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number of workloads that can be assigned to a pool without sacrificing
application workload quality of service or the efficiency of the resource
pool. 

 

* Internal Accession Date Only 
Published in the Proceedings of the 2006 IEEE/IFIP Network Operations & Management Symposium (NOMS 
2006), 3-7 April 2006, Vancouver, Canada                  Approved for External Publication 
© Copyright 2006 IEEE 



Configuring Workload Manager Control Parameters
for Resource Pools

Jerome Rolia
Hewlett-Packard Labs

Palo Alto, CA, USA, 94302
Email: Jerry.Rolia@hp.com

Ludmila Cherkasova
Hewlett-Packard Labs

Palo Alto, CA, USA, 94302
Email: Lucy.Cherkasova@hp.com

Clifford McCarthy
Hewlett-Packard MSL

Richardson, TX, USA, 75080
Email: Clifford.McCarthy@hp.com

Abstract— Resource pools are computing environments that
offer virtualized access to shared resources. When used effectively
they can align the use of capacity with business needs (flexibility),
lower infrastructure costs (via resource sharing), and lower
operating costs (via automation). Using resources effectively can
rely on a combination of workload placement and workload
management technologies. Workload placement decides which
workloads will share resources. Workload management governs
short term access to resource capacity. It provides performance
isolation within resource pools to ensure resource sharing even
under high loads. A workload manager can have a direct impact
both on an application’s overall resource access quality of service
and on the number of workloads that can be assigned to a pool.
In this paper we take a detailed look at an application workload’s
demands. We explore tradeoffs in resource access quality of
service received by the application and the minimum allocation
of resources for the workload. We show that by careful selection
of workload scheduling parameters along with a proposed fast
allocation policy we can sometimes more than triple the number
of workloads that can be assigned to a pool without sacrificing
application workload quality of service or the efficiency of the
resource pool.

I. INTRODUCTION

Resource pools are collections of resources, such as clusters
of servers or racks of blades, that offer shared access to
computing capacity. Virtualization services offer interfaces that
support the lifecycle management (e.g., create, destroy, move,
size capacity) of resource containers (e.g., virtual machines,
virtual disks) that are provided with access to shares of
resource capacity (e.g., cpu, memory, input-output). This paper
considers the efficient use of resources in such pools.

We assume that when managing such pools that application
workloads are assigned to resource containers that are then
associated with resources in the pool. Management occurs
at several different timescales. Long term management cor-
responds to capacity planning and takes place over many
months. Over a medium timescale, e.g., days or months,
groups of resource containers are found that are expected to
share resources well. These containers are then assigned to
their corresponding resources. Capacity management tools can
be used to automate such a process. For example, our ca-
pacity management tool takes into account detailed workload
interactions and the overbooking of resources via statistical
multiplexing [1] to automatically decide which workloads
should share resources. Once resource containers are assigned

Fig. 1. Relationship between resource containers, workload managers,
resources, and a resource pool.

to a resource, a workload manager for the resource governs
access to resource capacity over short timescales, e.g., 15
seconds. A workload manager can provide static allocations
of capacity or change the per resource container allocations
based on time-varying workload demand. Figure 1 shows the
relationship between resource containers, workload managers,
resources, and a resource pool.

This paper considers the issue of choosing per resource
container values for workload manager control parameters
that ensure the efficient use of resources while providing
adequate application resource access quality of service. Our
work focuses on a proportional share scheduler approach
towards workload management. Each resource container is
pre-allocated specific shares of capacity for short time periods,
e.g., 15 seconds. Then, based on the demands of the containers
and the availability of resources, the allocations may be
adjusted to ensure that each container gets the capacity it
needs.

We consider a particular workload and determine the work-
load manager control parameters that affect its resource usage
within its container most. We found that the careful selection
of workload scheduling parameters along with an aggressive
policy towards allocating resources to workloads with increas-
ing demands makes it possible in some cases to more than
triple the number of workloads that can be assigned to a pool
without sacrificing application workload quality of service or



the efficiency of per-workload resource usage. We believe this
contributes to the more effective use of resource pools and in
that way enables their benefits to be realized.

