

A Structural and Stochastic Modelling Philosophy for Systems Integrity

Brian Monahan, David Pym
Trusted Systems Laboratory
HP Laboratories Bristol
HPL-2006-35
February 27, 2006*

philosophy,
modelling, logic,
resource semantics,
probability,
queuing theory,
location,
performance,
security, access
control,
authorization,
utility computing
services, demos,
stewardship

We present an essentially philosophical account of a mathematical approach to
systems and services modelling for the purpose for understanding the
functionality, performance, reliability, and security - in short, the integrity - of
ICT systems. We describe the economic background to the need for effective
modelling technologies, and explain the principal strengths of a key existing
technology, the experience of which we build upon. Building squarely on this
industrially validated practical experience, we then describe a rather general but
directly applicable mathematical framework, and discuss how to model central
issues in access control, such as rôles and impersonation, data integrity, and
most interestingly, stewardship. Our mathematical framework combines
combinatorial, logical, algebraic, topological, and, critically, stochastic methods.
We emphasize that we are not overly concerned with the formal specification of
the detailed behaviour of systems and services. Rather, our interest is focused
upon a framework for building particular mathematical models of specific
aspects of enterprise-scale systems and services at appropriate levels of
abstraction. This framework is constructed to help explore questions concerning,
for instance, combinations of services availability and systems accessibility
properties. In particular, we aim to use models that capture performance to
address also systems security questions such as whether a given system model is
capable of complying with a security policy requirement, as expressed by a
service-level agreement. Further, we aim to quantify the operational impact and
cost of both failure to comply and of transition to compliance.

* Internal Accession Date Only Approved for External Publication
© Copyright 2006 Hewlett-Packard Development Company, L.P.

A Structural and Stochastic Modelling
Philosophy for Systems Integrity

Brian Monahan and David Pym

Hewlett-Packard Laboratories
Bristol, U.K.

{brian.monahan, david.pym}@hp.com

Abstract. We present an essentially philosophical account of a mathematical ap-
proach to systems and services modelling for the purpose forunderstanding the
functionality, performance, reliability, and security — in short, the integrity —
of ICT systems. We describe the economic background to the need for effec-
tive modelling technologies, and explain the principal strengths of a key exist-
ing technology, the experience of which we build upon. Building squarely on
this industrially validated practical experience, we thendescribe a rather general
but directly applicable mathematical framework, and discuss how to model cen-
tral issues in access control, such as rôles and impersonation, data integrity, and
most interestingly, stewardship. Our mathematical framework combines combi-
natorial, logical, algebraic, topological, and, critically, stochastic methods. We
emphasize that we are not overly concerned with the formal specification of
the detailed behaviour of systems and services. Rather, ourinterest is focused
upon a framework for building particular mathematical models of specific as-
pects of enterprise-scale systems and services at appropriate levels of abstraction.
This framework is constructed to help explore questions concerning, for instance,
combinations of services availability and systems accessibility properties. In par-
ticular, we aim to use models that capture performance to address also systems
security questions such as whether a given system model is capable of complying
with a security policy requirement, as expressed by a service-level agreement.
Further, we aim to quantify the operational impact and cost of both failure to
comply and of transition to compliance.

1 A Modelling Philosophy

Failures of large systems projects to meet upon delivery theexpectations of their users
and even their designers in respect of function, performance, reliability, and security
— in short, integrity — are widespread and familiar problemsthat can entail substan-
tial direct costs and significant under-performance in the client organizations. Many
reasons for these failures are commonly identified including, for example, apparently
overwhelming complexity, inadequate description or understanding of system specifi-
cations, failure to reuse appropriate proven solutions, poor communication of the ex-
perience of failure, and inadequate availability of education, skills, and standards in
systems understanding.

We believe that, in order to address this situation, there isa need for a systematic,
rigorous, yet tractable, framework for understanding how systems design decisions af-
fect systems integrity. In this paper, we describe how a modelling approach based on

process calculus and logic can be used as the basis for such a framework. We stress
that although our framework is based on ideas from process calculus and logic, it is not
intended as a basis for formally specifying systems. Rather, it is intended to support
the construction of models constructed at levels of abstraction that are appropriate to
answering specific questions about the properties or behaviour of the system and the
services it supports — considered and modelled as processes— in specific circum-
stances. To this end, we draw our inspiration from the philosophy and experience of the
work of Birtwistle [5] and others, using theDemos 2000modelling system, for cap-
turing large-scale systems in industrially significant contexts. This work has led to the
following conclusions about the value of such a modelling approach [42]:

– The act of creating a model forces an organization to consider and review the struc-
ture of the business, investment or product that they are proposing to create;

– The model acts as important part of the documentation of a system; the evolution
of such a model, if documented, is an invaluable aid in the audit of a project;

– The model can act as a valuable communications aid, allowingdiscussions to be
grounded in a common representation;

– Models allow for rapid exploration of the decision space that an organization is
operating in, enabling multiple scenarios to be played out at low risk;

– Models may be used to qualify and then check real systems;
– Models can demonstrate the sensitivity of a system to environmental changes, en-

abling users to design out (as much as is possible) potentially disruptive nonlinear-
ities in the system behaviour;

– Models can be used to check the correctness of approaches to problem solving;
– Models permit the early capture of error, as they permit nonexistent systems to be

studied, with the well known benefit of capture time against value saved.

We will thus make some use ofDemos 2000(www.demos2k.org), a semantically
justified [7, 8] discrete-event systems modelling language, to concretely illustrate our
approach in the example presented later in§ 3. Demos 2000itself has a long-standing
pedigree having been originally derived from Graham Birstwistle’s work [5]. The es-
sential components ofDemos 2000are the following:

– Captures the behaviour ofentitiesin terms of actions involving the manipulation of
resources;

– Captures systems of queues in terms of resources and synchronized ‘bins’;
– Provides a stochastic representation of events that must behandled by the model.

We present a compact, conceptual summary ofDemos 2000in Appendix A.
Inspired by these observations, we describe, in§ 2, a calculusSCRP of resource-

processesdue to Pym and Tofts [37] based, on the one hand, on a simple calculus of
synchronous processes in the style of SCCS and, on the other,on theresource seman-
tics introduced by Pym and O’Hearn [36, 38, 39]. The calculus usesan explicit rep-
resentation of resource and models the co-evolution of resources and processes with
synchronization constrained by the availability of resources. Using extensions of ideas
from Pym and O’Hearn’s bunched logic,BI , a modal logic,MBI , can be used to give
a characterization of bisimulation forSCRP, analogously to Hennessy-Milner logic’s
characterization of bisimulation in CCS [29]. This characterization is compositional in
the concurrent and local structure of systems.

1.1 ICT Security

ICT security, however, is no longer regarded as a pure technology issue, at least within
the sphere of corporate business. It has become a truism to say that ICT security is
a process — something that happens to create smooth operating conditions for busi-
ness. Modern corporate management makes essential use of metrics — numerical mea-
sures — to demonstrate business performance and hence show impact upon shareholder
value. Questions then arise of how to estimate the level ofsecurity performancethat
these security-related processes achieve and, indeed, howto specify what their goals
should be and how to predict outcomes and impacts.

Another standard corporate management technique is the useof explicit Service
Level Agreements (SLA) between the internal functional units of an organization and,
more typically, with external services providers. These SLAs provide a contractual
statement for what is to delivered to the organization by theprovider, internal or ex-
ternal. With respect to security, these contractual statements have commonly taken the
form of purepolicy compliancestatements e.g. conformance to ISO17799 and such
like. These requirements are then audited on a regular basis, the results of which may
contribute to a corporate annual report, and thus have impact upon business confidence.

