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ABSTRACT
We discuss our experiences in analyzing customer-support issues 
from the unstructured free-text fields of technical-support call 
logs. The identification of frequent issues and their accurate 
quantification is essential in order to track aggregate costs broken 
down by issue type, to appropriately target engineering resources, 
and to provide the best diagnosis, support and documentation for 
most common issues. We present a new set of techniques for 
doing this efficiently on an industrial scale, without requiring 
manual coding of calls in the call center. Our approach involves 
(1) a new text clustering method to identify common and 
emerging issues; (2) a method to rapidly train large numbers of 
categorizers in a practical, interactive manner; and (3) a method to 
accurately quantify categories, even in the face of inaccurate 
classifications and training sets that necessarily cannot match the 
class distribution of each new month’s data. We present our 
methodology and a tool we developed and deployed that uses 
these methods for tracking ongoing support issues and 
discovering emerging issues at HP.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Types of Systems—
decision support; I.2.6 [Artificial Intelligence]: Learning—
concept learning; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing—abstracting methods, linguistic 
processing; I.5.4 [Pattern Recognition]: Applications—text 
processing;I.5.3 [Pattern Recognition]: Clustering—algorithms. 

General Terms
Algorithms, Measurement, Design, Economics.

Keywords
text mining, log processing, supervised machine learning, 
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1. INTRODUCTION
High-quality customer service and support is a high priority for 
Hewlett-Packard. This affects the company’s reputation and 
customer satisfaction directly. There is a persistent need to 
identify and quantify the most frequent issues for every product. 
For a large enterprise having many product lines of high 
technology products like HP, this is a complex task. The resulting 
information is used in a variety of ways: to ensure that easy help 
(e.g. automated diagnostics, patches, and documentation) is 
available for the most frequent problems; to efficiently target 
engineering resources at fixing problems or even redesigning 
products; to track whether we are reducing these issues (and the 
costs associated with them); and to compare to industry averages.
A prolific and valuable source of information about these issues is 
contained in the records from call centers. Each incident results in 
a description of what caused the customer to call and what was 
done to resolve the issue. Unfortunately, these call records are in 
(terse) free text, because the technicians handling calls are focused 
on (and rewarded for) resolving incidents rather than spending 
their time describing them well. As a result, it is difficult to use 
the information that is in the call-record text.
In this paper, we describe a solution we have developed that 
harvests the information buried in these hundreds of thousands of 
call records. Our solution enables a large amount of automation in 
reporting issues with a relatively small amount of up-front work. 
The automation consists of taking a batch of cases (such as a 
month’s worth of calls for a particular product line of interest) and 
feeding them to a trained automated quantifier, which returns the 
distribution of the cases over the issues. The results are then fed 
into a reporting tool, which generates the appropriate graphs, 
month-to-month comparisons, alerts, reports, etc.
The up-front work is where the key data mining contributions are,
particularly in the method and tool we created to make it practical 
to very quickly create an accurate quantifier for a new problem 
domain (e.g., for each of hundreds of product lines). Typically, to 
start with, all we have is a batch of raw, unlabeled cases. We need 
to find what issues are prevalent in the cases, and build up a 
labeled training set of cases for these issues. Our core contribution 
is a tool and methodology that allows one to do so very 
efficiently. This tool involves clustering, classification and 
quantification. From a data mining perspective, we solved some 
key problems in novel ways: (1) we developed a new clustering 
method to identify meaningful topics in large bodies of (dirty) text
[16]; (2) we worked out an approach to train a classifier quickly, 
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robustly, and intuitively, even one that involves a large number of 
categories; and (3) we developed methods to accurately quantify 
categories even in the face of inaccurate classifications [5][6].
The remainder of this paper is organized as follows. First, as 
background, we describe existing approaches in industry, and we 
show a sample of data to ground our approach. We then describe 
our methods and the end-to-end solution. We present the 
technology transfer from the research labs to our business units 
and the results of deployment. Finally, we discuss lessons learned, 
open issues, and future work. 

1.1 Existing Approaches
The first question we usually get when we talk about our work in 
automated problem quantification is “Wait… don’t we do this 
already?” The short answer is: yes, lots of companies do it, but 
nobody does it very well, nor do they do it efficiently. 
Historically, companies have based their tracking of warranty and
support issues on parts data: If my support business replaces part 
X very often, maybe I have a quality problem there. Parts data can 
give us detailed and accurate data about quality problems, but it 
has limitations. Most importantly, it does not tell us anything 
about a vast number of calls that offer low-hanging fruit from a 
cost-reduction perspective: calls that could have been prevented 
and calls that can be resolved on-line or over the phone–
customers asking questions, set-up problems, configuration 
problems, patchable problems, documentation needs, and so on.
Furthermore, parts data do not give us any direct information 
about customer satisfaction issues, nor details of what customers 
are asking about or asking for. 
The other common approach is to make the call center decide on a 
code for every call, and for the analysis to use the resulting codes. 
Typically, there is a deep hierarchy of possible codes for any 
product. This provides computer-readable information and allows 
reporting on the frequency with which various codes were used 
for different products. Various tools exist for generating 
interesting graphs and reports, drill-down, trends, etc. 
Unfortunately, this approach has several critical weaknesses. First, 
the codes used are inaccurate. We have run several internal 
studies that document that there is poor correlation between the 
code assigned to a call and the actual problem as reflected in the 
record or transcript of the call. This is not surprising, given that 
the call agents are required to choose a code but are not incented 
to pick a good code, resulting of in a preponderance of cases 
labeled with “misc problem” as well as codes near the top of the 
menu. Second, using codes is expensive. The hierarchies need to 
be created and maintained, the call agents need to be trained in the 
codes, and then on every call they need to spend precious time 
selecting a code from a potentially very large hierarchy. Third, 
this misses all new or emerging problems, because codes do not 
yet exist or the call agents have not yet been trained in 
recognizing them.
In addition, there are prevalent ad-hoc approaches: eye-balling the 
data; looking at FAQ lists and trying to notice any important 
missing items; periodic sampling and manual labeling; expert 
opinion; availability of expertise; etc.   
An appealing alternative, particularly from the perspective of a 
data mining researcher, is to use the raw text in the customer-
support call logs to quantify the occurrence of problems. 
Unfortunately, well-known data mining techniques are not in 

