

Pragmatic Text Mining: Minimizing Human Effort to Quantify Many
Issues in Call Logs

George Forman, Evan Kirshenbaum, Jaap Suermondt
Information Services and Process Innovation Laboratory
HP Laboratories Palo Alto
HPL-2006-60(R.1)
June 19, 2006*

text mining, log
processing,
supervised
machine learning,
quantification, text
classification,
applications,
pattern recognition

We discuss our experiences in analyzing customer-support issues from
the unstructured free-text fields of technical-support call logs. The
identification of frequent issues and their accurate quantification is
essential in order to track aggregate costs broken down by issue type, to
appropriately target engineering resources, and to provide the best
diagnosis, support and documentation for most common issues. We
present a new set of techniques for doing this efficiently on an industrial
scale, without requiring manual coding of calls in the call center. Our
approach involves (1) a new text clustering method to identify common
and emerging issues; (2) a method to rapidly train large numbers of
categorizers in a practical, interactive manner; and (3) a method to
accurately quantify categories, even in the face of inaccurate
classifications and training sets that necessarily cannot match the class
distribution of each new month’s data. We present our methodology and
a tool we developed and deployed that uses these methods for tracking
ongoing support issues and discovering emerging issues at HP.

* Internal Accession Date Only
Published in and presented at the International Conference on Knowledge Discovery and Data Mining (KDD ’06),
20-23 August 2006, Philadelphia, PA, USA
© Copyright 2006 ACM Approved for External Publication

Pragmatic Text Mining:
Minimizing Human Effort to Quantify Many Issues in Call Logs

George Forman
Hewlett-Packard Labs

1501 Page Mill Rd.
Palo Alto, CA 94304

ghforman@hpl.hp.com

Evan Kirshenbaum
Hewlett-Packard Labs

1501 Page Mill Rd.
Palo Alto, CA 94304

kirshenbaum@hpl.hp.com

Jaap Suermondt
Hewlett-Packard Labs

1501 Page Mill Rd.
Palo Alto, CA 94304

suermondt@hpl.hp.com

ABSTRACT
We discuss our experiences in analyzing customer-support issues
from the unstructured free-text fields of technical-support call
logs. The identification of frequent issues and their accurate
quantification is essential in order to track aggregate costs broken
down by issue type, to appropriately target engineering resources,
and to provide the best diagnosis, support and documentation for
most common issues. We present a new set of techniques for
doing this efficiently on an industrial scale, without requiring
manual coding of calls in the call center. Our approach involves
(1) a new text clustering method to identify common and
emerging issues; (2) a method to rapidly train large numbers of
categorizers in a practical, interactive manner; and (3) a method to
accurately quantify categories, even in the face of inaccurate
classifications and training sets that necessarily cannot match the
class distribution of each new month’s data. We present our
methodology and a tool we developed and deployed that uses
these methods for tracking ongoing support issues and
discovering emerging issues at HP.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Types of Systems—
decision support; I.2.6 [Artificial Intelligence]: Learning—
concept learning; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing—abstracting methods, linguistic
processing; I.5.4 [Pattern Recognition]: Applications—text
processing;I.5.3 [Pattern Recognition]: Clustering—algorithms.

General Terms
Algorithms, Measurement, Design, Economics.

Keywords
text mining, log processing, supervised machine learning,
quantification, text classification, applications.

1. INTRODUCTION
High-quality customer service and support is a high priority for
Hewlett-Packard. This affects the company’s reputation and
customer satisfaction directly. There is a persistent need to
identify and quantify the most frequent issues for every product.
For a large enterprise having many product lines of high
technology products like HP, this is a complex task. The resulting
information is used in a variety of ways: to ensure that easy help
(e.g. automated diagnostics, patches, and documentation) is
available for the most frequent problems; to efficiently target
engineering resources at fixing problems or even redesigning
products; to track whether we are reducing these issues (and the
costs associated with them); and to compare to industry averages.
A prolific and valuable source of information about these issues is
contained in the records from call centers. Each incident results in
a description of what caused the customer to call and what was
done to resolve the issue. Unfortunately, these call records are in
(terse) free text, because the technicians handling calls are focused
on (and rewarded for) resolving incidents rather than spending
their time describing them well. As a result, it is difficult to use
the information that is in the call-record text.
In this paper, we describe a solution we have developed that
harvests the information buried in these hundreds of thousands of
call records. Our solution enables a large amount of automation in
reporting issues with a relatively small amount of up-front work.
The automation consists of taking a batch of cases (such as a
month’s worth of calls for a particular product line of interest) and
feeding them to a trained automated quantifier, which returns the
distribution of the cases over the issues. The results are then fed
into a reporting tool, which generates the appropriate graphs,
month-to-month comparisons, alerts, reports, etc.
The up-front work is where the key data mining contributions are,
particularly in the method and tool we created to make it practical
to very quickly create an accurate quantifier for a new problem
domain (e.g., for each of hundreds of product lines). Typically, to
start with, all we have is a batch of raw, unlabeled cases. We need
to find what issues are prevalent in the cases, and build up a
labeled training set of cases for these issues. Our core contribution
is a tool and methodology that allows one to do so very
efficiently. This tool involves clustering, classification and
quantification. From a data mining perspective, we solved some
key problems in novel ways: (1) we developed a new clustering
method to identify meaningful topics in large bodies of (dirty) text
[16]; (2) we worked out an approach to train a classifier quickly,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD'06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008...$5.00.

robustly, and intuitively, even one that involves a large number of
categories; and (3) we developed methods to accurately quantify
categories even in the face of inaccurate classifications [5][6].
The remainder of this paper is organized as follows. First, as
background, we describe existing approaches in industry, and we
show a sample of data to ground our approach. We then describe
our methods and the end-to-end solution. We present the
technology transfer from the research labs to our business units
and the results of deployment. Finally, we discuss lessons learned,
open issues, and future work.

