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ABSTRACT  
The data center plays a more and more important role with the increasing 
demands of internet and commodity computing. As a result of the evolution of 
the microprocessor and increasing demands of customers, the power density 
in data centers becomes much greater.    Mechanical engineers face chal-
lenges in cooling system design. Recent research focuses on local control al-
gorithms which can help to optimize local temperature distribution, and thus 
increase the energy efficiency of the system. This paper analyzes the rela-
tionship between rack inlet temperature and vent group configuration from the 
view of statistics. It also examines whether rack power can affect inlet tem-
perature. Combined with part I in this series, the conclusion can be used as 
the  basis of local control algorithms. 
 
Key Words: data center cooling, smart cooling, local temperature control, vent 
tile, time series analysis, correlation matrix  
 

INTRODUCTION 
A data center is a machine room containing computing, networking and stor-
age hardware that provides useful services. It is playing an increasingly im-
portant role in life with the development of computer technology. Modern 
computers have become smaller and faster. In the meanwhile, data centers 
are getting bigger, and they can accommodate more computers to satisfy the 
expanding demand for real-time computation and data exchange. Conse-
quently, the power density of contemporary data centers has increased, and 
the cost of operation has escalated accordingly. Consequently, energy effi-
ciency for data center cooling systems is of great interest. 
 
Boucher et al. proposed a global control algorithm to optimize two global vari-
ables – supply air temperature setpoint and fan speed. However, they are lim-
ited in their scope of influence, i.e. these two variables will affect the data cen-
ter in a large scale, which makes it difficult to deal with local conditions distinc-
tively. It is possible to impact local conditions by utilizing actuated tiles that 
can be commanded to vary their resistance to fluid flow as discussed in Part I 
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of this series. To understand the properties of “smart tile”, Boucher et al. also 
analyzed the impact of vent tiles on the distribution of local cooling resources. 
They indicated that vent tile opening had a direct effect on local rack inlet 
temperature in close proximity to the vent and an inverse relationship on racks 
further away. 
 
Previous work analyzed the relationship  between vent tile configuration, rack 
inlet temperature and airflow from vent tiles, and summarized the correlation 
matrix between vent group configuration and inlet temperature for implement-
ing local temperature control algorithms. It also mentioned that when calculat-
ing the correlation matrix, using the average temperature of steady states was 
more reasonable than using a single observation. As a supplement, this paper 
describes the details of analyzing the relationship utilizing statistical tools. 
Combined with the previous paper, the conclusion will serve as the  basis of 
local temperature control algorithms. 
 

EXPERIMENTATION 
Figure 1 shows the plan view of the Data Center  at Hewlett-Packard  Labora-
tories, Palo Alto. The Grizzly area, Central area and Research area in the plot 
represent different sections of the data center. The Research area can be 
separated from the other two areas by  a wall between the Research area and 
Grizzly area,  curtains between the Research area and Central area and cor-
responding dampers under the plenum. There is nothing to separate the Griz-
zly area and Central area physically. 
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Figure 1: Plan View of the Data Center in HP Lab 
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Figure 2 illustrates the two rows of racks in the Grizzly area. Each row con-
sists of several computer racks, with at least one temperature sensor installed 
in front of its inlet. We conducted vent-group experiments in this area while 
the Research area was completely separated from other areas by the wall 
and curtain above the floor and by the dampers under the floor. Rack power 
and inlet temperature were sampled every minute during the experiments ac-
cording to the following procedure 
 
 Define the base case as occurring when all the vent tiles are completely 

open. Close each group of vent tiles in the same row one by one, following 
the base case. Sample rack inlet temperatures and rack powers every minute 
during the period. Airflow from each tile is not measured. Keep the Research 
area isolated from the other areas in the HP Data Center for this series of ex-
periments. 
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Figure 2: The Layout of Grizzly Area in HP Data Center 
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Figure 3: Location of Temperature Sensor at Each Rack (facing the racks) 
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The objectives of this paper are: 
1. Analyze the relationship between vent group configuration and inlet tem-

perature. Investigate whether rack power will affect inlet temperature as 
well.  

2. Understand theproperties of the system, i.e., response time, lags. 
3. Identify ARMAX (autoregressive moving-average with extraneous input) 

model:  model the impact of input on output, access the residuals with the 
appropriate ARMA (autoregressive moving-average) model. 