frequent use in this domain because there are numerous barriers 
that prevent them from being effective, besides the usual 
challenges that affect text mining even in “clean” domains such as 
news stories. 
Word counts—the simplest form of text-based quantification—
suffers from extensive noise from domain-specific stop words, as 
well as from the fact that many keywords are related to the same 
issue (e.g., “battery”, “charge”, “power”, “weak”). 
Text clustering is appealing because of its apparent lack of need 
for human effort. In our experience and experimentation with 
known text clustering techniques on our support data, however, 
we have found them to often yield results that can be described as 
worthless. Unrelated problems are merged; there are many 
meaningless clusters; single issues are split into many small 
clusters because of nuances in the language used and the varying 
ways that different speakers describe the same thing. On top of 
that, one of our key needs is month-to-month tracking, which is 
hard if each month’s clusters are different and not easily linkable.  
The recent work by Mei and Zhai [13] and the somewhat older 
ThemeRiver visualization by Havre et al. [9] both attempt to 
detect the emergence of themes and track their trends through 
time in a text stream via clustering.  These methods focus on only 
the largest themes, and the cluster boundaries are influenced 
strongly by the competing clusters, rather than the semantic edge 
of an important issue, yielding uncalibrated quantities.  By 
comparison, supervised machine learning can focus on less 
frequent but nevertheless important classes, and the quantification 
it produces can be used to accurately measure the cost associated 
with each issue [5][6].
The appeal of classification is its reliability, performance and 
repeatability given a particular set of problems and a good 
training set. The key drawback has been the large effort required 
for training categorizers. Historically, people have used keyword-
based rules in this domain, which have a high up-front modeling 
effort, debatable accuracy, and a substantial maintenance cost. 
Alternatively, categorizers based on machine-learning require 
labeled training data, typically on the order of 100 cases per 
category. This requirement quickly becomes prohibitive when we 
are talking about hundreds of categories per product, for hundreds 
of products; even defining and maintaining the categories 
stretches the amount of effort humans are willing to make.
Quantification is a problem that has received very little attention 
in the data mining research community despite the tremendous 
practical need for it in many applications. When we first tackled 
this problem, we had quite a bit of experience in mining 
customer-support data, including categorization and clustering of 
solution documents and call records. We thought this would be a 
straightforward application of categorization (classify all items 
and simply count positive predictions), possibly augmented with 
some text cleaning and feature selection. But an interesting 
problem in quantification, at least from the perspective of periodic 
reporting, is that you fundamentally need to assume shifts in the 
class priors: If the class distribution does not change, you don’t 
need an automated quantifier: you only need to manually quantify 
the first batch. As a result of this time-varying behavior that is 
inherent to the application, the obvious solution above—“classify-
and-count”—does not work well, as the usual machine learning 
classification methods assume that the test set and training set are 
drawn from the same distribution [4].



1.2 Sample Call Log Data
To give the reader an idea of what we are up against, Table 1
shows a sample of text notes recorded by technical support agents 
as they serve customers on the phone.  This sample is taken from 
the HP iPAQ handheld product line, but is representative of 
similar call notes for hundreds of other product lines, and likely 
analogous to those experienced in many companies:  the quality of 
spelling, grammar and completeness about the subject is much 
poorer than in common text research corpora such as news 
articles. In more complicated product lines, such as servers, the 
call notes run much longer about the diagnosis and resolution 
processes.  Nonetheless, they too are terse and the context of the 
problem is often assumed, not recorded. Depending on the 
product line, the call volume can provide on the order of hundreds 
of thousands of calls per month in a company the size of HP.
Because of the nature of technical support, a large fraction of calls 
are about one-of problems. Depending on the complexity of the 
product line, easily half the cases do not lead to interesting 
clusters of issues. Hence, simply reading a random sample is 
inefficient and only works to determine the top few issues. In 
contrast, our typical users prefer to distinguish 10-100 issues.

2. METHODOLOGY
We now describe in more detail our method and tool for making it 
practical to quickly create many accurate quantifiers. We provide 
a high-level overview here, and focus on the research 
contributions in more detail in Section 3. 
First, we decide on the domain for the analysis. The domain is 
typically a particular product line, such as the iPAQ handhelds in 
the data shown in Table 1, and is usually further limited to cases 
in the language the analyst speaks. 
Next, we collect raw call data for the domain. Call data typically 
includes (at a minimum) a product identifier or model number. If
such an identifier is not specified as structured data, it can 
typically be derived reliably from serial numbers or contract data, 
or otherwise is usually somewhere in the body of the call record in 
text form. The product identifier allows us to filter the call data to 
at least some approximation of the domain of interest, so that we 
don’t try to identify iPAQ problems in calls about storage arrays.
The next step is to generate ideas for potential categories. To do 
so, we run our clustering tool, the “Ten-Second Answer,” on the 
cases and display the results. These include cluster descriptions 
(potential category names) as well as cluster size estimates and a 
sample of cases. We describe the clustering tool and the 
underlying method in more detail in Section 3.1.
Next, a human domain editor starts to create categories and 
identify examples for each category. We describe this process in 
detail in Section 3.2. This process, which we call “search and 
confirm,” turns classical training upside down. The domain editor
takes a category of interest, searches for possible examples, scans
the results and confirms whether the cases are indeed examples of 
the category.
The training examples are used in real time, in the background, to 
train a classifier for each category. Initially, the classifiers will be 
poor and biased, but they refine quickly as data are added. Based 
on the results of classification, we run our quantification method 
in real time to provide estimates of the size of each category
(described in more detail in Section 3.3 and in [5][6]). The results 