1.1 Existing Approaches
The first question we usually get when we talk about our work in
automated problem quantification is “Wait… don’t we do this
already?” The short answer is: yes, lots of companies do it, but
nobody does it very well, nor do they do it efficiently.
Historically, companies have based their tracking of warranty and
support issues on parts data: If my support business replaces part
X very often, maybe I have a quality problem there. Parts data can
give us detailed and accurate data about quality problems, but it
has limitations. Most importantly, it does not tell us anything
about a vast number of calls that offer low-hanging fruit from a
cost-reduction perspective: calls that could have been prevented
and calls that can be resolved on-line or over the phone–
customers asking questions, set-up problems, configuration
problems, patchable problems, documentation needs, and so on.
Furthermore, parts data do not give us any direct information
about customer satisfaction issues, nor details of what customers
are asking about or asking for.
The other common approach is to make the call center decide on a
code for every call, and for the analysis to use the resulting codes.
Typically, there is a deep hierarchy of possible codes for any
product. This provides computer-readable information and allows
reporting on the frequency with which various codes were used
for different products. Various tools exist for generating
interesting graphs and reports, drill-down, trends, etc.
Unfortunately, this approach has several critical weaknesses. First,
the codes used are inaccurate. We have run several internal
studies that document that there is poor correlation between the
code assigned to a call and the actual problem as reflected in the
record or transcript of the call. This is not surprising, given that
the call agents are required to choose a code but are not incented
to pick a good code, resulting of in a preponderance of cases
labeled with “misc problem” as well as codes near the top of the
menu. Second, using codes is expensive. The hierarchies need to
be created and maintained, the call agents need to be trained in the
codes, and then on every call they need to spend precious time
selecting a code from a potentially very large hierarchy. Third,
this misses all new or emerging problems, because codes do not
yet exist or the call agents have not yet been trained in
recognizing them.
In addition, there are prevalent ad-hoc approaches: eye-balling the
data; looking at FAQ lists and trying to notice any important
missing items; periodic sampling and manual labeling; expert
opinion; availability of expertise; etc.
An appealing alternative, particularly from the perspective of a
data mining researcher, is to use the raw text in the customer-
support call logs to quantify the occurrence of problems.
Unfortunately, well-known data mining techniques are not in

frequent use in this domain because there are numerous barriers
that prevent them from being effective, besides the usual
challenges that affect text mining even in “clean” domains such as
news stories.
Word counts—the simplest form of text-based quantification—
suffers from extensive noise from domain-specific stop words, as
well as from the fact that many keywords are related to the same
issue (e.g., “battery”, “charge”, “power”, “weak”).
Text clustering is appealing because of its apparent lack of need
for human effort. In our experience and experimentation with
known text clustering techniques on our support data, however,
we have found them to often yield results that can be described as
worthless. Unrelated problems are merged; there are many
meaningless clusters; single issues are split into many small
clusters because of nuances in the language used and the varying
ways that different speakers describe the same thing. On top of
that, one of our key needs is month-to-month tracking, which is
hard if each month’s clusters are different and not easily linkable.
The recent work by Mei and Zhai [13] and the somewhat older
ThemeRiver visualization by Havre et al. [9] both attempt to
detect the emergence of themes and track their trends through
time in a text stream via clustering. These methods focus on only
the largest themes, and the cluster boundaries are influenced
strongly by the competing clusters, rather than the semantic edge
of an important issue, yielding uncalibrated quantities. By
comparison, supervised machine learning can focus on less
frequent but nevertheless important classes, and the quantification
it produces can be used to accurately measure the cost associated
with each issue [5][6].
The appeal of classification is its reliability, performance and
repeatability given a particular set of problems and a good
training set. The key drawback has been the large effort required
for training categorizers. Historically, people have used keyword-
based rules in this domain, which have a high up-front modeling
effort, debatable accuracy, and a substantial maintenance cost.
Alternatively, categorizers based on machine-learning require
labeled training data, typically on the order of 100 cases per
category. This requirement quickly becomes prohibitive when we
are talking about hundreds of categories per product, for hundreds
of products; even defining and maintaining the categories
stretches the amount of effort humans are willing to make.
Quantification is a problem that has received very little attention
in the data mining research community despite the tremendous
practical need for it in many applications. When we first tackled
this problem, we had quite a bit of experience in mining
customer-support data, including categorization and clustering of
solution documents and call records. We thought this would be a
straightforward application of categorization (classify all items
and simply count positive predictions), possibly augmented with
some text cleaning and feature selection. But an interesting
problem in quantification, at least from the perspective of periodic
reporting, is that you fundamentally need to assume shifts in the
class priors: If the class distribution does not change, you don’t
need an automated quantifier: you only need to manually quantify
the first batch. As a result of this time-varying behavior that is
inherent to the application, the obvious solution above—“classify-
and-count”—does not work well, as the usual machine learning
classification methods assume that the test set and training set are
drawn from the same distribution [4].

1.2 Sample Call Log Data
To give the reader an idea of what we are up against, Table 1
shows a sample of text notes recorded by technical support agents
as they serve customers on the phone. This sample is taken from
the HP iPAQ handheld product line, but is representative of
similar call notes for hundreds of other product lines, and likely
analogous to those experienced in many companies: the quality of
spelling, grammar and completeness about the subject is much
poorer than in common text research corpora such as news
articles. In more complicated product lines, such as servers, the
call notes run much longer about the diagnosis and resolution
processes. Nonetheless, they too are terse and the context of the
problem is often assumed, not recorded. Depending on the
product line, the call volume can provide on the order of hundreds
of thousands of calls per month in a company the size of HP.
Because of the nature of technical support, a large fraction of calls
are about one-of problems. Depending on the complexity of the
product line, easily half the cases do not lead to interesting
clusters of issues. Hence, simply reading a random sample is
inefficient and only works to determine the top few issues. In
contrast, our typical users prefer to distinguish 10-100 issues.

2. METHODOLOGY
We now describe in more detail our method and tool for making it
practical to quickly create many accurate quantifiers. We provide
a high-level overview here, and focus on the research
contributions in more detail in Section 3.
First, we decide on the domain for the analysis. The domain is
typically a particular product line, such as the iPAQ handhelds in
the data shown in Table 1, and is usually further limited to cases
in the language the analyst speaks.
Next, we collect raw call data for the domain. Call data typically
includes (at a minimum) a product identifier or model number. If
such an identifier is not specified as structured data, it can
typically be derived reliably from serial numbers or contract data,
or otherwise is usually somewhere in the body of the call record in
text form. The product identifier allows us to filter the call data to
at least some approximation of the domain of interest, so that we
don’t try to identify iPAQ problems in calls about storage arrays.
The next step is to generate ideas for potential categories. To do
so, we run our clustering tool, the “Ten-Second Answer,” on the
cases and display the results. These include cluster descriptions
(potential category names) as well as cluster size estimates and a
sample of cases. We describe the clustering tool and the
underlying method in more detail in Section 3.1.
Next, a human domain editor starts to create categories and
identify examples for each category. We describe this process in
detail in Section 3.2. This process, which we call “search and
confirm,” turns classical training upside down. The domain editor
takes a category of interest, searches for possible examples, scans
the results and confirms whether the cases are indeed examples of
the category.
The training examples are used in real time, in the background, to
train a classifier for each category. Initially, the classifiers will be
poor and biased, but they refine quickly as data are added. Based
on the results of classification, we run our quantification method
in real time to provide estimates of the size of each category
(described in more detail in Section 3.3 and in [5][6]). The results