4. Give  recommendations/suggestions for  follow-up experiments. 
 

RESULTS/DISCUSSION 
1. Preliminary Analysis 
 
1) Check Inlet Temperature and the Influence of Vents 
Figure 4 is an example of the relationship between vent group and rack inlet 
temperature.  We can represent the temperature data of sensor “B1T2” (The 
temperature sensor T2 mounted on Bext1 of Grizzly area. See Figure 2 and 3) 
and the status of vent group 1 in a time plot, as shown in Figure 4. For each 
vent group, we use 0 as the status of “completely open”, 1 as the status of 
“completely closed”.  The inlet temperature of each location is determined by 
global CRAC settings and local vent group configurations. Its trend doesn’t 
necessarily follow any single factor. 
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Figure 4: Time Plot for Temperature of B1T2 and Status of Vent Group 1 

 
An autocorrelation function can be used to show the non-stationary properties 
of a time series. Suppose a time series X(t) runs throughout time, and is ob-
served for t=1,…,n. Then the autocovariance at time lagτ is 
 ( ) cov( ( ), ( )) [{ ( ) }{ ( ) }]XX X t X t E X t X tγ τ τ τ μ μ= + = + − −              (a) 
Correspondingly, autocorrelation at lagτ is 

 ( ) cov( ( ), ( ))( ) ( ( ), ( ))
(0) var( ( )) var( ( ))

XX
XX

XX

X t X tcorr X t X t
X t X t

γ τ τρ τ τ
γ τ

+
= + = =

+
   (b) 

This can be extended for multiple time series. Suppose two series Xi(t), Xj(t) 
are observed for t=1,…,n. Then cross covariance at lagτ is given by 

( ) cov( ( ), ( )) [{ ( ) }{ ( ) }]ij i j i i j jX t X t E X t X tγ τ τ τ μ μ= + = + − −          (c) 
And cross correlation at lagτ is given by 

( )
( ) ( ( ), ( ))

(0) (0)
ij

ij i j
ii jj

corr X t X t
γ τ

ρ τ τ
γ γ

= + =                                   (d) 
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The autocorrelation function is the variable indicating the correlation of a time 
series with a certain lag, and the cross correlation function is the variable indi-
cating the correlation of two time series with a certain lag. 
 
Figure 5 shows the autocorrelation and cross correlation plot of inlet tempera-
ture and vent group status, which can be calculated by equation (b) and (d). 
Temperature expresses some long-term trend behavior. The controlled vari-
able, vent group status, behaves in a similar way. In both the autocorrelation 
plot and cross correlation plot, the pair of blue broken lines represents a 95% 
confidence interval of zero correlation. In other words, if the correlation is sig-
nificantly different than 0, its line will fall outside the limit bounded by those 
broken lines. Figure 5 indicates that vent group 1 is correlated to the tempera-
ture of B1T2, and vent group 6 isn’t. This conclusion is consistent with the 
physics: rack inlet temperature will be affected by nearby vent groups.  
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Figure 5: ACF and CCF Plot for Temperature of B1T2 and Vent Group 1 

 
Spectral analysis in frequency domain can also be useful when the time se-
ries incorporate some periodical trends [6]. 
 
Squared coherency is defined by 

                               
2

2 ( )
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( ) ( )
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f f
λ

λ
λ λ
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Where ( )ijf λ is the cross spectrum of Xi(t) and Xj(t), ( )iif λ and ( )jjf λ is the 
power spectrum of Xi(t) and Xj(t), respectively.  
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Notice that 0 ( ) 1ijR λ≤ ≤ , and we refer ( )ijR λ  as the “correlation coefficient” in 
frequency domain.  
 
Figure 6 is the spectral analysis of B1T2 with vent group 1 and 6, respectively 
(broken lines represent 95% confidence interval). The coherency of vent 
group 6 and B1T2 doesn’t show any obvious correlation at a particular fre-
quency (second plot in the second row), while that of vent group 1 and B1T2 
(first plot in the second row) ranges from 0.2 to 0.7 but doesn’t indicate corre-
lation at any particular frequency. This means that vent group 1 and B1T2 are 
somewhat correlated, while vent group 6 and B1T2 are not. Phase doesn’t 
have explicit meaning in this problem. From the analysis in frequency domain 
(the two plots at the top of figure 6), we also notice that inlet temperatures do 
not show seasonal behavior. The power spectrum of temperature concen-
trates in low frequency, and mainly results from the variation of vent group 
configuration. 
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Figure 6: Cross-Spectrum (Vent Group 1 and B1T2; Vent Group 6 and B1T2) 
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2) Check the Relationship between Rack Power and Inlet Temperature 
 
What interests us  is the influence of vent tiles on rack inlet temperature. How-
ever, the power of each computer rack might affect inlet temperatures. Figure 
7 includes the time plot for the power of rack Bext1, Bext9 and Cext7, and 
corresponding ACF. Among all of the rack-power series, some of them ex-
press embedded trend/seasonal behavior over the period, while others oscil-
late around a constant value. Their nonstationary behaviors serve as a poten-
tial factor which could influence rack inlet temperatures. 