The workload manager we consider is described in Sec-
tion II. Section III explains the metrics we used to characterize
capacity usage and resource access quality of service. Sec-
tion IV describes the workload we consider in this paper. The
impact of workload manager control parameter settings on the
metrics for the workload is presented in Section V. To improve
upon these metrics we introduce a novel fast allocation control
policy for the workload manager in Section VI and repeat the
sensitivity analysis. Related work and conclusions are offered
in Sections VII and VIII.

II. WORKLOAD MANAGER

We assume that each resource container is associated with
an entitled number of shares of CPU resources. The entitled
number of shares correspond to an upper bound on the
allocation of resources for the container. A workload manager
dynamically varies the allocation to permit a more efficient
use of the resource pool. The workload manager we consider
is layered upon a proportional share scheduler.

The proportional share scheduler we consider provides
bounded access to resources for each resource container. The
scheduler is configured to offer 10 msec CPU timeslices.
Figure 2 shows a pie chart that illustrates a schedule for the
scheduler that supports several resource containers. Each piece
of the pie represents one timeslice. Similarly shaded slices
correspond to the same resource container. With bounded
access, the scheduler advances from slice to slice every
10 msec regardless of whether resources are used or not,
i.e., it is non-work-conserving scheduler. This provides for
performance isolation. Each container receives its particular
service rate regardless of whether any of the containers are
using resources. Such isolation can be desirable in a shared
resource environment for enterprise applications as it gives
the appearance of dedicated access to resources. Adding new
workloads to the pool has little impact on the performance
behavior of workloads already in the pool.

The schedule is chosen to provide each resource container
with access to its allocated shares. The schedule spreads each
resource container’s shares as evenly as possible over the pie
to deliver what may be perceived as a smooth service rate.
Though the pie illustrates a schedule for access to one CPU,
a workload may be assigned shares from many CPUs such
that its total allocation equals its number of shares. Work-
load schedulers may use heuristics to best match the offered
concurrency over all CPUs with the level of concurrency a
workload is able to exploit. However, when more CPUs are
used the service rate per-CPU diminishes and the per-CPU
schedules may differ. We make no assumption about whether
the schedules for multiple CPUs are synchronized.

An inherent problem of a fixed schedule, i.e., fixed allo-
cations, is that resources may not be used as efficiently as
desired. Each resource container must be sized to support its
peak capacity requirements. Yet, most applications rarely need

Fig. 2. Resource Allocation for A Proportional Share Scheduler

their peak amount. Workload managers aim to dynamically
allocate the capacity associated with resource containers to
facilitate sharing.

The workload manager we consider is layered on top of
the proportional share scheduler and dynamically adjusts the
allocation of each resource container based upon the current
demands of the resource container. For example, if a workload
goes idle, then its allocation can be reduced. If it becomes very
busy it can be increased.

Adjusting the allocation of resources to containers based
on demand permits statistical multiplexing within a resource
pool [1]. We do not consider such multiplexing in this paper.
Here, our analysis assumes that each workload gets access to
capacity according to its demands and the allocation decisions
of the workload manager algorithm. Our analysis is with
respect to a workload within its resource container.

The workload manager we consider corresponds to a neg-
ative feedback controller. It has several control parameters.
These include:

• schedule interval (this parameter only is for all work-
loads). The workload manager computes a new schedule
for the proportional share scheduler at the end of each
schedule interval;

• gain –a parameter that affects how quickly a workload’s
allocation increases or decreases based on its current
demand;

• minCPU allocation – a minimum allocation amount, i.e.,
even in the absence of demand, the allocation can not go
lower than minCPU amount;

• maxCPU allocation – maximum allocation amount for
the workload;

• lowerAllocUtil threshold – a parameter that triggers a
decrease of the allocation, i.e., if the measured utilization
of allocation for a workload for the previous schedule
interval drops below the lowerAllocUtil value, then the
allocation is decreased based on the gain value, but it
never goes below the minCPU allocation amount;



• upperAllocUtil threshold – a parameter that triggers an
increase of the allocation, i.e., if a utilization of allocation
goes above the upperAllocUtil then the allocation is
increased based on the gain value, but it can not go higher
than maxCPU allocation amount.

The allocation does not change when utilization of alloca-
tion falls within the range lowerAllocUtil and upperAllocUtil,
and the allocation never goes out of the range minCPU
allocation and maxCPU allocation. These conditions help to
avoid hysteresis, limit the impact of one workload on others,
and ensure resource access quality of service when a workload
is transitioning from an idle to busy period. Note that: 0 ≤
lowerAllocUtil ≤ upperAllocUtil ≤ 1.