are displayed and updated in real time to provide the user with
feedback.
The domain editor can graphically specify various types of
relationships among categories—for example, multiple
independent hierarchical relationships, mutual exclusivity among
certain topics, allowable overlap, etc. Thus, a flexible topic
hierarchy for the domain is created interactively. Alternatively, a
pre-existing topic hierarchy can be specified or loaded.
We have included several capabilities for helping to determine
whether the quantifier is complete (for example, whether there are
remaining latent categories). One such is residual analysis. In
residual analysis, we query for cases that have a low probability
(by the current classifiers) of being in any particular category. We
then cluster these cases to see whether there are categories we
missed. A related technique is topic drill-down: we grab cases that
are already labeled or predicted to be in a particular category, and
we cluster those to look for subtopics. Also included are various
performance measures via cross-validation.
When the domain editor decides the categorizers and quantifiers
are good enough, he or she can export them for off-line use (for
example, on data from subsequent months). We also have an
associated reporting tool, which allows generation and publication
of graphical reports on a web site for interactive exploration by
the many stakeholders and information consumers.

3. CONTRIBUTIONS
3.1 Text Clustering for Issue Identification
The first task is to identify issues that commonly lead to calls
based on the textual descriptions in the call logs. The hope was
that some sort of clustering method would allow the identification
of at least the most important issues in a fully-automated way.
Unfortunately, traditional clustering methods tend not to work
well on this sort of data. Typically, such methods treat the
presence or absence of individual words as a high-dimensional

Table 1. Sample cases from call logs on the HP iPAQ.
Time Model Subject
12:24 3955 H3955 how to hard reset the ipaq
12:26 3955 H3955 Cannot use email on wifi
12:33 3955 H3955 Cannot sync his Outlook items with his
12:36 3765 3765 port on ipaq not makeing good connection
12:40 3835 iPAQ H3850 -Display /white screen
12:45 3835 h3630-eu instal printer and now cannot connect
12:45 1910 Sounds and notifications
12:45 3955 3955-no outlook choices to sych
12:46 1910 H1910 - Wants to know where the reference guide
12:46 3955 H3950: Unit is giving memory full errors
12:47 3850 h3850-battery is not holding chargeand tapped on
12:48 3650 eu ask if ipaq has adjusted his warranty status
12:54 3630 H3630 - The ipaq ill only turn on when it is on the
12:54 3835 3835 cracked case and ip SR itself
12:54 1910 H1910: unit has a cracked screen;screen taps don’t
12:59 3850 Backlight will not turn on
13:01 1910 H1910 - Wanted to know how to restore.
13:07 3670 H3670: Unit is not synching with laptop
13:13 3955 communications error 607
13:13 3630 3650 screen is corupted
13:20 3835 Getting Shell32.exe errors
13:22 3850 H3850-cannot pass the logo screen

space and attempt to find points in that space that partition the
cases. (Some clustering algorithms, e.g. [1], can return
overlapping clusters.) Empirically, this tends not to find useful
clusters in the sort of data in call logs, especially when the number
of potential clusters becomes large. It has the further drawback
that the desired output is not the clustering per se (i.e., the
particular cases assigned to each cluster) but a human-
understandable description of each cluster to help the user
identify useful themes or categories. Once a clustering has been
done, it remains to analyze the case descriptions to generate a
summary of what each cluster represents.
We also require a method that is fast enough for interactive use on
large datasets, ruling out methods that require factoring large
matrices (e.g. latent semantic indexing [3]) or many iterations for
convergence (e.g. EM, k-means) [e.g. 1,12]. Beil et al. recently
presented a fast method for text clustering, which reduces the
dimensionality of the feature space to that of frequent term sets
[2]. They report a runtime of a few minutes for several thousand
cases, but with a quadratic trend. As described in the next
section, our algorithm is used interactively to find clusters on the
results of searches, and for this it is important that it be able to
cluster 10,000–100,000 cases in a matter of seconds so as to not
disrupt the user’s train of thought
To address our needs in this project, we developed a new
clustering algorithm that focuses on identifying useful, inherently
describable clusters from text rather than on assigning individual
cases to clusters. As such, it makes no attempt to be either
mutually exclusive or exhaustive, reflecting the facts that (1) not
infrequently, a call may be the result of more than one issue,
(2) any discovered set of topics will almost certainly be
incomplete, and forcing the system to fit every call into a cluster
just degrades the usefulness of the clusters, and (3) some case
descriptions are simply too impoverished to be useful and might
as well be ignored. The algorithm automatically organizes the
clusters found into a hierarchy. This proves useful in our domain;
for example, there are multiple subtypes of software problems and
hardware problems. The algorithm does not require the user to
provide a target number of clusters or hierarchy depth—these are
inferred from the data. Finally, since the clusters found are
defined by commonalities between words, it is straightforward to
create easily understandable textual descriptions of the clusters.
The algorithm begins by extracting words from the case
descriptions, canonicalizing them (regularizing case, stemming,
removing stopwords), and then counting the number of cases each
word and each pair of words appears in. This is used to construct
a matrix in which the rows and columns are words and in which
each element is the signed bi-normal separation [8] value of one
word as a predictor of the other. From this matrix, each pair of
words is calculated to be positively correlated (at least one
ordering has a sufficiently positive value in the matrix and the
reverse ordering does not have a sufficiently negative value),
negatively correlated (the reverse), or uncorrelated.
A key insight is that many topics consist of multi-word phrases,
the words of which tend to appear together and are therefore
positive correlated. On the other hand, competing “sibling” topics
tend to have words that are negatively correlated. These
competing topics can share one or more words, reflecting a
“parent” topic. For example, if “mirror” and “broken” are
positively correlated, it indicates that broken mirrors may be a