0 100 200 300 400 500 600

94
0

94
5

95
0

Power of Rack Bext1

Time(min)

P
ow

er
(W

)

0 100 200 300 400 500 600

30
50

31
50

Power of Rack Bext9

Time(min)

P
ow

er
(W

)

0 100 200 300 400 500 600

33
80

34
20

Power of Rack Cext7

Time(min)

P
ow

er
(W

)

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Power of Rack Bext1

0 5 10 15 20 25

-0
.2

0.
2

0.
6

1.
0

Lag

A
C

F

Power of Rack Bext9

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Power of Rack Cext7

 
Figure 7: Rack Power (Time Plot; ACF) 

One way to check whether the power has influence on temperature is to cal-
culate the cross correlation coefficient between these two variables. If two 
time series Xi(t), Xj(t) (t=1,…,N) are uncorrelated, let ( )ij kρ be the cross corre-
lation coefficient between Xi(t) and Xj(t) at lag k, then approximately we have 
                     ( ( )) 1/ijE k Nρ ≈ −                                         (i) 

                       ( ( )) 1/ijVar k Nρ ≈                                            (j) 
and ( )ij kρ is asymptotically normally distributed under weak conditions [7]. We 

can plot an approximate 95% confidence interval 1/ 1.96 /N N− ± , which are 
often further approximated to 1.96 / N± . Observe that ( )ij kρ , which falls out-
side these limits, are significantly different from zero at the 5% level. So if 
there are too many outliers, we might consider the high possibility of a vio-
lated null hypothesis. Alternatively, Xi(t) and Xj(t) are correlated. 
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Some of the cross correlation plots are shown in figures 8 and 9. In this pro-
ject, there are 79 temperature series and 19 power series. We calculated all 
of the cross correlation coefficients between these series by command “ccf” in 
a statistical package – R [8]. By default in R, the maximum number of lags is 

given as 1010 log ( )N
m

× , where N is the number of observations and m is the 

number of series. Then in the current context, we have  

       10
660max. 10 log ( ) 25
2

lag = × ≈                                 (k)          

So for each pair of power and temperature, we will get 25 2 1 51× + = coeffi-
cients. Recall that ( )ij kρ is asymptotically normally distributed under weak con-
ditions as mentioned above. If power has no influence on temperature, we 
expect at most51 5% 2× ≈ observations of each of these results to be outside 
the 95% confidence interval of ( )ij kρ . So from a total 79 19 1501× =  pairs of 
power and temperature, we discover only 243 of them have at least 3 obser-
vations outside the 95% confidence interval, which indicates power and tem-
perature might be “correlated” at a certain lag. Figure 8 and 9 show only part 
of these 243 cross correlation plots. The main title indicates the component 
rack and temperature sensor, while the subtitle describes the number of cross 
correlation coefficients which are outside the confidence interval.   
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Figure 8: Cross Correlation between Power and Temperature (1) 
 
According to the data, there is no evidence to suggest that temperature series 
are correlated to power series for this particular data set.  Care must be taken 
when generalizaing these results.   

(1) Most power-temperature pairs ( 1501 243 1258 83.81%
1501 1501
−

= = ) indicate that 

there is no correlation between power and temperature.  
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Figure 9: Cross Correlation between Power and Temperature (2) 

 
(2) The correlation is very weak or nonexistent in these 243 exceptions, since 
most of the “outliers” are just marginally across the boundary. 
 
(3) Inlet temperature is the response variable, while rack power is an inde-
pendent variable which certainly doesn’t depend on inlet temperature (under 
normal conditions, power depends on the computing load of computers). Thus, 
if the cross correlation plot indicates some significant values around a certain 
non-negative lag, rack power may affect inlet temperature in physics. Some of 
the relations with negative lags became meaningless, i.e. “Cext5 & C6T3” in 
Figure 9.  
 