To describe the controller’s algorithm in a more formal way,
we use the following notation:

• i – the current time interval;

• Dnew
i – a new incoming workload demand in interval i;

• Dcarry forw
i – the portion of demand that was not satis-

fied in interval i − 1 and is therefore carried forward to
interval i. For each time interval, it is computed according
to the following formula:

Dcarry forw
i = max(Di−1 − Ai−1, 0);

• Di – the total demand in interval i,

Di = Dnew
i + Dcarry forw

i ;

• Ai – the allocation provided by the controller in time
interval i.

At the end of interval i, the workload manager computes a
new allocation Ai+1 for the workload for interval i + 1 using
the following policies:

1) If lowerAllocUtil ≤ Di/Ai ≤ upperAllocUtil then there
is no change in the allocation, and Ai+1 = Ai.

2) If Di/Ai ≤ lowerAllocUtil then the controller attempts
to decrease the next interval allocation:

Ai+1 = Ai − gain × (Ai − Di

lowerAllocUtil
).

If Ai+1 ≤ minCPU then Ai+1 = minCPU .

3) If upperAllocUtil ≤ Di/Ai then the controller attempts
to increase the next step allocation:

Ai+1 = Ai + gain × (
Di

upperAllocUtil
− Ai).

If maxCPU ≤ Ai+1 then Ai+1 = maxCPU .

The workload manager takes the computed allocations for
each workload’s resource container and associates them with
a schedule, i.e., for time interval i + 1. The proportional
share scheduler then serves short time slices according to the
schedule until the end of the interval.

Since allocation can not go lower than minCPU amount it
may be tempting to set such an allocation to a very small
value. However, in this case, it may take several schedule
intervals to increase an allocation to a correct size when there
is a burst of incoming demand. This may present a resource
access quality of service issue for interactive workloads with
infrequent bursts of requests as the requests that start the bursts
may incur long response times.

The choice of lower and upper utilization of allocation
thresholds is based on the responsiveness requirements and
arrival process of a workload. The greater the burstiness in
arrivals, and the greater the responsiveness requirements, the
lower the acceptable utilization of allocation. This is because
utilization of allocation is measured over an interval, e.g., 15
seconds, so it conceals the bursts of demand within the in-
terval. For this reason resource allocations are typically larger
than resource demands. This limits the potential utilization of
resources in a resource pool.

III. METRICS

We now define the metrics for measuring capacity usage
and resource access quality of service. These are operational
measures that are computed over a representative time period
for a workload’s demands, e.g., hours or months. We also
introduce the notion of demand variation. It is a measure of
workload burstiness that quantifies the impact of changing
demands on the workload manager control algorithm.

The original workload and its demands are characterized as
a trace of CPU demand values for the time period, with one
CPU demand value per schedule interval. We compute values
for the metrics with respect to a particular set of workload
manager control parameters by replaying the trace through the
workload manager control algorithm.

To facilitate the comparison of alternative parameter settings
we normalize the metrics with respect to a reference system.
The reference system is assumed to have a fixed capacity, i.e.,
its allocation does not change over time. In a reference system
with N CPUs, all N CPUs are statically allocated to workload
for all time intervals. We denote this reference capacity as
allocation Aref .

Consider a trace of demands Dnew
i for intervals i = 1, ..., T

for a trace with T demand measurements. Let Ai be the CPU
allocation for interval i as it is computed by the workload
manager control algorithm.

We define capacity usage U as a workload’s average allo-
cation with respect to the reference system’s capacity:

U =
(
∑i=T

i=1 Ai)/T

Aref
.

A lower value for U corresponds to a lower usage of
the reference capacity and hence leads to greater efficiency
because the unused resources can be used by other workloads.

We define resource access quality of service (QoS) using
the metric QoS satisfied demand DQoS . This is the portion of
total demand that is satisfied in intervals that have utilization



of allocation less than or equal to upperAllocUtil. We define
DQoS as follows:

DQoS =
i=T∑

i=1

Di, such that
Di

Ai
≤ upperAllocUtil.

Note that Di includes carry forward demand Dcarry forw
i ,

since Di = Dnew
i +Dcarry forw

i as defined in Section II. The
quicker the workload manager controller adapts to provide the
correct allocation the higher fraction of the carried forward
demand might be QoS satisfied demand.