cluster, while if “mirror” and “rear” and “mirror” and “side” are
positively correlated, while “rear” and “side” are negatively
correlated, it indicates that broken rear-view mirrors and broken
side mirrors are likely subclusters of the broken mirror cluster.
For the details of the algorithm, we must refer readers to a
forthcoming paper [16]. Here we can only briefly describe how it
works: First, the most frequent pairs of words that are positively
correlated are examined in turn to create maximal sets such that
no pair of elements in a set is negatively correlated. The resulting
sets are the cluster definitions. The next step is to place the
clusters into a hierarchy. This is accomplished by recursively
partitioning the clusters based on the negatively-correlated pairs.
Next, cluster descriptions are derived from the words that make
up the cluster sets. The partition branches are described by the
negatively-correlated terms that induce them as well as words that
are correlated with them. The generalizations are described by the
words common to all branches. The correlation and most
common relative order of the terms in the case descriptions can be
used to determine an ordering of the words that makes the
description more readable. For example, if both “charge” and
“hold” are seen to be descriptive of a cluster, the description will
likely contain “hold charge” rather than “charge hold” based on
common usage. Finally, based on the presence of words from the
cluster sets in the actual cases, we select representative examples
of each cluster and we provide a rough estimate of the cluster size.
The resulting analyses were well received and the prototype
implementation was dubbed the “Ten Second Answer” for its
ability to produce useful results quickly and without any human
intervention. It became apparent, however, that this was not a
complete solution. While it found many “real” clusters, it would
miss some that were obvious and it would latch on to groups of
words that didn’t describe issues, but were rather words that
tended to go together (like “customer wants”) in the description of
many calls. More importantly, there was no notion of stability of
clusters from one month to the next, and it was hard to get a
reliable estimate of the number of calls associated with each
cluster. So, it was not straightforward to be able to identify the
most important clusters or to tell whether the issues they
represented were growing or shrinking.
Despite these problems, the clusters found—at least the ones that
obviously described issues—did give users a good idea about at
least some of the problems that were there, so we next turned our
attention to seeing whether we could leverage this, along with our
previous work in classification, into a “One Hour Answer”, a tool
that would require a bit of work on the part of users but that
would be straightforward to use and give the type of supervised
learning results that were actually required.

3.2 Method for Constructing and Training
Many Categorizers, with Hierarchy Discovery
Although fully-automated clustering is insufficient, it is often
useful for the next stage in our process, constructing a hierarchy
of issue categories and training categorizers to recognize issues of
each. Unlike typical approaches, we treat these two activities as a
single step in which the hierarchy is constructed as a byproduct of
the same computer-assisted process that results in the trained
categorizers.
Traditional approaches to training categorizers are difficult for the
human experts who are asked to provide the judgments that result

in the labeled training sets. The expert will be presented with a
case, selected at random from a set of unlabeled cases and asked
“Which of these fifty issues (if any) is the correct issue for this
case?” or else, focusing on a single issue, asked “Is this the correct
issue for this case?”
The former question is one that appears to be cognitively
relatively difficult for people to answer, especially when the
number of possible issues gets much above about four or five,
and, consequently, each case takes a non-trivial amount of time to
label. (In real customer-support systems, dozens of categories are
the norm.) Also, as people’s expertise varies, some people may be
able to accurately assign cases to only some of the issues,
resulting in either inaccurate guessing on the other issues or a
need to have multiple experts go through the cases.
The latter question seems to be much easier for people, and it
allows different experts to focus on different issues in their areas
of expertise, but it requires a pass through the cases for each issue,
which is extremely time-consuming.
Another problem that both approaches suffer from is that when an
issue is rare, a large number of cases may need to be seen before a
sufficient number of instances of that issue have been labeled for
the categorizer associated with the issue to be reliable. If the
learning method requires, say, fifty positive examples, but an
issue is responsible for only 1% of the cases in the unlabeled set,
an expert would expect to be presented with 5,000 cases, each to
be judged individually, before a reliable categorizer could be
trained.
In our approach, building training sets and identifying issues is
transformed into an interactive process that calls upon the human
expert to perform several tasks that are each simple for people.

The user is presented with a display like Figure 1. At the bottom
left are the results of the fully-automated clustering over the cases.
At the bottom right is an analysis of the most frequently appearing
words and phrases in the descriptions associated with the cases.
At the top left is the current hierarchy of issue categories (called
the “classmap,” which may contain multiple hierarchies).
Initially, for a new domain, this will be empty, but if one is
previously established, it can be used as a starting point. And at
the top right is a random sample of cases.
The user’s first task is to identify one or two issue categories.
Because the hierarchy can be changed at any time without
sacrificing invested effort, it is not important that these be at the
“right” level of generality (neither too general nor too specific),
nor that they even appear in the final hierarchy. They need not be
the most common issues nor the most important. Given the
sample cases, the clustering analysis, and the frequent words and
phrases, it is almost impossible for a person to not identify one or
two good candidates: “There seem to be a lot of cases involving
screen problems” or “Batteries seem to be a problem.”
Once these initial categories have been added to the hierarchy, the
user focuses on one of them and finds positive examples for it by
a method we call Search and Confirm:
In the “search” phase, the user makes a hypothesis about how
cases might be described that belong to the focus issue. This
hypothesis is specified in a flexible query language that allows the
expression of words, strings, regular expressions, and other
patterns. Typically, this will be as straightforward as searching
for, say, “batt*” to find cases about battery issues. Such queries
may be restricted to specific data fields associated with the cases
or applied to all default fields.
Note that we do not ask the user to define static keywords for a
category or, worse, to create a keyword-based rule to describe the

Figure 1. Analysis tool. (Actual issue names and clusters have been blinded.)