(4) Some relations may be significant. However, if the rack and temperature 
sensor are far away from each other in the layout, a high correlation between 
them is suspect, i.e. “Bext2 & B8T4” in figure 8.  
 
(5) In some cases, the “outliers” periodically appear in the plot, i.e. “Bext9 & 
B3T5” in Figure 9, which might result from the seasonal behavior embedded 
in the series. They are also marginally across the boundary.  
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As a check, we can calculate the cross-spectrum between power and tem-
perature in frequency domain. Figure 10 includes coherency and phase spec-
trum from two cases: Bext2 and B8T4; Bext2 and B2T1. The coherency of the 
first case ranges from 0 to 0.5, which shows a weak correlation between 
power and temperature. And the second one indicates no clue about this cor-
relation (it is not even part of the 243 cases mentioned above). The lack of 
coherency in figure 10 agrees with the result from the time domain analysis of 
figure 9.   
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Figure 10: Cross-Spectrum (Bext2 and B8T4; Bext2 and B2T1) 

 
Generally speaking, the influence of rack power on inlet temperature is very 
weak or negligible. Therefore, for this data set, we don’t incorporate it in the 
final model. 
 
2. System Identification 
 
As mentioned above, there are 79 temperature sensors in this area. For sim-
plicity, we only carried out the analysis on one of them.  A conclusion can be 
drawn when similar analysis is performed on other series. Use the tempera-
ture sensor “B1T2” as the example. Based on preliminary analysis in both 
time and frequency domain, we consider the following model, 
                           Y X Wβ= +                                           (l) 
Where Y is temperature, X is the status of the vent group, β is the coefficient 
of vent status, and W is the error which can be determined through appropri-
ate ARMA model. 
 
The above model can be written into 

                
2

1

0
1

( ) ( ) ( )
an k

jk j
j k k

y t x t k w tβ β
= =

= + − +∑∑                            (m) 
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Where na represents the number of the vent group (na=10); k1, k2 represents 
the minimum and maximum time lag of xj. Notice that in a simple situation in 
which we do not consider the transient state, only X1,…,X10 are in the model, 
then βi (i=1,…,10) represents the influence of each group of vent tiles. For in-
stance, β1 is the influence of vent group 1 while holding other vent groups un-
changed.  
 
1) Access the properties of the system 
 
Clearly, temperatures will respond to the change of vent group with a positive 
time lag. And the influence of a vent group only lasts a certain period. We now 
identify the parameter k1 and k2. Set k1=0, k2=9 and fit the model by ordinary 
least square (OLS) [9]. The adjusted R-square [10] for this model is 0.9874, 
which indicates a fairly good fit for the model. Next we select a criterion to 
reach an optimized model. Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) are considered [11][12]. 
 
AIC: (Akaike 1974). Can be used to compare models. A smaller value is bet-
ter.  

                        ˆ2 log ( ) 2AIC L Kθ= − +                              (n) 
Where K is the number of parameters. 
 
BIC: (Schwarz 1978). Can also be used to compare models. A smaller value 
is better. 

                      ˆ2log ( ) log( )BIC L n Kθ= − +                          (o) 
Where K is the number of parameters and n is the number of observations. 
 
Both criteria are tried. AIC tends to give out a model with too many parame-
ters in the current context. We used BIC and the selected jkβ are expressed by 
a stem-and-leaf plot in terms of j (vent group label) in the stem and k (time lag 
label) in the leaf, as shown in Table 1. 
 
j 1 2 3 4 5 6 7 8 9 10 
k 3 

4 
5 
 
 

3 
5 
7 
 
 

2 
3 
4 
 
 

2 
3 
 
 
 

1 
2 
3 
 
 

2 
3 
8 
 
 

2 
3 
5 
7 
8 

3 
8 
 
 
 

3 
8 
 
 
 

3 
8 
 
 
 