Intuitively, the reference system helps to set the QoS ex-
pectations. Since its allocation does not change over time and
it always allocates the maximum capacity of the reference
system, it shows what fraction of workload demands can be
QoS satisfied under its maximum possible capacity allocation.

To facilitate comparison with the reference system (and in
such a way, between different systems), we normalize the
QoS satisfied demand that corresponds to a workload control
parameter configuration scenario, DQoS , with respect to the
QoS satisfied demand of the reference system, DQoS

ref . This
normalization characterizes the portion of demand that is QoS
satisfied demand with respect to the reference system. We refer
to this as normalized QoS satisfied demand QD. It is defined
as:

QD =
DQoS

DQoS
ref

.

When QD = 1 the amount of QoS satisfied demand is the
same as was measured for the reference system. For systems
with higher capacity than the reference system, QD can be
greater than 1, meaning that the amount of QoS satisfied
demand is higher than for the reference system.

We also define the metric Satisfied Demand SD. This is the
portion of total demand that is satisfied in intervals where the
demand is less than or equal to the allocation:

SD =

∑i=T

i=0
Di

D
such that Di ≤ Ai,

where D is the sum of demands Dnew
i over the T time

intervals.
For metrics QD and SD we keep track of the percentage

of the time intervals that satisfy the respective requirements.
We name these as QP and SP . These metrics bring additional
perception of time for characterizing resource access quality
of service. For example, the QP metric reflects the percentage
of time intervals (amount of time) during which QoS satisfied
access to CPU capacity is provided. These metrics have values
between 0 and 1. The values are not normalized.

We rely on resource usage based metrics as measures of
application workload quality of service because metrics from
within an application’s context, such as response times, are
hard to obtain in general. We use the metrics to show how
well we are providing capacity in proportion to a workload’s
needs.

In some sense, the QD value reflects how quickly the
workload manager reacts to changing loads. When QD < 1

then a lower percentage of demand is being satisfied in the
intervals with utilization of allocation less than upperAllocUtil
than for the reference system. When QD > 1 it suggests that
more demand is being satisfied in such intervals than for the
reference system.

Finally, we introduce the notion of demand variation. This
value helps to characterize the impact of workload bursti-
ness on the workload manager control algorithm’s computed
sequence of allocations, i.e., A1, ..., AT . We define demand
variation for interval i as:

demand variationi =
max(minCPU,Di)

max(minCPU,Di−1)
.

It is the ratio of successive demands as observed by the
workload manager control algorithm to decide whether the al-
location for interval i+1 needs to be increased. If the allocation
must be increased then by definition there will be an impact on
QD. In this way demand variation helps to understand the limit
on the value for QD for a particular workload and workload
manager control parameter settings. For a specific utilization of
allocation range (lowerAllocUtil, upperAllocUtil), we have
an upper bound on the limit on demand variation of:

demand variation =
upperAllocUtil

lowerAllocUtil
.

If successive utilization of allocation values tend towards
the midpoint of the range then the limit will be lower, e.g.:

demand variation =
(upperAllocUtil + lowerAllocUtil)/2

lowerAllocUtil
.

Later, we illustrate what portion of demand variations are less
than or equal to such limits for various workload controller
parameter settings.

IV. FILE SERVER WORKLOAD

For the purpose of our study we obtained a trace of
CPU demands for a file server from a software development
environment that is to be hosted in a resource pool. This
is our reference system. The trace was recorded over 140
days and includes a measurement of CPU utilization every
15 seconds. The file server had fixed access to 3 CPUs and
was not governed by a workload manager.

Figures 3 and 4 illustrate the entire 140 days of CPU de-
mands in the trace and an arbitrarily chosen day, respectively.
From a CPU utilization perspective, Figure 3 shows that 3
CPUs appear to be adequate for this reference system. From
Figure 4 we see that demands are present throughout the day
with frequent changes in resource requirements.

Figures 5 and 6 give the Cumulative Distribution Function
(CDF) for the CPU demands for the full trace, and a CDF
that shows how much of the total demand D is incurred in
intervals with the greatest demands. The later curve is obtained
by sorting the per-interval demands from largest to smallest.