category. Nor are the search terms necessarily used as features by
the resulting categorizers. They simply provide a way to identify
possible training examples.
The cases matching the query are “scooped” out of the full set of
cases (both labeled and unlabeled) and a sample of them are
displayed. Also on the display is a column of checkboxes for the
focus issue, as well as an indication for each of any issues that
have already been associated with each case.
The user’s task now is to “confirm” that the cases retrieved are
actually associated with the issue and to identify any mistakes.
This is done by means of the check box, which can have three
states: yes, no, and unknown. It should be stressed that unlike the
traditional process, in which the user is asked to recognize
positive examples out of a long series of mostly negative
examples, it is psychologically far simpler to look at a sample of
mostly positive examples and pick out the few that don’t belong.
This task is further simplified by the fact that any matching cases
that are already labeled with another issue are inferred as being
negative for this issue. This means that the checkbox will have a
negative indicator and the user’s eye will be drawn to the case.
This inference is rebuttable: the user can override it during
confirmation. Note that this does not remove the positive label
for the initial issue: cases can be positive for more than one
category in our system, as real-world cases not infrequently stem
from more than one problem.
When the user’s attention is focused on an exception, it is
sometimes obvious what its correct labeling should be. The user
can type (unique prefixes of) its correct issue name(s) to label it,
creating the issue(s) if necessary. It is then inferred negative for
the focus issue, as well as many others. This enhances the
training set far better than just labeling it negative for one issue,
but this step is completely optional.
As the user looks over the cases being confirmed, typically other
descriptive phrases jump out (e.g. ‘power’ and ‘hold a charge’
seem to be mentioned a lot) and these can form the basis for
subsequent searches.
As soon as the user has labeled cases as being positive for some
issue, the system begins retraining classifiers for all affected issue
categories and classifying all of the cases. The Naïve Bayes
classifiers used are ones that are trivial to retrain and apply, and
the process runs in the background idle time, restarting whenever
the user changes the training set and goes idle. The user is rarely
aware that it is happening, but only notices that the estimated
number of cases associated with each issue, displayed along with
the issue hierarchy at the top left, updates soon after new cases are
labeled or labels are changed.
For fast interactive retraining and efficient leave-one-out cross-
validation, we use binomial Naïve Bayes classifiers with Bi-
Normal Separation feature selection [8], but for offline use as a
high-quality categorizer we use a Support Vector Machine [10]
trained using the same training cases. Our study [7] found that
Naïve Bayes often performs better in the earliest stages of training
a newly created category interactively, when there are very few
positives against many negatives inferred from the pre-existing
categories.
When determining the training sets to use for the classifiers,
inference rules are used to ensure that—lacking other
information—cases that are manually labeled as positive for a

child category are considered positive for its parent category;
cases that are negative for a parent category are negative for its
child categories; and cases that are positive for a category are
negative for its siblings and cousins. The actual inference logic is
complex, but the end result is that it upholds the Principle of
Least Astonishment: users are rarely surprised by it.
The system keeps track of manually-assigned (and inferred) labels
separately from those determined by the various classifiers, and
both sorts of labels can be used in searches. This allows the user
to search for “cases classified as e-mail problems”, allowing the
user to confirm whether they are mostly correct. It also enables
searches for “cases classified as screen problems that don’t
contain the word ‘screen’ in them” or “cases classified as battery
problems that aren’t manually labeled as battery problems.” Thus,
the user can quickly confirm unlabeled cases that the classifier is
getting right (and correct the ones where the classifier is wrong),
allowing these cases to be used as training examples for further
iterations of the classifier. Also useful is the ability to request that
the display be sorted based on the likelihood estimate returned by
a given classifier. Looking at the list, the user can easily tell the
system that the cases at the top of the list are, indeed, (mostly)
positive cases for the category and the ones at the bottom are
(mostly) negative.
With this interactive iterative technique, it typically does not take
long to amass enough positive and negative training examples to
be reasonably confident that the resulting classifier has captured
the basic concept. The user can then turn to building up a training
set for another issue. Should the user come across further
instances of the first issue, he or she can easily add them to the
training set.
Note that this method does not focus on priors for the categories.
The emphasis is on quickly getting a reasonable number of
examples for any category and on making it easy for the user to
confirm whether examples reflect a focus category.
When training sets have been built for all identified issues, the
user then turns back to the task of finding other issues in the data
set. This is done by querying the residual—those cases that the
classifiers in the system cannot confidently assign to any issue.
As with looking at the initial list of cases, one or two new issues
are likely to be obvious. As with any query, the user can request
that the results be clustered and the top words and phrases in the
results be displayed, and this can give further guidance about what
seems to be in the remaining cases.
As the process progresses, it may become apparent that the
hierarchy is not quite correct. The user may, for example, decide
that there are a number of issues that could reasonably be
considered software issues while another set are hardware
problems. On the other hand, the user might decide that a
particular issue isn’t really a software defect but rather a
documentation deficiency. The system makes it straightforward to
add new categories, move categories around, and even merge and
delete categories without losing work (including work performed
by in other sessions and by others working concurrently on
unmodified hierarchies), the training examples flowing to where
they logically belong, with the work further done in the current
session (according to the new hierarchy) being largely useable by
users still preferring to use the old hierarchies. The hierarchy is
represented as a directed acyclic graph rather than as a tree, so a
single issue may be asserted to be an instance of more than one

general issue, and links to such general issues may be added and
removed, with the system adjusting training sets accordingly.
The system also makes it straightforward to have multiple
independent sub-hierarchies, as, for example, one for problem
type, another for product line, and a third for customer type. The
independence of these hierarchies means that while the system
will tentatively infer that a call that has been labeled as an
instance of a battery problem is therefore probably not a keyboard
problem or a screen problem, it will not similarly infer that the
product is not a laptop or the customer is not a small business
customer. When it makes sense to do so, sub-hierarchies can be
marked as containing mutually exclusive categories, and inference
will change to guarantee that exactly one (alternately at most one)
issue is chosen for a given case within that sub-hierarchy.
One common hierarchy-modification task occurs when the user
notes that there are so many cases associated with a given issue
(either by manual labeling or automatic classification) that it is
likely that there are different ways of being associated with the
issue. For instance, at first the user might be concerned with
identifying cases as being power problems, but it might turn out
that these partition into cases in which the unit refuses to turn on
and those in which the battery does not hold a charge for an
acceptable length of time. To find new subcategories, the user
can set a baseline set of just those cases predicted to belong in the
category of interest, and use the previously described
techniques—using clusters, frequent words and phrases, and
human-noticed hypotheses—to identify subcategories. When
focusing on a particular category, the residual cases consist of
those that are classified as being in the category but not in any of
its children.
This process is used in different ways by different users. Some
groups use it to train the classifiers and quantifiers in the
interactive tool to generate reports based on the resulting
quantifications, either of the number of cases associated with each
category or of a quantified estimate of some other quantity (e.g.,
time or money spent handling calls) associated with the cases.
Others use the continually-updating internal classifiers solely as
search aids and use the interactive tool as a straightforward way to
quickly label manually all cases in a data set containing thousands
or hundreds of thousands of cases, generating reports for the
resulting numbers when they are done. Still other groups use the
tool solely as a means of building up training sets for other
classifiers used off-line as part of a production process. These
other classifiers can be implemented using higher quality
induction algorithms that take much longer to train than is
workable in an interactive system in which retraining is not an
explicit step.