are displayed and updated in real time to provide the user with 
feedback.
The domain editor can graphically specify various types of 
relationships among categories—for example, multiple 
independent hierarchical relationships, mutual exclusivity among 
certain topics, allowable overlap, etc. Thus, a flexible topic 
hierarchy for the domain is created interactively.  Alternatively, a 
pre-existing topic hierarchy can be specified or loaded.
We have included several capabilities for helping to determine 
whether the quantifier is complete (for example, whether there are 
remaining latent categories). One such is residual analysis. In 
residual analysis, we query for cases that have a low probability 
(by the current classifiers) of being in any particular category. We 
then cluster these cases to see whether there are categories we 
missed. A related technique is topic drill-down: we grab cases that 
are already labeled or predicted to be in a particular category, and 
we cluster those to look for subtopics. Also included are various 
performance measures via cross-validation.
When the domain editor decides the categorizers and quantifiers
are good enough, he or she can export them for off-line use (for 
example, on data from subsequent months). We also have an 
associated reporting tool, which allows generation and publication 
of graphical reports on a web site for interactive exploration by 
the many stakeholders and information consumers. 

3. CONTRIBUTIONS
3.1 Text Clustering for Issue Identification
The first task is to identify issues that commonly lead to calls 
based on the textual descriptions in the call logs.  The hope was 
that some sort of clustering method would allow the identification 
of at least the most important issues in a fully-automated way.  
Unfortunately, traditional clustering methods tend not to work 
well on this sort of data.  Typically, such methods treat the 
presence or absence of individual words as a high-dimensional 

Table 1.  Sample cases from call logs on the HP iPAQ. 
Time   Model Subject
12:24 3955 H3955  how to hard reset the ipaq
12:26 3955 H3955 Cannot use email on wifi
12:33 3955 H3955 Cannot sync his Outlook items with his 
12:36 3765 3765 port on ipaq not makeing good connection
12:40 3835 iPAQ H3850 -Display /white screen
12:45 3835 h3630-eu instal printer and now cannot connect
12:45 1910 Sounds and notifications
12:45 3955 3955-no outlook choices to sych
12:46 1910 H1910 - Wants to know where the reference guide
12:46 3955 H3950: Unit is giving memory full errors
12:47 3850 h3850-battery is not holding chargeand tapped on 
12:48 3650 eu ask if ipaq has adjusted his warranty status
12:54 3630 H3630 - The ipaq ill only turn on when it is on the 
12:54 3835 3835 cracked case and ip SR itself
12:54 1910 H1910: unit has a cracked screen;screen taps don’t 
12:59 3850 Backlight will not turn on
13:01 1910 H1910 - Wanted to know how to restore.
13:07 3670 H3670: Unit is not synching with laptop
13:13 3955 communications error 607
13:13 3630 3650 screen is corupted
13:20 3835 Getting Shell32.exe errors
13:22 3850 H3850-cannot pass the logo screen



space and attempt to find points in that space that partition the 
cases.  (Some clustering algorithms, e.g. [1], can return 
overlapping clusters.) Empirically, this tends not to find useful 
clusters in the sort of data in call logs, especially when the number 
of potential clusters becomes large.  It has the further drawback 
that the desired output is not the clustering per se (i.e., the 
particular cases assigned to each cluster) but a human-
understandable description of each cluster to help the user 
identify useful themes or categories.  Once a clustering has been 
done, it remains to analyze the case descriptions to generate a 
summary of what each cluster represents.  
We also require a method that is fast enough for interactive use on 
large datasets, ruling out methods that require factoring large 
matrices (e.g. latent semantic indexing [3]) or many iterations for 
convergence (e.g. EM, k-means) [e.g. 1,12]. Beil et al. recently 
presented a fast method for text clustering, which reduces the 
dimensionality of the feature space to that of frequent term sets
[2]. They report a runtime of a few minutes for several thousand 
cases, but with a quadratic trend.  As described in the next 
section, our algorithm is used interactively to find clusters on the 
results of searches, and for this it is important that it be able to 
cluster 10,000–100,000 cases in a matter of seconds so as to not 
disrupt the user’s train of thought
To address our needs in this project, we developed a new 
clustering algorithm that focuses on identifying useful, inherently 
describable clusters from text rather than on assigning individual 
cases to clusters.  As such, it makes no attempt to be either 
mutually exclusive or exhaustive, reflecting the facts that (1) not 
infrequently, a call may be the result of more than one issue,
(2) any discovered set of topics will almost certainly be 
incomplete, and forcing the system to fit every call into a cluster 
just degrades the usefulness of the clusters, and (3) some case 
descriptions are simply too impoverished to be useful and might 
as well be ignored.  The algorithm automatically organizes the
clusters found into a hierarchy. This proves useful in our domain; 
for example, there are multiple subtypes of software problems and 
hardware problems.  The algorithm does not require the user to 
provide a target number of clusters or hierarchy depth—these are 
inferred from the data.  Finally, since the clusters found are 
defined by commonalities between words, it is straightforward to 
create easily understandable textual descriptions of the clusters.
The algorithm begins by extracting words from the case 
descriptions, canonicalizing them (regularizing case, stemming, 
removing stopwords), and then counting the number of cases each 
word and each pair of words appears in.  This is used to construct 
a matrix in which the rows and columns are words and in which 
each element is the signed bi-normal separation [8] value of one 
word as a predictor of the other.  From this matrix, each pair of 
words is calculated to be positively correlated (at least one 
ordering has a sufficiently positive value in the matrix and the 
reverse ordering does not have a sufficiently negative value), 
negatively correlated (the reverse), or uncorrelated.
A key insight is that many topics consist of multi-word phrases, 
the words of which tend to appear together and are therefore 
positive correlated. On the other hand, competing “sibling” topics 
tend to have words that are negatively correlated. These
competing topics can share one or more words, reflecting a
“parent” topic. For example, if “mirror” and “broken” are 
positively correlated, it indicates that broken mirrors may be a 