Table 1: Stem-and-leaf of selected jkβ  
 
Recall that in βik, j represents vent group, k represents time lag. Suppose the 
temperature of a specific location is only influenced by vent group 1 for 3 min-
utes, starting from time lag 1 minute. Then in the stem-and-leaf plot, the only 
stem would be j=1 and k=1, 2, 3. Thus, here the stem-and-leaf plot is used to 
indicate the vent group that has significant influence on inlet temperature sta-
tistically and the duration of transient state from each group. For example, in 
table 1, vent group 1 only has influence on “B1T2” at time lag minutes 3, 4, 
and 5; vent group 9 has influence on “B1T2” at time lag minute 3 and 8. How-
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ever, this model is selected by a specific statistical criterion. Physically, it 
doesn’t make sense that vent group 9 will have an effect on the sensor at two 
discontinuous points in time (minutes 3 and 8).. Thus it is possible that, al-
though some vent groups contribute to the model statistically, they don’t have 
significant influence on temperature physically. From Table 1, it seems that k1 
and k2 depend on j. We learn that temperatures will respond to the change of 
vent group with approximately a 1 minute lag, and after about 8 minutes from 
the time vent group status changes, the influence on temperature will diminish 
to a negligible level statistically. Currently any setting of vent group configura-
tion was kept for 1 hour during the experiment. The model supports a possible 
shorter period. 
 
Further, we tried a model which ignored the transient status in the problem 

and can be written into
1

( ) ( ) ( )
an

j j
j

y t x t w tβ
=

= +∑ . The adjusted R-square for this 

model is 0.886, which is also good enough within the current context. This ex-
ample indicates that it may be acceptable to ignore all the transient states and 
only average the temperature within each period when the vent group configu-
ration is maintained. 
 
The conclusion that transient state lasts for about 8 minutes is based on the 
assumption that it won’t last over 9 minutes. In this particular case, we can 
accept this fact in terms of the high R-square value of the model. However, if 
we want to get a more reliable conclusion, we need to analyze all the relation-
ships of each vent group-temperature pair, since the temperatures of some 
locations may respond to the vent group configuration quickly, while others 
may not. If the fact that transient states won’t last for more than 10 minutes is 
true for each location, we can simply regard 10 minutes as the period of tran-
sient state. Table 2 indicates high R-square for each location, generated by 
two methods: “R2 (1)” represents the R-square value for the model of averag-
ing all the temperature records and ignoring the transient state, and “R2 (2)” 
represents the R-square value for the model of averaging the temperature re-
cords of “steady state” (remove the records of the first 10 minutes and last 5 
minutes of each test). Simply averaging the temperature records of “steady 
state” can help to improve the models, which are accurate enough in the con-
text. A parsimonious model for each vent-temperature pair is not necessary, 
since it won’t give out significantly different results.   
 
Location R2 (1) R2 (2) Location R2 (1) R2 (2) Location R2 (1) R2 (2) 

1 0.891 0.959 28 0.902 0.964 55 0.894 0.914 
2 0.886 0.989 29 0.747 0.809 56 0.845 0.912 
3 0.876 0.955 30 0.832 0.894 57 0.944 0.953 
4 0.777 0.797 31 0.97 0.996 58 0.9 0.922 
5 0.804 0.821 32 0.96 0.97 59 0.899 0.927 
6 0.852 0.947 33 0.915 0.955 60 0.871 0.882 
7 0.919 0.955 34 0.868 0.894 61 0.921 0.967 
8 0.849 0.856 35 0.978 0.985 62 0.913 0.955 
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9 0.775 0.803 36 0.972 0.982 63 0.775 0.87 
10 0.938 0.966 37 0.969 0.983 64 0.905 0.919 
11 0.927 0.994 38 0.977 0.987 65 0.914 0.913 
12 0.954 0.977 39 0.988 0.996 66 0.935 0.969 
13 0.815 0.842 40 0.988 0.994 67 0.957 0.969 
14 0.938 0.956 41 0.876 0.927 68 0.737 0.823 
15 0.905 0.932 42 0.983 0.995 69 0.768 0.775 
16 0.965 0.998 43 0.942 0.952 70 0.842 0.841 
17 0.898 0.934 44 0.943 0.947 71 0.968 0.981 
18 0.758 0.803 45 0.941 0.951 72 0.877 0.936 
19 0.7 0.798 46 0.844 0.901 73 0.843 0.856 
20 0.799 0.875 47 0.825 0.879 74 0.942 0.968 
21 0.964 0.994 48 0.84 0.875 75 0.937 0.948 
22 0.95 0.98 49 0.833 0.855 76 0.936 0.98 
23 0.867 0.932 50 0.843 0.858 77 0.905 0.946 
24 0.783 0.899 51 0.703 0.744 78 0.945 0.979 
25 0.764 0.833 52 0.787 0.811 79 0.965 0.967 
26 0.976 0.997 53 0.819 0.846    
27 0.926 0.964 54 0.867 0.892    

Table 2: Adjusted R-square Value for Each Model by Two Methods 
 
2) Error Determination 
 
We continue to analyze the parsimonious model of “B1T2”, which is selected 
by BIC above. In detail, 