3.3 Quantification
Given a new batch of cases, e.g. monthly or daily, we need to
quantify how many belong in each category. We only need an
accurate count, not the individual classifications. If the classifier
is perfectly accurate, then its observed count of positive
predictions is accurate. Otherwise, this straightforward method
returns poor estimates, biased strongly by the class distribution in
training. This problem is concealed by machine learning research
practices such as random sampling and cross-validation, which
never expose classifiers to shifts in the testing class distribution.
Partly as a result of this, research in quantification methods is
under-explored.

In our business application, changes in the class priors are
foundational. Hence, we developed technology to generate highly
accurate estimates despite inaccurate classifiers. This is not only
necessary—given that perfect text classification is often
unattainable with any amount of training effort—but it also helps
to further reduce the effort required to generate many analyses.
For intuition behind this technology, an insurance company can
accurately predict how many car accidents will happen next year,
but they cannot predict which cars will have the accidents.
We promote two successful quantification methods: The first
simply adjusts the observed count of positives given the true
positive rate and false positive rate of the classifier at thresholds
selected for good characterization, rather than accurate
classification of individual cases. The other method discards the
classification threshold, computes the distribution of scores
generated by the classifier on the target set, and fits this curve to a
mixture model of the score distributions of positives and negatives
determined in training. This latter method can be surprisingly
accurate, even in situations with very few positives, e.g. ten. For
details, we must refer readers to other papers [5][6].
Beyond simply counting, quantification also involves totaling the
hours spent or cost involved resolving each issue type. This can
lead to quite a different picture of the top issues, e.g. if a frequent
issue is quick to resolve, or a less common issue is very
expensive. Again, the straightforward method of classifying cases
and then summing the cost of the positives can lead to
unacceptable estimates. For this too, advanced quantification
methods are called for [5].
Despite our ability to quantify more accurately than individual
classifications allow, we find that business users regularly give
push-back—they would much prefer to know all the cars that will
have accidents. Among the many reasons claimed, one legitimate
and persistent demand is to feed the data into a variety of
downstream analyses that currently require categorized cases, not
just count estimates. For some types of these analyses, it is
sufficient to provide a smaller, representative sample of cases on
which the classifier has greater confidence, and our system
supports this.

3.4 End-to-End Solution
The system was designed as a core engine surrounded by multiple
replaceable modules. The engine keeps track of the category
hierarchy, case data, and labels and trains classifiers, while the
modules allow the system to be customized by plugging in
different graphical user interfaces, methods of obtaining and
managing data, and report renderers.
For the most commonly used environment module, data sets are
stored as files on a disk in any of several formats (new formats
requiring only a simple adapter to be written) from “single-string-
per-line” text files to comma-separated-value spreadsheet files to
(for users for whom cases are long documents) ZIP archives. The
environment maintains a set of (possibly nested) projects, each of
which has an associated set of datasets, one or more category
hierarchies being developed, and associated with each category
hierarchy, training sets reflecting positive and negative labels
applied by users in prior sessions. Other environment modules
may have other paradigms, for example storing cases in databases
and extracting them based on queries.

When a user first brings up the system, they are asked to select a
project, then one or more datasets, and finally the training sets
that they wish to load. Because the system uses globally-unique
identifiers (GUIDs) for categories, it is possible to load training
sets that were created while looking at other versions of the
hierarchy, with the engine mapping labels that refer to categories
in the other version to those in the current version to the extent
possible. Because the trainings set explicitly refer to the datasets
for the cases they contain labels for, it is possible to have the
classifiers trained on cases that are not in the datasets the user
specified. The system ensures that such cases are not considered
during quantification, although may be displayed as the results of
searches, and users may modify their labelings.
The user gets to specify which data fields associated with the
cases are to be (1) displayed, (2) used in queries, (3) used by
analysis tools such as clustering and frequent word analysis, and
(4) used as a source of features by classifiers. They also get to
specify the data they wish to see displayed for each category in the
hierarchy. Besides the number of positive and negative training
cases, the system can display estimates for the total number of
cases for the category in the loaded datasets. These estimates can
be simple counts based on classification or they can be adjusted
by one of the methods described in Section 3.3 and/or corrected to
make sure that cases in the training set are counted correctly.
Also available is a wide range of statistical measures, from
accuracy, precision, recall, and false positive rate to f-measure,
information gain, and bi-normal separation.
Once the cases are loaded, the system automatically classifies
each case into zero or more of the categories, if any, specified for
the project in prior sessions and estimates the count of cases in the
loaded data sets for each of these categories. At this point, the
user might decide to spend some time refining the category
hierarchy or training sets—perhaps after doing a search to
identify residual cases (those not confidently classified). Over
time, new issues will arise that are not covered by current
categories and new ways of describing old issues will appear, and
so old categorizers will need their training sets expanded to be
able to accurately categorize them.
When the user is satisfied that the categories are reasonable and
the categorizers well-trained, the next step is to generate a report
that summarizes the current data set. While the system allows
arbitrary report generators to be added, the most common way
reports are generated is by having the system save an XML file
that contains the category hierarchy along with the estimated
number of calls for each category and a sample of examples. This
XML file is then rendered as an interactive web page, allowing
users to view trend graphs of issues over time to see which issues
are growing or shrinking in importance, hierarchical bar graphs of
category quantifications ordered to identify the most pressing
issues, and, when a portion of a hierarchy is sufficiently mutually-
exclusive for this to be reasonable, pie charts to quickly show the
portion of the calls that are due to various issues.
When an issue has been identified as sufficiently important to
warrant allocating engineers or technical writers to address, the
extracted sample of example cases for each category (chosen
based on both strength of confidence in classification and
dissimilarity from one another) are useful for them to get a feel for
what the real issue is.