As we see it, there is an increasing trend for organizationalsecurity policy to extend
beyond passive compliance against prevailing best-practice standards towards compli-
ance with security policies that inherently involve SLA-style performance goals to be
met. We strongly believe that security concerns need to be addressed within an eco-
nomic performance and process modelling framework such as that presented here.

Security is mostly concerned with risk management, risk reduction and mitigation.
Risk management is a necessary approach to security risk, asopposed to ‘risk avoid-
ance’, since security issues cannot be evaded with any confidence in today’s network-
enabled global business environment.

The benefit accruing from security lies in the reduced disruption to the functioning
of a business or organization. Security is therefore context-dependent and thus involves
a notion ofscope of control, an abstract form of location. In particular, security is rel-
ative to the potential threats and risks to be defended against. This means that we are
interested in capturing what these risks are and estimatingthe costs of mitigation failure.
Naturally, such costs have to be weighed against the cost of providing such mitigation
in the first place. The earlier attempt to semi-formally model aspects of systems security
presented in [31] alluded to some of the characteristics we explore here: e.g. the benefit
of security as lack of disruption, and a concern for distributed access control.

Thus, the economic value of security in cost-benefit terms [19] is principally due
to the cost savings arising from preventing disruption and improving reliability and
trust, thus creating smooth operating conditions for business transactions. But secu-
rity engineering is often at odds with reliability engineering. For example, replication
and mirroring are standard strategies for increasing the reliability of a system. Unfor-
tunately, at the same time, making multiple copies available increases the number of
points at which confidentiality could be breached. Thus, a naı̈ve approach to improving
availability may have serious engineering implications for the appropriate maintenance
of confidentiality. The challenge is then how to provide and engineer reliable systems
and services that are at the same time secure.

1.2 Utility computing

Business is constantly seeking ways and means to improve thecost-effectiveness of
ICT systems and their Return On ICT Investment. One approachto doing this is the
so-called ‘Utility Computing’ model, in which companies can ‘rent’ ICT capability
in a flexible and adaptive manner [32]. Such capability is typically delivered to the
customer from a highly automated data center environment over high-speed switched
networks. Organisations that provide this capability are known as Utility Computing
Service Providers (UCSPs). The term ‘utility computing’ derives from the analogy with
standard utility services such as water, gas and electricity.

Naturally, to provide utility computing to customers economically, UCSPs will typi-
cally need to operate a computing environment that is sharedacross all their customers.
Furthermore, from each customers point of view, they shouldonly be aware of those
resources that appear to have been allocated to them. Each customer should confidently
expect to work as though they haveexclusiveaccess to their resources, even though
this will hardly ever be true. In many ways, this situation isstrongly analogous to the
separation requirements for a multi-user mainframe system— except that in this case,
the system is not a single machine but instead many machines,networked together.

To make effective use of the utility computing capabilitiesthey have rented, how-
ever, customers will typically need to combine these capabilities with access to their
own highly-valued information assets, so opening up a possible route to their malicious
compromise. Accordingly, the sharing implicit in the utility computing model repre-
sents a considerable risk of exposure and compromise to the customer’s assets.

Thus the challenge for any UCSP is to implement a flexible, shared, and secure
computing infrastructure in such a way that their customerscan safely use the (aggre-
gated) resources they have been allocated, without concernfor the activities of other
customers or the operations staff also using the networks. It is clear that effective secu-
rity is a necessary and fundamental requirement for the success of utility computing.

1.3 Extending Performance Modelling Towards Access Control

Building on our mathematical framework for performance modelling, as exemplified in
a simple form byDemos 2000, we extend our framework to account for a key aspect
of security, namely access control. We begin, in§ 3, with our conceptual view of the
problem, supported by aDemos 2000model. We then discuss, in§ 4, how to extend
the SCRP-MBI framework to provide an appropriate mathematical framework. The
key idea is that oflocation. We adopt a modelling approach to understanding location,
identifying the key axiomatic properties of the notion — sublocations, substitutions,
connections, and products — and given a useful leading example — based on directed
graphs. We explain how to reconstruct the basic components of the analysis of access
control given in [2, 25] in our setting, making certain concepts precise.

Before proceeding to our main development, it is necessary to explain the cen-
tral rôle of stochastic methods in our modelling philosophy. Probability theory is very
widely used in cryptography, typically to determine the likelihood of effective attacks
on ciphers and their keys. Many security definitions are stated in terms of probabilistic
concepts, as the following typical example shows: Considera family of cipher-cracking

problems involving some numerical security parameter,k. A cryptographic attack on
the family of problems is then said to besuccessful with non-negligible probabilityif
the attack succeeds with a probability that is greater than1/p(k), for all sufficiently
large values ofk, wherep is a polynomial [3].

The rôle played by probability in our framework is rather different: We deliberately
employ probabilistic techniques to replace the need for complex logical structure (and,
indeed, expressions) depending upon detailed systems knowledge. Thus, probability for
us serves to simplify the applied models that we are interested in. We can do this because
we are not so concerned with the detailed specification of system components and their
correctness — our concern lies more with the large-scale requirements specification
of services, their operational delivery, and economic value. This philosophy has been
deployed to great effect in modelling with theDemos 2000system.

2 A Mathematical Framework

The notion ofresourceis a basic one in many fields, including economics, engineer-
ing, and the humanities, but it is perhaps rather clearly illuminated in the computing
sciences. The location, ownership, access to, and consumption of resources are cen-
tral concerns in the design of systems, such as networks, within which processors must
access devices such as file servers, disks, and printers, andin the design of programs,
which access memory and manipulate data structures, such aspointers.

In recent years, it has been demonstrated that a simple, semantic model of the no-
tion of resource, due to Pym and O’Hearn [36, 38, 39], can be a highly effectivetool
for analyzing the meaning of computations that require the controlled sharing of data.
The leading examples are perhaps Reynolds’ separation logic [40], and O’Hearn’s anal-
ysis of Idealized Algol and Syntactic Control of Interference [35] and recent work on
concurrent separation logic [34]. More recently, Collinson, Pym, and Robinson [14, 13]
have shown how resource semantics can be used to explain ML-like languages with
multiplicative quantifiers, giving rise to a form of polymorphism that can be used to
capture cleanly a range of desirable region- and location-based language features.

From the perspective of process theory, Cardelli, Gordon, and others [12, 11, 10],
locations and, indeed, resources, are represented by certain classes of process terms.
Our approach is quite different: we prefer to represent processes, resources, and loca-
tions in terms that are directly motivated by those of their properties that we wish to
capture, leading to both conceptual and computational simplifications.

2.1 Resource Semantics and Logic

A mathematical account of a useful notion of resource can be given using logic. Our
starting position is that the following properties are reasonable requirements for a sim-
ple model of resource [38, 39, 16]:

– A setR of resource elements;
– A (partial) combination,◦ : R × R ⇀ R of resource elements;
– A comparison,⊑, of resource elements; and

– A zero resource element,e.

In the usual spirit and methodology of mathematically modelling, these conceptually
evidently well-motivated properties correspond well to a wide a range of natural exam-
ples [39, 38]. Mathematically, we obtain this structure as apre-ordered partial commu-
tative monoid,

R = (R , ◦ , e , ⊑),

subject to the condition that ifr ⊑ s andr′ ⊑ s′, thenr ◦ r′ ⊑ s ◦ s′, and, recalling the
preordering of a Kripke structure [23, 24], call it aKripke resource monoid, or KRM,
with worlds being resources. The ordering⊑ gives rise to an equality.

A simple example is provided by the natural numbers, here including0,

N = (N , + , 0 , ≤),

in which combination is given by addition, with unit0, and comparison is given by less
than or equals. This is an example of resource ascost.

