sum on the left hand side is minimum when S2 = A/S1, it suffices to consider

that case. Observe that

1 −





∑

an∈S1

n
∏

i=1

Pn[ai] +
∑

an∈An/S1

n
∏

i=1

Qn[ai]



 =
∑

an∈S1

n
∏

i=1

Qn[ai] −
∑

an∈S1

n
∏

i=1

Pn[ai]

≤ max
S1⊆An





∑

an∈S1

n
∏

i=1

Qn[ai] −
∑

an∈S1

n
∏

i=1

Pn[ai]





=
1

2

∑

an∈An

∣

∣

∣

∣

∣

n
∏

i=1

Pn[ai] −
n
∏

i=1

Qn[ai]

∣

∣

∣

∣

∣

≤1

2

∑

an∈An

∣

∣

∣

∣

∣

n
∏

i=1

Pn[ai] −
n
∏

i=1

P∗[ai]

∣

∣

∣

∣

∣

+
1

2

∑

an∈An

∣

∣

∣

∣

∣

n
∏

i=1

P∗[ai] −
n
∏

i=1

Qn[ai]

∣

∣

∣

∣

∣

≤
(

ln 2

2

) 1
2(√

nD(P∗||Pn) +
√

nD(P∗||Qn)
)

(51)
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where D(·) is the Kullback-Leibler distance and we have used Pinsker’s inequality (see e.g., Lemma

12.6.1 in [15]).

Let P∗[a] > 0 for k values of a and let K denote the set of k-dimensional probability distributions.

Then we define the function f : K → R to be

f(P) = D(P∗||P) =
∑

α∈A:P∗[α]>0

P∗[α] log
P∗[α]

P[α]
.

Applying Taylor’s formula about P∗, we get

f(P) = f(P∗) + f ′(P∗)T (P − P∗) +
1

2
(P − P∗)T f ′′(P̃)(P − P∗) (52)

where P̃ = λP∗ + (1 − λ)P for some λ ∈ (0, 1), and where f ′(P) is the column vector whose ith

term is

f ′(P)[i] =
∂f(P)

∂P[i]
,

and f ′′(P) is the square matrix whose (i, j)th entry is

f ′′(P)[i, j] =
∂2f(P)

∂P[i]∂P[j]

where the indices i and j run over the set {a ∈ A : P∗[a] > 0}. Let P = Pn in (52). Note that

f(P∗) = 0 and that f ′(P∗)(Pn − P∗) = 0. It can be verified that

(Pn − P∗)T f ′′(P̃)(Pn − P∗) =
∑

a∈K

(Pn[a] − P∗[a])2

(P̃[a])2
.

Since P̃ is in the interior of K, for all a ∈ K, P̃[a] can be lower bounded by a constant independent

of n. Combining this with the fact that |P∗[a] − Pn[a]| ≤ c√
n

for all a ∈ K,

(Pn − P∗)T f ′′(P̃)(Pn − P∗) = O
(

n−1
)

.

Therefore (52) can be reduced to f(Pn) = O
(

n−1
)

. Similarly f(Qn) = O
(

n−1
)

. Combining these

with (51), we obtain the Lemma. 2

Appendix III: Proof of Lemma 14

Lemma. For any neutralizable (Π,Λ), there exists some distribution P∗, and some t ∈ A, and

i 6= j ∈ A, such that P∗ is loss-neutral with respect to (t, i, j) and the following is true for some

v ∈ R
M . For all a ∈ A, P∗[a] = 0 implies that v[a] = 0 and for all sufficiently small ǫ > 0,

P∗ + ǫv,P∗ − ǫv ∈ M. For all sufficiently small ǫ > 0 and all k ∈ A

(P∗ + ǫv)T (λk ⊙ πt) ≥ (P∗ + ǫv)T (λi ⊙ πt)

with equality iff P∗ ⊙ (λi − λk) ⊙ πt = 0, and for all k ∈ A

(P∗ − ǫv)T (λk ⊙ πt) ≥ (P∗ − ǫv)T (λj ⊙ πt)
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with equality iff P∗ ⊙ (λj − λk) ⊙ πt = 0.

Proof Let i 6= j be such that P∗ is loss-neutral with respect to (t, i, j). Let I+ = {a ∈ A : P∗ > 0}
denote the set of all symbols which are not assigned 0 probability by P∗ and let

K =

{

v ∈ R
M : ∀a /∈ I+,v[a] = 0,

∑

a

v[a] = 1

}

.

For all α 6= β ∈ A let

Hα,β =
{

v ∈ K : vT ((λα − λβ) ⊙ πt) = 0
}

.

For all i′, j′ such that P∗ is loss-neutral with respect to (t, i′, j′), the dimension of the affine space

Hi′,j′ is at least one less than the dimension of the space K. Hence, if

LP∗,t
def
=
{

(i, j) ∈ A2 : i 6= j, P∗ is loss-neutral with respect to (t, i, j)
}

,

there exists v, such that P∗ + v ∈ M∩K and

P∗ + ǫv /∈
⋃

(i,j)∈LP∗,t

Hi,j

for all sufficiently small non-zero ǫ ∈ R. For any (i, j) /∈ LP∗,t such that P∗ ⊙ (λi − λj) ⊙ πt 6= 0,

(P∗)T ((λi − λj) ⊙ πt) 6= 0,

and hence for all sufficiently small ǫ, P∗ + ǫv /∈ Hi,j. Therefore for all i, j, such that P∗ ⊙ (λi −
λj) ⊙ πt 6= 0, (P∗ + ǫv)T ((λi − λj) ⊙ πt) is either strictly positive or negative and therefore there

exists an i0(ǫ) that satisfies for all k ∈ A

(P∗ + ǫv)T (λk ⊙ πt) ≥ (P∗ + ǫv)T (λi0(ǫ) ⊙ πt

)

(53)

with equality iff P∗ ⊙ (λi0(ǫ) − λk) ⊙ πt = 0. Clearly, for all sufficiently small ǫ > 0, i0(ǫ) is a

constant, say i0. In particular

min
k∈A

(P∗)T (λk ⊙ πt) = (P∗)T (λi0 ⊙ πt). (54)

Since P∗ is loss-neutral, it is not hard to see that there exists a j that achieves the above minimum

and P∗ ⊙ (λi0 − λj) ⊙ πt 6= 0. Note that for all ǫ > 0

(P∗ − ǫv)T ((λj − λi0) ⊙ πt) = −ǫvT ((λj − λi0) ⊙ πt) < 0.

Therefore, for all sufficiently small ǫ > 0, the i0(−ǫ) that satisfies (53) when P∗ + ǫv is replaced

by P∗ − ǫv, is a constant j0 satisfying P∗ ⊙ (λi0 − λj0) ⊙ πt 6= 0. In particular, like i0, j0 also

satisfies (54). Therefore P∗ is loss-neutral with respect to (t, i0, j0). 2
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