4. DEPLOYMENT & RESULTS
Our system, known as “Incident Categorization & Analysis”
(ICA), has been deployed by the HP Technology Solutions Group
Worldwide for internal use throughout HP by different product
groups. A team in the Knowledge Management section provides
training, help desk functions, web-hosting of reports, development
and ongoing software support. There is ongoing work with several
business units to integrate ICA into their processes, potentially
eliminating the need for their call agents to manually assign issue
codes to every case.
ICA is also being used to build up classifiers for sorting technical
documents into topic areas, e.g. to aid with content migration
when consolidating knowledge bases. The choice of ICA was
mainly due to its user interface making it easy to build up training
sets and train classifiers. In particular, with a unified view it
handles multiple, orthogonal classification hierarchies to be
applied independently and simultaneously.
While we cannot fully share the impact ICA has had for HP, we
can give a few anecdotes from the analysis of the iPAQ product
line. ICA identified a major source of call volume that had been
completely missed by previous analyses of coded records, partly
because the issue did not require repair of the product. Once this
issue was identified by our toolset, documentation was generated
for customer support, and diagnostics were coded into HP Instant
Support troubleshooting agents. This led to a documented return
on investment in the following months—the quantitative
measurement of which was also enabled by ICA.
We have also seen the converse, issues that were believed to be
prevalent but that really were not. For example, there had been a
hunch among managers close to the iPAQ product that wireless
network connectivity was a common issue. By using ICA, in less
than an hour an analyst was able to determine that customers
rarely called about this issue, which helped to direct resources to
the most urgent issues. To obtain such information via manually
assigned codes would have been very slow and expensive: a new
wireless category would need to be added to the issue-code
choices, and agents worldwide informed about the new category;
the first month’s valid sample would be available for analysis a
month after deployment, which could take several months. As one
manager observed: “I like it – it helps me win arguments.”

5. DISCUSSION
There is nothing like real-world usage of your tool set by eager
but inexperienced users to give us data mining researchers a
healthy perspective. Here we share some of the open issues and
lessons learned.
ICA is being applied to other types of data as well, including
query logs, web support forums, and customer comments.
Interestingly, it becomes very difficult to tease apart the categories
for customer comment email. This is partly because such email
can touch upon many different categories, and partly because
email messages about a single category are each written by a
different user with his or her unique turn of phrase. This
dispersion in the feature space makes clustering harder and also
requires more training for a classifier. By contrast, call agents
tend to re-use phrases for repeat issues they have entered in the
past. Since agents communicate with each other, they tend to
develop communal terminology and abbreviations.

Even so, when selecting a monthly batch of cases for a given
product line, the text features are naturally dispersed because we
have call centers that work in English, Portuguese, Korean,
Japanese, and Chinese, among others. While the underlying
programming language, Java, can easily handle search terms and
even regular expressions in these languages, this nonetheless
increases the disjunctive training needs to search for and identify
training cases in each language for every class. Some languages,
particularly Chinese (in which words are not separated by spaces)
posed special problems, and the system needed to be augmented
with special techniques (some of which we developed) for
extracting words to use as features. Our architecture supports
having several analysts simultaneously label cases in different
languages for a single category hierarchy, rather than depend on
cross-lingual information retrieval, which has fairly poor
performance even in state-of-the-art techniques [e.g. 15]. This
architecture is also needed for large category hierarchies whose
diversity of topics requires several people with different domain
expertise to label training cases simultaneously.

5.1 Open Issues
What people often want is something for nothing, i.e. very little
human effort to generate a decent but imperfect analysis. Our
original transfer partner even thought the clustering portion alone
would be sufficient for their needs. Unfortunately, neither word
counting nor the variety of clustering techniques we tried prove
satisfactory for many technical texts, particularly for product lines
with long texts describing extensive diagnosis and repair. The
failure is partly due to feature dispersion mentioned above, but
also due to poorly separable data—many cases involve the same
types of troubleshooting steps and interaction with the customer.
This is a potentially valuable area for ongoing research, but is
unfortunately hindered by the subjectivity of the goal and the
widespread focus on clustering clean texts, such as news articles,
rather than ‘dirty’ technical text.
There is a trade-off about local versus remote computation. For
this highly interactive application, one demands both the quick
response of an editor running locally as well as the vast
computing and storage resources of servers in a data center. We
designed our solution to run on the user’s workstation, and
tolerate some startup delay given the long interactive session that
follows, but we find there are many users who wish to run it on
their laptops against datasets that grow monthly. But performing
the memory- and compute-intensive data mining at a server leads
to unwelcome network delay, especially if implemented via
modern web technologies.
Although the process to build up the category hierarchy and
training examples is conceptually simple, in practice it is quite
hard for novice users, especially the majority who are not data
mining specialists. There are several reasons for this. The simplest
is just being unfamiliar with the menus and features, as with any
new software. But it is unlike just learning a new editor, where
you know the concepts (e.g. boldfacing) but need to learn the
commands for them. Instead, it is a first-of-a-kind application.
Our users have to learn the concepts of clustering, classification
by machine learning, and quantification. They initially don’t know
which of the many fields of their datasets they should analyze or
allow the classifier to predict from. For example, one field gives
the issue code manually assigned to the case by the call agent, but

if this field is to be eliminated in the future, the classifier should
not depend on it as an input feature.
Moreover, even for a machine learning expert, it can be hard to
know just what to do. For example, to improve recall, an expert
might know to label additional positive training examples. One
solution may be to implement active learning methods [e.g.
11,14], but such methods systematically present the user with
some of the hardest to label cases, probably worsening the
cognitive load issue. Further, active learning only considers the
choice of which item to label next, not the broader problem of
which other actions might be more beneficial: For the example of
trying to improve recall, we find the problem often lies instead in
mistakes in the training set. If some positive items are mistakenly
labeled as negative, then the classifier learns to be very
conservative in voting positive. Also, if the classifier predicts
correctly for some negative items that are wrongly labeled
positive, the measured recall will be artificially low.
Finally, even for an expert with a deep understanding of how to
most effectively build up the training sets, two serious issues
remain. It is hard to optimize the use of one’s time: there are
several different ways to improve any given classifier, multiplied
by 25–50 categories to develop. One can get stuck in a rat-hole
finding interesting sub-clusters for a category or working on
catching variant misspellings/language used, when there are much
bigger issues elsewhere. There may be a large undiscovered
category that would account for a larger fraction of the dataset, or
there may be a smaller undiscovered category for which the
business would be better able to take action to resolve.