Of quite direct relevance to our concerns is the ‘basic separation model’ [39, 40].
Suppose we are given an infinite setRes = {r0, r1, . . .}. We think of the elements of
Res as primitive resources, or resource IDs, that can be allocated and deallocated. The
partial monoid structure is given by taking a world to be a finite subset ofRes, and
◦ to be union of disjoint sets. In more detail, where↑ denotes undefinedness (and↓
definedndess),

m ◦ n =

{

m ∪ n if m ∩ n = ∅
↑ otherwise.

The unit of◦ is {e}, and we take⊑ to be equality. This example is the basis of Ishtiaq
and O’Hearn’s pointer logic [21] and Reynolds’ separation logic [40].

The composition and ordering structure lifts to sets of resource elements. Let℘(R)
denote the powerset ofR and letR,S ∈ ℘(R). Then define, for example,

R ◦ S =

{

{ r ◦ s | r ∈ R ands ∈ S } if eachr ◦ s ↓

↑ otherwise,

with unit {e} and, for example,R ⊑ S iff, for all r ∈ R, there iss ∈ S such thatr ⊑ s.
Such sets of resources are a convenient level of abstractionfor our present purposes, for
which we shall require no further special properties. We might also require thatR ◦ S
be defined only ifR andS are disjoint. We writeR1, R2 for the union ofR1 andR2,
and emphasize that composition is quite different from union. Our notational choices
should be clearin situ. Other constructions, based on Kripke resource monoids, might
also provide a basis for a calculus and logic. The space of choices is, however, quite
large, so that a discussion of it is beyond our present scope.More generally, we might
take a more complex structure of resources [37].

Kripke resource monoids provide the basis for the semanticsof BI , the logic of
bunched implications [36, 38]. The judgementr |= φ, for r ∈ R, is read as ‘resource
elementr is sufficient to support propositionφ’. The ordering structure admits the usual
Kripke semantics for the usual, additive, connectives (⊤, ∧, ⊥, ∨, →) of intuitionistic

logic and, in the discrete case, classical logic.The monoidal structure admits a semantics
for a multiplicative conjunction,∗, given by

r |= φ1 ∗ φ2 iff there ares1 ands2 such thats1 ◦ s2 ⊑ r, and
s1 |= φ1 ands2 |= φ2.

The semantics of the multiplicative conjunction,∗, is interpreted as follows: the re-
sourcer is sufficient to supportφ1 ∗ φ2 just in case it can be divided into resourcess1
ands2 such thats1 is sufficient to supportφ1 ands2 is sufficient to supportφ2. The
assertionsφ1 andφ2 — think of them as expressing properties of programs —do not
shareresources. In contrast, in the semantics of the additive conjunction,r |= φ1 ∧ φ2

iff r |= φ1 andr |= φ2, the assertionsφ1 andφ2 maysharethe resourcem. Along with
the multiplicative conjunction comes a multiplicative implication, −∗ , given by

r |= φ−∗ψ iff for all s such thats |= φ, r ◦ s |= ψ.

The semantics of the multiplicative implication,−∗ , may be interpreted as follows:
the resourcer is sufficient to supportφ−∗ψ just in case for any resources which is
sufficient to supportφ the combinationr ◦ s is sufficient to supportψ. We can think of
the propositionφ−∗ψ as (the type of) a function and the propositionφ as (the type of) its
argument. The resources then describe the cost of applying the function to its argument
in order to obtain the result. The function and its argumentdo not shareresources.

In contrast, in the semantics of additive implication, the function and its argument
maysharethe resources. Intuitionistically,r |= φ→ ψ iff for all r ⊑ s, s |= φ implies
s |= ψ; classically,r |= φ→ ψ iff r |= φ impliesr |= ψ.

In Figure 1, we illustrate how separation logic can be used toallocate resources
amongst a collection of users. In this example, there is a single, shared computational
resource (systemS) in which userXi has, perhaps dynamically in the context of utility
computing, resourceRi. (Naturally, resources can be all manner of things; the require-
ments of composing and comparing can typically be met very easily in a wide range of
circumstances, often trivially.)

Here we intend that the systemsX1, X2, . . . , Xm will be executing processes ac-
cessing the central resources. If the systemsXi are required to satisfy propertiesφi,
such as availability or security assertions, then the wholesystem, in respect of these
properties, is described by

(R1, S) ◦ (R2, S) ◦ . . . ◦ (Rm, S) |= φ1 ∗ φ2 ∗ . . . ∗ φm.

To see how this works, consider that unpacking the formulaφ1 ∗ φ2 ∗ . . . ∗ φm into its
component parts involves dividing the resourcesm ways, corresponding to them com-
ponents of ‘total’ resource, each of which contains a reference to the shared resource,
S. We shall return to this example later when we discuss accesscontrol.

2.2 A Calculus of Resource Processes: SCRP

Within a process algebra [28, 4, 20, 29], the common representation of resource is as a
separated process. For instance, a semaphore is represented as a two-state process, rep-
resenting whether the token is currently available or not. There have been extensions

 X2

 X1
 X3

 Xm

 …

Shared
System S

R1

R2

R3

…

Rm

 … …

Fig. 1. Splitting resources amongst a number of distributed, concurrent systems

[9] that attempt to model resource explicitly but these approaches carry both the com-
munication structures of the process algebras alongside the representation of resource.
We take the view that resourceis the fundamental organizing principle of the under-
lying calculus, an approach taken within process-orienteddiscrete event languages [5,
6]. There has been a demonstration that Milner’s calculus SCCS can support a com-
positional view of resource directly [43]. It is clear, however, that this approach still
contains all of the fundamental action structures of SCCS. Our approach is to consider
the co-evolution of resources, as discussed above, and processes, in the sense of SCCS,
with synchronization being constrained by the availability of resources and with re-
sources being modified by the occurrence of actions. Our starting point for our calculus
of resource process is Milner’s synchronous calculus of communicating systems, SCCS
[28]. Note that the asynchronous calculus CCS is asub-calculus of SCCS.

We give an informal description of the Synchronous Calculusof Resources Pro-
cesses, orSCRP, introduced by Pym and Tofts [37]. The language of process element
of SCRPfollows the notation of SCCS and theπ-calculus:

– 1, the unit process;
– a : E a process that performs the actiona to become the processE;
– E + F a process that evolves asE or asF , unit0;
– E × F a process that synchronously uses resources asE andF ;

– C
def
= E is the definition of a constant C, allowing recursive processes to be defined;

– ν(S)E a process with a local, or hidden, evolution relative to resourceS and en-
abling and modification functionsρ andµ, explained below.

The main development inSCRP is to view the statementE
a

−→ E′ as meaning that by
using resource required for the actiona to be enabled, the processE evolves toE′, with
a corresponding modification of the available resource. We implement this change of
perspective by supposing the existence of anenablingfunctionρ which assigns to each
actiona the resourcesρ(a) required for it to be enabled and amodificationfunction

µ which assigns to each actiona and each collectionR of resources the collection
of resourcesµ(a,R) which results from performinga with resourceR. ThusSCRP’s
operational rule for action prefix essentially takes the form

R , a : E
a

−→ µ(a,R) , E
R is at leastρ(a).

Synchronization is achieved by the requiring that a parallel composition of actions,
a#b, be possible only if the resource environment can be decomposed to supporta and
b separately. ThusSCRP’s operational rule for parallel composition essentially takes
the form

R1 , E1
a1→ µ(a1, R1) , E

′

1 R2 , E2
a2→ µ(a2, R2) , E

′

2

R , E1 × E2
a1#a2

→ µ(a1#a2, R) , E′

1 × E′

2

R = R1 ◦R2 is defined;

that is, it must be possible to decomposeR into the resourcesR1 andR2, the resources
required to supporta1 anda2 simultaneously, though we admit the possibility of an
equality betweenR1 andR2, so allowing sharing as required. Note that synchronization
is regulated by resources, in constrast to ACSR [9], in whichinstantaneous events pro-
vide the basic synchronization mechanism. Note also that, in contrast toSCRP’s local
conditions, Gastin and Mislove [18] require a global construction for synchronization.