cluster, while if “mirror” and “rear” and “mirror” and “side” are 
positively correlated, while “rear” and “side” are negatively 
correlated, it indicates that broken rear-view mirrors and broken 
side mirrors are likely subclusters of the broken mirror cluster.
For the details of the algorithm, we must refer readers to a 
forthcoming paper [16]. Here we can only briefly describe how it 
works: First, the most frequent pairs of words that are positively
correlated are examined in turn to create maximal sets such that 
no pair of elements in a set is negatively correlated.  The resulting 
sets are the cluster definitions.  The next step is to place the 
clusters into a hierarchy.  This is accomplished by recursively 
partitioning the clusters based on the negatively-correlated pairs.  
Next, cluster descriptions are derived from the words that make 
up the cluster sets.  The partition branches are described by the 
negatively-correlated terms that induce them as well as words that 
are correlated with them.  The generalizations are described by the 
words common to all branches.  The correlation and most 
common relative order of the terms in the case descriptions can be 
used to determine an ordering of the words that makes the 
description more readable.  For example, if both “charge” and 
“hold” are seen to be descriptive of a cluster, the description will 
likely contain “hold charge” rather than “charge hold” based on 
common usage. Finally, based on the presence of words from the 
cluster sets in the actual cases, we select representative examples 
of each cluster and we provide a rough estimate of the cluster size.
The resulting analyses were well received and the prototype 
implementation was dubbed the “Ten Second Answer” for its 
ability to produce useful results quickly and without any human 
intervention.  It became apparent, however, that this was not a 
complete solution.  While it found many “real” clusters, it would 
miss some that were obvious and it would latch on to groups of 
words that didn’t describe issues, but were rather words that 
tended to go together (like “customer wants”) in the description of 
many calls.  More importantly, there was no notion of stability of 
clusters from one month to the next, and it was hard to get a 
reliable estimate of the number of calls associated with each 
cluster.  So, it was not straightforward to be able to identify the 
most important clusters or to tell whether the issues they 
represented were growing or shrinking.
Despite these problems, the clusters found—at least the ones that 
obviously described issues—did give users a good idea about at 
least some of the problems that were there, so we next turned our 
attention to seeing whether we could leverage this, along with our 
previous work in classification, into a “One Hour Answer”, a tool 
that would require a bit of work on the part of users but that 
would be straightforward to use and give the type of supervised 
learning results that were actually required.

3.2 Method for Constructing and Training 
Many Categorizers, with Hierarchy Discovery
Although fully-automated clustering is insufficient, it is often 
useful for the next stage in our process, constructing a hierarchy 
of issue categories and training categorizers to recognize issues of 
each. Unlike typical approaches, we treat these two activities as a 
single step in which the hierarchy is constructed as a byproduct of 
the same computer-assisted process that results in the trained 
categorizers.
Traditional approaches to training categorizers are difficult for the 
human experts who are asked to provide the judgments that result 



in the labeled training sets.  The expert will be presented with a 
case, selected at random from a set of unlabeled cases and asked 
“Which of these fifty issues (if any) is the correct issue for this 
case?” or else, focusing on a single issue, asked “Is this the correct 
issue for this case?”  
The former question is one that appears to be cognitively 
relatively difficult for people to answer, especially when the 
number of possible issues gets much above about four or five, 
and, consequently, each case takes a non-trivial amount of time to 
label.  (In real customer-support systems, dozens of categories are 
the norm.) Also, as people’s expertise varies, some people may be 
able to accurately assign cases to only some of the issues, 
resulting in either inaccurate guessing on the other issues or a 
need to have multiple experts go through the cases.
The latter question seems to be much easier for people, and it 
allows different experts to focus on different issues in their areas 
of expertise, but it requires a pass through the cases for each issue, 
which is extremely time-consuming.
Another problem that both approaches suffer from is that when an 
issue is rare, a large number of cases may need to be seen before a 
sufficient number of instances of that issue have been labeled for 
the categorizer associated with the issue to be reliable.  If the 
learning method requires, say, fifty positive examples, but an 
issue is responsible for only 1% of the cases in the unlabeled set, 
an expert would expect to be presented with 5,000 cases, each to 
be judged individually, before a reliable categorizer could be 
trained.
In our approach, building training sets and identifying issues is 
transformed into an interactive process that calls upon the human 
expert to perform several tasks that are each simple for people.  

The user is presented with a display like Figure 1. At the bottom 
left are the results of the fully-automated clustering over the cases.  
At the bottom right is an analysis of the most frequently appearing 
words and phrases in the descriptions associated with the cases.  
At the top left is the current hierarchy of issue categories (called 
the “classmap,” which may contain multiple hierarchies).  
Initially, for a new domain, this will be empty, but if one is 
previously established, it can be used as a starting point.  And at 
the top right is a random sample of cases.
The user’s first task is to identify one or two issue categories.  
Because the hierarchy can be changed at any time without 
sacrificing invested effort, it is not important that these be at the 
“right” level of generality (neither too general nor too specific),
nor that they even appear in the final hierarchy.  They need not be 
the most common issues nor the most important.  Given the 
sample cases, the clustering analysis, and the frequent words and 
phrases, it is almost impossible for a person to not identify one or 
two good candidates: “There seem to be a lot of cases involving 
screen problems” or “Batteries seem to be a problem.”  
Once these initial categories have been added to the hierarchy, the 
user focuses on one of them and finds positive examples for it by 
a method we call Search and Confirm:  
In the “search” phase, the user makes a hypothesis about how 
cases might be described that belong to the focus issue.  This 
hypothesis is specified in a flexible query language that allows the 
expression of words, strings, regular expressions, and other 
patterns.  Typically, this will be as straightforward as searching 
for, say, “batt*” to find cases about battery issues. Such queries 
may be restricted to specific data fields associated with the cases 
or applied to all default fields.
Note that we do not ask the user to define static keywords for a 
category or, worse, to create a keyword-based rule to describe the 

Figure 1. Analysis tool.  (Actual issue names and clusters have been blinded.)