Figure 5 shows that 90% of demands are less than 0.4 CPU
and that 95% of demands are less than 0.6 CPU. Figure 6



Fig. 3. 140 Days of CPU Demand Data for a File Server
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Fig. 4. CPU Demand Data for Day 17

shows that 1% of the intervals with highest demand, i.e.,
0 to 0.01 on the y-axis, contribute approximately 10% of
overall CPU demand in the trace, i.e., 0 to 0.1 on the x-axis.
Furthermore, 10% of the intervals with lightest load, i.e., 0.9 to
1.0 on the y-axis, contribute to only 1% of the overall demand
in the trace, i.e., 0.99 to 1.0 on the x-axis. This is a bursty
workload.

Figures 7 and 8 show the percentage of intervals and
demands that fall in intervals with demand variation less
than specific thresholds, respectively. Each figure has several
curves, one per threshold.

Consider demand variation limits of 1.3 and 1.1. Figure 7
shows that with a minCPU=0.6 approximately 3% or 4% of
time intervals will cause reallocations and negatively impact
QD. Figure 8 shows that these points correspond to roughly
20% of the total demand. A minCPU=0.8 has only 2% of
the points causing reallocations and affects approximately
14% of the demand. From Figure 6, the top 1% of points
correspond to the top 10% of demands. Figure 8 shows that
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even minCPU = 1.5 has 2% of total demand that will be
affected by reallocations.

Resource sharing will always have an impact on application
QoS. In general, we aim to find a trade-off that provides ac-
ceptable application QoS and makes efficient use of resources,
i.e., economically sound based on business need.

V. SENSITIVITY ANALYSIS OF WORKLOAD MANAGER

CONTROL PARAMETERS

This section considers various workload manager control
parameter settings for the file server workload and their
impact on QD, U , QP and SP . We consider three workload
quality of service scenarios: high, medium, and low. These
correspond to utilization of allocation ranges (lowerAllocU-
til,upperAllocUtil) of (0.233,0.433), (0.4, 0.6), and (0.566,
0.766), with mean utilization of allocation goals of 0.333, 0.5,
and 0.666, respectively.

For each QoS scenario we explore the impact of different
values for the gain, minCPU and maxCPU parameters on re-
source usage efficiency and resource access quality of service
metrics.

A. Sensitivity to Gain and minCPU Parameters

Gain is the parameter in the workload manager control
algorithm that affects how quickly a workload’s allocation
increases or decreases based on its current demand. minCPU
defines the minimum share of CPU that is always allocated to
a workload independent on its CPU demand: it means that at
any point in time, the scheduler will allocate at least minCPU
amount to the workload whether it needs CPU resources or
not.

Figures 9 through 11 show the relationship between the met-
rics QoS satisfied demand QD and CPU capacity usage U with
the different settings of minCPU for the high, medium, and
low QoS target scenarios, respectively. Each figure presents
three QD curves that correspond to values of gain=0.5, 1, and
2, respectively. Each figure also includes three curves showing
the capacity usage U for the corresponding values of gain.

Figure 9 shows that gain has very little impact on capacity
usage metric U . The U curves have values that are practically
identical. The same is true for the medium and low QoS
scenarios. The gain parameter does however have some impact
on values of QoS satisfied demand QD. For lower minCPU
levels, higher values for the gain parameter provide better
values for QD. However, for higher values of QoS satisfied
demand QD, e.g. 80%, higher values of minCPU are required.
For these higher minCPU values, the impact of the gain
parameter on QD is practically indistinguishable.

We conclude that a gain = 1 is a reasonable choice for this
workload and use it in our remaining analyses. We do not
consider the gain parameter further in this study.

These figures also show the relationship between high,
medium, and low QoS scenarios with capacity usage U .
When minCPU = 1, capacity usage U is 35%, 33%, and
32% respectively. This metric tells us that for this value of
minCPU parameter the three scenarios have roughly the same
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CPU usage efficiency of underlying system capacity. This is
somewhat counter-intuitive. We would expect the high QoS
scenario to be much less efficient. From more detailed results
we found that the workload spent significant portions of time
with its minCPU allocation and not in its targetted utilization
range. As the value of minCPU parameter decreases more time
is spent in the targetted utilization range so we observe greater
relative differences in U with the high QoS scenario being less
efficient than the lower QoS scenario.