One fundamental consequence of this approach is that we should wish to maintain
all of the interactions that lead to the current resource usetransition within a process. In
some sense, we need to know how the current resource utilization can be decomposed.
So we must abandon the elegant use of the free abelian group ofactions within SCCS
to describe actions, restrictingSCRPto the more basic free abelian monoid [28],

A = (Act , # , 1).

If we were to take an abelian group, then an actiona might result from the composition
a#b−1 andb thus, in some sense, making use of more resource. Taking resource as the
basic organizing principle, this form of hiding makes decomposition difficult to track.
Nevertheless,SCRP’s formulation permits the formulation of compound atomic actions
(see definition ofρ, below) which are able to emulate the difficult wait-until aspect of
discrete event systems modelling languages such asDemos 2000.

SCCS, in common with CCS, uses a notion ofrestriction. In SCRP, a more natural
concept is that of alocal action, in which a collection of resources is available onlyto
the process to which it is bound. Informally, the operational rule should take the form

R ◦ S , E
a

−→ R′ ◦ S′ , E′

R , ν(S)E
(νS)a
→ R′ , ν(S′)E′

,

where ‘ν(S)a’ denotes the actiona without the components of it that are associated
with the bound resourceS. These components are ‘hidden’ in the subsequent evolution.

To make all this work mathematically, we need the following set-up for enabling
and modification:

– A family of partial functionsρ : Act ⇀ ℘(R) that assign to each action,a, a
set of resources. Think of this as the set of resources required in order fora to be
enabled. We require some mathematical properties to ensurethat these functions
are well-behaved [37];

– A family of partial functionsµ : Act×℘(R) ⇀ ℘(R), which should be understood
as describing the modification to a setR of resources caused by the execution of
the actiona. Again, we require some mathematical properties to ensure that these
functions are well-behaved [37].

Notice theseparation conditionsin theProd andHide rules. In theProd rule, we
ensure that the composite resource is defined. The non-interference of the components
of the composition can be enforced by requiring also thatR ◦ S be defined only ifR
andS are disjoint (cf. separation logic [40]). In theHide rule, in which we implicitly
intend that the enabling functionρ accounts for the non-hidden actions andσ for the
hidden actions, such a realization of the definedness condition would ensure that the
bound resources be not accessible by processes in the environment.

The rules for non-determinism and for constants, with whichwe can form recursive
definitions, seem quite familiar and are quite straightforward:

R , Ei
a

−→ µ(a,R), E′

i

R , E1 + E2
a

−→ µ(a,R), E′

i

i = 1, 2 Con
R , E

a
−→ µ(a,R) , E′

R , C
a

−→ µ(a,R) , E′

C
def
= E.

Bisimulation forSCRP, R , E ∼ R , F , is defined in the usual way. Note that, for
now, we consider the processesE andF relative to the same resource environment. As
usual, we suppress the enabling and modification functions.

Definition 1 ([37]). Bisimulation,∼, is the largest binary relation on resource–process
pairs, R,E such that ifR,E ∼ R,F , then (i)R,E

a
−→ µ(a,R), E′ implies, for

someF ′, R,F
a

−→ µ(a,R), F ′ andµ(a,R), E′ ∼ µ(a,R), F ′; and (ii) R,F
a

−→

µ(a,R), F ′ implies, for someE′,R,E
a

−→ µ(a,R), E′ andµ(a,R), E′ ∼ µ(a,R), F ′.

Theorem 1 ([37]).Bisimulation of resource processes is a congruence.

That is, in our setting, that ifR , E ∼ R , F , then, for all evident termsa, G, andS,
R , a : E ∼ R , a : F , R , E + G ∼ R , F + G, R , E × G ∼ R , F × G, and
R , ν(S)E ∼ R , ν(S)F .

We will not discuss here the equations satisfied bySCRP’s processes. Throughout
our presentation we have an intention that the calculus willbe used to representimple-
mentationand that an extended resource logic will be used to representrequirements.
As a consequence, there is little need to reason directly within the process calculus
exploiting an equational theory. The familiar equations, such as commutativity, asso-
ciativity, etc., do indeed hold. But we cannot expect to obtain an expansion theorem —
relating concurrency and non-determinism — as an equivalence. The main reason for
this is that when we consider the constituent parts of a parallel composition we will have
a particular allocation of resources to each of those parts.When we form the parallel
composition we naturally form a (typically larger) compound resource, it is clear that
this could have been divided in many ways other than that which we chose to do the

original proofs of the behaviours of the sub-components. Soin SCRP-based settings,
we obtain expansion only in the setting of an inequational theory, in which one works
not with bisimulation but with simulation.

Finally, we remark thatSCRPprovides an appropriate mathematical framework in
which to give a semantics toDemos 2000in the sense of that given in SCCS [28, 7, 8],
in which the stochastic data capture is, with little loss of generality, elided. Systems such
asDemos 2000, however, implement a process-theoretic view of the world.Not only
is the dynamics of systems represented as processes but so too are the essentially static
resource components. We would argue that this situation is conceptually unsatisfactory.
Moreover, pragmatically, the computational cost of modelling interactive systems is,
typically, dominated by the handling of the resource components.

2.3 A Modal Logic of Resource Processes, MBI

Process calculi such as SCCS and CCS come along with a modal logic, usually called
Hennessy-Milner logic, with a semantic judgement of the form E |= φ , read as
‘processE has propertyφ’. The language of propositions typically consists of clas-
sical conjunction, disjunction, and negation, together with modalities〈a〉 and [a] for
describing the properties of evolutionsE

a
−→ E′.

In our setting, with an explicit model of resources and a corresponding logic, we are
able to work with a judgementR , E |= φ , read as ‘relative to the available resources
R, processE has propertyφ’.

In this setting, we can immediately recover the familiar classical connectives:

R , E |= φ ∧ ψ iff R , E |= φ andR , E |= ψ

R , E |= ¬φ iff R , E 6|= φ.

The corresponding intuitionistic connectives are also available:

R , E |= φ ⊃ ψ iff for all R ⊑ S and allE ∼ F , S , F |= φ impliesS , F |= ψ.

The intuitionistic version of the universal quantifier is, of course, obtained similarly.
Clearly, some variations are possible here.

Hennessy-Milner logic’s necessitation modality,[a] is also recovered quite simply:

R , E |= [a]φ iff for all R , E
a

−→ µ(a,R) , E′, s.t.ρ(a) ⊑ R, µ(a,R) , E′ |= φ.

The possibility modality,〈a〉, is recovered similarly. Note, however, that the resource
element is important in this definition: the actiona must be enabled by the available
resource.

In our richer logical setting, we are able to obtain a finer analysis of this judge-
ment than is available in Hennessy-Milner logic. Specifically, we obtain, essentially,
the following characterization of parallel composition, denoted by×, as in SCCS:

R , E |= φ1 ∗ φ2 iff there areR1 andR2 such thatR1 ◦R2 = R
and there areE1 andE2 such thatE1 × E2 ∼ E,
such thatR1 , E1 |= φ1 andR2 , E2 |= φ2.

As well as these propositional connectives, we also get multiplicative modalities.
The necessitation is given by

R , E |= [a]νφ iff for all R ◦ S , E
a

−→ µ(a,R ◦ S) , E′, s.t.ρ(a) ⊑ R ◦ S and
R ◦ S , E′ |= φ

and should be understood as characterizing the additional resource required forφ to
hold if it is guarded by the actiona. Again, there are clearly some choices here.