category. Nor are the search terms necessarily used as features by 
the resulting categorizers.  They simply provide a way to identify 
possible training examples.
The cases matching the query are “scooped” out of the full set of 
cases (both labeled and unlabeled) and a sample of them are 
displayed.  Also on the display is a column of checkboxes for the 
focus issue, as well as an indication for each of any issues that 
have already been associated with each case.
The user’s task now is to “confirm” that the cases retrieved are 
actually associated with the issue and to identify any mistakes.  
This is done by means of the check box, which can have three 
states: yes, no, and unknown.  It should be stressed that unlike the 
traditional process, in which the user is asked to recognize 
positive examples out of a long series of mostly negative 
examples, it is psychologically far simpler to look at a sample of 
mostly positive examples and pick out the few that don’t belong.  
This task is further simplified by the fact that any matching cases 
that are already labeled with another issue are inferred as being 
negative for this issue.  This means that the checkbox will have a 
negative indicator and the user’s eye will be drawn to the case.  
This inference is rebuttable: the user can override it during 
confirmation.  Note that this does not remove the positive label 
for the initial issue: cases can be positive for more than one 
category in our system, as real-world cases not infrequently stem 
from more than one problem.
When the user’s attention is focused on an exception, it is 
sometimes obvious what its correct labeling should be.  The user 
can type (unique prefixes of) its correct issue name(s) to label it, 
creating the issue(s) if necessary. It is then inferred negative for 
the focus issue, as well as many others. This enhances the 
training set far better than just labeling it negative for one issue, 
but this step is completely optional.  
As the user looks over the cases being confirmed, typically other 
descriptive phrases jump out (e.g. ‘power’ and ‘hold a charge’ 
seem to be mentioned a lot) and these can form the basis for 
subsequent searches.
As soon as the user has labeled cases as being positive for some 
issue, the system begins retraining classifiers for all affected issue 
categories and classifying all of the cases.  The Naïve Bayes 
classifiers used are ones that are trivial to retrain and apply, and 
the process runs in the background idle time, restarting whenever 
the user changes the training set and goes idle. The user is rarely 
aware that it is happening, but only notices that the estimated 
number of cases associated with each issue, displayed along with 
the issue hierarchy at the top left, updates soon after new cases are 
labeled or labels are changed.
For fast interactive retraining and efficient leave-one-out cross-
validation, we use binomial Naïve Bayes classifiers with Bi-
Normal Separation feature selection [8], but for offline use as a 
high-quality categorizer we use a Support Vector Machine [10]
trained using the same training cases.  Our study [7] found that 
Naïve Bayes often performs better in the earliest stages of training 
a newly created category interactively, when there are very few 
positives against many negatives inferred from the pre-existing 
categories.
When determining the training sets to use for the classifiers, 
inference rules are used to ensure that—lacking other 
information—cases that are manually labeled as positive for a 

child category are considered positive for its parent category; 
cases that are negative for a parent category are negative for its 
child categories; and cases that are positive for a category are 
negative for its siblings and cousins.  The actual inference logic is 
complex, but the end result is that it upholds the Principle of 
Least Astonishment: users are rarely surprised by it.  
The system keeps track of manually-assigned (and inferred) labels 
separately from those determined by the various classifiers, and 
both sorts of labels can be used in searches.  This allows the user 
to search for “cases classified as e-mail problems”, allowing the 
user to confirm whether they are mostly correct.  It also enables 
searches for “cases classified as screen problems that don’t 
contain the word ‘screen’ in them” or “cases classified as battery 
problems that aren’t manually labeled as battery problems.”  Thus,
the user can quickly confirm unlabeled cases that the classifier is 
getting right (and correct the ones where the classifier is wrong), 
allowing these cases to be used as training examples for further 
iterations of the classifier.  Also useful is the ability to request that 
the display be sorted based on the likelihood estimate returned by 
a given classifier.  Looking at the list, the user can easily tell the 
system that the cases at the top of the list are, indeed, (mostly) 
positive cases for the category and the ones at the bottom are 
(mostly) negative.
With this interactive iterative technique, it typically does not take 
long to amass enough positive and negative training examples to 
be reasonably confident that the resulting classifier has captured 
the basic concept.  The user can then turn to building up a training 
set for another issue. Should the user come across further 
instances of the first issue, he or she can easily add them to the 
training set.  
Note that this method does not focus on priors for the categories. 
The emphasis is on quickly getting a reasonable number of 
examples for any category and on making it easy for the user to 
confirm whether examples reflect a focus category.  
When training sets have been built for all identified issues, the 
user then turns back to the task of finding other issues in the data 
set. This is done by querying the residual—those cases that the 
classifiers in the system cannot confidently assign to any issue.  
As with looking at the initial list of cases, one or two new issues 
are likely to be obvious.  As with any query, the user can request 
that the results be clustered and the top words and phrases in the 
results be displayed, and this can give further guidance about what 
seems to be in the remaining cases.
As the process progresses, it may become apparent that the 
hierarchy is not quite correct. The user may, for example, decide 
that there are a number of issues that could reasonably be 
considered software issues while another set are hardware 
problems. On the other hand, the user might decide that a 
particular issue isn’t really a software defect but rather a 
documentation deficiency.  The system makes it straightforward to 
add new categories, move categories around, and even merge and 
delete categories without losing work (including work performed 
by in other sessions and by others working concurrently on 
unmodified hierarchies), the training examples flowing to where 
they logically belong, with the work further done in the current 
session (according to the new hierarchy) being largely useable by 
users still preferring to use the old hierarchies.  The hierarchy is 
represented as a directed acyclic graph rather than as a tree, so a 
single issue may be asserted to be an instance of more than one 