B. minCPU and maxCPU Parameters versus QD, QP and SP

Service Metrics

This section takes a closer look on the impact of minCPU
and maxCPU parameters in workload manager controller algo-
rithm on the service metrics QD (percentage of QoS satisfied
demand), QP (percentage of time intervals with QoS satisfied
demand), and SP (percentage of time intervals with satisfied
demand). Figures 12 through 14 illustrate these metrics for
maxCPU = 3, 4, and 5 for the high, medium, and low QoS
scenarios, respectively.

Consider Figure 12. The x-axis shows the minCPU value
that is required to achieve a particular QD value on the y-
axis. Several curves are shown. Three of the curves, that
correspond to different values of maxCPU = 3, 4, and 5,
show the relationship between the minCPU parameter setting
and achievable QoS satisfied demand metric QD. Two curves
show the relationship between minCPU parameter and QP

and SP metrics for values of maxCPU = 3, 4, and 5. Since
the values for QP and SP are nearly identical for each of the
maxCPU = 3, 4, and 5 cases, respectively, only one curve
is shown for all three considered values.

We now consider QD = 80% for more detailed discussion.
Our choice is motivated as follows. As discussed in Section IV,
a minCPU = 0.6 corresponds to the 95-percentile of CPU
demand for the workload. Figure 7 shows that for minCPU =
0.6, 20% of CPU demand is incurred in intervals with demand
variation greater than 1.1. This set of demands is likely to
cause reallocations by the workload manager controller for all
three QoS scenarios thereby affecting QD, i.e., giving a limit
of QD near 80%.

Our earlier figures, Figures 9 through 11, show the rela-
tionship between QD, its corresponding value for minCPU,
and its corresponding value for capacity usage U for the high,
medium, and low QoS scenarios, respectively. The capacity
usage curves are the most bottom curves in the figures. The
U values are practically identical for the different values gain
parameter. Here, we consider a gain=1. From these figures
(Figures 9 through 11), QD = 80% corresponds to U =
35%, 25%, and 20% for the high, medium and low QoS
scenarios, respectively. As expected the low QoS scenario
makes the most efficient use of resources. Also, as expected,
from Figures 12 to 14, we see that the QP and SP values
diminish as we shift from a high to low QoS.

Finally, to achieve a QD = 80% for the high QoS scenario
with maxCPU = 3, 4, or 5 the workload manager controller
must be configured with a minCPU=1.1, 1.0, 0.9 CPUs,
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respectively. While these are lower CPU requirements than
a fixed allocation of 3 CPUs, i.e., as in the reference case,
we must still ask whether its possible to do better. The sum
of minCPU values over all resource containers must be less
than the capacity of the resource pool. Large minCPU values
may present an unintended limit on the number of workloads
that can be associated with a shared resource pool whether or
not the pool is heavily utilized.

The next section considers a modification to the work-
load manager control algorithm that provides similar QoS of
satisfied demand and capacity usage while further reducing
minCPU requirements.

VI. A NEW FAST ALLOCATION POLICY

We now consider a method to reduce the required minCPU
parameter value while maintaining normalized QoS satisfied
demand QD and capacity usage U . The method requires
a modification to the workload manager control algorithm.
We refer to the modification as a fast allocation policy.
Basically, we aim to improve QD by increasing the allocation
to maxCPU whenever the allocation is observed to be fully
utilized. When the allocation is fully utilized then the true
extent of demand is not known to the control algorithm; this
is the most aggressive action possible to react to large changes
in demand.

To implement the fast allocation policy, we modify policy 3
of the controller algorithm (see Section II) in the following
way:

• If upperAllocUtil ≤ Di/Ai then the controller attempts
to increase the next step allocation:

1) If Di < Ai then

Ai+1 = Ai + gain × (
Di

upperAllocUtil
− Ai).

If maxCPU < Ai+1 then Ai+1 = maxCPU .

2) If Ai ≤ Di then Ai+1 = maxCPU .

If the demand Di is less than the assigned allocation (and
hence the observed utilization of allocation is less than 100%),
the fast allocation policy behaves in the same way as the
original algorithm. Otherwise it increases the allocation to
maxCPU as it is not known what the true demand is. With
the original algorithm, it may take several intervals before the
allocation is well matched with the true demand. With the fast
allocation policy, the maximum entitled capacity is allocated
in a single step. The new algorithm is therefore less efficient
in its use of resources as it may take additional steps before
the allocation is reduced to meet the workload’s true demand.
However it may provide a better quality of service for the
workload.