5.2 Lessons Learned
Our initial vision was to develop a tool set that would enable the
many domain experts to perform independent analyses of each
product line. Beyond the need for having trainers to teach them
the tool and to be available for ongoing questions, experience has
taught us that there is an essential need for expert knowledge
architects. This person should ideally have skills in information
architecture and data mining. Their role is to collaborate with the
domain expert to establish which fields to analyze and to develop
a usefully structured category hierarchy. The domain expert can
then work more independently, labeling more training cases and
defining additional categories.
This need, as well as the complexity of the task and the limited
time available by domain experts for data analysis, has convinced
us that just developing a tool set cannot succeed. It needs to be
couched within a service offering support and/or full service.
We have been pushing classification technology for years and
have never found the user pull and word-of-mouth excitement we
have gotten from this work in just quantifying how many items
belong in each category. It is a sort of ‘killer app’ for business.
We had thought that trending over time would be highly valued,
especially as it requires minimal human effort compared with the
initial analysis. In practice, most users already get a lot of value
just from an initial quantification analysis. In fact, some users
value our software even ignoring its automated quantification
capability. For example, when reading a small volume of cases,
e.g. fewer than 500 customer survey emails per month for some
product line, it proves useful just to keep track of the category
hierarchy and the hierarchical tally of issues, even if entirely
manually assigned. Moreover, some users were excited just to

have a good graphical user interface for viewing cases and
performing various searches on them, ignoring the machine
learning technologies altogether. As Ron Kohavi stated at his
ECML’05 keynote, it is surprising how delighted many clients are
with simple first order statistics. This can be astonishing to data
mining researchers, who seek to develop sophisticated predictive
models.

6. CONCLUSION & FUTURE WORK
The core [mining] algorithms are now a small part of the
overall application, being perhaps 10% of a larger part,
which itself is only 10% of the whole. –K. Thearling [17]

Supervised machine learning for text classification has been
around for decades. Even so, its adoption for real-world tasks is
severely limited, partly by its heavy requirement for labeled
training cases. For applications like ours where thousands of
classifiers need to be trained, the demand for training data was
nearly prohibitive. This in turn led us to develop an essential trio
of methods: clustering for issue discovery, interactive search-and-
confirm training with category inference rules, and quantification.
One of the main contributions of this work is in greatly lowering
the cost of building up training sets. Before this, many potential
classification projects we considered internally were starved by a
lack of training data. Now we can examine many more problems
offered to us that have only unlabeled datasets.
Considering future research directions, concept drift is the bane
for classification, and in an application like ours, it is
institutionalized, e.g. with ever changing support issues, product
models, and their technical environment in deployment. Also, we
have recognized quantification as an important topic for machine
learning research, and encourage other practitioners to share
variant settings that are important for them, which may help direct
productive research.
Besides the research path, there is strong interest from HP’s
customers and partners in this capability. We are exploring
integration with HP’s product offerings (for example, with HP’s
management software products) and we are actively collaborating
with HP Services on this project.

7. ACKNOWLEDGMENTS
We thank Tom Tripp for the original vision that led to this project
and his drive in making it real. Shelen Jain and Umesh Dayal have
given us many helpful suggestions and support. Jim Stinger has
actively participated in this research, particularly with the
clustering work. Many others have contributed to the success of
this project, particularly Farzana Wyde, Sue Bills, Ron Plourde,
Stephane Chiocchetti, Philippe Schmidt, Chas Goebel, Rafael
Reyes, Rob Fritz and Jamie El Fattal.

8. REFERENCES
[1] Banerjee, A., Krumpelman, C., Ghosh, J., Basu, S., and

Mooney, R. J. Model-based overlapping clustering. In
Proc. of the 11th ACM SIGKDD Int’l Conf. on Knowledge
Discovery in Data Mining (KDD, Chicago), 532-537, 2005.

[2] Beil, F., Ester, M., and Xu, X. Frequent term-based text
clustering. In Proc. of the 8th ACM SIGKDD Int’l Conf. on
Knowledge Discovery and Data Mining (KDD):436-42, 2002

[3] Deerwester, S., Dumais, S., Furnas, G, Landauer, T, and
Harshman, R. Indexing by latent semantic analysis. Journal
of the American Society for Information Science, 41(6):391–
407, 1990.

[4] Fawcett, T. and Flach, P. A response to Webb and Ting's
‘On the application of ROC analysis to predict classification
performance under varying class distributions.’ Machine
Learning, 58(1):33-38, 2005.

[5] Forman, G. Quantifying trends accurately despite classifier
error and class imbalance. In Proc. of the 12th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD, Philadelphia), 2006.

[6] Forman, G. Counting positives accurately despite inaccurate
classification. In Proc. of the 16th European Conf. on
Machine Learning (ECML, Porto):564-575, 2005.

[7] Forman, G. and Cohen, I. Learning from little: comparison
of classifiers given little training. In Proc. of 8th European
Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD, Pisa):161-172, 2004.

[8] Forman, G. An extensive empirical study of feature
selection metrics for text classification. J. of Machine
Learning Research, 3(Mar):1289-1305, 2003.

[9] Havre, S., Hetzler, E., Whitney, P., and Nowell, L.
ThemeRiver: visualizing thematic changes in large document
collections. IEEE Transactions on Visualization and
Computer Graphics, 8(1):9-20, 2002.

[10] Joachims, T. Text categorization with support vector
machines: learning with many relevant features. In Proc. of
the 10th European Conf. on Machine Learning (ECML,
Berlin):137-142, 1998.

[11] Li, X., Wang, L., and Sung, E. Multilabel SVM active
learning for image classification. In Proc. of the Int’l Conf.
on Image Processing (ICIP), 4:2207-2210, 2004.

[12] MacQueen, J.B. Some Methods for classification and
Analysis of Multivariate Observations, In Proc. of 5-th
Berkeley Symposium on Mathematical Statistics and
Probability, Univ. of California Press, 1:281-297, 1967.

[13] Mei, Q. and Zhai, C. Discovering evolutionary theme
patterns from text: an exploration of temporal text mining.
In Proc. of the 11th ACM SIGKDD Int’l Conf. on Knowledge
Discovery in Data Mining (KDD, Chicago): 198-207, 2005.

[14] Melville, P. and Mooney, R. Diverse ensembles for active
learning. In Proc. of the 21st Int’l Conf. on Machine
Learning (ICML, Banff), 584-591, 2004.

[15] Rogati, M. and Yang, Y. Resource selection for domain-
specific cross-lingual IR. In Proc. of the 27th Annual Int’l
ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR, Sheffield), 154-161, 2004.

[16] Suermondt, J., Kirshenbaum, E., Forman, G., and Stinger, J.
The 10-second answer: practical text clustering for topic
discovery. Forthcoming. HP Labs, Tech.Rpt. HPL-2006-41.

[17] Thearling, K. Some thoughts on the current state of data
mining software applications. Workshop: Keys to the
Commercial Success of Data Mining, 8th ACM SIGKDD Int’l
Conf. on Knowledge Discovery in Data Mining (KDD, New
York), 1998.