( ) ( ) ( )ij i
i j

Y t X t j W tβ= − +∑∑ , ( ) ( ) ( ) ( )B W t B Z tφ θ= , ( )Z t ~ 2(0, )WN σ  

Where j is the lag in the final model selected by BIC criterion. The error W(t) is 
estimated by ARMA model. 2(0, )WN σ is Gaussian white noise. 
Figure 11 plot the ACF and PACF for the residuals from this model.  
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Figure 11: ACF and PACF for Residuals from the Model Selected by BIC 

Notice that the AR(p) process cuts off at lag p in PACF, while the MA(q) proc-
ess cuts off at lag q in ACF [13]. Figure 11 suggests that the maximum order 
for AR and MA are approximately 3 and 3, respectively. With the command 
“arima” in R, we can evaluate all the models whose p and q are not larger 
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than 4 (here select a larger number for more flexibility). Table 3 shows the 
AIC value for each model at corresponding p, q.  
 
 

q 
  0 1 2 3 4 

0 -1696.98-1734.07-1742.14-1753.25-1751.73
1 -1743.53-1752.53-1750.68-1753.22-1751.33
2 -1750.03-1750.65-1751.39-1752.45-1751.46
3 -1752.77-1756.36-1757.12-1756.46-1755.11

p 

4 -1753.16-1754.93-1755.94-1754.85-1753.36
Table 3: Access ARMA Model by AIC 

 
We find the minimum AIC at p=3, q=2. The estimates of coefficient and corre-
sponding standard errors are listed in Table 4. 
 

 Coef. Std. Err  Coef. Std. Err  Coef. Std. Err
ar1 -0.790 0.175 X3(t-2) 0.647 0.054 X7(t-3) -0.614 0.075 
ar2 -0.150 0.189 X3(t-3) -0.467 0.067 X7(t-5) 0.170 0.041 
ar3 0.297 0.052 X3(t-4) 0.282 0.045 X7(t-7) -0.165 0.048 
ma1 1.047 0.182 X4(t-2) 0.601 0.067 X7(t-8) 0.220 0.062 
ma2 0.514 0.220 X4(t-3) -0.566 0.068 X8(t-3) -0.486 0.063 

intercept 17.081 0.013 X5(t-1) -0.097 0.042 X8(t-8) 0.406 0.063 
X1(t-3) 0.808 0.047 X5(t-2) 0.493 0.078 X9(t-3) -0.513 0.073 
X1(t-4) 0.447 0.052 X5(t-3) -0.548 0.073 X9(t-8) 0.459 0.072 
X1(t-5) 0.236 0.047 X6(t-2) 0.364 0.069 X10(t-3) -0.431 0.081 
X2(t-3) -1.134 0.044 X6(t-3) -0.550 0.077 X10(t-8) 0.403 0.081 
X2(t-5) 0.226 0.047 X6(t-8) 0.141 0.037    
X2(t-7) -0.116 0.034 X7(t-2) 0.277 0.054    

Table 4: Parameter estimation of final model 
 
Check the final model from different charts in Figure 12. Fitted values are 
pretty close to the observation. Note that the noise is very close to Gaussian 
white noise, when observing the ACF, CCF and power spectrum plot of the 
residuals. 
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Figure 12: Some Plots of Final Model 

CONCLUSION 
This paper investigates the relationship between vent group configuration and 
rack inlet temperature in the HP Data Center with time series analysis. We 
used the techniques in both time domain and frequency domain to evaluate 
how the temperature would be affected by a controlled variable (vent group 
configuration) and a potential factor (rack power).  
 

• Most inlet temperature variation results from different vent group con-
figurations, while keeping the global settings constant. 
 

• Rack power shows some nonstationary behaviors during the experi-
ment. However, it doesn’t affect rack inlet temperature significantly. 
 

• For the specific example, we determine the final ARMAX(p,q) model 
with p=3, q=2 and X is selected by BIC. In other words, after removing 
the mean and influence from the vent groups, the temperature can be 
appropriately modeled by ARMA(3,2) process.  
 

• Since fitting the ARMA model is actually not of direct interest in this 
project, we also discover it is appropriate to use a simpler model to rep-
resent the final sophisticated model, by averaging the temperature of 
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“steady state”. The transient effects do not last longer than 10 minutes, 
which can be used for further experiments, i.e. shorter periods for each 
test are acceptable.  