general issue, and links to such general issues may be added and 
removed, with the system adjusting training sets accordingly.
The system also makes it straightforward to have multiple 
independent sub-hierarchies, as, for example, one for problem 
type, another for product line, and a third for customer type.  The 
independence of these hierarchies means that while the system 
will tentatively infer that a call that has been labeled as an 
instance of a battery problem is therefore probably not a keyboard 
problem or a screen problem, it will not similarly infer that the 
product is not a laptop or the customer is not a small business 
customer.  When it makes sense to do so, sub-hierarchies can be 
marked as containing mutually exclusive categories, and inference 
will change to guarantee that exactly one (alternately at most one) 
issue is chosen for a given case within that sub-hierarchy. 
One common hierarchy-modification task occurs when the user 
notes that there are so many cases associated with a given issue 
(either by manual labeling or automatic classification) that it is 
likely that there are different ways of being associated with the 
issue. For instance, at first the user might be concerned with 
identifying cases as being power problems, but it might turn out 
that these partition into cases in which the unit refuses to turn on 
and those in which the battery does not hold a charge for an 
acceptable length of time. To find new subcategories, the user 
can set a baseline set of just those cases predicted to belong in the 
category of interest, and use the previously described 
techniques—using clusters, frequent words and phrases, and 
human-noticed hypotheses—to identify subcategories.  When 
focusing on a particular category, the residual cases consist of 
those that are classified as being in the category but not in any of 
its children.
This process is used in different ways by different users.  Some 
groups use it to train the classifiers and quantifiers in the 
interactive tool to generate reports based on the resulting 
quantifications, either of the number of cases associated with each 
category or of a quantified estimate of some other quantity (e.g., 
time or money spent handling calls) associated with the cases.  
Others use the continually-updating internal classifiers solely as 
search aids and use the interactive tool as a straightforward way to 
quickly label manually all cases in a data set containing thousands 
or hundreds of thousands of cases, generating reports for the 
resulting numbers when they are done.  Still other groups use the 
tool solely as a means of building up training sets for other 
classifiers used off-line as part of a production process.  These 
other classifiers can be implemented using higher quality 
induction algorithms that take much longer to train than is 
workable in an interactive system in which retraining is not an 
explicit step.

3.3 Quantification
Given a new batch of cases, e.g. monthly or daily, we need to 
quantify how many belong in each category. We only need an 
accurate count, not the individual classifications.  If the classifier 
is perfectly accurate, then its observed count of positive 
predictions is accurate.  Otherwise, this straightforward method 
returns poor estimates, biased strongly by the class distribution in 
training. This problem is concealed by machine learning research 
practices such as random sampling and cross-validation, which 
never expose classifiers to shifts in the testing class distribution. 
Partly as a result of this, research in quantification methods is 
under-explored.

In our business application, changes in the class priors are 
foundational. Hence, we developed technology to generate highly 
accurate estimates despite inaccurate classifiers.  This is not only 
necessary—given that perfect text classification is often 
unattainable with any amount of training effort—but it also helps 
to further reduce the effort required to generate many analyses.
For intuition behind this technology, an insurance company can 
accurately predict how many car accidents will happen next year, 
but they cannot predict which cars will have the accidents. 
We promote two successful quantification methods:  The first 
simply adjusts the observed count of positives given the true 
positive rate and false positive rate of the classifier at thresholds 
selected for good characterization, rather than accurate 
classification of individual cases.  The other method discards the 
classification threshold, computes the distribution of scores 
generated by the classifier on the target set, and fits this curve to a 
mixture model of the score distributions of positives and negatives 
determined in training.  This latter method can be surprisingly 
accurate, even in situations with very few positives, e.g. ten. For 
details, we must refer readers to other papers [5][6].
Beyond simply counting, quantification also involves totaling the 
hours spent or cost involved resolving each issue type.  This can 
lead to quite a different picture of the top issues, e.g. if a frequent 
issue is quick to resolve, or a less common issue is very 
expensive.  Again, the straightforward method of classifying cases 
and then summing the cost of the positives can lead to 
unacceptable estimates.  For this too, advanced quantification 
methods are called for [5].
Despite our ability to quantify more accurately than individual 
classifications allow, we find that business users regularly give 
push-back—they would much prefer to know all the cars that will 
have accidents. Among the many reasons claimed, one legitimate 
and persistent demand is to feed the data into a variety of 
downstream analyses that currently require categorized cases, not 
just count estimates.  For some types of these analyses, it is 
sufficient to provide a smaller, representative sample of cases on 
which the classifier has greater confidence, and our system
supports this.

3.4 End-to-End Solution
The system was designed as a core engine surrounded by multiple 
replaceable modules.  The engine keeps track of the category 
hierarchy, case data, and labels and trains classifiers, while the 
modules allow the system to be customized by plugging in 
different graphical user interfaces, methods of obtaining and 
managing data, and report renderers.
For the most commonly used environment module, data sets are 
stored as files on a disk in any of several formats (new formats 
requiring only a simple adapter to be written) from “single-string-
per-line” text files to comma-separated-value spreadsheet files to 
(for users for whom cases are long documents) ZIP archives.  The 
environment maintains a set of (possibly nested) projects, each of 
which has an associated set of datasets, one or more category 
hierarchies being developed, and associated with each category 
hierarchy, training sets reflecting positive and negative labels 
applied by users in prior sessions. Other environment modules
may have other paradigms, for example storing cases in databases 
and extracting them based on queries.