Figures 15 through 17 show the relationship between
minCPU and maxCPU with QD, QP and SP for the high,
medium, and low QoS scenarios, respectively.
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Figure 15 shows that even as minCPU approaches zero, i.e.,
minCPU=0.01, QD values remain near 75%. For the original
workload manager algorithm the QD value approaches 55%
for minCPU=0.01. Even greater improvements for QD are
achieved for the medium and low QoS scenarios.

Though we may be tempted to exploit the low minCPU
values when using the fast allocation policy, Figures 18
through 20 show that very low values of minCPU have an
adverse impact on capacity usage U . The figures show the
relationship between minCPU and capacity usage U for the
high, medium, and low QoS scenarios, respectively. In each
figure, as minCPU goes below approximately 0.2, the U value
begins to increase, reflecting the decrease in capacity usage
periodically caused by quickly changing the allocation to
maxCPU value.

Now, we discuss Figures 15 through 17 in more detail.

• The high QoS scenario with a QD = 80% and a
maxCPU = 5 requires a minCPU = 0.85 for
the fast allocation policy as shown in Figure 15. The
original algorithm could achieve a QD = 80% with a
maxCPU = 5 and minCPU = 0.9 (see Figure 12).
This is a 6% reduction in minCPU. Both approaches
offer the same values for percentage of QoS satisfied
time intervals QP and SP that represent percentage of
time intervals with QoS satisfied demands and satisfied
demands respectively.

• The medium QoS scenario with a QD = 80% requires
a maxCPU = 4 and a minCPU = 0.2 (to ensure a
reasonable U ) for the fast allocation policy as shown in
Figure 16. The original algorithm requires a maxCPU =
5 and a minCPU = 0.65 (see Figure 16).

Suppose that minCPU constrains the number of work-
loads that we can assign to a server. If the original
algorithm requires a minCPU = 0.65 and the fast
allocation policy requires a minCPU = 0.2 then we can
potentially assign more than 3 times as many workloads
to the server. A detailed analysis of workload patterns is
necessary to predict how many workloads can actually be
supported [1]. With the fast allocation policy, minCPU
can be less of a constraint.

The QP and SP values for the fast allocation policy are
90% and 94%, respectively. For the original algorithm
with a minCPU = 0.65 the values are 95% and 98%.
This is expected as fewer of the intervals with demands
that are incurred when a workload transitions from idle
to busy will be satisfied under the low minCPU value.

However, we believe that QD is a more important metric
as it gives the percentage of total demand where the
utilization of allocation is less than upperAllocUtil. This
identifies the portion of demands that receive the desired
quality of service. Recalling from Section IV, for this
workload, 1% of time intervals with higher CPU demands
are be responsible for 10% of overall workload demand

and 10% of time points with smaller CPU demands are
be responsible for only 1% of the total workload demand,
so metrics based on intervals alone can be misleading.

The fast allocation policy could offer the same values
for QP and SP as original algorithm with an increased
minCPU of 0.6 and a maxCPU of 4 or 5. Therefore, if QP

and SP metrics are matched for both the fast allocation
policy and the original algorithm then the reduction in
minCPU due to the fast allocation policy is 8% with QD

increasing from 80% to 83%.

• The low QoS scenario behaves similarly to the medium
QoS scenario. With a QD = 80% it requires a max-
CPU=4 and a minCPU = 0.2 (to ensure a reasonable
U ) for the fast allocation policy. The original algorithm
requires maxCPU = 5 and minCPU = 0.65. Again
the fast allocation policy reduces the minCPU by more
than a factor of 3.

Capacity usage U for the fast allocation policy and
original algorithm are 20% and 25%, respectively. Again,
the fast allocation policy improves on efficiency and
offers the same QD with a lower value for maxCPU.

The QP and SP values for the fast allocation policy under
minCPU = 0.2 are 90% and 93%. For the original
algorithm with a minCPU of 0.65 the values are 96% and
98%. The fast allocation policy can offer the same values
for QP and SP with increased minCPU = 0.6 and a
maxCPU = 4 or 5. Therefore if QP and SP metrics
are matched the improvement is 8% and QD increases
from 80% to 83%.