Finally, by working withBI ’s multiplicative quantifiers, we are also able to charac-
terize the notion of local resource:

R , E |= ∀νx.φ iff for all S , F s.t.R , E ∼ R , ν(S)F , R ◦ S , F |= φ[b/x],

for a suitable (quite straightforward) definition of the term b (see [37]), with a similar
clause for∃ν . That is, the hiding construction inSCRP, ν(S)E, that binds the resource
S toE is characterized by the multiplicative quantifiers: the quantified formula specifies
that the process must have a certain quantity of private resource.

The logical characterization of bisimulation provided by Hennessy-Milner logic for
a process calculus such as CCS [29] takes the form

E ∼ F iff for all φ, E |= φ iff F |= φ.

Such a theorem is available for the finer analysis of process equivalence and logical
equivalence provided bySCRP andMBI . More specifically, our result, expressed as
Theorems 2 and 3, shows thatMBI provides explicit characterizations of the concurrent
and local structure of a system, via the definitions of|= for the connective∗ and the
multiplicative quantifiers,∀ν and∃ν , respectively.

Definition 2 ([37]). Let Γ be a set ofMBI formulæ. The equivalence≡Γ between
SCRPprocesses is defined byR , E ≡Γ R , F iff {φ ∈ Γ | R , E |= φ} = {ψ ∈ Γ |
R , F |= ψ}.

We have the evident definition:R , E ≡MBI R , F iff for all Γ ,R , E ≡Γ R , F .

Theorem 2 ([37]).If, for all R,R , E ∼ R , F , then, for allR,R , E ≡MBI R , F .

Theorem 3 ([37]). If, for all R, R , E andR , F are image-finite and if, for allR,
R , E ≡MBI R , F , then, for allR,R , E ∼ R , F .

Unfortunately, although the first-order quantifiers are naturally present in our set-
ting, it seems that they are insufficient to capture the non-image-finite case. Just as for
Hennessy-Milner logic, it seems that to handle non-image finite resource processes,
we must either use an infinitary propositional logic or introduce fixed points, as in the
modalµ-calculus [41].

A similar objective is encountered in the work of Cardelli and Caires [11] in which a
‘spatial logic’, in many ways similar toMBI but lacking an explicit notion of resource,
is used to model the asynchronousπ-calculus. A detailed exploration of possible re-
lationships between this work and ours — perhaps via particular choices of resource
monoid — is beyond our present scope.

Another approach to resources, in a synchronous setting, isthat of Brémond-Grégoire
and Lee’s ACSR [9]. Our approach is more foundational, starting from a logically well-
founded model of resource and developing a theory, in the modelling context described
above, of the interaction between processes and resources.A similar point of view may
be found in the work of Gastin and Mislove [18].

3 Systems Integrity and Access Control

Taking our lead from [2], distributed ICT systems security depends upon the following
three layers and their principal concerns:

1. Trusted computing: Known systems with defined functional capabilities;
2. Authentication: Known identity of people with defined roles;
3. Authorization : Known roles and functions of people and systems using resources

within a defined organizational context.

Because of these dependencies, the provision of authorization requires (some form of)
authentication and, in turn, the provision of authentication depends upon (some form of)
trusted computing. Thus, access control is mainly concerned with authorization. Cru-
cially, effective access control requires not only knowledge of what people and systems
do with resources, but also the intended (business) goals ofwhat is done using those
resources — such matters influence the access-control policy and the decisions made.

Stated this way, distributed authorization in a business context involves understand-
ing business functions, what resources can be used for and the process connections
that entails. There are some semi-formal techniques, such as Domain Based Security
(DBSy)[26, 27], that help provide ways of capturing and assessing the network security
requirements upon communications and more generally, network services, within large
distributed organizations such as government departmentsand large corporations. The
approach focuses upon how thebusinessitself requires information and it’s process-
ing to be compartmentalized — that is,network separations, services aggregationand
compartmentalization-in-the-large. The framework we report here is thus a tentative
contribution towards a more formal account of these issues.

The remainder of this section introduces a somewhat rudimentary example, allow-
ing us to bring concepts from resource semantics to bear uponaccess control, and to
also motivate why some abstraction of location is necessary.

3.1 Our Basic Example

The basic scenario is concerned with a customer wishing to access some protected data
on a corporate database server over a network. This is illustrated in Figure 2.

This diagram attempts to document various relationships graphically; for example,
the hexagons indicate classes/roles of people who can interact and have some responsi-
bilities for systems and services (indicated by circles). The double dashed lines indicate
this association between people and systems. Finally, the double-headed arrows indicate
message- or data-flows between systems. We note in passing how the evident complex-
ity of diagrams like this, even for apparently simple examples such as this one, amply
illustrates the need for a more formal approach to such questions.

Corporate
Databases

Authentication
/Authorization

Databases

Network
Gateways

Network
Admin

Corporate
Database Admin

Authentication/Authorization
Database Admin

Network
Gateways

Credentials
data

Customer
System

Customer
Admin

Customer
User

Fig. 2. Basic set-up

To access material from the corporate database, customers must be able to prove
their (remote) identity and that it matches to some appropriate customer identity. This
is done by customers sending appropriate credentials upon request.

A typical interaction between a customer and the corporate database uses a network
gateway that checks credentials for all sessions using the network. If the credentials are
acceptable, customers may proceed to access the corporate database. However, certain
queries to the database are privileged and require various clearances - these are also
encapsulated into the credentials.

Thus, to check that the credentials in each case are appropriate, there is also an
authentication/authorization database (AADB) that must be actively checked online.

We have usedDemos 2000to provide a basic probabilistic model of the system
above (see Appendix B). Probability is used here toabstract awayfrom a more de-
tailed treatment of security-related features such as useraccounts, personal profiles and
individual options that would be typically maintained within the AADB.

Although certain security details are not concretely represented, theDemos 2000
model still retains the most significant security-related feature — the critical depen-
dency of both network gateway and database access upon theavailabilityof the AADB.
This tells the analyst that if the AADB were to fail, then the entire system would also
fail. In other words, ourDemos 2000model demonstrates critical dependencies, even
at this quite high level of abstraction.

Additionally, because the model can also be simulated, we could explore the effect
of other trade-offs such as the effect of providing some formof secure database repli-
cation of the AADB to improve resilience etc. Naturally, such a strategy would have
impact upon capital infrastructure costs as well as operating costs — and these could
also be captured withinDemos 2000. As it stands, this model is useful for exploring
security-related trade-offs around availability and resilience of the support system. It is
also clear that at some later stage we may become interested in modelling some of the
details we used probability to abstract away from.

3.2 Our Example, Further Refined

We can further refine the above example by indicatingscope of control, an abstract form
of location, as illustrated in Figure 3. For example, we may wish to associate each of
the core capabilities — gateways, databases, authentication — with their administra-
tive support. The point being that systems administration should be localised to each
function, but at the same time implementing global policy requirements. Such manage-
rial coordination will involve communications between theadministrators and with the
overseeing corporate systems management.

Corporate
Databases

Authentication
/Authorization

Databases

Network
Gateways

Network
Admin

Corporate
Database Admin

Authentication/Authorization
Database Admin

Network
Gateways

Credentials
data

Customer
System

Customer
Admin

Customer
User

Corporate
System Mgmt

Fig. 3. Refined Security Example

This refinement suggests a need for a notion oflocation that allows the system
modeller to capture his chosen level of detail and chosen connectivities.