When a user first brings up the system, they are asked to select a 
project, then one or more datasets, and finally the training sets 
that they wish to load.  Because the system uses globally-unique 
identifiers (GUIDs) for categories, it is possible to load training 
sets that were created while looking at other versions of the 
hierarchy, with the engine mapping labels that refer to categories 
in the other version to those in the current version to the extent 
possible.  Because the trainings set explicitly refer to the datasets 
for the cases they contain labels for, it is possible to have the 
classifiers trained on cases that are not in the datasets the user 
specified.  The system ensures that such cases are not considered 
during quantification, although may be displayed as the results of 
searches, and users may modify their labelings.
The user gets to specify which data fields associated with the 
cases are to be (1) displayed, (2) used in queries, (3) used by 
analysis tools such as clustering and frequent word analysis, and 
(4) used as a source of features by classifiers. They also get to 
specify the data they wish to see displayed for each category in the 
hierarchy.  Besides the number of positive and negative training 
cases, the system can display estimates for the total number of 
cases for the category in the loaded datasets.  These estimates can 
be simple counts based on classification or they can be adjusted 
by one of the methods described in Section 3.3 and/or corrected to 
make sure that cases in the training set are counted correctly.  
Also available is a wide range of statistical measures, from 
accuracy, precision, recall, and false positive rate to f-measure, 
information gain, and bi-normal separation.
Once the cases are loaded, the system automatically classifies 
each case into zero or more of the categories, if any, specified for 
the project in prior sessions and estimates the count of cases in the 
loaded data sets for each of these categories. At this point, the 
user might decide to spend some time refining the category 
hierarchy or  training sets—perhaps after doing a search to 
identify residual cases (those not confidently classified).  Over 
time, new issues will arise that are not covered by current 
categories and new ways of describing old issues will appear, and 
so old categorizers will need their training sets expanded to be 
able to accurately categorize them.
When the user is satisfied that the categories are reasonable and 
the categorizers well-trained, the next step is to generate a report 
that summarizes the current data set.  While the system allows 
arbitrary report generators to be added, the most common way 
reports are generated is by having the system save an XML file 
that contains the category hierarchy along with the estimated 
number of calls for each category and a sample of examples.  This 
XML file is then rendered as an interactive web page, allowing 
users to view trend graphs of issues over time to see which issues 
are growing or shrinking in importance, hierarchical bar graphs of 
category quantifications ordered to identify the most pressing 
issues, and, when a portion of a hierarchy is sufficiently mutually-
exclusive for this to be reasonable, pie charts to quickly show the 
portion of the calls that are due to various issues.
When an issue has been identified as sufficiently important to 
warrant allocating engineers or technical writers to address, the 
extracted sample of example cases for each category (chosen 
based on both strength of confidence in classification and 
dissimilarity from one another) are useful for them to get a feel for 
what the real issue is.

4. DEPLOYMENT & RESULTS
Our system, known as “Incident Categorization & Analysis” 
(ICA), has been deployed by the HP Technology Solutions Group 
Worldwide for internal use throughout HP by different product 
groups.  A team in the Knowledge Management section provides
training, help desk functions, web-hosting of reports, development 
and ongoing software support. There is ongoing work with several
business units to integrate ICA into their processes, potentially 
eliminating the need for their call agents to manually assign issue 
codes to every case.  
ICA is also being used to build up classifiers for sorting technical 
documents into topic areas, e.g. to aid with content migration 
when consolidating knowledge bases.  The choice of ICA was 
mainly due to its user interface making it easy to build up training 
sets and train classifiers.  In particular, with a unified view it 
handles multiple, orthogonal classification hierarchies to be 
applied independently and simultaneously.
While we cannot fully share the impact ICA has had for HP, we 
can give a few anecdotes from the analysis of the iPAQ product 
line.  ICA identified a major source of call volume that had been 
completely missed by previous analyses of coded records, partly 
because the issue did not require repair of the product.  Once this 
issue was identified by our toolset, documentation was generated 
for customer support, and diagnostics were coded into HP Instant
Support troubleshooting agents. This led to a documented return 
on investment in the following months—the quantitative 
measurement of which was also enabled by ICA.
We have also seen the converse, issues that were believed to be 
prevalent but that really were not. For example, there had been a 
hunch among managers close to the iPAQ product that wireless 
network connectivity was a common issue.  By using ICA, in less 
than an hour an analyst was able to determine that customers 
rarely called about this issue, which helped to direct resources to 
the most urgent issues. To obtain such information via manually 
assigned codes would have been very slow and expensive: a new 
wireless category would need to be added to the issue-code
choices, and agents worldwide informed about the new category; 
the first month’s valid sample would be available for analysis a 
month after deployment, which could take several months. As one 
manager observed: “I like it – it helps me win arguments.”

5. DISCUSSION
There is nothing like real-world usage of your tool set by eager 
but inexperienced users to give us data mining researchers a 
healthy perspective.  Here we share some of the open issues and 
lessons learned. 
ICA is being applied to other types of data as well, including 
query logs, web support forums, and customer comments. 
Interestingly, it becomes very difficult to tease apart the categories 
for customer comment email.  This is partly because such email 
can touch upon many different categories, and partly because 
email messages about a single category are each written by a 
different user with his or her unique turn of phrase. This 
dispersion in the feature space makes clustering harder and also 
requires more training for a classifier.  By contrast, call agents 
tend to re-use phrases for repeat issues they have entered in the 
past. Since agents communicate with each other, they tend to 
develop communal terminology and abbreviations.



Even so, when selecting a monthly batch of cases for a given 
product line, the text features are naturally dispersed because we 
have call centers that work in English, Portuguese, Korean, 
Japanese, and Chinese, among others.  While the underlying 
programming language, Java, can easily handle search terms and 
even regular expressions in these languages, this nonetheless 
increases the disjunctive training needs to search for and identify 
training cases in each language for every class.  Some languages, 
particularly Chinese (in which words are not separated by spaces) 
posed special problems, and the system needed to be augmented 
with special techniques (some of which we developed) for 
extracting words to use as features. Our architecture supports 
having several analysts simultaneously label cases in different 
languages for a single category hierarchy, rather than depend on 
cross-lingual information retrieval, which has fairly poor 
performance even in state-of-the-art techniques [e.g. 15].  This 
architecture is also needed for large category hierarchies whose 
diversity of topics requires several people with different domain 
expertise to label training cases simultaneously.