 
Potentially, there are other applications of time series analysis in data center 
cooling, especially when we are particularly interested in two time series. For 
example, we might want to know the relationship between the return air tem-
perature of CRAC units and total power of a row of racks. Then time series 
analysis can be carried out based on the measurements. Certainly the rela-
tionship may change from time to time. We have to update the results with the 
latest measurements.  
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NOMENCLATURE 
 
Item Type Example 
Observations, time se-
ries 

Lowercase Roman 1x , 2x ; tz , ( )z t  

Random variables, sto-
chastic processes 

Uppercase Roman 1X , 2X ; tZ , ( )Z t  

Estimates Lowercase Roman, 
lowercase Greek with 
caret 

x , 2s ;θ̂ , 1α̂ , 2α̂  

parameter Lowercase Greek θ , 1α , 2α  
 

( )X t   Continuous time series 

tX   Discrete time series ( ( ), 0, 1, 2,X t t = ± ± L ) 
( )XXc k   Sample autocovariance of X at lag k 
( )XX kγ  Theoretical autocovariance of X at lag k 
( )XYc k   Sample cross-covariance of X and Y at lag k 
( )XY kγ  Theoretical cross-covariance of X and Y at lag k 
( )XXr k   Sample autocorrelation of X at lag k 
( )XX kρ  Theoretical autocorrelation of X at lag k 

( )XYr k   Sample cross correlation of X and Y at lag k 
( )XY kρ  Theoretical cross correlation of X and Y at lag k 
( )XXf λ  Power spectrum of X at frequencyλ  
( )XYf λ  Cross spectrum of X and Y at frequencyλ  
( )XYR λ  Coherency of X and Y at frequencyλ  

μ   Mean of time series 
 
ACF  autocorrelation function 
ACVF  autocovariance function 
AR  autoregressive 
ARMA  autoregressive moving-average 
ARMAX autoregressive moving-average with extraneous input 
CCF  cross correlation function 
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CORR  correlation 
COV  covariance 
CCVF  cross covariance function 
E  expectation 
MA  moving average 
OLS  ordinary least square 
PACF  partial autocorrelation function 
VAR  variance 
 

Major Concepts 
 
 Time Series: a random or nondeterministic function x of an independent 

variable t. Since different sections of a time series resemble each other only in 
their average properties, it is necessary to describe these series by probability 
laws or models. Thus, possible values of the time series at a given time t are 
assumed to be described by a random variable X(t) and its associated prob-
ability distribution. The observed value x(t) of the time series at time t is then 
regarded as one of the infinity of values which he random variable X(t) might 
haven taken at time t. Time series which occur in practice are either discrete 
or continuous. 
 
 Objective of Time Series Analysis:  set up a hypothetical probability model, 

estimate parameters, check for goodness of fit to data, and use the fitted 
model to enhance our understanding of the mechanism generating the series. 
Once a satisfactory model has been developed, it may be used in a variety of 
ways depending on the particular field of application (filtering, smoothing, 
forecasting). 
 
 Stochastic Process: the ordered set of random variables {X(t)} and its as-

sociated probability distributions. 
 
Let {X(t)} be a time series with 2( ( ))E X t < ∞ . 
 Mean Function:  ( ) ( ( ))X t E X tμ =  
 Covariance Function: 

( , ) cov( ( ), ( )) [( ( ) ( )( ( ) ( )]X X Xr s X r X s E X r r X s sγ μ μ= = − −  
 
 Stationarity  

 Strictly stationary: the joint distribution of {X(t+τ)} does not depend on τ 
for t, τ = 0, ±1, ±2, … 
 Weakly stationary: (i) ( )X tμ is independent of t; (ii) ( , )X t h tγ + is inde-
pendent of t for each h. 
 
Since the statistical properties of stationary series do not change with time, 
these properties can be conveniently summarized by computing certain func-
tions from the data. Let {X(t)} be a stationary time series 
 Autocovariance Function (ACVF) 

( ) cov( ( ), ( ))X h X t h X tγ = +  
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 Autocorrelation Function (ACF) 
( )( ) co ( ( ), ( ))
(0)

X
X

X

hh r X t h X tγρ
γ

= = +  

Let x1,…,xn be observations of a time series.  
 Sample Mean 

 
1

1 n

t
t

x x
n =

= ∑  

 Sample Autocovariance Function 

1

1ˆ( ) ( )( )
n h

tt h
t

h x x x x
n

γ
−

+
=

= − −∑ , n h n− < <  

 Sample Autocorrelation Function 
ˆ( )ˆ( )
ˆ(0)

hh γρ
γ

= , n h n− < <  

 
Suppose two series Xi(t), Xj(t) are observed for t=1,…,n.  
 Cross Covariance Function (CCVF) 