4 Location in the Mathematical Framework

The literature on the theory of computation in general, and on concurrent computation
in particular, contains a wide range of approaches to the notion of location, and the
range of technical complexity required varies greatly. In the work, described above, re-
lated to separation logic and bunched polymorphism, for example, the starting point is
simply asetof (names of) locations. In both the works of Cardelli and Gordon [12],
on ambients, and of Jensen and Milner [22], on bigraphs, the notion of location (and,
indeed, of resource) is captured within a behavioural framework involving all the com-
plexity of, for example, theπ-calculus [30]. Such an approach represents, perhaps, a
quest for a grand unified theory of computational structures. Just as with our motiva-
tion for separating resources from processes, our ambitions are more prosaic: we seek

a conceptually direct, technology for capturing the various features of systems that are
relevant to addressing system-scale questions of performance, integrity, and cost (and
so of economic viablity).

Whilst admitting that some modelling tasks might require rather more complex no-
tions of location, we begin here by suggesting a basic framework, in the context of our
existing analysis of resources and processes and our modelling philosophy, that pro-
vides the essential features needed to begin an analysis.

Recall that our resource process judgements are of the formR , E
a

−→ R′ , E′, for
the operational semantics ofSCRP, andR , E |= φ, for the logicMBI . We enrich these
judgements to have the form

L , R , E
a

−→ L′ , R′ , E′,

read as, ‘with resourcesR at starting locationL, the processE evolves toE′, resulting
in resourcesR′ at finishing locationL′’. Note that we require a connectivity property
betweenL andL′, and that the judgement describes just a local evolution. For this
conception to be sensible, it seems, following the same modelling philosophy used to
derive our assumptions about resources, we need

– a notion ofsublocation,L �M ,
– substitutionof locations,M [L′/L], of locationL′ for a sublocationL of M ,
– a notion ofconnectionbetween locations, and
– a productof locations.

Sublocations arise from, among other things, the need, typically, for a local evolution to
describe what happens to the starting location as a result ofthe evolution. A substitution
is required to ensure that we capture an appropriate compositionality of systems. A
product is needed to capture how concurrent actions may drawupon resources from
distinct locations. This idea of location captures both thephysical and the virtual.

One simple way to realize these requirements is to take locations to be finite, (di-
rected) graphs. Sublocations arise a subgraphs, substitution is given by replacement of
a subgraph by a graph of matching arity — that is, matching (directed) arcs — and
product is given by a suitable choice of graph product (thereare many, including a
categorical product and a range of monoidal products). Two sublocationsL andM of
a locationN are connected — taking due account of directedness as necessary — if
there is an arc linking a vertex ofL to a vertex ofM . We believe that the constructs of
Cardelli and Gordon [12], Jensen and Milner [22], and Galmiche and Méry [17] can be
considered to satisfy these requirements.

Returning to our development from resource-processes to location-resource-processes,
it is clear that we must adapt the formulations of the enabling and modification func-
tions. Recalling the basic form of the axiom case of SCRP’s operational semantics, we
can see that we require, withρ andµ having the evident types,

L , R , a : E
a

−→ L′ , R′ , E

with the following definitions:ρ(a, L) ⊑ R, µ(a, L,R) = (L′, R′).

Note that this framework permits resources to be associatedwith a location that is
either a single vertex or a whole graph, reflecting the choiceof degree of abstraction.

We will not reconstruct all ofSCRPandMBI in the presence of locations. Rather,
we will illustrate a few interesting points. The most obvious questions arise around the
interaction of location and hiding and location and concurrent composition.

4.1 Resource Distribution and Allocation

In SCRP, one possible formulation allows the concurrent compostion of resource-
processes at a common location, that is

L , R , E
a

−→ L , R′ , E′ L , S , F
a

−→ L , S′ , F ′

L , R ◦ S , E × F
a#b
−→ L , R′ ◦ S′ , E′ × F ′

,

whereR′ = µ(a,R), etc., and under appropriate definedness/separation conditions.
Another choice is to exploit the availability of a product,⋊⋉, of locations and allow,
subject to appropriate conditions,

L , R , E
a

−→ L , R′ , E′ M , S , F
a

−→ L , S′ , F ′

L ⋊⋉ M , R ◦ S , E × F
a#b
−→ L ⋊⋉ M , R′ ◦ S′ , E′ × F ′

.

Finally, one might generalize each of these to permit the evolution of locations —L to
L′,M toM ′. We conjecture that these choices are all that are required.

In SCRP, hiding binds resources locally to a process: InS , ν(R).E, the ambient,
shared system resources areS andE has, additionally, private access toR. This can be
seen pictorially by reconsidering our first pictorial example, as depicted in Figure 4.

 …

 X1

 …
 X2

 Xi

Shared
System S

…

R1

R2

…

…

 …

Ri

…

Fig. 4.Local Resources

Here we envisage the systemXi running some processEi. It has access to shared
resourcesS and local resourcesR, and is described asS , ν(Ri).Ei. Another systemXj

might be described asS , ν(Rj).Ej , with Ri andRj satisfying a separation condition.

4.2 Access Control Revisited

Given this structural set-up, how do we ask whether our (model of our) system supports
our access control policy? To see this, and as an example, we consider descriptions
of access control policies such as in Binder [15], as described by Abadi [1]. Con-
sider the system described above and illustrated in Figure 4. Each of the systemsXi

may have an access control policy, expressed as logical formulæσXi
, as surveyed by

Abadi [1]. Such formulæ amount to certain logical combinations of predicates such as
may-access(p,o,r) , which would hold whenever the policy gives principalp the
right r on objecto. Then, if the whole system — expressed asL , R , E, whereE is
essentiallythe concurrent composition of them Eis — is to support all of the required
access control policies, we must have

L , R , E |= σX1
∗ σX2

∗ . . . ∗ σXm
.

This will hold provided the systemL , R , E can be decomposed in such a way as to
support all of the policy requirements separately; that is,each

Li , Ri , Ei |= σXi

holds, for some well-defined decomposition.
Using tableaux systems forMBI , similar to those available forBI [16], we aim to

do efficient model checking of access control policies exploiting system models incor-
porating location — see [33] for an example.

5 Some Technical Directions

We have presented a very high-level overview of a wide-ranging project in modelling
techniques for systems integrity. There are many research directions that are being ex-
plored in much greater detail:

– The mathematical theory ofSCRPandMBI [37], with and without locations;
– Tools, in the style ofDemos 2000and of model checking to support modelling;
– Constructs that naturally handle ideas such asrôlesand impersonationin access

control, building on ideas discussed by Abadi et al. [2, 2]. For example, the idea of
principalE in rôle F , or ‘E quotingF ’, can be made precise as a form of non-
commutative concurrent composition,E ∝ F , in our setting:

R , F
a

−→ R′ , F ′ S , E
a

−→ S′ , E′

S , E ∝ F
a

−→ S′ , E′ ∝ F ′

R ⊑ S, S , E ∼ S , F,

Interestingly, the non-commuativity arises rather naturally via our explicit represen-
tation of resources, not present in [2]. Note that the bisimulation could be relaxed
to simulation, a choice not readily available in Abadi et al.’s calculus of principals.
Building on this operational construct, we are able to recover the idea of ‘principal
E saysφ’ as a form of modality inMBI , {E}φ, associated directly with∝:

R , G |= {E}φ iff for someF s.t.R,G ∼ (R,E ∝ F), R , F |= φ.

That is,E saysφ holds forG just in caseG is of the formE quotingF andF sup-
portsφ (all relative to resourcesR). We can enrich this analysis with our notion of
location. Abadi et al. proceed to analyze a range of derived constructions, involving
ideas such as delegation and certificates. These ideas remain to be explored.

The framework we have sketched thus allows us to begin to analyze the concept
of stewardship; that is, the idea that when customers entrust their resources, such as
business-critical corporate data, to, for example, a utility computing service, they expect
their data to be cared for appropriately (confidentially, with integrity, and with high
availability) when it is processed by the utility providers’ resources. Thus we need
an account of the interactions between these two classes of resource within the utility
processing environment.