5.1 Open Issues
What people often want is something for nothing, i.e. very little 
human effort to generate a decent but imperfect analysis.  Our 
original transfer partner even thought the clustering portion alone 
would be sufficient for their needs.  Unfortunately, neither word 
counting nor the variety of clustering techniques we tried prove 
satisfactory for many technical texts, particularly for product lines 
with long texts describing extensive diagnosis and repair. The 
failure is partly due to feature dispersion mentioned above, but 
also due to poorly separable data—many cases involve the same 
types of troubleshooting steps and interaction with the customer.  
This is a potentially valuable area for ongoing research, but is 
unfortunately hindered by the subjectivity of the goal and the 
widespread focus on clustering clean texts, such as news articles, 
rather than ‘dirty’ technical text.
There is a trade-off about local versus remote computation. For 
this highly interactive application, one demands both the quick 
response of an editor running locally as well as the vast 
computing and storage resources of servers in a data center.  We 
designed our solution to run on the user’s workstation, and 
tolerate some startup delay given the long interactive session that 
follows, but we find there are many users who wish to run it on 
their laptops against datasets that grow monthly. But performing 
the memory- and compute-intensive data mining at a server leads 
to unwelcome network delay, especially if implemented via 
modern web technologies.
Although the process to build up the category hierarchy and 
training examples is conceptually simple, in practice it is quite 
hard for novice users, especially the majority who are not data 
mining specialists. There are several reasons for this. The simplest 
is just being unfamiliar with the menus and features, as with any 
new software. But it is unlike just learning a new editor, where 
you know the concepts (e.g. boldfacing) but need to learn the 
commands for them.  Instead, it is a first-of-a-kind application. 
Our users have to learn the concepts of clustering, classification 
by machine learning, and quantification. They initially don’t know 
which of the many fields of their datasets they should analyze or 
allow the classifier to predict from.  For example, one field gives 
the issue code manually assigned to the case by the call agent, but

if this field is to be eliminated in the future, the classifier should 
not depend on it as an input feature.
Moreover, even for a machine learning expert, it can be hard to 
know just what to do.  For example, to improve recall, an expert 
might know to label additional positive training examples.  One 
solution may be to implement active learning methods [e.g. 
11,14], but such methods systematically present the user with 
some of the hardest to label cases, probably worsening the 
cognitive load issue. Further, active learning only considers the 
choice of which item to label next, not the broader problem of 
which other actions might be more beneficial:  For the example of 
trying to improve recall, we find the problem often lies instead in 
mistakes in the training set. If some positive items are mistakenly 
labeled as negative, then the classifier learns to be very 
conservative in voting positive.  Also, if the classifier predicts 
correctly for some negative items that are wrongly labeled 
positive, the measured recall will be artificially low.  
Finally, even for an expert with a deep understanding of how to 
most effectively build up the training sets, two serious issues 
remain.  It is hard to optimize the use of one’s time:  there are 
several different ways to improve any given classifier, multiplied 
by 25–50 categories to develop. One can get stuck in a rat-hole 
finding interesting sub-clusters for a category or working on 
catching variant misspellings/language used, when there are much 
bigger issues elsewhere.  There may be a large undiscovered 
category that would account for a larger fraction of the dataset, or 
there may be a smaller undiscovered category for which the 
business would be better able to take action to resolve.

5.2 Lessons Learned
Our initial vision was to develop a tool set that would enable the 
many domain experts to perform independent analyses of each 
product line.  Beyond the need for having trainers to teach them 
the tool and to be available for ongoing questions, experience has 
taught us that there is an essential need for expert knowledge 
architects.  This person should ideally have skills in information 
architecture and data mining.  Their role is to collaborate with the 
domain expert to establish which fields to analyze and to develop 
a usefully structured category hierarchy.  The domain expert can 
then work more independently, labeling more training cases and 
defining additional categories. 
This need, as well as the complexity of the task and the limited 
time available by domain experts for data analysis, has convinced 
us that just developing a tool set cannot succeed. It needs to be 
couched within a service offering support and/or full service.
We have been pushing classification technology for years and 
have never found the user pull and word-of-mouth excitement we 
have gotten from this work in just quantifying how many items 
belong in each category. It is a sort of ‘killer app’ for business.
We had thought that trending over time would be highly valued, 
especially as it requires minimal human effort compared with the 
initial analysis. In practice, most users already get a lot of value 
just from an initial quantification analysis.  In fact, some users 
value our software even ignoring its automated quantification 
capability. For example, when reading a small volume of cases, 
e.g. fewer than 500 customer survey emails per month for some 
product line, it proves useful just to keep track of the category 
hierarchy and the hierarchical tally of issues, even if entirely 
manually assigned.  Moreover, some users were excited just to 



have a good graphical user interface for viewing cases and
performing various searches on them, ignoring the machine 
learning technologies altogether. As Ron Kohavi stated at his 
ECML’05 keynote, it is surprising how delighted many clients are 
with simple first order statistics. This can be astonishing to data 
mining researchers, who seek to develop sophisticated predictive 
models.

6. CONCLUSION & FUTURE WORK
The core [mining] algorithms are now a small part of the 
overall application, being perhaps 10% of a larger part, 
which itself is only 10% of the whole. –K. Thearling [17]

Supervised machine learning for text classification has been 
around for decades.  Even so, its adoption for real-world tasks is 
severely limited, partly by its heavy requirement for labeled 
training cases.  For applications like ours where thousands of 
classifiers need to be trained, the demand for training data was 
nearly prohibitive.  This in turn led us to develop an essential trio 
of methods: clustering for issue discovery, interactive search-and-
confirm training with category inference rules, and quantification.  
One of the main contributions of this work is in greatly lowering 
the cost of building up training sets.  Before this, many potential 
classification projects we considered internally were starved by a 
lack of training data.  Now we can examine many more problems 
offered to us that have only unlabeled datasets.
Considering future research directions, concept drift is the bane 
for classification, and in an application like ours, it is 
institutionalized, e.g. with ever changing support issues, product 
models, and their technical environment in deployment. Also, we 
have recognized quantification as an important topic for machine 
learning research, and encourage other practitioners to share 
variant settings that are important for them, which may help direct 
productive research.  
Besides the research path, there is strong interest from HP’s 
customers and partners in this capability. We are exploring 
integration with HP’s product offerings (for example, with HP’s
management software products) and we are actively collaborating 
with HP Services on this project.
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