( ) cov( ( ), ( )) [{ ( ) }{ ( ) }]ij i j i i j jt X t X E X t Xγ τ τ τ μ τ μ= + = + − −  
 Cross Correlation Function (CCF) 

( )
( ) ( ( ), ( ))

(0) (0)
ij

ij i j
ii jj

t
t corr X t X

γ
ρ τ τ

γ γ
= + =  

 
 Cross correlation function is useful to explore the correlation between two 

time series. Suppose{ } (0,1)tW WN is Gaussian white noise, 10.7t tY Y −= is AR(1) 
process, 0.2t tU Y= . Notice that Wt and Yt are uncorrelated, while Yt and Ut are 
correlated. Following plot carries this information.  
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 Spectral Representation:  decompose {X(t)} into a sum of sinusoidal com-

ponents with uncorrelated random coefficients. It is an analogue of Fourier 
representation of deterministic functions. 
 
 Spectral Analysis: the analysis of stationary processes by means of their 

spectral representation. It is equivalent to “time domain” analysis based on the 
autocovariance function, but provides an alternate way of viewing the process, 
which for some applications may be more clear. For example, in the design of 
a structure subject to a randomly fluctuating load, it is important to be aware 
of the presence in the loading force of a large sinusoidal component with a 
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particular frequency to ensure that this is not a resonant frequency of the 
structure. 
 

 Spectral Density: 1( ) ( )
2

ih
X X

h

f e hλλ γ
π

∞
−

=−∞

= ∑  

Reversely, ( ) ( )ih
X Xh e f d

π λ

π
γ λ λ

−
= ∫  

 
 
 ARMA(p,q) Process:  Autoregression with order p and moving average with 

order q. Let {Xt} is stationary. For every t, 
 1 1 1 1t t p t p t t q t qX X X Z Z Zφ φ θ θ− − − −− − − = + + +L L  
Where{ } 2(0, )tZ WN σ (Gaussian white noise). 
The equation can be express in the more concise form 
 ( ) ( )t tB X B Zφ θ=  
Where ( )φ and ( )θ are the pth and qth-degree polynomials 

( ) 11 p
pz z zφ φ φ= − − −L  

and 
( ) 11 q

qz z zθ θ θ= + + +L  
and B is the backward shift operator ( j

t t jB X X −= , j
t t jB Z Z −= , 0, 1, 2,j = ± ± L) 

 
 Properties of ARMA(p,q) in ACF, PACF 

 ACF PACF 
AR(p) Exponential decay Cut off at lag p 
MA(q) Cut off at lag q Exponential decay 
ARMA(p,q) Exponential decay Exponential decay 
 
Example: AR(2), MA(2), ARMA(2,2) 
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 ARMAX: Autoregressive Moving-Average with Extraneous input. 

 
0

m

t i t i t
i

Y X Wμ β −
=

= + +∑  

Where Y is the response time series, X is the input time series, μ is the mean, 
β is the coefficient and {Wt} is ARMA(p,q) process. Alternatively, after remov-
ing the mean and influence from input, the residual is a stationary time series 
and can be described by ARMA(p,q) process. 
 
 Stem-and-leaf plot: A display that organizes data to show its shape and dis-

tribution. 
 
In a stem-and-leaf plot each data value is split into a "stem" and a "leaf".  The 
"leaf" is usually the last digit of the number and the other digits to the left of 
the "leaf" form the "stem".  The number 123 would be split as:  
stem 12  
leaf  3   
 
Suppose we have the following data  
35, 36, 38, 40, 42, 42, 44, 45, 45, 47, 48, 49, 50, 50, 50 
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Defining the tens digit as the stem and the units digit as the leaf, we can reach 
Stem Leaf 
3 5 6 8 
4 0 2 2 4 5 5 7 8 9
5 0 0 0 

 
It can be clearly seen in the diagram above that the data clusters around the 
row with a stem of 4. 
 
The stem values could represent the intervals of a histogram, and the leaf 
values could represent the frequency for each interval. 
 
One advantage to the stem-and-leaf plot over the histogram is that the stem-
and-leaf plot displays not only the frequency for each interval, but also dis-
plays all of the individual values within that interval. 
 
 
 
 
 
 
 
 