Acknowledgements. We are grateful to Martin Sadler, Richard Taylor, and Mike Year-
worth for discussions that have provided the context for this work. We are grateful to
Matthew Collinson, Peter O’Hearn, and Chris Tofts for relevant technical discussions.

References
1. Martı́n Abadi. Logic in access control. InProc. LICS 2003, 228–233, IEEE, 2003.
2. Martı́n Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus for access

control in distributed systems.ACM Trans. Prog. Lang. Sys.15(4):706–734, 1993.
3. Martı́n Abadi and Phillip Rogaway. Reconciling two viewsof cryptography (the compu-

tational soundness of formal encryption). InIFIP International Conference on Theoretical
Computer Science (IFIP TCS2000), Sendai, Japan, 2000. Springer-Verlag, Berlin Germany.

4. J.A. Bergstra and J.W. Klop. The algebra of recursively defined processes and the algebra of
regular processes. InProc 11th ICALP, LNCS 172, 1984.

5. G. Birtwistle.Demos — discrete event modelling on Simula. Macmillan, 1979.
6. G. Birtwistle. Demos implementation guide and referencemanual. Technical Report

81/70/22, University of Calgary, 1981.
7. G. Birtwistle and C. Tofts. An operational semantics of process-orientated simulation lan-

guages: Part IπDemos.Trans. Soc. Comp. Sim.10(4):299–333, 1993.
8. G. Birtwistle and C. Tofts. A denotational semantics for aprocess-based simulation lan-

guage.ACM ToMaCS, 8(3):281 – 305, 1998.
9. Patrice Brémond-Grégoire and Insup Lee. A process algebra of communicating shared re-

sources with dense time and priorities.Theoret. Comp. Sci.189(1–2):179–219, 1997.
10. Luı́s Caires and Luca Cardelli. A spatial logic for concurrency-ii. Theoret. Comp. Sci.

322(3):517–565, 2004.
11. L. Cardelli and L. Caires. A spatial logic of concurrency(part i). Information and Compu-

tation, 186(2):194–235, 2003.
12. L. Cardelli and A. Gordon. Anytime, anywhere: modal logics for mobile processes. InProc.

27th POPL, 2000, ACM.
13. M. Collinson and D. Pym. A bunched approach to the semantics of regions and locations. In

Proc. SPACE 2006, Charleston, South Carolina, 2006.
14. M. Collinson, D. Pym, E. Robinson. On bunched polymorphism. LNCS 3634: 36-50, 2005.
15. John DeTreville. Binder, a logic-based security language. InProc. 2002 IEEE Symposium

on Security and Privacy, pages 105–113, 2003.
16. D. Galmiche, D. Méry and D. Pym. The semantics ofbi and resource tableaux.Math. Struct.

Comp. Sci., 15:1033–1088, 2005.
17. D. Galmiche and D. Méry. Resource Graphs and Countermodels in Resource Logics.Elec-

tronic Notes in Computer Science125, 2005.

18. P. Gastin and M. Mislove. A simple process algebra based on atomic actions with resources.
Mathematical Structures in Computer Science, 14:1–55, 2004.

19. L.A. Gordon and M.P. Loeb.Managing Cybersecurity Resources: A Cost-Benefit Analysis.
McGraw Hill, 2006.

20. C. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.
21. S.S. Ishtiaq and P. O’Hearn.BI as an assertion language for mutable data structures. In

28th ACM-SIGPLAN Symposium on Principles of Programming Languages, London, pages
14–26. Association for Computing Machinery, 2001.

22. O.H. Jensen and R. Milner. Bigraphs and mobile processes(revised). Technical report,
University of Cambridge, 2004. UCAM-CL-TR-580, ISSN 1476-2986.

23. S. A. Kripke. Semantical considerations on modal logic.Acta Phil. Fenn., 16:83–94, 1963.
24. S. A. Kripke. Semantical analysis of intuitionistic logic I. In J. N. Crossley and M. A. E.

Dummett, editors,Formal Systems and Recursive Functions, 92–130. North-Holland, 1965.
25. Butler Lampson, Martı́n Abadi, Michael Burrows, and Edward Wobber. Authentication in

distributed systems: Theory and practice.ACM Trans. on Comp. Sys., 10(4):265–310, 1992.
26. C. L.Robinson. Security requirements models to supportthe accreditation process. In2nd

Annual Sunningdale Accreditor’s Conference. RMCS Shrivenham, 2001.
27. C. L.Robinson and K.J.Hughes. Managing infosec risk in complex projects. In4th Annual

Systems Engineering for Defence Conference. RMCS Shrivenham, 5-16th February 2001.
28. R. Milner. Calculi for synchrony and asynchrony.Theoret. Comp. Sci., 25(3):267–310, 1983.
29. R. Milner.Communication and Concurrency. Prentice Hall, New York, 1989.
30. R. Milner.Communication systems and theπ-calculus. Cambridge University Press, 1999.
31. Brian Monahan. From security protocols to systems security: Making a case for systems

security modelling. Technical report, Hewlett-Packard Laboratories, 2003. HPL-2003-147.
32. Brian Monahan. Infrastructure security modelling for utility computing. Technical report,

Hewlett-Packard Laboratories, 2005. HPL-2005-4.
33. Mark D. Ryan, Nan Zhang, and Dimitar Guelev. Evaluating access control policies through

model checking. InEighth Information Security Conference (ISC ’05), LNCS, 2005.
34. P. O’Hearn. Resources, concurrency, and local reasoning. Theoret. Comp. Sci., 2005.
35. P.W. O’Hearn. On Bunched Typing.J. Functional Programming, 13(4):747–796, 2003.
36. P.W. O’Hearn and D.J. Pym. The logic of bunched implications.Bulletin of Symbolic Logic,

5(2):215–244, June 1999.
37. David Pym and Chris Tofts. A calculus and logic of resources and processes. Technical

report, Hewlett-Packard Laboratories, 2004. HPL-2004-170R1.
38. D.J. Pym.The Semantics and Proof Theory of the Logic of the Logic of Bunched Implications,

volume 26 ofApplied Logic Series. Kluwer Academic Publishers, 2002. Errata and Remarks
at:http://www.cs.bath.ac.uk/˜pym/BI-monograph-errata.p df .

39. D.J. Pym, P.W. O’Hearn, and H. Yang. Possible worlds and resources: The semantics ofBI.
Theoretical Computer Science, 315(1):257–305, 2004. Erratum: p. 285, l. -12: “, for some
P ′, Q ≡ P ; P ′ ” should be “P ⊢ Q”.

40. J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. InProc.
LICS ’02, pages 55–74. IEEE Computer Society Press, 2002.

41. Colin Stirling.Modal and Temporal Properties of Processes. Springer Verlag, 2001.
42. Richard Taylor and Chris Tofts. Modelling, Myth vs Reality, Map vs Territory. Technical

Report HPL-2003-246, HP Laboratories, Bristol, 2003.
43. C. Tofts. Efficiently modelling resource in a process algebra. Technical Report HPL-2003-

181, HP Laboratories, Bristol, 2003.

A A Brief Guide to Demos 2000

In reality, Demos 2000is two things — first of all, it is a semantically justified [7,
8] discrete-event systems modelling language and, secondly, it is a simulation based
environment to support the examination and exploration of systems so described.

TheDemos 2000environment has been designed to support the precise examination
of simulation oriented descriptions of systems. These can be compiled or automatically
rewritten into multiple representations dependent upon the questions that must be asked
of the model such as correctness, performance, availability, or agility, etc.