To summarize, we believe that the QoS satisfied demand
metric is most representative of the QoS perceived by work-
loads. The fast allocation policy permits a 6% reduction in
minCPU for the high QoS scenario and a factor of more
than 3 reduction in minCPU for the medium and low QoS
scenarios while maintaining the same QD value with respect
to the original workload manager algorithm. Such reductions
mean that there are greater opportunities for assigning more
workloads to resource pools.

The original algorithm has higher values for QP and SP ,
however we believe that with the fast allocation policy more
demand that is carried forward is likely to be satisfied in
the next interval which explains the correspondingly higher
values for QD. With the original workload manager algorithm
demands are more likely to be carried forward for many
intervals and thereby incurring correspondingly lower values
for QD.

VII. RELATED WORK

Recently there has been significant interest in resource
management for shared resource environments. Issues include:
capacity planning, which projects future capacity requirements
for the pool; placement, which decides which workloads
should share resources; allocation, which decides appropriate
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time varying resource allocations for application workloads;
and arbitration, which decides how to partition capacity when
demands exceed supply.

Our earlier work has focussed on capacity planning and
workload placement [1] [2] [4]. We have assumed the presence
of allocation and arbitration mechanisms of the kind that exist
in industrial products [7] [8] [9] [10]. These implement control
loops and are motivated by methods from control theory. Such
products support demand based allocations, allocations based
on workload response times or throughputs, priorities, enti-
tlements, and other features. However the workload managers
typically have control parameters that must be specified or
configured in an off-line manner on a per-workload basis.
More recently, adaptive controller technologies have been
applied to allocation and arbitration [3] [5] [6] for such
control loops. For example, Wang et. al. [5] use an adaptive
controller to dynamically adjust the gain parameters of an
integral controller based workload manager to better meet
application level response time objectives. However values
such as minCPU and maxCPU are still treated as fixed input
parameters.

In this paper we explored the impact of minCPU and
maxCPU on application resource access QoS and presented
a fast allocation policy to improve access to capacity with
lower values for minCPU. This provides the opportunity to
support more workloads in the resource pool.

VIII. CONCLUSION

Resource pools are computing environments that offer vir-
tualized access to shared resources. When used effectively
they can align the use of capacity with business needs. In this
paper we considered the impact of a workload controller on an
application workload to be hosted in a shared resource pool.
The workload controller algorithm has parameters including
minimum and maximum allocation, gain, and a range of
utilization of allocation values. We considered the impact of
choices for such values in detail for a file server workload.

We found that it was necessary to select a relatively large
value for the minimum to ensure a high application workload
resource access quality of service. Unfortunately, selecting a
large minimum allocation has the unintended side effect of
limiting the number of workloads that can be hosted in the
resource pool. We proposed a modification to the controller
algorithm we named as a fast allocation policy. With the
fast allocation policy the workload controller was able to
provide high resource access quality of service with much
lower minimum allocation values. For our example workload,
in some cases, this provides the opportunity to increase the
number of workloads supported by a resource pool by more
than a factor of three.

The choice of maximum CPU allocation has an impact both
on resource access quality of service and on capacity sizing. In
general, we recommend choosing a maximum allocation that
supports some high percentile of the application’s demand.
Our analysis of the file server workload showed that only
a very small fraction of measurement intervals, e.g., much



less than 1%, had demand values that were within a factor of
two of the peak observed demand value. This is typical for
enterprise workloads. Ultimately, the percentile that is chosen
for a maximum allocation must depend on the importance of
responsiveness for the workload during the infrequent bursts
of high demand relative to the cost of providing the capacity.

The utilization of allocation range chosen for an application
depends on the responsiveness requirements of a particular
workload and the workload’s characteristics. In general, the
greater the potential number of concurrent users and the
greater the inter-arrival time and service time variance the
more bursty the workload. Greater burstiness requires lower
utilization of allocation values to provide for specific average
response times. The relationship between response times and
ranges of utilization of allocation values is complex and must
be verified empirically. Finally, for our file system workload
trace we did not find gain to be an important parameter with
respect to resource access QoS or the efficient use of resources.

Future work includes exploring the impact of the fast
allocation policy on other workloads, e.g., application servers
and databases. We will also investigate the impact of sudden
changes in per-workload allocations on aggregate resource
requirements for a resource pool.
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