Systems descriptions written inDemos 2000tend to be high-level, pleasingly short
and to the point. The modelling philosophy thus supported isvery much akin to ‘ex-
treme modelling’, where the systems analyst/modeller can rapidly construct high-level
models representing the customer’s core business concerns. A key contribution to this
capability is the exploitation of probability theory to abstract away from extraneous
details.

We now present a brief ‘taste’ of a typicalDemos 2000definition of a system. Al-
though not syntactically mandated in any sense, as a generalruleDemos 2000programs
pragmatically adopt the following standard shape:

1. Constant definitions:

– Demos 2000constants are special in that they may be defined in terms of prob-
ability distributions — each time such ’constants’ are evaluated during simu-
lation, a fresh sample is taken from the specified distribution. The probability
distributions supported include standard distributions such as Uniform, Bino-
mial, Geometric, Negative Exponential, Normal, Poisson, and Weibull, as well
as arbitrary point/discrete distributions;

2. Global variable definitions;

3. Resource definitions:

– In Demos 2000, resources represent pure synchronisations (in the process-
calculus sense) and can be claimed and released by means ofgetR andputR
expressions;

4. Bin definitions:

– In Demos 2000, bins represent synchronisable entities (note that the term ‘re-
source’ is used in the rest of the paper to encompass both theDemos 2000
notion of ‘resource’ and theDemos 2000notion of ‘bin’, as described here)
into which some quantity of material may be placed and retrieved. These may
be used to provide the effect of one entity making a synchronous, concurrent
process call on another;

5. Class definitions:

– In Demos 2000, each entity is a concurrently executing instance of some class.
Classes thus represent the behaviour of entities in conventional procedural
terms, by manipulating resources in some fashion and by ‘holding’ (letting
time pass) for defined periods of time;

6. Initial model population, and entity creation;

7. Run length control, typically ahold of some fixed duration;

8. The all-importantclose statement ends the simulation run.

In this form, we may regardDemos 2000descriptions as defining system behaviour
in terms of a Dijkstra-like guarded command language. All active commands test the
current system state. If the condition they represent can bemet then they are executed
— otherwise they are blocked until such time as the conditionholds, if at all. Note
that Demos 2000simulations will typically run for a specified length of time. If ei-
ther deadlock or livelock arise during simulation runs thenthese situations are checked
for pragmatically. The major difference between process oriented simulation languages
(like Demos 2000) and pure guarded command languages is that the conditions have
side effects, due to the assignment of resource to the activeentity. Hence change of
state is mediated not only by assignment to variables, but byassignment and the claim
of resource, and also by entities becoming resources themselves.

Demos 2000has been given a simple, elegant and informative semantics,abstract-
ing away from the stochastic data collection, in the processcalculi SCCS and CCS [28,
29]. It can be argued that the representation of resource in the synchronous semantics
(SCCS) is superior to that in the asynchronous semantics (CCS) [43].

B Demos 2000 code for the example from§ 3

Below is aDemos 2000description of the example discussed in§ 3.
As remarked earlier, we use probabilities to capture pertinent aspects of (a) user be-

haviour and (b) authentication/authorisation behaviour.Our abstraction here illustrates
how probability can help simplify models and to eliminate details deemed to be unnec-
essary - in this case, the dependencies upon user accounts and personal profiles. If later
on we became interested in modelling greater detail of thoseaspects, we could extend
our model to do so, perhaps in a suitably enhanced version ofDemos 2000.

You will observe that a sizable chunk of the definition is essentially superstructure,
such as defining DEMOS constants and setting up variables forauditing/monitoring
behaviour; the remainder comprises class definitions specifying entity behaviour.

If we strip away all this superstructure and simplify, what we have left is an un-
derlying process-algebraic ’skeleton’ term that is close to being a minimal model for
the system. Such a minimal model is easily turned into a compact state machine whose
properties are directly amenable to validation, even via conventional exhaustive state
exploration model-checking technology.

(* CSFW’06 - basic security example *)

cons runlength = 1000;

(* Structural constants - these represent structural value s *)
cons tt = 1;
cons ff = 0;

(* Standard DEMOS constants *)

cons connectDelay = 5;

(* Probabilistic sim. of simplified user behaviour *)

cons id = puni(1, 2000); (* ID values are also credential valu es *)
cons query = puni(1, 10); (* There are 10 types of query *)

(* Simplified probabilities of acceptance *)

cons entryProb = 0.95; (* probability of entry *)
cons queryProb = 0.2; (* probability of query acceptance *)

(* Using probability to sim. effect of authentication *)

cons authEntryTest = binom(1, entryProb); (* prob. sim. of e ntry auth. test *)
cons authQueryTest = binom(1, queryProb); (* prob. sim. of q uery auth. test *)

(* Some variables for auditing/monitoring purposes *)

var attempts = 0;
var checks = 0;
var netEntryOK = 0;
var netEntryFAILED = 0;
var queries = 0;
var queryAuthOK = 0;
var queryAuthFAILED = 0;

(* Resource bins for synchronisations *)

bin(netGate, 0);
bin(authCheckEntryReq, 0);
bin(authCheckDBQueryReq, 0);
bin(corpDBReq, 0);

(* Classes defining entity behaviour *)

class customerRequests =
{ entity(C, customerRequests, connectDelay);

putVB(netGate, [id, query]);
attempts := attempts + 1;

}

class networkGateway =
{ local var cur_id = 0;

local var cur_query = 0;
local var cur_valid = 0;

repeat {
try [getVB(netGate, [cur_id, cur_query], true)] then {

checks := checks + 1;
syncV(authCheckEntryReq, [cur_id], [cur_valid]);
hold(1);
try [cur_valid == ff] then {

trace("Entry to network denied to customer %v", cur_id);
netEntryFAILED := netEntryFAILED + 1;

}
etry [] then {

putVB(corpDBReq, [cur_id, cur_query]);
netEntryOK := netEntryOK + 1;

}
}

}
}

class authDBserver =
{ local var cur_id = 0;

local var cur_query = 0;
local var cur_status = 0;

repeat {
cur_status := 0;
try [getSv(authCheckEntryReq, [cur_id], true)] then {

cur_status := authEntryTest;
hold(1);
putSv(authCheckEntryReq, [cur_status]);

}
etry [getSv(authCheckDBQueryReq, [cur_id, cur_query], t rue)] then {

cur_status := authQueryTest;
hold(1);
putSv(authCheckDBQueryReq, [cur_status]);

}
}

}

class corpDBserver =
{ local var cur_id = 0;

local var cur_query = 0;
local var cur_valid = 0;

repeat {
try [getVB(corpDBReq, [cur_id, cur_query], true)] then {

queries := queries + 1;
syncV(authCheckDBQueryReq, [cur_id, cur_query], [cur_v alid]);
hold(1);

try [cur_valid == ff] then {
trace("*** Auth. Query *FAILED* for customer %v and query %v ",

cur_id, cur_query);
queryAuthFAILED := queryAuthFAILED + 1;

}
etry [] then {

trace("--- Auth. Query ok for customer %v and query %v",
cur_id, cur_query);

queryAuthOK := queryAuthOK + 1;
}

}
}

}

(* Initial entity creation *)

entity(C, customerRequests, 0);
entity(NG, networkGateway, 0);

entity(AADB, authDBserver, 0);
entity(CDB, corpDBserver, 0);

(* Simulation run-length control *)

hold(runlength);

(* Final output of auditing variables *)

trace("attempts = %v", attempts);

trace("checks = %v", checks);
trace("netEntryFAILED = %v", netEntryFAILED);
trace("netEntryOK = %v", netEntryOK);

trace("queries = %v", queries);
trace("queryAuthFAILED = %v", queryAuthFAILED);
trace("queryAuthOK = %v", queryAuthOK);

close; (* Simulation ends *)

